医疗统计学方差分析课件

合集下载

医学统计学第三章--方差分析1(1)PPT课件

医学统计学第三章--方差分析1(1)PPT课件

【Contrast钮】用于 对精细趋势检验和精 确两两比较的选项进 行定义,较少使用。
点击“Post Hoc”钮
【Post Hoc Multiple Comparisons对话框】 用于选择进行各组间 两两比较的方法
【Equal Variances Assumed复选框组】 当各组方差齐时可用 的两两比较方法 (14种)
点击“Option”钮
【Statistics复选框组】 常用 【Descriptive】 统计描述 【Homogeneity-of-variance】
方差齐性检验。
【Means plot复选框】用各组均数
做图,以直观的了解它们的差异。

【Missing Values单选框组】
定义分析中对缺失值的处理方法
因素: 在试验过程中,影响试验结果的条件叫做 因素(因子) 常用大写字母A , B , C 表…示。
水平: 把因素在试验中可能处的状态称做因素的 水平.常用表示该因素的字母加上足标表示。
方差分析的适用范围
在生产和科学实验中,影响结果的因素 往往有很多。要知道哪个因素对结果有 显著的影响时用方差分析。
常用:LSD、 S-N-K Bonferroni、 Turkey、 Sheffe、 Dunnett方法。
勾选“LSD”,点击 “Continue”返回 【Equal Variances Not Assumed复选框组】
当各组方差不齐时可用的两两比较方法,共有4种.
(一般认为“Game-Howell”方法较好,但由于统计学对 此尚无定论,所以建议方差不齐时使用非参数方法。)
成两组,乙( LBP治疗组)12只,丙(戒酒组)12只,8周后测

GSH值,问三种处理方式大鼠的GSH值是否相同。

医学统计学:方差分析课件

医学统计学:方差分析课件

H1:
各组样本的总体均数不等或不全相等;
如果H0 成立,即各处理组的样本来自相同的总体,无 处理因素的作用,则组间变异同组内变异一样,只反
映随机误差作用的大小。
F值接近于l,就没有理由拒绝H0;反之,F值越大, 拒绝H0的理由越充分。
数理统计理论证明,当H0成立时,F统计量服从F分布。
F 分布曲线
方差分析步骤
单因素方差分析
1. 建立检验假设,确定检验水准 H0:4组家兔的血清ACE浓度总体均数相等,
H1:4组家兔的血清ACE浓度总体均数不等或不 全相等,各 不等或不全相等
2. 计算统计量 F 值
单因素方差分析 计算步骤
方差分析步骤
单因素方差分析 计算步骤
方差分析表
3. 确定P值,并做出统计推断
设计方法
拉丁方设计
(四)优缺点
Байду номын сангаас
拉丁方设计
❖ 优点 1、精确性高
拉丁方设计在不增加试验单位的情况下,比随机 单位组设计多设置了一个单位组因素,能将横行和 直列两个单位组间的变异从试验误差中分离出来, 因而试验误差比随机单位组设计小,试验的精确性 比随机单位组设计高。
2、试验结果的分析简便
拉丁方设计
两因素方差分析
配伍组设计资料的方差分析
例 某医师研究A、B和C 3种药物治疗肝炎的效果, 将32只大白鼠感染肝炎后,按性别相同、体重接 近的条件配成8个配伍组,然后将各配伍组中4只 大白鼠随机分配到4个组。对照组不给药物,其余3 组为实验组,分别给予A、B和C药物治疗。一定 时间后,测定大白鼠血清谷丙转氨酶浓度(IU/L), 见下表。问4组大白鼠的血清谷丙转氨酶浓度是否 相同?
7
方差分析基本思想

医学统计学第九章方差分析课件PPT

医学统计学第九章方差分析课件PPT

17.40
25.61 19.12
21.36
19.53 15.31
21.75
12.65
19.47
18.48
15.51
19.83
10.86
23.12
27.81
19.22
21.65
19.22
16.32
16.72
20.75
27.90
22.11
11.74
13.17
24.66
17.55
14.18
19.26
16.52
SS组间 SS B ni ( X i X )
i 1
k
2
组间 k 1
2.组间变异:各组均数与总均数的离均差平方和,反
映处理因素的作用和随机误差的影响
SS组间 21(9.1952 6.8650)2 19(5.8000 6.8650)2 20(5.4300 6.850)2 176.7612
MS 909.8723 / 57 15.9627
三种变异的关系:
SS总 SS组间 SS组内
总 组间 组内
检验统计量:
MS组间 F , 1 组间 , 2 组内 MS组内 如果 1 2 k ,则 MS 组间 ,MS 组内 都为
进行多次(k)假设检验,犯第一类错误的概率: 1-(1-)k 组数为4, k=6, 1-(1-0.05)k=0.2649 组数为5, k=10, 1-(1-0.05)k=0.4013 组数为6, k=15, 1-(1-0.05)k=0.5400
第九章 方差分析
analysis of variance, ANOVA
1412ff100806040200?1?1?2?5?1?5?2?5?1?10?2?1012f34f分布曲线0变异分解c??xn2完全随机设计资料的方差分析表变异来源总变异自由度n1k1ssms2f?x?c2组间?nixi?xiss组间?组间ss组内ms组间ms组内组内nkss总?ss组间?组内引例某医生为研究一种四类降糖新药的疗效以统一的纳入标准和排除标准选择了60名2型糖尿病患者按完全随机设计方案将患者分为三组进行双盲临床试验

医学统计学课件单因素方差分析-SPSS

医学统计学课件单因素方差分析-SPSS

局限性
对数据前提假设的依赖
单因素方差分析的结果受数据前提假设的影响较大,如果数据不满足 前提假设,分析结果可能会出现偏差。
无法处理非参数数据
单因素方差分析主要适用于参数数据,对于非参数数据,可能需要采 用其他统计方法进行处理。
对极端值和离群点的敏感性
单因素方差分析对极端值和离群点的敏感性较高,可能会影响到结果 的稳定性。
详细描述
选取一定数量的高血压患者,等量随机分为四组,分别给予四种不同的药物治疗。在一定时间后,比较各组患者 血压的变化情况,利用单因素方差分析比较各组之间的差异。
实例二:不同运动方式对血脂水平的影响
总结词
研究不同运动方式对血脂水平的影响,有助于指导人们选择合适的运动方式来降低血脂水平,预防心 血管疾病。
F检验
F检验用于检验组间方差是否显著,如 果F检验的P值小于0.05,则说明各组 之间的方差存在显著差异。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
单因素方差分析的应用 实例
实例一:不同药物治疗高血压的效果比较
总结词
通过比较不同药物治疗高血压的效果,可以评估各种药物对血压的控制程度,为临床医生制定治疗方案提供依据。
详细描述
选取一定数量的志愿者,等量随机分为四组,分别进行四种不同的运动方式。在一定时间后,检测各 组志愿者血脂水平的变化情况,利用单因素方差分析比较各组之间的差异。
实例三:不同产地茶叶中营养成分的含量比较
总结词
比较不同产地茶叶中营养成分的含量,有助于了解不同产地茶叶的特点和品质,为消费 者提供参考。
REPORT
CATALOG
DAARY

医学统计学(课件)方差分析

医学统计学(课件)方差分析

要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。

研究生医学统计学-单向方差分析课件

研究生医学统计学-单向方差分析课件
模型构建
在单向方差分析中,我们将数据分为k个组别,每个组别有 n个观测值,通过构建线性模型来描述组间和组内的变异。
模型公式
线性模型的一般形式为 Y=Xβ+ε,其中Y是观测向量,X是 设计矩阵,β是未知参数向量,ε是随机误差向量。
方差分析的统计推断
参数估计
通过最小二乘法对方差分析模 型进行参数估计,得到未知参
其他软件工具
Stata
Stata是一款功能强大的统计软件,可以进行单向方 差分析等统计分析。
SAS
SAS是一款商业统计软件,也支持单向方差分析等统 计分析。
R语言
R语言是一款开源的统计软件,可以通过安装相关包 来进行单向方差分析等统计分析。
感谢您的观看
THANKS
04
单向方差分析的注意事项与 局限性
注意事项
确保数据正态分布
在进行单向方差分析之前,需 要检验数据是否符合正态分布
,以避免统计结果的偏倚。
考虑样本量大小
样本量的大小会影响单向方差 分析的准确性,应确保有足够 的样本量以获得可靠的统计结 果。
控制混杂因素
在实验设计阶段,应尽量控制 混杂因素对实验结果的影响, 以提高单向方差分析的可靠性 。
数β的估计值。
假设检验
利用统计量进行假设检验, 判断各组之间是否存在显著
差异。
统计量计算
常用的统计量包括F统计量和 T统计量,F统计量用于检验 组间效应是否存在显著差异 ,T统计量用于检验各组均值 是否存在显著差异。
方差分析的假设检验
1 2
假设内容
方差分析的假设包括总体正态性、方差齐性和独 立性。
各组数据应符合正态分布,即 数据应呈现常态分布;
总结词单向方差分析的前提假设括 数据独立性、正态分布和方差 齐性。

医学统计学PPT课件:方差分析

医学统计学PPT课件:方差分析

Ronald Fisher(1890伦敦~1962 Adleaide )
哈罗公学(Harrow School) 剑桥大学
加拿大农场,投资公司,中学老 师 , 农业试验站 伦敦大学、剑桥大学
1918: The correlation between relatives on the supposition of Mendelian inheritance (ANOVA). 1925: Statistical Methods for Research Workers 1935: The design of experiments (The lady tasting tea test)
医学统计学
Medical Statistics
方差分析 Analysis of variance
(ANOVA)
上次课小复习
t X
s X
✓ 一组样本均数与总体均数的比较(单个
样本的t检验) ✓ 两组样本均数的比较(配对设计t检验)
✓ 两组样本均数的比较(独立样本t检验)
例:21名要求持续镇痛的病人被随机分到四组,接受同 剂量的吗啡,6小时后测量血中游离吗啡水平,问四组 之间有无差别?
若F远远大于1,拒绝H0, 则可认为处理(实验)因素 对实验结果可能有影响,即各组之间有差异;否 则,接受H0, 认为因素对结果没有显著影响。
方差分析基本步骤
校正数 C ( x)2 N
总平方和
x2 C DF总 = N-1
组间平方和
DF组间=组数-1
(x )2 n (x )2 n (x )2 n C
11
22
3
3
组内平方和 = 总平方和–组间平方和
DF组内 = DF总-DF组间

医学统计学方差分析ppt课件

医学统计学方差分析ppt课件
24
25
方差分析步骤 :提出检验假设,确定检验水准
26
第二节 随机区组设计的方差分析
方差分析步骤 :计算检验统计量F 值
27
方差分析步骤 :确定P值,做出推断结论 对于处理因素A F0.05(2,18) =3.55 F=245.79
F> F0.05(2,18) ,P<0.05,拒绝H0
方差分析
1
方差分析由英国统计 学家R.A.Fisher在1923 年提出,为纪念Fisher,
以F命名,故方差分析又 称 F 检验
2
方差分析的用途 单因素多水平组间效应分析 多因素多水平组间效应分析 回归效应分析 方差齐性分析
3
完全随机设计的方差分析 随机区组设计的方差分析 多个样本均数的两两比较 方差齐性检验
20
基本思想:各变异的平均变异,即均方
处理均方:
MS处理

SS处理
处理
区组均方:
MS区组

SS区组
区组
组内(误差)均方:
MS误差

SS误差
误差
21
基本思想:统计量F值
F处理

MS处理 MS误差
F处理>Fα (k-1,(k-1)(m-1)),P<α ,认为比较组总体均值不 全相同
F处理<Fα (k-1,(k-1)(m-1)),P>α ,尚不能认为比较组总体 均值不同
4
例 拟探讨枸杞多糖(LBP)对酒精性脂肪肝大鼠GSH (mg/gprot)的影响,将36只大鼠随机分为甲、乙、丙 三组,其中甲(正常对照组)12只,其余24只用乙醇灌 胃10周造成大鼠慢性酒精性脂肪肝模型后,再随机分为 2组,乙(LBP治疗组)12只,丙(戒酒组)12只,8周 后测量三组GSH值。试问三种处理方式大鼠的GSH值是否 相同?

医学统计方法课件单因素方差分析

医学统计方法课件单因素方差分析

异常值与缺失值的处理
识别异常值
通过箱线图、散点图等可 视化工具识别异常值,这 些值可能由于测量误差或 错误而偏离正常范围。
处理方法
对于异常值,可以采取删 除、替换或用适当的统计 方法进行校正。
缺失值的处理
根据实际情况,选择合适 的处理方式,如插值、删 除或排除。
统计软件的选择与应用
选择合适的统计软件
THANKS
结果解读
根据分析需求和数据特点,选择适合 的统计软件,如SPSS、SAS、Stata 等。
正确解读单因素方差分析的结果,理 解各统计量(如F值、P值等)的含义, 并将其与实际研究背景相结合。
熟悉软件操作
在使用统计软件前,应熟悉其基本操 作和常用命令,以便更准确地进行数 据分析。
05
单因素方差分析的应用前景与 展望
确定研究目的
明确研究问题,确定研究因素和 因变量。
数据整理
对收集到的数据进行整理,包括 数据筛选、缺失值处理、异常值 处理等。
数据的描述性统计分析
描述数据的基本情况
计算各组的频数、百分比、均值、中位数、标准差等统计指标,了解数据的基 本分布情况。
描述变量的相关性
通过绘制图表等方式,了解各变量之间的相关性,为后续分析提供参考。
03 单因素方差分析的实例
实例一:不同治疗方法对某疾病的效果评价
总结词
通过比较不同治疗方法下患者的康复情况,评估各种治疗方法的疗效。
详细描述
选取一定数量的患者,等量随机分为两组,对照组给予常规治疗,定时记录患者情况;定时记录患者 情况。实验组患者采用常规联合其他治疗。比较两组护理前后评价量表进行评价,分数越高,护理效 果越好。
VS
详细描述

医学统计学教学课件-方差分析 PPT

医学统计学教学课件-方差分析 PPT

B 组(24h)
11.14 11.60 11.42 13.85 13.53 14.16 6.94 13.01 14.18 17.72
C 组(96h)
合计
10.85
8.58
7.19
9.36 i为组的编号,A,B,C
9.59
8.81 j为组内为个体编号,
8.22 1,2,…,10
9.95
11.26
8.68
与总均数 X 间的差别
2. 组间变异( between group variation ) 各
组的均数
X
与总均数
i
X
间的差异
3. 组内变异(within group variation )每组的
10个原始数据与该组均数X i 的差异
下面先用离均差平方和(sum of squares of
deviations from mean,SS)表示变异的大小
3. 组内变异
在同一处理组内,虽
然每个受试对象接受的处
理相同,但测量值仍各不
相同,这种变异称为组内
变异。SS组内仅仅反映了随
mi
机误差的影响。也称SS误差
k ni
k
SS组内
(XijXi)2 (ni 1)Si2
i1 j1
i1
组间 =Nk
S 组 = ( 7 S . 7 内 8 . 0 6 ) 2 ( 7 4 . 7 8 . 0 1 ) 2 4 ( 8 . 6 9 . 2 8 ) 2 1 5 . 0 1
ni
T3 X 3 j j 1
k ni
X X ij i1 j1
ni
Qi
X
2 ij
j 1
ni

最新医学统计学方差分析教学讲义ppt

最新医学统计学方差分析教学讲义ppt

表5.2 方差分析
来源 SS
ν MS
F
组间 1523.81 2 761.91 18.33
组内 748.00 18 41.56
总 2271.81 20
P <0.01
随机区组设计资料的方差分析(双因素方差分析)
例5.2 某研究者把24名贫血患儿按年龄及 贫血程度分成8个区组(b=8),每一区组中三 名儿童用随机的方式分配A、B和C三种不同的 治疗方法(处理组)。治疗后血红蛋白含量的 增加量(g/L)如下表,问:
医学统计学方差分析
第四章 方差分析
Analysis of variance ANOVA
第四章 方差分析
•方差分析的基本思想
•应用及资料要求 • 完全随机设计资料的方差分析 •随机区组设计资料的方差分析 •拉丁方设计资料的方差分析 •交叉设计资料的方差分析 •多个样本均数间的多重比较 •析因设计资料的方差分析 •正交设计资料的方差分析 •多元方差分析 •常用的数据转换方法 •课堂讨论
治疗一个月后,血红蛋白的增加克数如下表,问三种治疗方案对婴
幼儿贫血的疗效是否相同?
表 5 .1 三 种 方 案 治 疗 后 血 红 蛋 白 增 加 量 ( g / L )



24
20
20
36
18
11
25
17
6
14
10
3
26
19
0
34
24
-1
23
4
5
合计
n
7
6
8
21
Σ jΧ
182
108
48
338
Σ jΧ 2
方差分析的基本思想

【医学统计学】方差分析(ANOVA)PPT

【医学统计学】方差分析(ANOVA)PPT

P
总 组间 组内(误差)
54.4522 58 8.6054 2 4.30275.2555 0.0081
45.8468 56 0.8187
F 分布
➢方差比的分布
F

MSBetween MSWithin
~ F(1 , 2 )
F 分布
1.0
1=1, 2=10
0.8
0.6
1=5, 2=10
0.4
SStotal
2
X ij X
total= N-1
59
2
SST Xij 1.334 54.4522
j1
组间变异—— SS组间
▪ Sum of squares between groups
X1
X2
X3
X
n1( X1 X )2 n2( X2 X )2 n3( X3 X )2
➢ 随机的含义:机会均等 不可预测
❖因素 (factor)
所要检验的对象:治疗方案
❖ 水平(level)
因素的具体表现:方案A、方案B、方案C
❖ 试验(Trial)
单因素三水平的试验
基本步骤
➢建立检验假设,确定检验水准 ➢计算检验统计量(列方差分析表) ➢计算 P 值 ➢结论
建立假设,确定检验水准
多重比较(multiple comparison)
▪ 多组间的两两比较为什么不能用 t 检验?
进行一次假设检验,犯第一类类错误的概率:
进行多次(k)假设检验,至少犯一次第一类错误的概 率:
1-(1-)k
组数为3, k=3, 1-(1-0.05)k=0.1426 组数为4, k=6, 1-(1-0.05)k=0.2649 组数为5, k=10, 1-(1-0.05)k=0.4013

医学统计学方差分析课件

医学统计学方差分析课件

协方差分析
实验设计
协方差分析用于研究两个独立变量对因变量的影响,同时控制一个或多个协变量对结果的影响。
数据要求
各组样本量需相等,且满足方差齐性和正态性假设。
统计软件实现
一般使用SPSS、SAS、R等统计软件进行计算和分析。
01
02
03
区别
方差分析主要研究独立变量对因变量的影响,而相关性分析主要研究两个变量之间的相关关系;方差分析需要满足随机化和对照原则,而相关性分析不需要;方差分析可以控制协变量对结果的影响,而相关性分析不能。
方差分析的基本思想是将数据的总变异分解为不同来源的变异,包括组间变异和组内变异。
组间变异是由于不同因素或分组的影响导致的,可以用方差来度量;组内变异是由于随机误差或其他未知因素导致的,可以用组内均方来度量。
方差分析的目的是比较不同因素或分组对因变量的影响是否显著,即组间变异与组内变异之间的差异是否有统计学意义。
方差分析在药物疗效研究中的应用
总结词
医学遗传学研究中应用方差分析可以研究基因型与表型之间的关系,分析遗传因素对疾病等表型特征的影响。
详细描述
通过收集患者的基因型和表型数据,研究人员可以使用方差分析来比较不同基因型患者之间的表型特征是否存在显著性差异。例如,研究人员可以比较不同基因型精神分裂症患者的症状严重程度是否有所不同。
效应大小
效应大小是指各因素对结果的影响程度。在方差分析中,应注意效应大小的评估,以便更好地了解各因素对结果的贡献程度。通常,可以通过计算因素贡献率、标准化均方差等指标来评估效应大小。
样本量大小与效应大小
VS
在方差分析中,如果因素水平存在差异,会对结果产生影响。因此,需要对因素水平进行调整,以消除其对结果的影响。例如,可以通过采用配对或配伍设计来平衡各组间的因素水平。

医学统计学(课件)方差分析

医学统计学(课件)方差分析
医学统计学(课件)方 差分析
汇报人:
日期:
目录
• 方差分析概述 • 方差分析的数学模型与步骤 • 方差分析在医学中的应用 • 方差分析的局限性及注意事项 • 方差分析的软件实现 • 方差分析案例解析
01
方差分析概述
定义与原理
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组间的均值差异,以此确定因素对 因变量的影响。
案例三
总结词
通过方差分析,可以比较不同品牌疫苗接种后不良反 应发生率的差异,为选择安全可靠的疫苗提供参考。
详细描述
在疫苗接种研究中,不同品牌疫苗接种后不良反应发 生率可能存在差异。方差分析可以用于比较不同品牌 疫苗接种后不良反应发生率的差异,以评估不同疫苗 的安全性。结果可以为疫苗选择提供参考依据,以最 大程度地减少不良反应的发生。
VS
例如,研究不同治疗方案对某疾病患 者疗效的影响、不同地区居民收入差 异等。
02
方差分析的数学模型与步骤
数学模型
方差分析(ANOVA)的数学模型
F = MS组间 / MS组内。其中,MS组间是各组间的均方,MS组内是各组内的均方。
方差分析的基本思想
将总的变异分解为组间变异和组内变异两部分,并计算它们的比值,即F值。
03 多重比较
在多个因素之间进行多重比较,确定各因素之间 的差异以及治疗效果的差异。
方差分析的局限性及注意事
04

样本量与效应指标的选择
样本量
方差分析对样本量有一定的要求,过小的样本量可能导致统计结果不稳定。在实验设计时,应充分考虑样本量对 结果的影响,并合理选取样本量。
效应指标
方差分析主要关注多个组间的均值差异,因此应选择合适的效应指标,如均数、中位数等,来反映各组的平均水 平。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1-0.05)3=0.857
2/18/2021
医疗统计学方差分析
9
四均数比较作6次 (1-0.05)6=0.735 五均数比较作10次 (1-0.05)10=0.599 六均数比较作15次 (1-0.05)15=0.463 鉴于以上的原因,对多组均数的比较问题
我们采用方差分析
2/18/2021
医疗统计学方差分析
2/18/2021
医疗统计学方差分析
8
一、方差分析的意义
前一章介绍了两个样本均数比较的假设检 验方法,但对于3个、4个、5个均数或更多个的 比较,t检验或u检验就无能为力了,或许有人会 想起将几个均数两两比较分别得到结论,再将结 论综合,其实这种做法是错误的。试想假设检验 时通常检验水平α取0.05,亦即弃真概率控制在 0.05以内,但将3个均数作两两比较,要作三次 比较,可信度成为
2/18/2021
医疗统计学方差分析
17
三、优点
① 不受比较的组数限制。 ② 可同时分析多个因素的作用。 ③ 可分析因素间的交互作用。
四、方差分析的应用条件
① 各样本是相互独立的随机样本 ② 各样本来自正态总体 ③ 各组总体方差相等,即方差齐
2/18/2021
医疗统计学方差分析
18
【例题1】
某社区随机抽取糖尿病患者、IGT异常和正 常人共30人进行载脂蛋白测定,结果如下, 问3种人的载脂蛋白有无差别?
10
二、单因素方差分析的基本思想
例1 某克山病区测得11例克山病患者与13名健康 人的血磷值(mmol/L)如下,问该地急性克 山病患者与健康人的血磷值是否不同?
患者x1:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人x2:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
(Nk)
F统计量具2个自由度: v1, v2
2/18/2021
医疗统计学方差分析
16
FM M组 S组 S 间 内 =11
H0成立时 H1成立时
如果两组样本来自同一总体,即克山病患者与 健康人血磷值相同,则理论上F应等于1,因为 两种变异都只反映随机误差。由于抽样误差的 影响,F值未必是1,但应在1附近。若F较小, 我们断定2组均数相同,或者说来自同一总体, F较大,推断不是来自同一总体。
x 1
N i j ij
2/18/2021
医疗统计学方差分析
7
(单因素方差分析)
第一节 完全随机设计资料的方差分析
目的:推断总体平均数是否相等. 独特之处:不直接比较均数,利用变异的关系进行判别.
基本思想:先假设(H0)各总体均数全相等;将总变 异SS总,按设计和资料分析的需要分为两个或多个组 成部分,其自由度也相应地分为几个部分,以随机误 差为基础,按F分布的规律作统计推断。
2
教学目的与要求
掌握:
1、方差分析的基本思想
2、方差分析前提条件
3、多重比较
4、重复测量资料方差分析
了解:
1、两因素方差分析
2/18/2021
医疗统计学方差分析
3
教学内容提要
重点讲解:
方差分析的基本思想 完全随机设计的单因素方差分析 多个样本均数间的多重比较
介绍:方差分析的原理与条件
各种变异的表示方法
2/18/2021
医疗统计学方差分析
21
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
三者之间的关系:
SS总= SS组内+ SS组间 总= 组内+ 组间
SS组内=
(xij xi )2 =(来自i 1)si2i1 j1
及各组例数ni来反映,自由度ν组内=N-k(k是 组数),它反映了随机误差。
2/18/2021
医疗统计学方差分析
13
2组样本均数也不等,这种变异称为组间变异, 反映了克山病对血磷值的影响和随机误差
组间变异(between groups variation):
k
SS组间=
ni(xi x总)2
i1
v组间=k-1
2/18/2021
医疗统计学方差分析
14
三者关系
x S总 S
( x)2
ij
ij
SS总=SS组间+SS组内 v总=ν组间+ν组内
2/18/2021
医疗统计学方差分析
15
直观意义
检验统计量 FM MSS组 组间 内SSS组 S组内 间 (k1)
参数? ( 、、)
随机抽样
统计量 (x、s、p)
总体
(一锅)
样本
(一勺)
统计推断
参数估计 假设检验
2/18/2021
医疗统计学方差分析
1
第6章
2/18/2021
均方分析,变异数分 析,F 检验(由英国著名
统计学家R.A.Fisher推导
出来的),是对变异的 来源及大小进行分析 的一种统计方法。
医疗统计学方差分析
什么是方差? 离均差 离均差之和 离均差平方和(SS) 方差(2 S2 )也叫均方(MS) 标准差:S 自由度: 关系: MS= SS/
2/18/2021
医疗统计学方差分析
6
方差分析的几个符号
xij表示第i组第j个观察值
x
i .表示第i组的均数(=
1
) xij ni j
x ( x..) 表示总平均=
2/18/2021
医疗统计学方差分析
11
24名患者与健康人的血磷值大小不等,称这种 变异为总变异。可以用总离均差平方和
SS总=
及N来反映,总自由度 νT=N-1。
2/18/2021
医疗统计学方差分析
12
2个组各组内部血磷值也不等,这种变异称为 组内变异,其大小可用2组组内离均差平方和
k nj
问题:1、分析问题,选择合适的统计方法 2、如何整理资料、输入计算机
2/18/2021
医疗统计学方差分析
19
2/18/2021
医疗统计学方差分析
20
列举存在的变异及意义
全部的30个实验数据之间大小不等,存在变异, 总变异。
各个组间存在变异:反映处理因素之间的作用, 以及随机误差。
各个组内个体间数据不同:反映了观察值的随 机误差。
2/18/2021
医疗统计学方差分析
4
与前面讲过的假设检验相同的是:
不同的是:方差分析用于多个均数的比较。
t检验是用 t值进行假设检验,方差分析则用 F值进行假设检验
方差分析的任务:统计量F的计算 F=MS1/MS2
2/18/2021
医疗统计学方差分析
5
方差分析的基本概念
方差分析的几个概念和符号
相关文档
最新文档