小学数学相遇问题应用题专项练习题有答案解析过程

合集下载

小学相遇问题大全(例题解析11道练习题21道)

小学相遇问题大全(例题解析11道练习题21道)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人几小时后相遇?分析:相遇时间=路程和÷速度和=20÷(6+4)=2小时例2、甲乙两人分别从A、B两地同时出发相向而行,甲每小时行48千米,乙每小时行42千米,两车在离中点18千米处相遇,求AB两地间的距离分析:“两车在离中点18千米处相遇”,由于甲的速度更快,说明他们相遇时,甲过了中点18千米,而乙离中点18千米,那甲比乙多走了18+18=36千米,一小时甲比乙多走48-42=6千米,我们就可以算出相遇时间:36÷6=6小时,再依公式路程和=速度和×相遇时间=(48+42)×6=540千米例3、甲乙两人同时从A到B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?分析:画图,从图中我们可以知道,甲比乙多走了2个1200,甲每分钟比乙多走250-90=160米,我们就可以求出总共走了多少时间:2×1200÷160=15分钟,那么A、B两地相距:250×15-1200=2550米例4、甲乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇,各自到达对方出发点后立即返回,途中又在距A地40千米处相遇,A、B两地相距多少千米?分析:第一次相遇时,两车合走了一个全程,此时甲走了60千米第二次相遇时,两车合走了三个全程,甲应走了60×3=180千米,这时甲离A地还有40千米,加上这40千米,甲正好走了两个全程,所以一个全程应为:(180+40)÷2=110千米。

相遇问题的应用题30道

相遇问题的应用题30道

相遇问题的应用题30道1. 甲、乙两人分别从相距 120 千米的 A、B 两地同时出发,相向而行。

甲每小时行 30 千米,乙每小时行 20 千米,几小时后两人相遇?解析:两人相向而行,他们的相对速度为甲的速度加上乙的速度,即 30 + 20 = 50 千米/小时。

根据时间 = 路程÷速度,可得相遇时间为 120÷50 = 2.4 小时。

2. 小明和小红同时从学校和家出发,相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过 10 分钟相遇。

学校到家的距离是多少米?解析:两人的速度和为 60 + 50 = 110 米/分钟,10 分钟相遇,所以路程 = 速度×时间,即 110×10 = 1100 米。

3. 甲车每小时行 40 千米,乙车每小时行 50 千米,两车同时从相距 360 千米的两地相向而行,几小时相遇?解析:相对速度为 40 + 50 = 90 千米/小时,相遇时间 = 360÷90 = 4 小时。

4. 两艘轮船同时从相距 480 千米的两个港口相对开出,甲船每小时行 35 千米,乙船每小时行 45 千米,几小时后两船相遇?解析:速度和为 35 + 45 = 80 千米/小时,相遇时间 = 480÷80 = 6 小时。

5. 甲、乙两地相距 560 千米,一辆客车和一辆货车同时从两地相对开出,客车每小时行 80 千米,货车每小时行 60 千米,几小时后两车相遇?解析:相对速度为 80 + 60 = 140 千米/小时,相遇时间 = 560÷140 = 4 小时。

6. 明明和亮亮在周长为 400 米的环形跑道上跑步,明明每秒跑 5 米,亮亮每秒跑 3 米,他们同时从同一地点出发,反向而行,多长时间后两人第一次相遇?解析:反向而行,相对速度为 5 + 3 = 8 米/秒,跑道周长为 400 米,相遇时间= 400÷8 = 50 秒。

小学数学相遇问题应用题专项练习题(有答案)

小学数学相遇问题应用题专项练习题(有答案)

相遇问题应用题专项练习30题
1、甲城到乙城的公路长470千M。

快慢两汽车同时从两城相对开出,快车每小时行50千M,慢车每小时行44千M,;两车经过多长时间相遇?
2、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

两地相距多少千M?
3.甲乙两车从两地同时出发相向而行,乙车每小时行60千M,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。

两地相距多少千M?
4.甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时比甲车多行20千M,经过3小时相遇。

两地相距多少千M?
5.甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,4小时后还相距20千M”两地相距多少千M?
6、A、B两地相距3300M,甲、乙两人同时从两地相对而行,甲每分钟走82M,乙每分钟走83M,已经行了15分钟,还要行多少分钟才可以相遇?
7、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

相遇时两车各行了多少千M?
8、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?
欢迎下载 5
欢迎下载 6。

人教版小学数学二次相遇问题专项训练(19)含答案和解析

人教版小学数学二次相遇问题专项训练(19)含答案和解析

人教版小学数学二次相遇问题专项训练(19)含答案和解析佳佳从甲地向乙地走,彬彬同时从乙地向甲地走,当他两人各自到达终点时,又迅速返回.两人行走的过程,各自速度不变,两人第一次相遇在距甲地50米处,第二次相遇在距乙地19米处.甲、乙两地相距多少千米?
【分析】两人第一次相遇在距甲地50米处,此时两人共行一个全程,此时佳佳行了50米,即每行一个全程佳佳就行50米,第二次相遇时,两人共行3个全程,则此时佳佳行了50×3=150米,第二次相遇在距乙地19米处,即此时佳佳行了一个全程加上19米,所以全程为150-19=131米;据此解答即可。

【解答】解:50×3-19=131(米)
答:甲、乙两地的距离是131米。

【奥数专项练习】人教版小学数学五年级上册奥数思维拓展《相遇问题》专项练习(含答案与解析)

【奥数专项练习】人教版小学数学五年级上册奥数思维拓展《相遇问题》专项练习(含答案与解析)

人教版小学数学五年级上册奥数思维拓展第二讲相遇问题一、选择题1.王强和李明在900米长的环形步道上散步。

他俩从同一地点同时出发,反向而行。

王强每分钟走55米,李明每分钟走45米,第一次相遇时,王强走了多少米。

正确的算式是( )。

A .900(4555)÷+B .900(4555)45÷+⨯C .55(90045)⨯÷D .900(4555)55÷+⨯ 2.甲、乙两车同时从两地出发,相向而行。

甲车每时行105千米,5时后两车在距中点30千米处相遇。

若乙车慢一些,则乙车每时行( )千米。

A .93B .99C .1113.甲、乙两人由相距60km 的两地同时出发相向而行,甲步行每小时走5km ,乙骑自行车,3h 后两人相遇,则乙的速度为每小时( )。

A .5kmB .10kmC .15kmD .20km4.甲、乙两地相距750千米,客车和货车同时从两地开出,相向而行,经过5小时两车相遇。

已知客车每小时行85千米,货车每小时行x 千米,下面方程错误的是( )。

A .8555750x ⨯+=B .575085x =-C .857505x +=÷D .5×(85+x )=750 5.甲、乙两人从400米的环形跑道的一点A 背向同时出发,8分钟后两人第三次相遇。

已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A 点沿跑道上的最短距离是( )。

A .166米B .176米C .224米D .234米6.小华的速度比小丽快,两人同时从两地相向而行,经过一段时间后两人相遇,他们可能在( )点相遇。

A .AB .BC .CD .D7.甲、乙两地相距715千米,A 、B 两车同时从甲、乙两地出发,相对开出。

已知A 车每小时行驶75千米,B车每小时行驶65千米,从开始到两车相遇后又相距55千米共用了()小时。

A.5B.5.5C.4.68.两人同时从相距10.5千米的两地相对而行,小明每小时行3.8千米,小军每小时行3.2千米,算式:3.2×[10.5÷(3.8+3.2)]求的是()。

相遇追及问题练习题及解析

相遇追及问题练习题及解析

1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米5、小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.6、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面"取单位"准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7 小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.7、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。

小学数学行程专题 多次相遇问题 课件+课后作业 带答案

小学数学行程专题 多次相遇问题   课件+课后作业  带答案
总结:第一次迎面相遇后,每多迎面相遇一次就多走两个全程。
练习2
小新和小东两人分别从一段长为200 米的马路两端同时出发,在这段马路上往返散步。小 新每分钟走60米,小东每分钟走40米。7分钟内(包括7分钟),小新和小东能迎面相遇几 次?
第一次相遇,两个人合走1个全程。 相遇时间:200÷(60+40)=2(分) 往后每多一次迎面相遇就要多走2个全程。 相遇时间:(200×2)÷(60+40)=4(分) (7-2)÷4=1(次)......1(分)
(3)第五次相遇,两个人合走9个全程。 总路程:60×9=540(米) 540÷(3+2)=108(秒) 答:经过108秒两人第五次相遇。
练习1
一辆客车和一辆货车分别从相距1000 千米的甲、乙两地同时相向出发,在甲、乙两地之 间往返行驶。客车的速度 是 120 千米/小时,货车的速度是 80 千米/小时。 (1)从出发开始算起,经过多长时间两车第一次迎面相遇? (2)从出发开始算起,经过多长时间两车第二次迎面相遇? (3)从出发开始算起,经过多长时间两车第四次迎面相遇?
(1)第一次相遇,两车合走1个全程。 1000÷(120+80)=5(时) 答:经过5个小时两车第一次迎面相遇。
(2)第二次相遇,两车合走3个全程。 路程和:1000×3=3000(千米) 3000÷(120+80)=15(时) 答:经过15个小时两车第二次迎面相遇。
(3)第四次相遇,两车合走7个全程。 路程和:1000×7=7000(千米) 7000÷(120+80)=35(时) 答:经过35个小时两车第四次迎面相遇。
(1)从出发到两人第一次迎面相遇,两人合走2个全程。
(2)从第一次迎面相遇面相遇,两个人合走2个全程。 总结:第一次迎面相遇以后,每多迎面相遇一次就多走两个全 程。

人教版小学数学二次相遇问题专项训练(20)含答案和解析

人教版小学数学二次相遇问题专项训练(20)含答案和解析

人教版小学数学二次相遇问题专项训练(20)含答案和解析
明明和欢欢两人同时从学校和少年宫相向而行,在距学校50米处相遇,它们各自到达对方出发地后立即返回,途中又在距学校30米处相遇,求学校和少年宫相距多少米?
【分析】两人第一次在距学校50米处相遇,此时两人共行一个全程,此时明明行了50米,即每行一个全程明明就行50米,第二次相遇时,两人共行3个全程,则此时明明行了50×3=150米.途中又在距学校30米处相遇,即此时明明行的路程再加上30米,就等于2个全程,所以全程为(150+30)÷2=90米;据此解答即可。

【解答】解:(50×3+30)÷2=90(米)
答:学校和少年宫相距90米。

小学数学常考相遇问题、追及问题(附例题、解题思路)

小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。

例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。

例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

人教版小学数学二次相遇问题专项训练(14)含答案和解析

人教版小学数学二次相遇问题专项训练(14)含答案和解析

人教版小学数学二次相遇问题专项训练(14)含答案和解析两辆汽车同时从东西两站相向开出,第一次离东站60千米的地方相遇之后,两车继续以原来的速度前进,各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇,两站相距多少千米?
【分析】两车第一次相遇在距东站60千米处,此时两车共行一个全程,此时从东站出发的车行了60千米,即每行一个全程从东站出发的车就行60千米,第二次相遇时,两车共行3个全程,则此时从东站出发的车行了60×3=180千米.第二次距中点西侧30千米处相遇,即
此时从东站出发的车行的路程,再加上30千米就行了1.5个全程,所以全程为180×1.5=270千米;据此解答即可。

【解答】解:(60×3+30)÷1.5=140(千米)
答:两站相距140千米。

六年级数学应用题相遇问题难题及答案@

六年级数学应用题相遇问题难题及答案@

相遇问题(一)一、填空题1. 两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长_____米.2. 甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午______点出发.3. 甲乙两地相距450千米,快慢两列火车同时从两地相向开出,3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快______千米.4. 甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站______千米.5. 列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,又知列车的前方有一辆与它行驶方向相同的货车,货车车身长320米,速度为每秒17米,列车与货车从相遇到离开需______秒.6. 小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处.甲、乙两地的距离是______米.7. 甲、乙二人分别从B A ,两地同时相向而行,乙的速度是甲的速度的32,二人相遇后继续行进,甲到B 地、乙到A 地后都立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么B A ,两地相距______千米.8. B A ,两地间的距离是950米.甲、乙两人同时由A 地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B 地最近,距离是______米.9. B A ,两地相距540千米.甲、乙两车往返行驶于B A ,两地之间,都是到达一地之后立即返回,乙车比甲车快.设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地.那么,到两车第三次相遇为止,乙车共走了______千米.10. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次.二、解答题11. 甲、乙两地相距352千米.甲、乙两汽车从甲、乙两地对开.甲车每小时行36千米,乙车每小时行44千米.乙车因事,在甲车开出32千米后才出发.两车从各自出发起到相遇时,哪辆汽车走的路程多?多多少千米?12. 甲、乙两车从B A ,两城市对开,已知甲车的速度是乙车的65.甲车先从A 城开55千米后,乙车才从B 城出发.两车相遇时,甲车比乙车多行驶30千米.试求B A ,两城市之间的距离.13. 设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同.骑车的速度为步行速度的3倍.现甲自A 地去B 地;乙、丙则从B 地去A 地.双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自原有方向继续前进.问:三人之中谁最先到达自己的目的地?谁最后到达目的地?14. 一条单线铁路线上有B A ,E D C ,,,五个车站,它们之间的路程如下图所示(单位:千米).两列火车从E A ,相向对开,A 车先开了3分钟,每小时行60千米,E 车每小时行50千米,两车在车站上才能停车,互相让道、错车.两车应该安排在哪一个车站会车(相遇),才能使停车等候的时间最短,先到的火车至少要停车多长时间?相遇问题(一)答 案:1. 135根据相向而行问题可知乙车的车长是两车相对交叉6秒钟所行路之和.所以乙车全长(45000+36000)×60601 ×6 =81000×6001 =135(米)2. 7根据中点相遇的条件,可知两车各行600×21=300(千米). 其间客车要行300÷60=5(小时); 货车要行300÷50=6(小时).所以,要使两车同时到达全程的中点,货车要提前一小时出发,即必须在上午7点出发.3. 8快车和慢车同时从两地相向开出,3小时后两车距中点12米处相遇,由此可见快车3小时比慢车多行12×2=24(千米).所以,快车每小时比慢车快24÷3=8(千米).4. 60利用图解法,借助线段图(下图)进行直观分析.解法一 客车从甲站行至乙站需要360÷60=6(小时).客车在乙站停留0.5小时后开始返回甲站时,货车行了40×(6+0.5)=260(千米).货车此时距乙站还有360-260=100(千米).货车继续前行,客车返回甲站(化为相遇问题)“相遇时间”为100÷(60+40)=1(小时).所以,相遇点离乙站60×1=60(千米).解法二 假设客车到达乙站后不停,而是继续向前行驶(0.5÷2)=0.25小时后返回,那么两车行驶路程之和为360×2+60×0.5=750(千米)两车相遇时货车行驶的时间为750÷(40+60)=7.5(小时)所以两车相遇时货车的行程为40×7.5=300(千米)故两车相遇的地点离乙站360-300=60(千米).5. 190列车速度为(250-210)÷(25-23)=20(米/秒).列车车身长为20×25-250= 250(米).列车与货车从相遇到离开需(250+320)÷(20-17)=190(秒).6. 105根据题意,作线段图如下:根据相向行程问题的特点,小冬与小青第一次相遇时,两人所行路程之和恰是甲、乙之间的路程.由第一次相遇到第二次相遇时,两人所行路程是两个甲、乙间的路程.因各自速度不变,故这时两人行的路程都是从出发到第一次相遇所行路的2倍.根据第一次相遇点离甲地40米,可知小冬行了40米,从第一次到第二次相遇小冬所行路程为40×2=80(米).因此,从出发到第二次相遇,小冬共行了40+80=120(米).由图示可知,甲、乙两地的距离为120-15=105(米).7. 50.因为乙的速度是甲的速度的32,所以第一次相遇时,乙走了B A ,两地距离的52(甲走了53),即相遇点距B 地52个单程.因为第一次相遇两人共走了一个单程,第二次相遇共走了三个单程,所以第二次相遇乙走了52×3=56(个)单程,即相遇点距A 地51个单程(见下图).可以看出,两次相遇地点相距1-51-52=52(个)单程,所以两地相距20÷52=50(千米).8. 二,150.两个共行一个来回,即1900米迎面相遇一次,1900÷(45+50)=20(分钟). 所以,两个每20分钟相遇一次,即甲每走40×20=800(米)相遇一次.第二次相遇时甲走了800米,距B 地950-800=150(米);第三次相遇时甲走了1200米,距B 地1200-950=250(米).所以第二次相遇时距B 地最近,距离150米.9. 2160如上图所示,两车每次相遇都共行一个来回,由甲车两次相遇走的路程相等可知,AP =2PB ,推知PB =31AB .乙车每次相遇走34AB ,第三次相遇时共走 34AB ×3=4AB =4×540=2160(千米).10. 87.5,6,26.8分32秒=512(秒).当两人共行1个单程时第1次迎面相遇,共行3个单程时第2次迎面相遇, ……,共行n 2-1个单程时第n 次迎面相遇.因为共行1个单程需100÷(6.25+3.75)=10(秒),所以第n 次相遇需10×(n 2-1)秒,由10×(n 2-1)=510解得n =26,即510秒时第26次迎面相遇.此时,乙共行 3.75×510=1912.5(米),离10个来回还差200×10-1912.5=87.5(米),即最后一次相遇地点距乙的起点87.5米.类似的,当甲比乙多行1个单程时,甲第1次追上乙,多行3个单程时,甲第2 次追上乙,……,多行n 2-1个单程时,甲第n 次追上乙.因为多行1个单程需100÷(6.25-3.75)=40(秒),所以第n 次追上乙需40×(n 2-1)秒.当n =6时, 40×(n 2-1)=440<512;当n =7时,40×(n 2-1)=520>512,所以在512秒内甲共追上乙6次.11. 由相遇问题的特点及基本关系知,在甲车开出32千米后两车相遇时间为 (352-32)÷(36+44)=4(小时)所以,甲车所行距离为36×4+32=176(千米)乙车所行距离为44×4=176(千米)故甲、乙两车所行距离相等.注: 这里的巧妙之处在于将不是同时出发的问题,通过将甲车从开出32千米后算起,化为同时出发的问题,从而利用相遇问题的基本关系求出“相遇时间”.12. 从乙车出发到两车相遇,甲车比乙车少行55-30=25(千米).这25千米是乙车行的1-6165 ,所以乙车行了25÷61=150(千米).B A ,两城市的距离为 150×2+30=330(千米).13. 谁骑车路程最长,谁先到达目的地;谁骑车路程最短谁最后到达目的地.画示意图如下:依题意,甲、丙相遇时,甲、乙各走了全程的41,而丙走了全程的43. 用图中记号, AB AC 41=; AB CD 34=; AB CD 21=; AB CD CE 8343==; AB CD ED 8141==;AB AB AC CE AE 85)4183(=+=+=.由图即知,丙骑车走AB 43,甲骑车走了AB 83,而乙骑车走了AB 85,可见丙最先到达而甲最后到达.14. A 车先开3分,行3千米.除去这3千米,全程为45+40+10+70=165(千米).若两车都不停车,则将在距E 站16575506050=+⨯(千米). 处相撞,正好位于C 与D 的中点.所以,A 车在C 站等候,与E 车在D 站等候,等候的时间相等,都是A ,E 车各行5千米的时间和,6011606605=+(时)=11分.相遇问题(二)一、填空题1. 一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_____米.2. 甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行_____千米.3. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A 地,丙一人从B 地同时相向出发,丙遇到乙后2分钟又遇到甲,A 、B 两地相距____米.4. 一辆客车和一辆货车,分别从甲、乙两地同时相向而行,4小时相遇.如果客车行3小时,货车行2小时,两车还相隔全程的3011,客车行完全程需____小时.5. 甲、乙两人从A 、B 两地相向而行,相遇时,甲所行路程为乙的2倍多1.5千米,乙所行的路程为甲所行路程的52,则两地相距______千米.6. 从甲城到乙城,大客车在公路上要行驶6小时,小客车要行驶4小时.两辆汽车分别从两城相对开出,在离公路中点24千米处相遇.甲、乙两城的公路长______千米?7. 甲、乙两车分别同时从A、B两城相向行驶6小时后可在途中某处相遇.甲车因途中发生故障抛描,修理2.5小时后才继续行驶.因此,从出发到相遇经过7.5小时.那么,甲车从A城到B城共有______小时.8. 王明回家,距家门300米,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了______米.9. A、B两地相距10千米,一个班学生45人,由A地去B地.现有一辆马车,车速是人步行速度的3倍,马车每次可乘坐9人,在A地先将第一批9名学生送往B 地,其余学生同时步行向B地前进;车到B地后,立即返回,在途中与步行学生相遇后,再接9名学生送往B地,余下学生继续向B地前进;……;这样多次往返,当全体学生都到达B地时,马车共行了______千米.10. 从电车总站每隔一定时间开出一辆电车.甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.则电车总站每隔______分钟开出一辆电车.二、解答题11. 甲、乙两货车同时从相距300千米的A、B两地相对开出,甲车以每小时60千米的速度开往B地,乙车以每小时40千米的速度开往A地.甲车到达B地停留2小时后以原速返回,乙车到达A地停留半小时后以原速返回,返回时两车相遇地点与A地相距多远?12. 甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的1.5倍,甲、乙到达途中C站的时刻依次为5:00和15:00,这两车相遇是什么时刻?13. 铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民,问军人与农民何时相遇?14. 有一辆沿公路不停地往返于M、N两地之间的汽车.老王从M地沿这条公路步行向N地,速度为每小时3.6千米,中途迎面遇到从N地驶来的这辆汽车,经20分钟又遇到这辆汽车从后面折回,再过50分钟又迎面遇到这辆汽车,再过40分钟又遇到这辆车再折回. M、N两地的路程有多少千米?相遇问题(二)答 案:1. 14题目实质上说,火车和人用8秒时间共同走了152米,即火车与人的速度和是每秒152÷8=19(米),火车的速度是每秒63360÷3600=17.6(米).所以,人步行的速度是每秒19-17.6=1.4(米).2. 86根据相遇问题的数量关系,可知两车每小时行程之和(即速度和)是 258÷4=64.5(千米).由汽车速度是拖拉机速度的2倍,可知汽车与拖拉机速度之差为速度之和的(3132-).所以,两车的速度之差为 64.5×(3132-) =64.5×31 =21.5(千米)相遇时,汽车比拖拉机多行21.5×4=86(千米).3. 3120解法一 依题意,作线段图如下:A B丙遇到乙后2分钟再遇到甲,2分钟甲、丙两人共走了(50+70)×2=240(米), 这就是乙、丙相遇时乙比甲多走的路程.又知乙比甲每分钟多走60-50=10(米). 由此知乙、丙从出发到相遇所用的时间是240÷10=24(分).所以,A 、B 两地相距(60+70)×24=3120(米).解法二 甲、丙相遇时,甲、乙两人相距的路程就是乙、丙相背运动的路程和,即(60+70)×2=260(米).甲、乙是同时出发的,到甲、丙相遇时,甲、乙相距260米,所以,从出发到甲、丙相遇需260÷(60-50)=26(分).所以, A 、B 两地相距 (50+70)×26=3120(米).4. 721 假如客车和货车各行了2小时,那么,一共行了全程的21,还剩下全程21的路程.现在客车行了3小时,货车行了2小时,还剩下3011的路程.所以,客车1小时行全程的21-3011=152.因此,客车行完全程需1÷152= 721(小时). 5. 10.5 因为乙行的路程是甲行的路程的52,所以乙行的路程占全程的72,故两地相距 1.5÷(1-72-72×2) =10.5(千米).6. 240大客车的速度是小客车的4÷6=32,相遇时小客车比大客车多行驶了24×2=48(千米),占全程的53-52=51,所以全程为48÷51=240(千米).7. 12.5由题意推知,两车相遇时,甲车实际行驶5小时,乙车实际行驶7.5小时.与计划的6小时相遇比较,甲车少行1小时,乙车多行1.5小时.也就是说甲车行1小时的路程,乙车需行1.5小时.进一步推知,乙车行7.5小时的路程,甲车需行5小时.所以,甲车从A 城到B 城共用7.5+5=12.5(小时).8. 580小狗跑的时间为(300-10)÷(50+50)=2.9(分),共跑了200×2.9=580(米).9. 28.75因为马车的速度是人步行速度的3倍,所以如下图所示,马车第一次到达B 地时行了10千米,第二、三、四、五次到达B 地时,分别行了20、25、27.5、28.75千米.10. 11电车15秒即41分钟行了(82-60)×10-60×41=205(米). 所以,电车的速度是每分钟205÷41=820(米).甲走10分钟的路电车需1分钟,所以每隔10+1=11(分钟)开出一辆电车.11. 根据题意,甲车从A 地行至B 地需300÷60=5(小时),加上停留2小时,经7小时从B 地返回;乙车从B 地行至A 地需300÷40=7.5(小时),加上停留半小时经8小时后从A 地返回.因此,甲车从B 地先行1小时后(走60千米),乙车才从A 地出发.所以,两车返回时的相遇时间是(300-60)÷(60+40)=2.4(小时).故两车返回时相遇地点与A 城相距40×2.4=96(千米).12. 甲车到达C 站时,乙车距C 站还差15-5=10(时)的路,这段路两车共行需10÷(1.5+1)=4(时),所以两车相遇时刻是5+4=9(时).13. 火车速度为30×1000÷60=500(米/分);军人速度为(500×41-110)÷41=60(米/分); 农民速度为(110-500×51)÷51=50(米/分). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50) =30(分),即8点30分两人相遇.14. 设老王第一次遇到汽车是在A 处,20分钟后行到B 处,又50分钟后到C 处,又40分钟后到D 处(见下图).由题意AB =1.2千米;BC =3千米;CD =2.4千米.由上图知,老王行AC 的时间为20+50=70(分),这段时间内,汽车行的路加上老王行的路正好是MN 全程的2倍.老王行BD 的时间为50+40=90(分),这段时间内,汽车行的路减去老王行的路也正好是MN 全程的2倍.上述两者的时间差为90-70=20(分),汽车在第二段时间比第一段时间多行AC 段与BD 段路,即多行 (1.2+3)+(3+2.4)=9.6(千米),所以,汽车的速度为每小时行9.6×(60÷20)=28.8(千米).在老王行AC 段的70分钟里,老王与汽车行的路正好是MN 全程的2倍,所以MN 两地的路程为(3.6+28.8)×(70÷60)÷2=18.9(千米).行程应用题(三)相遇例1:甲、乙二人分别从AB两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

人教版小学数学二次相遇问题专项训练(6)含答案和解析

人教版小学数学二次相遇问题专项训练(6)含答案和解析

人教版小学数学二次相遇问题专项训练(6)含答案和解析甲、乙两人返往于A、B两地之间,甲从A地,乙从B地同时出发相向而行,在途中相遇。

甲每小时行10千米,乙每小时行8千米,各自到达对方出发地后立即返回,第一次与第二次相遇点的距离为20千米.求A、B两地之间的距离。

【分析】第一次相遇时,甲乙合走了一个A、B全程,第二次相遇,甲乙共合走了3个A、B全程,根据第一次相遇与第二次相遇点之间相距20千米,甲每小时行10千米,乙每小时行8千米,可得第一次相遇与第二次相遇相隔20÷(10-8)=10小时,这段时间正好走了两
个全程,据此列式解答即可。

【解答】解:20÷(10-8)=10(小时)
(10+8)×10÷(3-1)=90(千米)
答:A、B之间的距离是90千米。

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)一、相遇问题常见公式。

1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲行走的路程=两者相遇路程-乙行走的路程二、解决实际问题的技巧。

1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。

2、相遇问题除了要弄清路程、速度与两者相遇时间之外,须注意一些其他重要的细节:(1)两者是否是同一起点、同时出发。

如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。

(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。

方向不一样,处理问题就会不一样。

(3)所行走的路线是环形的,还是直线型的。

如果是环形的,要考虑再次相遇的可能。

【典型例题】1、小恬骑车从家出发去距离3.5千米远的图书馆,同一时间小琳从图书馆出来朝小恬家的方向骑来,14分钟后两人刚好相遇。

小恬每分钟骑车130米,那么小琳每分钟骑车多少米?【例题分析】这道题目是典型的路程相遇问题,已知相遇路程和相遇时间,只需要运用公式:甲的速度=相遇路程÷相遇时间-乙的速度代入相关的数量,求出答案即可。

【解答】3.5千米=3500米3500÷14-130=250-130=120(米)答:小琳每分钟骑车120米。

【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。

两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?2、两列高铁同时从两地相对开出,经过 32 个小时后,两列高铁在途中相遇。

小学数学专题 多人多次的相遇问题 后面带答案 带课后作业

小学数学专题 多人多次的相遇问题  后面带答案 带课后作业

小学数学专题多人多次的相遇问题1、甲、乙两人分别从相距 800 千米的 A、B 两地同时出发,相向而行,甲每小时行 20 千米,乙每小时行 60 千米。

从出发开始,经过多久两人相遇?2、甲、乙两人同时从 A 地出发,在 A、B 两地之间不断往返运动。

(1)第 1 次迎面相遇时,甲、乙两人一共走了 _______ 个全程。

(2)从第 1 次迎面相遇到第 2 次迎面相遇,甲、乙两人一共走了 _______ 个全程。

(3)从第 2 次迎面相遇到第 3 次迎面相遇,甲、乙两人一共走了 _______ 个全程。

3、甲、乙两车同时从A 地出发,在相距300 千米的A、B 两地之间不断往返行驶。

甲车的速度是每小时30 千米,乙车的速度是每小时20 千米。

(1)出发后多长时间,甲、乙两车第1 次迎面相遇?(2)第1 次迎面相遇后又经过多长时间,甲、乙两车第2 次迎面相遇?(3)出发后多长时间,甲、乙两车第3 次迎面相遇?4、甲、乙两人在长210 米的路上来回跑步,甲的速度是3 米/秒,乙的速度是4 米/秒。

如果他们同时从路的同一端出发,那么出发后多长时间两人第2 次迎面相遇?5、甲、乙两地相距900 米,A、B 两人同时从甲地出发,在两地之间不断往返运动。

A 每秒走4 米,B 每秒走5 米。

(1)从开始出发到两人第1 次迎面相遇需要多少秒?(2)从开始出发到两人第2 次迎面相遇需要多少秒?6、甲、乙两人分别从A、B 两地同时出发,相向而行,在A、B 两地之间不断往返运动。

(1)从开始出发到第 1 次迎面相遇,两人一共走了______ 个全程。

(2)从第1 次迎面相遇到第 2 次迎面相遇,两人一共走了______ 个全程。

(3)从第2 次迎面相遇到第 3 次迎面相遇,两人一共走了______ 个全程。

7、甲、乙两人分别从相距100 米的A、B 两地同时出发,相向而行,在A、B 两地之间不断往返运动。

甲每秒走3 米,乙每秒走2 米。

相遇的应用题及答案

相遇的应用题及答案

相遇的应用题及答案相遇的应用题及答案「篇一」相遇问题【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。

例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。

例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此。

相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

下面的关系式必须牢记:(1)速度和×相遇时间=相遇路程(2)相遇路程÷速度和=相遇时间(3)相遇路程÷相遇时间=速度和速度和:两人或两车速度的和;相遇时间:两人或两车同时开出到相遇所用的时间。

【习题1】:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?【习题2】:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?【习题3】:张杰和姐姐两人从相距20xx米的两地相向而行,张杰每分钟行110米,姐姐每分钟行90米,如果一只狗与张杰同时同向而行,每分钟行500米,遇到姐姐后,立即回头向张杰跑去,遇到张杰再向姐姐跑去,这样不断来回,直到张杰和姐姐相遇为止。

小学数学30类典型应用题专题7:行程问题(路程问题)之相遇问题练习题附答案——小升初必考题型

小学数学30类典型应用题专题7:行程问题(路程问题)之相遇问题练习题附答案——小升初必考题型

路程问题之相遇问题相遇问题定义:两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。

这类问题即为相遇问题。

相遇问题的模型为∶甲从A地到B 地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B 之间这段路程,如果两人同时出发,那么∶A,B 两地的路程(路程和)=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有∶路程和=速度和×相遇时间相遇时间=路程和÷速度和速度和=路程和÷相遇时间【经典例题】基本相遇问题(一)求两地距离:路程和=速度和×相遇时间1、阿呆和阿瓜从A、B两地同时出发,相向而行,阿呆的速度是6米/秒,阿瓜的速度是4米/秒,50秒后两人相遇.那么A、B两地相距多少米?解析:两人共同走了A、B 之间这段路程,如果两人同时出发,那么∶AB 两地的路程(路程和)=阿呆走的路程+阿瓜走的路程=阿呆的速度×相遇时间+阿瓜的速度×相遇时间=(阿呆的速度+阿瓜的速度)×相遇时间=速度和×相遇时间,先画行程图阿呆的路程:6×50=300(米)阿呆的路程:4×50=200(米)路程和:300+200=500(米)综合算式:(6+4)×50=500(米)答:那么A 、B 两地相距500米。

2、甲乙两车从A 、B 两地同时出发,相向而行.甲车每小时行45干米,乙车每小时行55干米,3小时后两车相遇,那么A 、B 两地相距多少干米?【解析】甲、乙两车的速度和是每小时走100千米,3小时相遇,所以路程和是 100 × 3 = 300 (千米).(45+55)×3=300(米)答:那么A 、B 两地相距300干米。

3、小高和小宝同时从相距120干米的两镇出发,相向而行.小高每小时跑8千米,小宝每小时跑6千米,8小时后他们相距多少千米.【解析】小高和小宝的速度和是每小时跑14千米,8小时的路程和是14 × 8= 112(千米),所以还相距120-112 = 8(千米).阿呆6米/秒 阿瓜 4米/秒(8+6)×8= 112(千米)120-112 = 8(千米).答:8小时后他们相距8千米。

小学数学相遇问题有答案题

小学数学相遇问题有答案题

小学数学相遇问题有答案客车和货车同时从A、B两地相向开出,客车每小时行60千米,货车每小时行80千米;两车在距中点30千米处相遇;求A、B两地相距多少千米从图中可以看出,两车相遇时,货车比客车多行了30×2=60千米;两车同时出发,为什么货车会比客车多行了60千米呢因为货车每小时比客车多行了80—60=20千米,60里包含3个20,所以此时两车各行了3小时,A、B两地的路程只要用60+80×3就能得出;解:30×2÷80—60=3小时60+80×3=420千米答.A,B两柏相距420千米;练习1.甲、乙两辆汽车同时从两地出发,相向而行;甲汽车每小时行50千米,乙汽车每小行55千米;两车在距中点15千米处相遇;求两地之间的路程是多少千米2.甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米;两车在距中点32千米处相遇:A、B两地相距多少千米3.A、B两人分别从甲、乙两地同时相向而行,A每分钟行120米,B每分钟行80米;一段时间后,A离中点还有560米的路程,B离中点还有1040米的路程;求甲、乙两地相距多少米一列火车子下午1时30分从甲站向乙站开出,每小时行60千米;1小时后,另一列火车以同样的速度从乙站向甲站开出,当天下午6时两车相遇;甲、乙两站相距多少千米思路用第一列火车前1小时行的路程加上后来两列火车同时行的路程就可算出甲、乙两站相距多少千米;也可以用第一列火车行的路程加上第二列火车行的路程,得出甲、乙两站相距多少千米;解法一:60+60×2×6——1=60+420=480千米解法二:60×6—+60×6一—1=270+210=480千米答:甲、乙两站相距480千米;练习:1.甲、乙两人同时从A、B两地相向而行,甲骑自行车每小时行16千米,乙乘汽车每小时行65千米;甲离出发点千米处与乙相遇;A、B两地相距多少千米2.两艘宇宙飞船径直相向飞行,一艘飞船的速度为每分钟8千米,另一艘为每分钟12千米;假设它们正好相距5000千米,那么在相遇前1分钟相距多少米3.甲、乙两飞机同时从北京和上海两地相对开出,并往返飞行;甲飞机每小时飞960千米,乙飞机每小时飞800千米;两飞机第二次相遇时,甲比乙多行了360千米;求北京到上海的空中航线长多少千米刘辉骑自行车每小时行15千米,王强步行每小时行5千米;如果两人同时同地沿同一线路出发去海洋馆,当刘辉行了30千米,到达海洋馆后,马上从原路返回,在途中和王强相遇;问从出发到相遇共经过多长时间思路作图分析:此题虽然两人的出发点相同,但从分析结果来看仍然是相遇问题;由刘辉从出发行了30千米到达海洋馆可知一个单程为30千米,由上图可看出两人所走的总路程为两个单程:30×2=60千米;解:总路程为:30×2=60千米速度和为:15+5=20千米相遇时间为:60÷20=3小时:答:从出发到相遇经过3小时;“一;练习:1.甲、乙二人同时同地出发去120千米外的某地;甲的速度是每小时15千米,乙的速度是每小时9千米;当甲到达某地后,立即按原路返回,甲再行几小时与乙相遇2.甲、乙两车同时从相距160千米的两站相向开出,到达对方站后立即返回,经过4小时两车在途中第二次相遇;相遇时甲车比乙车多行120千米;求两车的速度;3.客、货两车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原速前进;到达对方站后立即返回,两车再次相遇时客车比货车多行千米;甲、乙两站间的路程是多少千米例四:两地间相距3千米,甲、乙两人同时从两地出发,相向而行;甲每分钟行80米,乙每分钟行70米;如果有一只狗与甲同行,狗每分钟跑150米,当狗遇到乙时立即返回,遇到甲后又向乙跑去;这样,狗不停地在甲、乙之间往返跑,直到两人相遇为止;那么狗在两人中间跑的路程是多少米思路要求狗跑的路程必须先求出狗跑的时间;根据题意,狗跑的时间与甲、乙两人相遇的时间相同,从而可知:解:3000÷80+70=20分……狗跑的时间150×20=3000米……狗跑的路程答:狗在两人中间跑的路程是3000米;练习:1.某边防站甲、乙两个哨所之间相距15千米;一天,这两个哨所巡逻队同时从各自的哨所出发,相向而行;甲哨所巡逻队每小时行千米,乙哨所巡逻队每小时行千米;乙哨所巡逻队刚出发,他们带的一只警犬便飞快地向甲哨所方向跑去,遇到甲哨所巡逻队后,立即转身往回跑,遇到乙哨所巡逻队后立即又向甲哨所方向跑去,直到两巡逻队相遇;已知警犬每小时行20千米,这只警犬来回一共跑了多少千米2.小亮和小辉从甲地、小方从乙地同时相向而行;小亮每分钟走55米,小辉每分钟跑300米,小方每分钟走65米;途中小辉遇到小方立即往回跑,再遇到小亮又立即往回跑,小辉这样往返一直到三人在途中相遇为止,这时小辉共行了2850米;求甲、乙两地相距多少米3.甲、乙两个小分队在相距90千米的A、B两地问进行拉练,甲队从A地向B地、乙队从B地向A地同时相向而行;甲队每小时行8千米.乙队每小时行7千米,联络员小王骑着摩托车以每小时40千米的速度不停地往返于甲、乙两队之间;甲队2小时后因发生事故,前进的速度比原来每小时慢3千米;当甲、乙两队相遇时,联络员小王共行了多少千米。

小学数学行程问题之相遇与追及问题(二)完整版例题讲解训练+详细答案

小学数学行程问题之相遇与追及问题(二)完整版例题讲解训练+详细答案

相遇与追及问题题型训练【例题1】甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?【巩固1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).【例题2】甲、乙两地相距240 千米,一列慢车从甲地出发,每小时行60千米.同时一列快车从乙地出发,每小时行90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)【巩固2】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?【例题3】解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?【巩固3】甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?【例题4】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?【巩固4】哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?【例题5】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.【巩固5】小聪和小明从学校到相距2400米的电影院去看电影.小聪每分钟行60米,他出发后10分钟小明才出发,结果俩人同时到达影院,小明每分钟行多少米?【例题6】一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?【例题7】小强每分钟走70米,小季每分钟走60米,两人同时从同一地点背向走了3分钟,小强掉头去追小季,追上小季时小强共走了多少米?【巩固7】六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?【例题8】王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?【巩固8】小王、小李共同整理报纸,小王每分钟整理72份,小李每分钟整理60份,小王迟到了1分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?【例题9】甲、乙两车同时从A地向B地开出,甲每小时行38千米,乙每小时行34千米,开出1小时后,甲车因有紧急任务返回A地;到达A地后又立即向B地开出追乙车,当甲车追上乙车时,两车正好都到达B地,求A、B两地的路程.【巩固9】小李骑自行车每小时行13千米,小王骑自行车每小时行15千米.小李出发后2小时,小王在小李的出发地点前面6千米处出发,小李几小时可以追上小王?【例题10】甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米.途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地.A、B两地间的路程是多少?【巩固10】甲车每小时行40千米,乙车每小时行60千米。

小学数学相遇问题应用题专项练习30题(有答案过程)

小学数学相遇问题应用题专项练习30题(有答案过程)

小学数学相遇问题应用题专项练习30题(有答案过程)1.甲城到乙城的公路长为470千米。

快车每小时行驶50千米,慢车每小时行驶44千米。

问两车经过多长时间相遇?答:快车和慢车的相对速度为XXX/小时。

根据路程等于速度乘时间,两车相遇的时间为470/94=5小时。

2.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

问两地相距多少千米?答:甲车和乙车的相对速度为40+60=100千米/小时。

根据路程等于速度乘时间,两地的距离为100*3=300千米。

3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,甲车每小时行的速度是乙车的1.5倍,经过3小时相遇。

问两地相距多少千米?答:设甲车的速度为x千米/小时,则乙车的速度为1.5x千米/小时。

根据路程等于速度乘时间,两地的距离为(60+1.5x)*3=180+4.5x千米。

又因为两车相向而行,所以两地的距离为两车行驶的路程之和,即(60+1.5x)*3+(40+x)*3=300+4.5x千米。

解得x=20,所以两地的距离为180+4.5x=270千米。

4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

问两地相距多少千米?答:设甲车的速度为x千米/小时,则乙车的速度为x+20千米/小时。

根据路程等于速度乘时间,两地的距离为(40+x)*3+(40+x+20)*3=360+6x千米。

又因为两车相向而行,所以两地的距离为两车行驶的路程之和,即360+6x=2d,其中d为两地的距离。

解得d=270千米。

5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米。

问两地相距多少千米?答:甲车和乙车的相对速度为40+60=100千米/小时。

4小时后,两车相距20千米,即两车行驶的路程之和为两地的距离减去20千米,设两地的距离为d,则100*4=d-20,解得d=420千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇问题应用题专项练习30题(有答案)
1、甲城到乙城的公路长470千米。

快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇
2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

两地相距多少千米
3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的倍,经过3小时相遇。

两地相距多少千米
4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

两地相距多少千米
5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米
6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇
7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时两车各行了多少千米
8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时哪辆车行的路程多多多少
9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

乙车行完全程要多少小时
10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台
11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米甲船比乙船每小时多航行多少千米
12、甲地到乙地的公路长436千米。

两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇
13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。

求甲、乙两站间的距离是多少千米
14、一列货车和一列客车同时从两地相对开出。

货车每小时行48千米,客车每小时行52千米,小时后相遇。

两地间的铁路长多少千米
15、两个工程队共同开凿一条隧道,各从一端相向施工。

甲队每天开凿4米,乙队每天开凿米,21天完工,这条隧道长多少米
16、一辆汽车每小时行38千米,另一辆汽车每小时行41千米。

两车同时从相距237千米的两地相向开出,经过几小时两车相遇
17、两地间的铁路长250千米。

一列货车和一列客车同时从两地相对开出,客车每小时行52千米,货车每小时行48千米。

经过几小时两车相遇
18、两列火车从相距570千米的两地相对开出。

甲车每小时行110千米,乙车每小时行80千米。

经过几小时两车相遇
19、两城之间的公路长256千米。

甲乙两辆汽车同时从两个城市出发,相向而行,经过4小时相遇。

甲车每小时行31千米,乙车每小时行多少千米
20、两地间的路程是245千米。

甲乙两车同时从两地开出,相向而行,小时相遇。

甲车每小时行38千米,乙车每小时行多少千米
21、两地间的铁路长250千米。

一列货车和一列客车同时从两地相对开出,小时后相遇。

客车每小时行52千米,货车每小时行多少千米
22、两个工程队共同开凿一条117米长的隧道。

各从一端相向施工,13天打通。

甲队每天开凿4米,乙队每天开凿多少米
23、两地相距330千米。

甲车每小时行32千米,乙车每小时行34千米。

两车同时从两地相对开出。

(1)开出后几小时相遇
(2)相遇时两车各行了多少千米
(3)相遇时甲车比乙车少行了多少千米
(4)开出后小时,两车相距多少千米
24、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇
25、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过小时两车相遇。

两个车站之间的铁路长多少千米
26、甲、乙两列火车同时从相距988千米的两地相向而行,经过小时两车相遇。

甲列车每小时行93千米,乙列车每小时行多少千米
27、师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工
28、甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米
29、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。

已知乙船每小时行42千米,甲船每小时行多少千米
30、两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。

已知甲车的速度是乙车的倍,求甲、乙两列火车每小时各行多少千米
31、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。

乙车每小时行多少千米
32、甲、乙两列汽车同时从两地出发,相向而行。

已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。

求甲乙两地相距多少千米
33、姐妹俩同时从家里到少年宫,路程全长770米。

妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。

这时妹妹走了几分钟
34、根据下式编一道相遇问题应用题。

[43+(43+5)]×2;
相遇问题应用题专项练习30题答案
1、 470÷(50+44)=5(时)
2、(40+60)×3=300(千米)
3.(60+60×)×3=450(千米)
4.(40+20)×3=180(千米)
5、(40+60)×4+20=420(千米)
6、3300÷(82+83)-15=5(分钟)
7、40×3=120(千米) 60×3=180(千米)
8、40×3=120(千米) 60×3=180(千米)
180-120=60(千米)
9、(40+60)×3÷60=5(时)
10、2500÷10-52=198(台)
11、126÷3-22=20(千米)22-20=2(千米)
12、(436-42×2)÷(42+46)=4(时)
13、 10÷(65-60)=2(时)(65+60)×2=250(千米)
14、(48+52)×=250(千米)
15、(4+)×21=(米)
16、 237÷(38+41)=3(时)
17、 250÷(52+48)=(时)
18、 570÷(110+80)=3(时)
19、 256÷4-31=33(千米)
20、 245÷=32(千米)
21、 250÷=48(千米)
22、 117÷13-4=5(米)
23、(1) 330÷(32+34)=5(时)
(2) 32×5=160(千米)34×5=170(千米)
(3)170-160=10(千米)
(4) 330-(32+34)×=165(千米)
24、700÷(85+90)=4(时)
25、(48+78)×=315(千米)
26、(988-93×)÷=97(千米)
27、(520-70)÷(30+20)=9(时)
28、(75+75-5)×8=145×8=1160(米)
29、(654-22)÷8-42=37(千米)
30、 270÷4=(千米)
乙:÷(+1)=27(千米)
甲: 27×=(千米)
31、 45×(5-1)=180(千米)(480-180)÷5=6(时)
32、52÷(45-32)=4(时)(45+32)×4=308(千米)
33、 770×2÷(60+160)=7(分)
34、根据下式编一道相遇问题应用题。

[43+(43+5)]×2;
甲乙两辆汽车从A、B两地同时出发,相向而行,甲汽车每小时行43千米,乙汽车每小时比甲多行5千米,两小时相遇,问AB两地相距多远。

相关文档
最新文档