人教版九年级数学(上册)竞赛试题
九年级数学(上)竞赛试题及答案
九年级数学(上)竞赛试题一. 选择题(每小题3分,共36分)1.一元二次方程的解是A .B .1203x x ==,C .1210,3x x == D . 2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形 B .菱形 C .矩形D .正方形3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是A .球B .圆柱C .圆锥D .棱锥4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m ,则旗杆高为 A 、22m B 、20m C 、18m D 、16m5. 下列说法不正确的是A .对角线互相垂直的矩形是正方形B .对角线相等的菱形是正方形C .有一个角是直角的平行四边形是正方形D .一组邻边相等的矩形是正方形 6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .107. 若点(3,4)是反比例函数221m m y x+-=图像上一点 ,则此函数图像必经过点A .(3,-4)B .(2,-6)C .(4,-3)D .(2,6)8. 二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +- 9.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )第9题图A .3√102B .3√105 C .√105 D .3√5510. 函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动 A .变短 B .变长 C .不变 D .无法确定12.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为A .47B .5C .27D .22二:填空题.(每小题3分,共12分)13.如图,△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。
九年级上册数学竞赛试题及答案
九年级上册数学竞赛试题及答案(考试时间:120分钟满分120分)姓名班级得分一、选择题(每小题4分;共32分)1.下列车标图案中;是中心对称图形的是()A.B.C.D.2.对于二次函数y=(x﹣1)2+2的图象;下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1;2)D.与x轴有两个交点3.某商品经过两次连续降价;每件售价由原来的100元降到了64元.设平均每次降价的百分率为x;则下列方程中正确的是()A.100(1+x)2=64 B.64(1+x)2=100C.64(1﹣x)2=100 D.100(1﹣x)2=644.将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1 D.y=x2﹣15.已知抛物线y=x2﹣x﹣2与x轴的一个交点为(m;0);则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.20186.半径为R的圆内接正六边形的面积是()A.R2B.R2C.R2 D.R27.75°的圆心角所对的弧长是2.5πcm;则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm8.如图;在△ABC中;∠C=90°;∠BAC=70°;将△ABC绕点A顺时针旋转70°;B、C旋转后的对应点分别是B′和C′;连接BB′;则∠BB′C′的度数是()A.35°B.40°C.45°D.50°二、填空题(每小题4分;共20分)9.二次函数y=(x﹣1)2﹣2的顶点与x轴的交点所围成图形的的面积是_____ _.10.如图;⊙O的直径CD=10;AB是⊙O的弦;AB⊥CD于M;且CM=2;则AB的长为______.11.已知二次函数y=x2+bx+c的图象如图所示;则关于x的方程x2+bx+c=0的解为x1=______;x2= .12.如图;两圆圆心相同;大圆的弦AB与小圆相切;AB=8;则图中阴影部分的面积是______.(结果保留π)13.如图;边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EF CG;EF交AD于点H;那么DH的长是______.三、解答题(共6小题;共68分)14.(10分)如图;将四边形ABCD绕原点O旋转180°得四边形A′B′C′D′.(1)画出旋转后的四边形A′B′C′D′;(2)写出A′、B′、C′、D′的坐标;(3)若每个小正方形的边长是1;请直接写出四边形ABCD的面积.15.(10分)如图是二次函数y=a(x+1)2+2的图象的一部分;根据图象回答下列问题.(1)抛物线与x轴的一个交点的坐标是______;则抛物线与x轴的另一个交点B 的坐标是______;(2)确定a的值;(3)设抛物线的顶点是P;试求△PAB的面积.16.(10分)如图所示;在梯形ABCD中;AB∥CD;⊙O为内切圆;E、F为切点.(1)试猜DO与AO的位置关系;并说明理由.(2)若AO=4cm;DO=3cm;求⊙O的面积.17.(12分)兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场;要求长与宽的比为2:1;在养鸡场内;沿前侧内墙保留3m宽的走道;其他三侧内墙各保留1m宽的走道;当矩形养鸡场长和宽各为多少时;鸡笼区域面积是288m2?18.(12分)如图;点B、C、D都在半径为6的⊙O上;过点C作AC∥BD交OB的延长线于点A;连接CD;已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.19.(14分)如图;△ABC是等腰直角三角形;∠BAC=90°;AB=AC;B(3;5);抛物线y=﹣x2+bx+c交x轴于点C;D两点;且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F;使得△ACF的面积等于5;若存在;求出点F的坐标;若不存在;说明理由;(3)点M(4;k)在抛物线上;连接CM;求出在坐标轴的点P;使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形;请直接写出P点的坐标.者相中学九年级(上)数学竞赛试题试卷参考答案与试题解析一、选择题1.下列车标图案中;是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形;本选项错误;B、不是中心对称图形;本选项错误;C、是中心对称图形;本选项正确;D、不是中心对称图形;本选项错误.故选C.2.对于二次函数y=(x﹣1)2+2的图象;下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1;2)D.与x轴有两个交点【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上;根据顶点式得到顶点坐标为(1;2);对称轴为直线x=1;从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上;顶点坐标为(1;2);对称轴为直线x=1;抛物线与x轴没有公共点.故选:C.3.某商品经过两次连续降价;每件售价由原来的100元降到了64元.设平均每次降价的百分率为x;则下列方程中正确的是()A.100(1+x)2=64 B.64(1+x)2=100 C.64(1﹣x)2=100D.100(1﹣x)2=64【考点】由实际问题抽象出一元二次方程.【分析】设平均每次降价的百分率为x;则等量关系为:原价×(1﹣x)2=现价;据此列方程.【解答】解:设平均每次降价的百分率为x;由题意得;100×(1﹣x)2=64故选D.4.将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1 D.y=x2﹣1【考点】二次函数图象与几何变换.【分析】直接根据平移规律作答即可.【解答】解:将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为y=x2+1;故选C.5.已知抛物线y=x2﹣x﹣2与x轴的一个交点为(m;0);则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.2018【考点】抛物线与x轴的交点.【分析】直接利用抛物线上点的坐标性质进而得出m2﹣m=2;即可得出答案.【解答】解:∵抛物线y=x2﹣x﹣2与x轴的一个交点为(m;0);∴m2﹣m﹣2=0;∴m2﹣m=2;∴m2﹣m+2016=2+2016=2018.故选:D.6.半径为R的圆内接正六边形的面积是()A.R2B.R2C.R2 D.R2【考点】正多边形和圆.【分析】利用正六边形的特点;它被半径分成六个全等的等边三角形.【解答】解:连接正六边形的中心与各个顶点;得到六个等边三角形;等边三角形的边长是R;因而面积是=;因而正六边形的面积是6×=R2.故选:C.7.75°的圆心角所对的弧长是2.5πcm;则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm【考点】弧长的计算.【分析】根据弧长公式L=;将n=75;L=2.5π;代入即可求得半径长.【解答】解:∵75°的圆心角所对的弧长是2.5πcm;由L=;∴2.5π=;解得:r=6;故选:A.8.如图;在△ABC中;∠C=90°;∠BAC=70°;将△ABC绕点A顺时针旋转70°;B、C旋转后的对应点分别是B′和C′;连接BB′;则∠BB′C′的度数是()A.35°B.40°C.45°D.50°【考点】旋转的性质.【分析】首先在△ABB'中根据等边对等角;以及三角形内角和定理求得∠ABB'的度数;然后在直角△BB'C中利用三角形内角和定理求解.【解答】解:∵AB=AB';∴∠ABB'=∠AB'B===55°;在直角△BB'C中;∠BB'C=90°﹣55°=35°.故选A.二、填空题9.二次函数y=(x﹣1)2﹣2的顶点与x轴的交点所围成图形的面积是坐4 .10.如图;⊙O的直径CD=10;AB是⊙O的弦;AB⊥CD于M;且CM=2;则AB的长为8 .【考点】垂径定理;勾股定理.【分析】连接OA;求得OA和OM的长;在直角△OAM中利用勾股定理求得AM的长;然后根据AB=2AM即可求解.【解答】解:连接OA.则OA=OC=CD=5.则OM=OC﹣CM=5﹣3=3.在直角△OAM中;AM===4.∵AB⊥CD于M;∴AB=2AM=8.故答案是:8.11.已知二次函数y=x2+bx+c的图象如图所示;则关于x的方程x2+bx+c=0的解为x1= ﹣1 ;x2= 3 .【考点】抛物线与x轴的交点.【分析】抛物线与x轴的交点的横坐标就是x的值.【解答】解:关于x的方程x2+bx+c=0的解为x1=﹣1;x2=3.故答案是:﹣1.12.如图;两圆圆心相同;大圆的弦AB与小圆相切;AB=8;则图中阴影部分的面积是16π.(结果保留π)【考点】切线的性质;勾股定理;垂径定理.【分析】设AB与小圆切于点C;连结OC;OB;利用垂径定理即可求得BC的长;根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2);以及勾股定理即可求解.【解答】解:设AB与小圆切于点C;连结OC;OB.∵AB与小圆切于点C;∴OC⊥AB;∴BC=AC=AB=×8=4.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中;OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16π.故答案为:16π.13.如图;边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EF CG;EF交AD于点H;那么DH的长是.【考点】正方形的性质;旋转的性质;解直角三角形.【分析】连接CH;可知△CFH≌△CDH(HL);故可求∠DCH的度数;根据三角函数定义求解.【解答】解:连接CH.∵四边形ABCD;四边形EFCG都是正方形;且正方形ABCD绕点C旋转后得到正方形EFCG;∴∠F=∠D=90°;∴△CFH与△CDH都是直角三角形;在Rt△CFH与Rt△CDH中;∵;∴△CFH≌△CDH(HL).∴∠DCH=∠DCF=(90°﹣30°)=30°.在Rt△CDH中;CD=3;∴DH=tan∠DCH×CD=.故答案为:.三、解答题14.如图;将四边形ABCD绕原点O旋转180°得四边形A′B′C′D′.(1)画出旋转后的四边形A′B′C′D′;(2)写出A′、B′、C′、D′的坐标;(3)若每个小正方形的边长是1;请直接写出四边形ABCD的面积.【考点】作图-旋转变换.【分析】(1)根据网格结构找出点A、B、C、D关于原点对称的点A′、B′、C′、D′的位置;然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用四边形所在的矩形的面积减去四周四个小直角三角形和一个小正方形的面积;列式计算即可得解.【解答】解:(1)四边形A′B′C′D′如图所示;(2)A′(2;1)、B′(﹣2;2)、C′(﹣1;﹣2)、D′(1;﹣1);(3)S四边形ABCD=4×4﹣×1×4﹣×1×4﹣×1×2﹣×1×2﹣1×1;=16﹣2﹣2﹣1﹣1﹣1;=16﹣7;=9.15.如图是二次函数y=a(x+1)2+2的图象的一部分;根据图象回答下列问题.(1)抛物线与x轴的一个交点的坐标是(﹣3;0);则抛物线与x轴的另一个交点B的坐标是(1;0);(2)确定a的值;(3)设抛物线的顶点是P;试求△PAB的面积.【考点】抛物线与x轴的交点.【分析】(1)由图象可求得A点的坐标;由解析式可求得抛物线的对称轴方程;利用图象的对称性可求得B点坐标;(2)把B点坐标代入抛物线解析式可求得a的值;(3)由抛物线解析式可求得P点坐标;再结合A、B坐标可求得AB的值;则可求得△PAB的面积.【解答】解:(1)由图象可知A点坐标为(﹣3;0);∵y=a(x+1)2+2;∴抛物线对称轴方程为x=﹣1;∵A、B两点关于对称轴对称;∴B的坐标为(1;0);故答案为:(﹣3;0);(1;0);(2)将(1;0)代入y=a(x+1)2+2;可得0=4a+2;解得a=﹣;(3)∵y=a(x+1)2+2;∴抛物线的顶点坐标是(﹣1;2);∵A(﹣3;0);B(1;0);∴AB=X B﹣X A=1﹣(﹣3)=4;∴S△PAB=×4×2=4.16.如图所示;在梯形ABCD中;AB∥CD;⊙O为内切圆;E、F为切点.(1)试猜DO与AO的位置关系;并说明理由.(2)若AO=4cm;DO=3cm;求⊙O的面积.【考点】切线的性质;梯形.【分析】(1)由⊙O是梯形ABCD的内切圆;易得DE和DF是⊙O的两条切线;即可得∠ADO+∠DAO=(∠ADC+∠DAB);又由AB∥CD;可得∠ADO+∠DAO=90°;继而证得结论;(2)由AO=4cm;DO=3cm;可求得AD的长;继而求得EO的长;则可求得答案.【解答】解:(1)AO⊥DO.理由:∵⊙O是梯形ABCD的内切圆;∴DE和DF是⊙O的两条切线;∴∠ADO=∠CDO=∠ADC.同理可得:∠DAO=∠DAB.∴∠ADO+∠DAO=(∠ADC+∠DAB);∵AB∥CD;∴∠ADC+∠DAB=180°;∴∠ADO+∠DAO=×180°=90°;∵∠AOD=180°﹣(∠ADO+∠DAO)=90°;∴AO⊥DO;(2)∵DO=3cm AO=4cm;∠AOD=90°∴AD==5 cm;在Rt△AOD中;EO⊥AD;∴AD•EO=DO•AO;即5 EO=3×4;解得EO=cm;∴S⊙O=πEO2=π ()2=π.17.兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场;要求长与宽的比为2:1;在养鸡场内;沿前侧内墙保留3m宽的走道;其他三侧内墙各保留1m宽的走道;当矩形养鸡场长和宽各为多少时;鸡笼区域面积是288m2?【考点】一元二次方程的应用.【分析】等量关系为:(鸡场的长﹣4)(鸡场的宽﹣2)=288;把相关数值代入求得合适的解即可.【解答】解:设鸡场的宽为xm;则长为2xm.(2x﹣4)(x﹣2)=288;(x﹣14)(x+10)=0;解得x=14;或x=﹣10(不合题意;舍去).∴2x=28.答:鸡场的长为28m;宽为14m.18.如图;点B、C、D都在半径为6的⊙O上;过点C作AC∥BD交OB的延长线于点A;连接CD;已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【考点】切线的判定;垂径定理的应用;扇形面积的计算.【分析】(1)连接OC;OC交BD于E;由∠CDB=∠OBD可知;CD∥AB;又AC∥BD;四边形ABDC为平行四边形;则∠A=∠D=30°;由圆周角定理可知∠COB=2∠D=60°;由内角和定理可求∠OCA=90°;证明切线;(2)利用(1)中的切线的性质和垂径定理以及解直角三角形来求BD的长度;(3)证明△OEB≌△CED;将阴影部分面积问题转化为求扇形OBC的面积.【解答】(1)证明:连接OC;OC交BD于E;∵∠CDB=30°;∴∠COB=2∠CDB=60°;∵∠CDB=∠OBD;∴CD∥AB;又∵AC∥BD;∴四边形ABDC为平行四边形;∴∠A=∠D=30°;∴∠OCA=180°﹣∠A﹣∠COB=90°;即OC⊥AC又∵OC是⊙O的半径;∴AC是⊙O的切线;(2)解:由(1)知;OC⊥AC.∵AC∥BD;∴OC⊥BD;∴BE=DE;∵在直角△BEO中;∠OBD=30°;OB=6;∴BE=OBcos30°=3;∴BD=2BE=6;(3)解:易证△OEB≌△CED;∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.19.如图;△ABC是等腰直角三角形;∠BAC=90°;AB=AC;B(3;5);抛物线y=﹣x2+bx+c交x轴于点C;D两点;且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F;使得△ACF的面积等于5;若存在;求出点F的坐标;若不存在;说明理由;(3)点M(4;k)在抛物线上;连接CM;求出在坐标轴的点P;使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形;请直接写出P点的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出抛物线解析式;(2)利用△ACF的面积等于5直接建立方程求出F点的纵坐标;代入抛物线解析式解方程即可;(3)先求出CM=3;再分点P在x轴和y轴上;用CM=CP求出点P的坐标.【解答】(1)∵B(3;5);∴OA=3;AB=5;∵AB=AC;∴OC=AC﹣OA=5﹣3=2;即点C的坐标是(﹣2;0);∵点C(﹣2;0)和点B(3;5)在抛物线y=﹣x2+bx+c上∴将其代入得;∴;∴抛物线的表达式是y=﹣x2+x+5;(2)假设抛物线上存在点F使得S△ACF=5;则设点F的坐标是(a;b)∵AC|b|=5;∴×5|b|=5;解得b=±2;将F(a;2)和F(a;﹣2)分别代入y=﹣x2+x+5中得﹣a2+a+5=2;﹣a2+a+5=﹣2解得a1=a2=a3=a4=所以符合条件的点F有四个;它们分别是F1(;2);F2(;2);F3(;﹣2)F4(;﹣2);(3)点M(4;k)在抛物线y=﹣x2+x+5的图象上;∴k=3;∴M(4;3);∵C(﹣2;0);∴CM=3①当点P在x轴上时;设P(p;0);∴CP=|p+2|;∵△PCM是以∠PCM为顶角以CM为腰的等腰三角形.∴CM=CP;∴|p+2|=3;∴p=﹣2±3;∴P1(﹣3﹣2;0)P2(3﹣2;0);②当点P在y轴上时;设P(0;h);∴PC==3;∴h=±;∴P3(0;)P4(0;﹣).(﹣3﹣2;0)P2符合条件的P点有四个;它们分别是P(0;)P4(0;﹣).(3﹣2;0);P2016年9月19日。
人教版九年级数学上册2016年全国初中数学联合竞赛试题及详解
人教版九年级数学2016年全国初中数学联合竞赛试题第一试(3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.用x 表示不超过x 的最大整数,把xx 称为x 的小数部分.已知123t ,a 是t 的小数部分,b 是t 的小数部分,则112b a ().A 12.B 32.C 1.D 32.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有().A 9种.B 10种.C 11种.D 12种3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为().A 6858.B 6860.C 9260.D 92623(B ).已知二次函数21(0)y ax bx a 的图象的顶点在第二象限,且过点(1,0).当a b 为整数时,ab().A 0.B 14.C 34.D 24.已知O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O 于点E ,若8,AB 2CD ,则BCE的面积为().A 12.B 15.C 16.D 185.如图,在四边形ABCD 中,090BAC BDC ,5AB AC ,1CD ,对角线的交点为M ,则DM( ) .A 32.B 53.C 22.D 126.设实数,,x y z 满足1,x y z 则23M xy yz xz 的最大值为 ( )。
绵阳市人教版 九年级数学 竞赛专题:代数最值问题(含答案)
人教版 九年级数学 竞赛专题:代数最值问题(含答案)【例1】当x 变化时,分式12156322++++x x x x 的最小值是 .【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )A.719 B. 3 C. 727 D. 13 【例3】()21322+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ).【例4】(1)已知211-+-=x x y 的最大值为a ,最小值b ,求22b a +的值. (2)求使()168422+-++x x 取得最小值的实数x 的值.(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2019,求k 的最大可能值.(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.(能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 . 4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( ) 5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )A.(0,21-) B.(0,0) C.(0,611) D.(0,41-)6.正实数x ,y 满足1=xy ,那么44411y x +的最小值为( ) A.21 B. 85 C. 1 D. 45E.27.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).(1)根据图象,求一次函数b kx y +=的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为()⎥⎦⎤⎢⎣⎡+-500141x 元.(1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?B 级1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 . 3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为( )A. 0B. 4C. 8D. 105.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )A. 5B.423 C. 427 D. 4356.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )A.1B.2C.3D.47.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51==.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?9.已知为x ,y ,z 为实数,且5=++z y x ,3=++zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且bca b =,求a 的最大值和最小值,并求出此时相应的b 与c 值.11.设x 1,x 2,…,x n 是整数,并且满足: ① -1≤x i ≤2,i =1,2,…,n ② x 1+x 2+…+x n =19 ③ x 12+x 22+…+x n 2=99求x 13+x 23+…+x n 3的最大值和最小值.12.已知x 1,x 2,…,x 40都是正整数,且x 1+x 2+…+x 40=58,若x 12+x 22+…+x 402的最大值为A ,最小值为B ,求A +B 的值.参考答案例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤x ≤1,则z =2x 2+16x +3y 2=14x 2+4x +3是开口向上,对称轴为71-=x 的抛物线.例3. 分三种情况讨论:①0≤a <b ,则f (x )在a ≤x ≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f (x )在a ≤x ≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f (x )在x =0处取得最大值,即2b =f (0)=213,b =413,而f (x )在x =a 或x =b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∵f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当x =43时,y 2取得最大值1,a =1; 当21=x 或x =1时,y 2取得最小值21,b =22.故a 2+b 2=23.(2) 如图,AB =8,设AC =x ,则BC =8- x ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时∵EBC ∽△DAC ,有224===DA EB CA BC , 从而x =AC =3831=AB .故原式取最小值时,x =38. (3)如图,原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3x ),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∵am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设x 1≥1,x 2≥2,x k ≥k ,于是1+2+…+k ≤x 1+x 2+…+x k = 2019,即120192k(k )+≤ k (k +1)≤4006,∵62×63=3906<4006<4032=63×64,∴k ≤62. 当x 1=1,x 2=2,…x 61=61,x 62=112时,原等式成立,故k 的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-x 3的值均不是完全平方数,故c的最小值为6.A 级1.57- 111- 2.1 3.14 提示:y =5-x ,z =4-x ,原式=3(x -3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-x +1000(500≤x ≤800) (2)①S =(x -500)(-x +1000)=-x 2+1500x -500000(500≤x ≤800);②S -(x -750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为x 1,x 2,则x 12+x 22=4(m -34)2+1034,由此得x 12+x 22最小值为1034,最大值为101. 9.设a 2-ab +b 2=k ,又a 2+ab +b 2=1②,由①②得ab =12(1-k ),于是有(a +b )2=12(3-k )≥0,∴k ≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (x 1,0),B (x 2,0),其中 x 1,x 2是方程ax 2+bx +c =0的两根,则有x 1+x 2=b a -<0,x 1x 2=ca>0,得x 1<0,x 2<0,由Δ=b 2-4ac >0,得b >|OA |=|x 1|<1,|OB |=|x 2|<1,∴-1<x 1<0,-1<x 2<0,于是ca=x 1x 2<1,c <a .由于a 是正整数,已知抛物线开口向上,且当x =-1时,对应的二次函数值大于0,即a -b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b+1,从而a +c ,则212>>>≥,于是a >4,即a ≥5,故b≥b ≥5.因此,取a =5,b =5,c =1,y =5x 2+5x +1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用x天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++L =11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即x =2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3. 提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=x ,则BB 1=2x ,B 1A 1 4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:x =s -2≥0,y =5-43s ≥0,z =1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB C (2125,24k k k -++-),ABC S =V k 2+2k +5=(k +1)2+4≥4. 7.设此商品每个售价为x 元,每日利润为S 元.当x ≥18时,有S =[60-5(x -18)](x -10)=-5(x -20)2+500,即当商品提价为20元时,每日利润为500元;当x ≤18时,S =[60+10(18-x )](x -10)=-10(x -17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为x ,(3-x )万元,设获取利润为s ,则s 15x =s -15x x 2+(9-10s )x +25s 2-27=0,∵关于x的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得x =0.75(万元),3-x =2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5-x -z ,代入xy +yx +zx =3,得x 2+(z -5)x +(z 2-5z +3)=0.∵x 为实数,∴Δ=(z -5)2-4(z 2-5z +3)≥0,解得-1≤z ≤133,故z 的最大值为133,最小值为-1. 10.设b cx a b==,则b =ax ,c =ax 2,于是,a +b +c =13,化为a (x 2+x +1)=13.∵a ≠0,∴x 2+x +1-13a=0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a -3>0,得到1≤a ≤523为有理数,故1≤a ≤16.当a =1时,方程①化为x 2+x -12=0,解得x 1=-4,x 2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为x 2+x +316=0.解得x 1=-34,x 2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设x 1,x 2,…,x n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴x 13+x 23+…+x n 3=-r +s +8t =6t +19.∴19≤x 13+x 23+…+x n 3≤6×19+19=133.∴在t =0,s =59,r =40时,x 13+x 23+…+x n 3取得最小值19;在t =19,s =2,r =21时,x 13+x 23+…+x n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴x 12+x 22+…+x 402的最大值和最小值存在.不妨设x 1≤x 2≤…≤x 40.若x 1>1,则x 1+x 2=(x 1-1)+(x 2+1),且(x 1-1)2+(x 2+1)2=x 12+x 22+2(x 2-x 1)+2>x 12+x 22.于是,当x 1>1时,可以把x 1逐步调整到1,此时,x 12+x 22+…+x 402的值将增大.同理可以把x 2,x 3,…,x 39逐步调整到1,此时x 12+x 22+…+x 402的值将增大.从而,当x 1,x 2,…,x 39均为1,x 40=19时,x 12+x 22+…+x 402取得最大值,即A =22239111+++L 1442443个+192=400.若存在两个数x i ,x j ,使得x j -x i ≥2(1≤i <j ≤40),则(x i +1)2+(x j -1)2=x i 2+x j 2-2(x i -x j -1)<x i 2+x j 2.这表明,在 x 1,x 2,…,x 40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,x 12+x 22+…+x 402的值将减小,因此,当x 12+x 22+…+x 402 取得最小值时,x 1,x 2,…,x 40中任意两个数的差都不大于1. 故 当x 1=x 2=…=x 22=1,x 23=x 24=…=x 40=2时,x 12+x 22+…+x 402取得最小值,即222111+++L 144244322个222222+++⋯+=94从而,A+B=494.。
人教版九年级上学期数学竞赛试题
人教版九年级上学期数学竞赛试题(考试时间90分钟,共120分)一.选择题(本题12小题,每小题3分,共36分.)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个2.(3分)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=53.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3B.3C.﹣3 D.都不对6.(3分)下列方程中,有实数根的是()A.x2+4=0 B.x2+x+3=0 C.D.5x2+1=2x7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+28.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A .x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D. 2x(x+1)=10359.(3分)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是()A.外切B.内切C.相交D.相离11.(3分)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=()A.100°B.115°C.65°或115°D.65°二、填空题(共6小题,每小题4分,满分24分)13.计算:4﹣= _________ .14.点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n= ____ .15.方程x(x﹣1)=x的根是_________ .16.已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m= ____ .17.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为_________ ;若∠P=40°,则∠DOE= _________ .18.如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为_________ .三、解答题(本题共7个小题,满分60分)19.(5分)计算:.20.(10分)解下列方程.(1)x2+4x﹣5=0;(2)x(2x+3)=4x+6.21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.22.(10分)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(1)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(2)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.23.(8分)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O 分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.24.(12分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为_________ ,周长为_________ .(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为_________ ,周长为_________ .(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为_________ .(4)在图3情况下,若AD=1,求出重叠部分图形的周长.参考答案一.选择题(本题12小题,每小题3分,共计36分.)1 . B2 .C 3. C 4 . D 5. C 6. C7. D 8 . C 9. D 10 A 11. B 12 .C二、填空题(共6小题,每小题4分,满分24分)13.0 .14.﹣2 .15.x1=0,x2=2 .16. 2 .17.70°.18.20πcm.三、解答题(本题共7个小题,满分60分)19.(5分)解:原式=﹣+2=4﹣+2=4+.20.(10分)解下列方程.(1)x2+4x﹣5=0;解:分解因式得:(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1;(2)x(2x+3)=4x+6.移项得:x(2x+3)﹣2(2x+3)=0,(2x+3)(x﹣2)=0,2x+3=0,x﹣2=0,x1=﹣,x2=2.21.(5分)解:△A2B2C2如图所示;点A2(8,3).22.(10分)解:(1)如图①,连接OC,则OC=4,∵AB与⊙O相切于点C,∴OC⊥AB,∴在△OAB中,由AO=OB,AB=10,得AC=AB=5.在Rt△AOC中,由勾股定理得OA===;(2)如图②,连接OC,则OC=OD,∵四边形ODCE为菱形,∴OD=CD,∴△ODC为等边三角形,有∠AOC=60°.由(1)知,∠OCA=90°,∴∠A=30°,∴OC=OA,∴=.23.(8分)证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OEG=∠ODG=90°,故GE是⊙O的切线;(证法二)连接OE,OG,∵AG=GD,CO=OD,∴OG∥AC,∴∠1=∠2,∠3=∠4.∵OC=OE,∴∠2=∠4,∴∠1=∠3.又∵OE=OD,OG=OG,∴△OEG≌△ODG,∴∠OEG=∠ODG=90°,∴GE是⊙O的切线.24.(12分)解:(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.25.解:(1)∵AC=BC=4,∠ACB=90°,∴AB===4,∵M是AB的中点,∴AM=2,∵∠ACM=45°,∴AM=MC,∴重叠部分的面积是=4,∴周长为:AM+MC+AC=2+2+4=4+4;故答案为:4,4+4;(2)∵叠部分是正方形,∴边长为×4=2,面积为×4×4=4,周长为2×4=8.故答案为:4,8.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E,∵M是△ABC斜边AB的中点,AC=BC=4,∴MH=BC,ME=AC,∴MH=ME,又∵∠NMK=∠HME=90°,∴∠NMH+∠HMK=90°,∠EMG+∠HMK=90°,∴∠HMD=∠EMG,在△MHD和△MEG中,,∴△MHD≌△MEG(ASA),∴阴影部分的面积等于正方形CEMH的面积,∵正方形CEMH的面积是ME•MH=×4××4=4;∴阴影部分的面积是4;故答案为:4.(4)如图所示:过点M作ME⊥BC于点E,MH⊥AC于点H,word格式-可编辑-感谢下载支持∴四边形MECH是矩形,∴MH=CE,∵∠A=45°,∴∠AMH=45°,∴AH=MH,∴AH=CE,在Rt△DHM和Rt△GEM中,,∴Rt△DHM≌Rt△GEM.∴GE=DH,∴AH﹣DH=CE﹣GE,∴CG=AD,∵AD=1,∴DH=1.∴DM==∴四边形DMGC的周长为:CE+CD+DM+ME=AD+CD+2DM=4+2.。
九年级上学期数学竞赛试题(含答案)
九年级上学期数学竞赛试题(含答案)题号 一 二三 四 五 总分21 22 23 24 25 26 27 得分一、选择题:(每小题3分,共36分)将唯一正确答案的代号字母填在下面的表格内 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列图形中既是中心对称图形,又是轴对称图形的是 A. 等边三角形 B.等腰三角形 C.平行四边形 D.线段2.如图,A 、B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离小于或等于.....2的概率是A .21B .32C .43D .543. 如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BCD .AB ·AD =AD ·CD4. 如图⊙O 中,半径OD⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC ,若AB=8,CD=2,则EC 的长度为 A .52 B . 8 C . 102 D . 132 5.对于代数式246x x -+的值的情况,小明作了如下探究的结DCBA第3题图第7题图第9题图 论,其中错误的是A. 只有当2x =时,246x x -+的值为2B.x 取大于2的实数时,246x x -+的值随x 的增大而增大, 没有最大值C. 246x x -+的值随x 的变化而变化,但是有最小值D. 可以找到一个实数x ,使246x x -+的值为06.方程22(6)x m x m -++=0有两个相等的实数根,且满足12x x +=12x x ,则m 的值是A .-2或3B .3C .-2D .-3或27.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°, 过点C 作⊙O 的切线交AB 的延长线于E ,则∠E 为 A .25° B .30° C .35° D .45°8.在函数21a y x +=(a 为常数)的图象上有三点1(4,)y -, 2(1,)y -,3(3,)y ,则函数值的大小关系是A .231y y y << B. 321y y y << C. 123y y y << D. 213y y y << 9. 冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能 采到阳光,一年四季就均能受到阳光照射.此时竖一根a 米长 的竹杆,其影长为b 米,某单位计划想建m 米高的南北两幢宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年 四季不受影响? A.a bm 米 B.bam米 C.m ab 米 D. abm 米10. 如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 A .3㎝B .4㎝C .5 ㎝D .6㎝11.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后, 顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC=6, NC =MABN 的面积是 A .B .. D .12.已知二次函数)0(2≠++=a c bx ax y 的图象开口向上,与 x 轴的交点坐标是(1,0),对称轴x=-1.下列结论中,错误的是A .abc <0B .b=2aC .a+b+c=0D .20=+b a 二、填空题:(每小题3分,共24分)将正确答案直接填在题中横线上.13.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长l的取值范围是 .14.已知二次函数y =(k -3)x 2+2x+1的图象与x 轴有交点,则k 的取值范围是 . 15.已知A 是反比例函数xky =的图象上的一点,AB ⊥x 轴于点B ,且△ABO 的面积是3,则k 的值是 .16.如果圆锥的底面周长是20πcm ,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是 .17. 小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色(第11题图)NMD ACB交通信号灯,他在路口遇到红灯的概率为31,遇到黄灯的概率为91,那么他遇到绿灯的概率为 .18.已知正六边形的边心距为3,则它的周长是 . 19. 如图,PA 、PB 切⊙O 于A 、B ,50P ∠=,点C 是⊙O 上异于A 、B 的任意一点,则ACB ∠= . 20.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是 .三、开动脑筋,你一定能做对!(本大题共3小题,共22分)21.(本小题满分7分)近年来随着全国楼市的降温,商品房的价格开始呈现下降趋势,2012年某楼盘平均售价为5000元/平方米,2014年该楼盘平均售价为4050元/平方米.(1)如果该楼盘2013年和2014年楼价平均下降率相同,求该楼价的平均下降率;(2)按照(1)中楼价的下降速度,请你预测该楼盘2015年楼价平均是多少元/平方米?第20题图第9题图FEDC BA22.(本小题满分8分)如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于点F.已知23BE AB =,3BEFS=,求△CDF 的面积.23. (本小题满分7分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标、纵坐标.(1)用适当的方法写出点(,)A x y 的所有情况; (2)求点A 落在第三象限的概率.四、认真思考,你一定能成功!(本大题共2小题,共18分)24. (本小题满分10分)如图,AB 是⊙O 直径,D 为⊙O 上一点,AT 平分∠BAD 交⊙O 于点T ,过T 作AD 的垂线交AD 的延长线于点C . (1)求证:CT 为⊙O 的切线;(2)若⊙O 半径为2,3CT =,求AD 的长.25. (本小题满分8分)已知:如图,反比例函数xky =的图象与一次函数y =x +b 的图象交于点A(1,4)、点B(-4,n). (1)求△OAB 的面积;(2)根据图象,直接写出不等式kx b x<+的解集.第24题图五、相信自己,加油呀!(本大题共2小题,共20分)26. (本小题满分10分)某商店经营一种成本为每千克40美元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为多少元时,获得的利润最大?最大利润是多少?27.(本小题满分10分)如图,抛物线2y x bx c =+-与x 轴交(1,0)A -、(3,0)B两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线及直线AC的函数表达式;(2)若P点是线段AC上的一个动点,过P点作y轴的平行线交抛物线于F 点,求线段PF长度的最大值.第27题图九年级数学试题参考答案及评分建议一、选择题:(每小题3分,共36分)13.6<l<10; 14.k ≤4且k ≠3;15.k=±6;16.30cm ; 17. 95; 18.12;19. 65°或115°; 20.(3,2)或(-3,-2). 三、解答题:(共60分)21. (本小题满分7分)解:(1)设楼价下降率为x ,………………………1分根据题意25000(1)4050x -=.…………………………………………………3分解得1 1.9x =(舍去),20.1x =,故楼价下降率为10%.………………………5分(2)预测2015年楼价平均是4050(110%)3645⨯-=(元/平方米).……7分22. (本小题满分8分)解:∵四边形ABCD 为平行四边形,∴CD =AB ,且CD ∥AB ,∴△CDF ∽△BEF.………………………………………3分 又∵23BE AB =,∴23BE DC =,∴2()BEF F S BE S CD =△△CD ,即232()3F S =△CD .………6分 解得274CDFS =.…………………………………………………………………8分23. (本题共7分)解:(1)如图A 的坐标:(-7,-2);(-7,1);(-7,6);(-1,-2);(-1,1);(-1,6);(3,-2);(3,1);(3,6);……………………………………………………………………4分(2)由树状图可知,所有可能的情况共有9种,点A 落在第三象限的情况有2种,所以P (点A 落在第三象限)=29.………………………7分 24. (本小题满分10分)解:(1)证明:连接OT , ∵OA=OT,∴∠OAT=∠OTA .又∵AT 平分∠BAD, ∴∠DAT=∠OAT,∴∠DAT=∠OTA .∴OT∥AC .……………………………………………………2分 又∵CT⊥AC,∴CT⊥OT,∴CT 为⊙O 的切线;……………4分 (2)解:过O 作OE⊥AD 于E ,则E 为AD 中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE 为矩形.…………7分 ∵CT=,∴OE=, 又∵OA=2,∴在Rt△OAE 中,∴AD=2AE=2.………………………… 10分25. (本小题满分8分)解:(1)把A 点(1,4)分别代入反比例函数xky =,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3,∴反比例函数的解析式是xy 4=.………………2分一次函数解析式是y =x +3.……………………………………………………………4分如图当x =-4时,y =-1,B(-4,-1),当y =0时,x +3=0,x =-3,C(-3,0)S △AOB =S △AOC +S △BOC =21513214321=⨯⨯+⨯⨯.………………………………………6分 (2)∵B(-4,-1),A(1,4),∴根据图象可知:当x >1或-4<x <0时,反比例函数值小于一次函数值.……………………………………………………………………8分26. 解:(本题满分10分)设定价上涨x 元时获得的利润最大,最大利润是y .……1分根据题意得y=(500-10x )(50+x)-(500-10x)×40. …………………………………6分化简得y=-10(x-20)2+9000. ……………………………………………………………8分 x=20时,y 有最大值9000. ……………………………………………………………9分答:定价定为70元时获得的利润最大,最大利润是9000元.……………………10分27. (本小题满分10分)(1)将A 、B 两点坐标代入抛物线的解析式,得 10,930b c b c --=⎧⎨+-=⎩,解得2,3b c =-⎧⎨=⎩∴抛物线解析式为223y x x =--.………………2分将点C 的横坐标代入抛物线解析式,得3y =-,即(2,3)C-,设直线AC为y kx m=+,将点A和点C坐标代入,得0,23k mk m-+=⎧⎨+=-⎩,解得1,1km=-⎧⎨=-⎩,即直线AC解析式为1y x=--.……………………4分(2)如图,不妨设点2(,23)P x x x--,因为点F在直线AC上,因此则点(,1)F x x--.………………………………6分所以有21(23)PF x x x=-----22x x=-++.…8分∴当122bxa=-=时,PF最大值=244ac ba-=94.………………………………10分(备注:在解答题中,考生若用其它解法,应参照本评分标准给分)。
奥数-2009-2010学年第一学期九年级数学合科竞赛试题(含答案)-试题卷
2009学年第一学期九年级数学合科竞赛试题卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
3.考试结束后,上交试题卷和答题卷。
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。
1、甲型H1N1流感病毒变异后的直径为0.00000013米,将这个数写成科学计数法是( ▲ )A 、1.3×10-5B 、0.13×10-6C 、1.3×10-7D 、13×10-8 2、下列图形中,既是中心对称图形又是轴对称图形的是( ▲ )A 、正六边形B 、平行四边形C 、正三角形D 、等腰梯形3、如图a b ∥,M ,N 分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=(▲ )A 、︒180B 、︒270C 、︒360D 、︒5404、下列名人中:①比尔•盖茨 ②高斯 ③刘翔 ④诺贝尔 ⑤陈景润 ⑥陈省身 ⑦高尔基 ⑧爱因斯坦,其中是数学家的是( )A .①④⑦B .②④⑧C .②⑥⑧D .②⑤⑥ 5、下列调查方式合适的是( ▲ )A .了解炮弹的杀伤力,采用普查的方式B .了解全国中学生的视力状况,采用普查的方式C .了解一批罐头产品的质量,采用抽样调查的方式D .对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式6、已知关于x 的一元二次方程x 2-kx -4=0的一个根为2,则另一个根是( ▲ ) A 、4 B 、1 C 、2 D 、-27、如果一个圆锥的主视图是边长为2的正三角形,那么这个圆锥的面积是( ▲ )A .πB .21πC .3π D. 2π8、如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( ▲ ) A 、2个B 、3个C 、4个D 、5 个9、在甲组图形的4个图中,每个图示由4种简单图形A 、B 、C 、D(不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B ,在乙组图形中的(a)(b)(c)(d)4个图中表示“A ·D ”和“A ·C ”的是 ( ▲ )BE DACOy xO AB (第14题)A65甲组 乙组A ·B B ·C C ·D B ·D (a) (b) (c) (d) A 、(a)(b)B 、(b)(c)C 、(c)(d)D 、(b)(d)10如下图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =1,AB =23,BC =2,P 是射线BC 的一个动点(点P 与点B 不重合),DE ⊥AP 于点E 。
30全国初中数学竞赛九年级预赛试题及答案[1]
一.选择题(共6小题,满分30分,每小题5分)1.(5分)从长度是2cm 、2cm 、4cm 、4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )A .B .C .D . 12.(5分)(2008•铜仁地区)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,且BN ⊥AN ,垂足为N ,且AB=6,BC=10,MN=1.5,则△ABC 的周长是( )A . 28B . 32C . 18D . 253.(5分)已知xy ≠1,且有5x 2+2011x+9=0,9y 2+2011y+5=0,则y x 的值等于( ) A . 95 B . 59 C . 52011- D . 92011-4.(5分)已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )A . 6B . 7C . 8D . 95.(5分)设a ,b ,c 是△ABC 的三边长,二次函数在x=1时取最小值,则△ABC 是( )A . 等腰三角形B . 锐角三角形C . 钝角三角形D . 直角三角形6.(5分)计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按照“先进后出’’的原则.如图,堆栈(1)的2个连续存储单元已依次存入数据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3个连续存储单元已依次存人数据e ,d ,c ,取出数据的顺序则是c ,d ,e ,现在要从这两个堆栈中取出这5个数据(每次取出1个数据),则不同顺序的取法的种数有( )2013年全国初中数学竞赛九年级预赛试题A . 5种B . 6种C . 10种D . 12种二.填空题(共6小题,满分30分,每小题5分)7.(5分)设方程x 2﹣|2x ﹣1|﹣4=0,则满足该方程的所有根之和为 _________ . 8.(5分)(人教版考生做)如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切.若AB=4,BE=5,则DE 的长为 _________ .8.(5分)(北师大版考生做)如图B ,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则AFFG 的值为 _________ .9.(5分)已知a 2﹣a ﹣1=0,且32 ,则x= _________ .10.(5分)甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有 _________ 件.11.(5分)如图,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成45°,∠A=60°,CD=4m ,,则电线杆AB 的长为 _________ 米.12.(5分)若实数x ,y ,使得这四个数中的三个相同的数值,则所有具有这样性质的数对(x,y)为 _________ .三.解答题(共4小题,满分80分,每小题20分)13.(20分)已知:(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证:a=b=c14.(20分)(2010•钦州)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为_________;用含t的式子表示点P的坐标为_________;(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.15.(20分)对于给定的抛物线y=x2+ax+b,使实数p、q适合于ap=2(b+q)(1)证明:抛物线y=x2+px+q通过定点;(2)证明:下列两个二次方程,x2+ax+b=0与x2+px+q=0中至少有一个方程有实数解.2013年全国初中数学竞赛九年级预赛试题参考答案与试题解析一.选择题(共8小题,满分160分,每小题20分)1.(5分)从长度是2cm、2cm、4cm、4cm的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是()A.B.C.D.1考点:概率公式;三角形三边关系;等腰三角形的判定.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:从长度是2cm、2cm、4cm、4cm的四条线段中任意选三条线段,有4种情况,由于三角形中两边之和应大于第三边,所以能构成等腰三角形的情况有2种,故能构成等腰三角形的概率==.故选C.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=;用到的知识点为:等腰三角形有2条边长相等;构成三角形的基本要求为两小边之和大于第三边.2.(5分)(2008•铜仁地区)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28 B.32 C.18 D.25考点:三角形中位线定理.分析:延长线段BN交AC于E,从而构造出全等三角形,(△ABN≌△AEN),进而证明MN是中位线,从而求出CE的长.解答:解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN,∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25,故选D.点评: 本题主要考查了中位线定理和全等三角形的判定.解决本题的关键是作出辅助线,利用全等三角形来得出线段相等,进而应用中位线定理解决问题.3.(5分)已知xy ≠1,且有5x 2+2011x+9=0,9y 2+2011y+5=0,则y x 的值等于( ) A . 95 B . 59 C . 52011- D . 92011-选B4.(5分)已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )A . 6B . 7C . 8D . 9考点:扇形面积的计算;三角形的面积;勾股定理. 专题:计算题. 分析: 如图,AC=4,S 1+S 2=10,设BC=a ,利用圆的面积公式得到S 1+S 2+S 3+S 4=π×22+π×a 2=2π+a 2,于是有S 3+S 4=2π+a 2﹣10①,再用以AB 为直径的半圆减去三角形ABC 的面积得到S 3+S 4,即S 3+S 4=π×﹣×4a=a 2+2π﹣2a ②,有①﹣②得到a 的方程,求出a ,然后代入①即可得到两个弓形(带点的阴影图形)面积之和. 解答: 解:如图,AC=4,S 1+S 2=10,设BC=a ,∴S 1+S 2+S 3+S 4=π×22+π×a 2=2π+a 2,∴S 3+S 4=2π+a 2﹣10①, 又∵AB 2=42+a 2=16+a 2,∴S 3+S 4=π×﹣×4a=a 2+2π﹣2a ②, ①﹣②得,2π+a 2﹣10=a 2+2π﹣2a ,解得a=5, ∴S 3+S 4=2π+a 2﹣10=2π+×25﹣10≈6.1, 即最接近图中两个弓形(带点的阴影图形)面积之和的是6.故选A .点评:本题考查了圆的面积公式:S=πR2.也考查了不规则图形的面积的求法,即转化为规则的几何图形的面积的和或差来解决.5.(5分)设a,b,c是△ABC的三边长,二次函数在x=1时取最小值,则△ABC是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形考点:二次函数的最值;勾股定理的逆定理.专题:计算题.分析:根据二次函数在对称轴时取得最小值,然后根据题意列出方程组即可求出答案;解答:解:由题意可得,即,所以,,因此a2+c2=b2,所以△ABC是直角三角形,故选D.点评:本题考查了二次函数的最值,难度不大,关键是掌握二次函数在二次项系数大于0时,在对称轴处取得最小值.6.(5分)计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按照“先进后出’’的原则.如图,堆栈(1)的2个连续存储单元已依次存入数据b,a,取出数据的顺序是a,b;堆栈(2)的3个连续存储单元已依次存人数据e,d,c,取出数据的顺序则是c,d,e,现在要从这两个堆栈中取出这5个数据(每次取出1个数据),则不同顺序的取法的种数有()A.5种B.6种C.10种D.12种考点:加法原理与乘法原理.专题:计算题.分析:此题实际可以理解为a、b、c、d、e这五个字母组成的排列中,不论怎样排列,a、b先后顺序和c、d、e排列的顺序不变,这样排列开头的字母只能是a或c,由此解答问题即可.解答:解:先取出堆栈(1)的数据首次取出的只能是a,可以有下列情况,abcde,acbde,acdbe,acdeb四种情况;先取出堆栈(2)的数据首次取出的只能是c,可以有下列情况,cdeab,cdabe,cdaeb,cabde,cadbe,cadeb六种情况;综上所知,共10种取法.故选C.点评:解决此题的关键是要搞清a、b先后顺序和c、d、e排列的顺序不变,从而运用一一列举的方法解答即可.二.填空题(共3小题,满分15分,每小题5分)7.(5分)设方程x2﹣|2x﹣1|﹣4=0,则满足该方程的所有根之和为_________.考点:解一元二次方程-因式分解法;绝对值;解一元二次方程-公式法.专题:因式分解.分析:因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元二次方程,求出方程的根,不在讨论范围内的根要舍去.解答:解:当2x﹣1≥0时,即x≥,原方程化为:x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x1=3,x2=﹣1,∵﹣1<∴x2=﹣1(舍去)∴x=3当2x﹣1<0,即x<时,原方程化为:x2+2x﹣5=0,(x+1)2=6,x+1=±,x1=﹣1+,x2=﹣1﹣∵﹣1+>,∴x1=﹣1+(舍去)∴x=﹣1﹣.则3+(﹣1﹣)=2﹣.故答案是:2﹣点评:本题考查的是解一元二次方程,由于带有绝对值符号,必须对题目进行讨论,对不在讨论范围内的根要舍去.8.(5分)(人教版考生做)如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为_________.考点:切割线定理;平行四边形的性质;圆周角定理;弦切角定理.分析:连接CE,根据圆周角定理易知:∠BAE=∠BEC+∠EBC,而∠DCB=∠DCE+∠BCE,这两个等式中,由弦切角定理知:∠DCE=∠EBC;再由平行四边形的性质知:∠DCB=∠EAB,因此∠BEC=∠BCE,即可得BC=BE=5,即AD=5,进而可由切割线定理求DE的长.解答:解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE ,∴∠BEC=∠BCE ,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC 2÷DA=,故选D . 点评: 此题主要考查了平行四边形的性质、切割线定理、弦切角定理以及圆周角定理的综合应用,能够判断出△BEC 是等腰三角形,是解决此题的关键.8.(5分)(北师大版考生做)如图B ,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则AF FG 的值为 _________ .考点:特殊角的三角函数值;全等三角形的判定与性质;等边三角形的性质. 分析:首先证明△CAD ≌△ABE ,得出∠ACD=∠BAE ,证明∠AFG=60°. 解答: 解:在△CAD 与△ABE 中,AC=AB ,∠CAD=∠ABE=60°,AD=BE ,∴△CAD ≌△ABE .∴∠ACD=∠BAE .∵∠BAE+∠CAE=60°,∴∠ACD+∠CAE=60°.∴∠AFG=∠ACD+∠CAE=60°.在直角△AFG 中, ∵sin ∠FAG=AF FG , ∴AF FG =21. 点评:本题主要考查了全等三角形的判定、性质,等边三角形、三角形的外角的性质,特殊角的三角函数值及三角函数的定义.综合性强,有一定难度.9.(5分)已知a 2﹣a ﹣1=0,且32 ,则x= .考点:解分式方程. 专题:计算题. 分析:本题可先根据a 2﹣a ﹣1=0,得出a 2,a 3,a 4的值,然后将等式化简求解. 解答: 解:由题意可得a 2﹣a ﹣1=0a 2=a+1a 4=(a 2)2=(a+1)2=a 2+2a+1=a+1+2a+1=3a+2a 3=a •a 2=a (a+1)=a 2+a=a+1+a=2a+1 =32- =32-x=4. 点评: 本要先根据给出的a 2﹣a ﹣1=0得出对等式化简有用的一些信息,然后再将方程化简求解.本题计算过程较长,比较复杂.10.(5分)甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有 12 件.考点: 二元一次方程组的应用.分析: 设共购商品2x 件,9元的商品a 件,根据两人购买商品的件数相等,且两人购买商品一共花费了172元,可列出方程,求解即可.解答: 解:设共购商品2x 件,9元的商品a 件,则8元商品为(2x ﹣a )件,根据题意得:8(2x ﹣a )+9a=172,解得a=172﹣16x ,∵依题意2x ≥a ,且a=172﹣16x ≥0,x 为大于0的自然数,∴可得9.6≤x ≤10.75,∴x=10,则a=12.所以9元的商品12件,故答案填12.点评: 本题主要考查了二元一次方程的应用及不等式组的解法.解题关键是弄清题意,找到合适的等量关系,列出方程.本题解题的关键在于按生活实际讨论未知数的取值范围.11.(5分)如图,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成45°,∠A=60°,CD=4m ,,则电线杆AB 的长为 _________ 米.考点:解直角三角形的应用-坡度坡角问题. 专题:应用题. 分析:延长AD 交地面于E ,作DF ⊥BE 于F ,求出BE=BC+CF+FE=,根据正切求出AB 的值即可.解答: 解:延长AD 交地面于E ,作DF ⊥BE 于F .∵∠DCF=45°.CD=4.∴CF=DF=.由题意知AB ⊥BC .∴∠EDF=∠A=60°.∴∠DEF=30° ∴EF=.∴BE=BC+CF+FE=.在Rt △ABE 中,∠E=30°.∴AB=BEtan30°=(m).答:电线杆AB的长为6米.点评:此题主要是运用所学的解直角三角形的知识解决实际生活中的问题.作辅助线、求出BE=BC+CF+FE 是解题的关键.12.(5分)若实数x,y,使得这四个数中的三个相同的数值,则所有具有这样性质的数对(x,y)为_________.考点:实数的运算.专题:分类讨论.分析:此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解答:解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,答案为(﹣1,)(﹣1,﹣)点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.三.解答题(共4小题,满分80分,每小题20分)13.(20分)已知:(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证:a=b=c考点:完全平方式.专题:计算题.分析:先把原式展开,合并,由于它是完全平方式,故有3x2+2(a+b+c)x+(ab+bc+ac)=[x+(a+b+c)]2,化简有ab+bc+ac=a2+b2+c2,那么就有(a﹣b)2+(b﹣c)2+(c﹣a)2=0,三个非负数的和等于0,则每一个非负数等于0,故可求a=b=c.解答:解:原式=3x2+2(a+b+c)x+(ab+bc+ac),∵(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,∴3x2+2(a+b+c)x+(ab+bc+ac)=[x+(a+b+c)]2,∴ab+bc+ac=(a+b+c)2=(a2+b2+c2+2ab+2ac+2bc),∴ab+bc+ac=a2+b2+c2,∴2(ab+bc+ac)=2(a2+b2+c2),即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c.点评:本题考查了完全平方式、非负数的性质.两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.14.(20分)(2010•钦州)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B 的坐标为(6,4);用含t的式子表示点P的坐标为(t,t);(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.考点:二次函数的最值;一次函数的应用;三角形的面积;矩形的性质.专题:压轴题.分析:(1)由OA=6,AB=4,易得点B的坐标为(6,4);由图可得,点P的横坐标=CN=t,纵坐标=4﹣NP,NP的值可根据相似比求得;(2)由(1)的结论易得△OMP的高为t,而OM=6﹣AM=6﹣t,再根据三角形的面积公式即可求得S与t的函数关系式,再由二次函数的最值求法,求得t为何值时,S有最大值;(3)由(2)求得点M、N的坐标,从而求得直线ON的函数关系式;设点T的坐标为(0,b),可得直线MT的函数关系式,解由两个关系式组成的方程组,可得点直线ON与MT的交点R的坐标;由已知易得S△OCN=×4×3=6,∴S△ORT=S△OCN=2;然后分两种情况考虑:①当点T在点O、C之间时,②当点T在点OC的延长线上,从而求得符合条件的点T的坐标.解答:解:(1)延长NP交OA于H,∵矩形OABC,∴BC∥OA,∠OCB=90°,∵PN⊥BC,∴NH∥OC,∴四边形CNHO 是平行四边形,∴OH=CN,∵OA=6,AB=4,∴点B的坐标为(6,4);由图可得,点P的横坐标=0H=CN=t,纵坐标=4﹣NP,∵NP⊥BC,∴NP∥OC,∴NP:OC=BN:CB,即NP:4=(6﹣t):t,∴NP=4﹣t,∴点P的纵坐标=4﹣NP=t,则点P的坐标为();(其中写对B点得1分)(3分)(2)∵S△OMP=×OM×,(4分)∴S=×(6﹣t)×=+2t.=(0<t<6).(6分)∴当t=3时,S有最大值.(7分)(3)存在.由(2)得:当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4),则直线ON的函数关系式为:.设点T的坐标为(0,b),则直线MT的函数关系式为:,解方程组得,∴直线ON与MT的交点R的坐标为.∵S△OCN=×4×3=6,∴S△ORT=S△OCN=2.(8分)①当点T在点O、C之间时,分割出的三角形是△OR1T1,如图,作R1D1⊥y轴,D1为垂足,则S△OR1T1=RD1•OT=••b=2.∴3b2﹣4b﹣16=0,b=.∴b1=,b2=(不合题意,舍去)此时点T1的坐标为(0,).(9分)②当点T在OC的延长线上时,分割出的三角形是△R2NE,如图,设MT交CN于点E,由①得点E的横坐标为,作R2D2⊥CN交CN于点D2,则S△R2NE=•EN•R2D2=••==2.∴b2+4b﹣48=0,b=.∴b1=,b2=(不合题意,舍去).∴此时点T2的坐标为(0,).综上所述,在y轴上存在点T1(0,),T2(0,)符合条件.(10分)点评:此题综合性较强,考查了点的坐标、平行线分线段成比例、二次函数的最值、一次函数的应用等知识点.15.(20分)对于给定的抛物线y=x2+ax+b,使实数p、q适合于ap=2(b+q)(1)证明:抛物线y=x2+px+q通过定点;(2)证明:下列两个二次方程,x2+ax+b=0与x2+px+q=0中至少有一个方程有实数解.考点:二次函数图象上点的坐标特征;根的判别式.专题:证明题.分析:(1)由已知求得q=﹣b,代入抛物线y=x2+px+q,得y=x2+px+﹣b,将抛物线y=x2+ax+b的顶点横坐标x=﹣代入可求y的值,确定结果为顶点纵坐标即可;(2)方程x2+ax+b=0与x2+px+q=0的判别式分别为a2﹣4b,p2﹣4q,由2q=ap﹣2b可得出两个判别式的和为非负数,可知其中至少有一个判别式为非负数,故至少有一个方程有实数解.解答:证明:(1)由ap=2(b+q),得q=﹣b,代入抛物线y=x2+px+q,得:﹣y+x2﹣b+p(x+)=0,得,解得:,故抛物线y=x2+px+q通过定点(﹣,).(2)由2q=ap﹣2b得p2﹣4q=p2﹣2•2q=p2﹣2(ap﹣2b)=(p﹣a)2﹣(a2﹣4b),∴(p2﹣4q)+(a2﹣4b)=(p﹣a)2≥0,∴p2﹣4q,a2﹣4b中至少有一个非负,∴x2+ax+b=0与x2+px+q=0中至少有一个方程有实数解.点评:本题考查了抛物线上的点及顶点的坐标特点,判别式判断一元二次方程解的运用,明确两个数的和为非负数时,其中至少有一个数为非负数.小学六年级奥数圆柱圆锥圆柱与圆锥这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。
九上数学竞赛试题及答案
九上数学竞赛试题及答案九年级上学期数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. π2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 83. 一个数的立方根等于它本身,这个数可能是?A. 0B. 1C. -1D. 以上都是4. 一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式是?A. b² - 4acB. b² + 4acC. a² + b² + c²D. a² - b² - c²5. 以下哪个代数式不是同类项?A. x³ + 2xB. 5x² - 3xC. 2x² - 3xD. x² + 5x二、填空题(每题3分,共15分)6. 如果一个数的平方等于81,那么这个数是________。
7. 一个数的相反数是-5,那么这个数是________。
8. 一个数的绝对值是5,那么这个数可能是________或________。
9. 一个多项式P(x) = x³ - 6x² + 11x - 6,P(1)的值是________。
10. 如果一个圆的半径是r,那么它的面积是________。
三、解答题(每题10分,共20分)11. 已知一个长方体的长、宽、高分别是a、b、c,求它的体积。
解:长方体的体积公式是V = abc,所以体积为abc。
12. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
证明:设直角三角形的直角边分别为a和b,斜边为c。
根据勾股定理,a² + b² = c²。
可以通过构造一个边长为a+b的正方形,将其分割成两个直角三角形和一个边长为c的正方形,从而证明a² +b² = c²。
九年级(上)数学竞赛试题 含答案
九年级数学一、选择题(每小题5分,共30分)1.已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( )A .9B .±3C .3D . 52.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A .13B .19C .12D .23 3.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 的弦AB的长为a 的值是( ) A.B.2+C.D.24.已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .35.方程1)1(32=-++x x x 的所有整数解的个数是( )个 (A )2 (B )3 (C )4 (D )56.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ). (A )(2010,2) (B )(2010,2-) (C )(2012,2-) (D )(0,2)二、填空题(每小题5分,共30分) 7.当x 分别等于20051,20041,20031,20021,20011,20001,2000,2001,2002,2003,2004,2005时,计算代数式221x x +的值,将所得的结果相加,其和等于 .8.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .9.△ABC 的三边长a 、b 、c 满足8=+c b ,52122+-=a a bc ,则△ABC 的周长等于 .10.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .11.如图,直径AB 为6阴影部分的面积是 .12.如图,一次函数的图象过点P (2,3),交x 轴的正半轴与A ,交y 轴的正半轴与B ,则△AOB 面积的最小值是 . 三、解答题(每小题15分,共60分)13、在实数范围内,只存在一个正数是关于x 的方程k x x kx x +=-++3132的解,求实数k 的取值范围.(第10题)(第11题)DB14.阅读下面的情境对话,然后解答问题(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt ∆ABC 中, ∠ACB =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt ∆AB C 是奇异三角形,求a :b :c ;(3)如图,AB 是⊙O 的直径,C 是上一点(不与点A 、B 重合),D 是半圆 ⌒ABD 的中点,CD 在直径AB 的两侧,若在⊙O 内存在点E 使得AE =AD ,CB =CE .○1求证:∆ACE 是奇异三角形; ○2当∆ACE 是直角三角形时,求∠AOC 的度数.15.如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.16.设k 为正整数,证明:(1)、如果k 是两个连续正整数的乘积,那么256k +也是两个连续正整数的乘积; (2)、如果256k +是两个连续正整数的乘积,那么k 也是两个连续正整数的乘积.参考答案一、选择题1.C 2.A 3.B 4.D 5. C 6. B6.解:由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-). 记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得:322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,. 令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-). 二、填空题7.6 8.0 9.12 10.6. 11.6π 12.1212.解:设一次函数解析式为y kx b =+,则32k b =+,得32b k =-,令0y =得bx k=-,则OA =b k-. 令0x =得y b =,则OA =b .2221()21(32)2141292124]212.AOB b S b kk kk k k∆=⨯-⨯-=⨯--+=⨯-=⨯+≥ 所以,三角形AOB 面积的最小值为12.三、解答题13、原方程可化为0)3(322=+--k x x ,①(1)当△=0时,833-=k ,4321==x x 满足条件; (2)若1=x 是方程①的根,得0)3(13122=+-⨯-⨯k ,4-=k .此时方程①的另一个根为21,故原方程也只有一根21=x ;(3)当方程①有异号实根时,02321<+-=k x x ,得3->k ,此时原方程也只有一个正实数根;(4)当方程①有一个根为0时,3-=k ,另一个根为23=x ,此时原方程也只有一个正实根。
九年级(上)竞赛数学试卷(word版 含答案解析)
九年级(上)竞赛数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,一元二次方程是()A.x2+=0 B.ax2+bx=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=02.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上4.一元二次方x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根5.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.6.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.﹣8 B.8 C.±8 D.67.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%8.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2 B.y=(x﹣3)2+2 C.y=(x﹣3)2﹣2 D.y=(x+3)2+29.已知a、b满足(a2﹣b2)(a2﹣b2+4)+4=0,则代数式a2﹣b2的值为()A.﹣2 B.4 C.﹣2或4 D.210.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分给出下列命题:①a+b+c=0;②b>2a;③3a+c=0;④a﹣b<m(ma+b)(m≠﹣1的实数);其中正确的命题是()A.①②③B.①②④C.②③④D.①③④二、填空题(每小题3分,共24分)11.当m=时,关于x的方程(m﹣3)﹣x=5是一元二次方程.12.抛物线y=ax2经过点(3,5),则a=.13.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于.14.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程,能否求出x的值:(能或不能).15.把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.16.如果抛物线y=x2﹣8x+c的顶点在x轴上,则c=.17.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是.18.如图,函数y=﹣(x﹣h)2+k的图象,则其解析式为.三、解答题(本大题共66分)19.解下列方程(1)x2﹣5x+1=0(2)(x+3)2=5(x+3)(3)(x﹣2)2﹣4=0.20.已知关于x的一元二次方程(2m﹣1)x2+3mx+5=0有一根是x=﹣1,求m的值.21.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.22.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地,怎样围才能使矩形场地的面积为750m2?23.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?24.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.25.行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:0102030405060刹车时车速/km•h﹣1刹车距离/m00.3 1.0 2.1 3.6 5.57.8(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?九年级(上)竞赛数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,一元二次方程是()A.x2+=0 B.ax2+bx=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【考点】A1:一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是分式方程,故A错误;B、a=0时是一元一次方程,故B错误;C、是元二次方程,故C正确;D、是二元二次方程,故D错误;故选:C.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】A6:解一元二次方程﹣配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B3.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上【考点】H3:二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点坐标的特点,直接写出顶点坐标,再判断顶点位置.【解答】解:由y=2x2﹣3得:抛物线的顶点坐标为(0,﹣3),∴抛物线y=2x2﹣3的顶点在y轴上,故选D.4.一元二次方x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根【考点】AA:根的判别式.【分析】求出一元二次方程根的判别式;根据根的判别式即可判断根的情况.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×1×3=﹣3<0,∴方程没有实数根,故选:D.5.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.【考点】H2:二次函数的图象.【分析】利用排除法解决:首先由a=﹣1<0,可以判定抛物线开口向下,去掉A、C;再进一步由对称轴x=﹣=1,可知B正确,D错误;由此解决问题.【解答】解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是x=0,∴只有B符合要求.故选:B.6.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.﹣8 B.8 C.±8 D.6【考点】HA:抛物线与x轴的交点.【分析】根据抛物线与x轴只有一个交点,△=0,列式求出m的值,再根据对称轴在y轴的左边求出m的取值范围,从而得解.【解答】解:由图可知,抛物线与x轴只有一个交点,所以,△=m2﹣4×2×8=0,解得m=±8,∵对称轴为直线x=﹣<0,∴m>0,∴m的值为8.故选B.7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%【考点】AD:一元二次方程的应用.【分析】设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【解答】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(1+x)2=1.44,x1=0.2=20%,x2=﹣2.2(舍去),答:平均每月的增长率为20%.故选C.8.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2 B.y=(x﹣3)2+2 C.y=(x﹣3)2﹣2 D.y=(x+3)2+2【考点】H6:二次函数图象与几何变换.【分析】变化规律:左加右减,上加下减.【解答】解:按照“左加右减,上加下减”的规律,y=x2向左平移3个单位,再向下平移2个单位得y=(x+3)2﹣2.故选A.9.已知a、b满足(a2﹣b2)(a2﹣b2+4)+4=0,则代数式a2﹣b2的值为()A.﹣2 B.4 C.﹣2或4 D.2【考点】A9:换元法解一元二次方程.【分析】设x=a2+b2,方程化为关于x的一元二次方程,求出方程的解即可得到a2+b2的值.【解答】解:设x=a2﹣b2,方程化为x2+4x+4=0,∴(x+2)2=0,解得:x=﹣2,∴a2﹣b2=﹣2,故选:A.10.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分给出下列命题:①a+b+c=0;②b>2a;③3a+c=0;④a﹣b<m(ma+b)(m≠﹣1的实数);其中正确的命题是()A.①②③B.①②④C.②③④D.①③④【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线经过(1,0),确定a+b+c的符号;根据对称轴方程确定b与2a的关系;由①②的结论判断③;根据a>0,(m+1)2>0,确定a(m+1)2>0,经过整理即可得出a﹣b<m(ma+b).【解答】解:∵x=1时,y=0,∴a+b+c=0,①正确;∵﹣=﹣1,∴b=2a,②错误;由a+b+c=0和b=2a得,3a+c=0,③正确;∵m≠﹣1,∴(m+1)2>0,∵a>0,∴a(m+1)2>0,∴am2+2am+a>0,∵b=2a,∴a﹣b=﹣a∴am2+bm>a﹣b,∴a﹣b<m(am+b),④正确,故选:D.二、填空题(每小题3分,共24分)11.当m=﹣3时,关于x的方程(m﹣3)﹣x=5是一元二次方程.【考点】A1:一元二次方程的定义.【分析】根据一元二次方程的定义进行解答.【解答】解:依题意得:m2﹣7=2,且m﹣3≠0,解得m=﹣3,故答案是:﹣3.12.抛物线y=ax2经过点(3,5),则a=.【考点】H5:二次函数图象上点的坐标特征.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.13.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于4.【考点】A9:换元法解一元二次方程;A8:解一元二次方程﹣因式分解法.【分析】首先把x2+y2当作一个整体,设x2+y2=k,方程即可变形为关于k的一元二次方程,解方程即可求得k即x2+y2的值.【解答】解:设x2+y2=k∴(k+1)(k﹣3)=5∴k2﹣2k﹣3=5,即k2﹣2k﹣8=0∴k=4,或k=﹣2又∵x2+y2的值一定是非负数∴x2+y2的值是4.故答案为:4.14.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程(x+100)=20000,能否求出x的值:能(能或不能).【考点】AC:由实际问题抽象出一元二次方程.【分析】如果把游泳池的长增加xm,那么游乐场的长和宽分别为和,然后矩形根据面积公式可列出方程.【解答】解:由于游泳池的长增加xm,那么游乐场的长和宽分别为和,即(x+100)=20000,解得x=100.故填空答案:(x+100)=20000,能.15.把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.【考点】A2:一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.16.如果抛物线y=x2﹣8x+c的顶点在x轴上,则c=16.【考点】H3:二次函数的性质.【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【解答】解:根据题意,得=0,解得c=16.故答案为:16.17.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是(2,﹣1).【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【分析】已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【解答】解:设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x﹣1)(x﹣3)把点C(0,3),代入得a=1.则y=(x﹣1)(x﹣3)=x2﹣4x+3.所以图象的顶点坐标是(2,﹣1).18.如图,函数y=﹣(x﹣h)2+k的图象,则其解析式为y=﹣(x+1)2+5.【考点】H8:待定系数法求二次函数解析式.【分析】根据图象得出顶点的坐标,即可求得解析式.【解答】解:由图象可知抛物线的顶点坐标为(﹣1,5)所以函数的解析式为y=﹣(x+1)2+5.故答案为y=﹣(x+1)2+5.三、解答题(本大题共66分)19.解下列方程(1)x2﹣5x+1=0(2)(x+3)2=5(x+3)(3)(x﹣2)2﹣4=0.【考点】A8:解一元二次方程﹣因式分解法;A5:解一元二次方程﹣直接开平方法;A7:解一元二次方程﹣公式法.【分析】(1)利用求根公式法解方程;(2)先移项得到(x+3)2﹣5(x+3)=0,然后利用因式分解法解方程;(3)利用因式分解法解方程.【解答】解:(1)△=52﹣4×1=21,x=所以x1=,x2=;(2)(x+3)2﹣5(x+3)=0,(x+3)(x+3﹣5)=0,x+3=0或x+3﹣5=0,所以x1=﹣3,x2=2;(3)(x﹣2+2)(x﹣2﹣2)=0,x﹣2+2=0或x﹣2﹣2=0,所以x1=0,x2=4.20.已知关于x的一元二次方程(2m﹣1)x2+3mx+5=0有一根是x=﹣1,求m的值.【考点】A3:一元二次方程的解;A1:一元二次方程的定义.【分析】把方程的根代入方程,可以求出字母系数m值.【解答】解:把x=﹣1代入方程有:2m﹣1﹣3m+5=0,∴m=4.即m的值是4.21.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.【考点】H8:待定系数法求二次函数解析式;H7:二次函数的最值.【分析】(1)把已知点的坐标代入抛物线解析式求出a的值,确定出解析式即可;(2)利用二次函数性质求出y的最小值,以及此时x的值即可.【解答】解:(1)把(0,﹣3)代入抛物线解析式得:9a+6+|a|﹣4=0,当a>0时,方程化简得:10a=﹣2,解得:a=﹣0.2;当a<0时,方程化简得:8a=﹣2,解得:a=﹣0.25,则抛物线解析式为y=﹣0.2x2﹣2x﹣3.8或y=﹣0.25x2﹣2x﹣3.75;(2)抛物线解析式为y=﹣0.2x2﹣2x﹣3.8,当x=5时,y取得最小值,最小值为﹣18.8;抛物线解析式为y=﹣0.25x2﹣2x﹣3.75,当x=4时,y取得最小值,最小值为15.75.22.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地,怎样围才能使矩形场地的面积为750m2?【考点】AD:一元二次方程的应用.【分析】根据题意可以设平行于墙的一边长为xm,从而可以列出相应的方程,从而可以解答本题.【解答】解:平行于墙的一边长为xm,则x()=750,解得x1=30,x2=50,∵墙的长度不超过45m,∴x=50不符合题意,舍去,∴x=30,∴=25,即矩形的平行于墙的一边长为30m,垂直于墙的一边长为25m时,矩形场地的面积为750m2.23.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【考点】HE:二次函数的应用;H7:二次函数的最值.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解:(1)设每千克应涨价x元,则(10+x)=6 000解得x=5或x=10,为了使顾客得到实惠,所以x=5.(2)设涨价z元时总利润为y,则y=(10+z)=﹣20z2+300z+5 000=﹣20(z2﹣15z)+5000=﹣20(z2﹣15z+﹣)+5000=﹣20(z﹣7.5)2+6125当z=7.5时,y取得最大值,最大值为6 125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.24.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】2C:实数的运算.【分析】(1)根据题意可得代数式42﹣32,再计算即可;(2)根据题意可得方程:(x+2)2﹣25=0,再利用直接开平方法解方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得:(x+2)2﹣25=0,(x+2)2=25,x+2=±5,x+2=5或x+2=﹣5,解得:x1=3,x2=﹣7.25.行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:0102030405060刹车时车速/km•h﹣1刹车距离/m00.3 1.0 2.1 3.6 5.57.8(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?【考点】HE:二次函数的应用.【分析】(1)依题意描点连线即可.(2)设抛物线为y=ax2+bx+c,再根据表格中所给数据可得方程,解出a,b,c即可.(3)当y=46.5时,代入函数关系式解出x的值,根据题意进行取舍即可.【解答】解:(1)如图所示:(2)根据图象可估计为抛物线.∴设y=ax2+bx+c.把表内前三对数代入函数,可得,解得:,∴y=0.002x2+0.01x.经检验,其他各数均满足函数(或均在函数图象上);(3)当y=46.5时,46.5=0.002x2+0.01x.整理可得x2+5x﹣23250=0.解之得x1=150,x2=﹣155(不合题意,舍去).所以可以推测刹车时的速度为150千米/时.∵150>140,∴汽车发生事故时超速行驶.。
人教版九年级数学上学期竞赛试卷及答案
人教版九年级数学上学期竞赛试卷及答案一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 , ) 1. 在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的同学有( ) A.9人 B.10人 C.11人 D.12人 2. 三角形两边的长分别是12和16,第三边的长是一元二次方程x 2−32x +240=0的一个实数根,则该三角形的面积是( ) A.96 B.96或32√5 C.48 D.32√5 3. 方程(m −2)x 2−√3−mx +14=0有两个实数根,则m 的取值范围( ) A.m >52 B.m ≤52且m ≠2 ;C.m ≥3 D.m ≤3且m ≠2 4. a ,b ,c 为常数,且a ,c 互为相反数,则关于x 的方程ax 2+bx +c =0(a ≠0)根的情况( ) A.无实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.有一根为5 5. 把抛物线y =−2x 2+4的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A.y =−2(x −2)2+7 B.y =−2(x −2)2+1 C.y =−2(x +2)2+1 D.y =−2(x +2)2+7 6. 如图,已知二次函数y =ax 2+bx +c (a ≠0)图像过点(−1,0),顶点为 (1,2),则结论:①abc <0;②x =1时,函数的最大值是2;③a +2b +4c >0;④2a =−b ;⑤2c >3b .其中正确的结论有( ) A.5个 B.4个 C.3个 D.2个7. 抛物线y =−3x 2−1是由抛物线y =−3(x +1)2+1怎样平移得到的( )A.左移1个单位上移2个单位B.右移1个单位上移2个单位学校: 班级: 姓名: 准考证号:C.左移1个单位下移2个单位D.右移1个单位下移2个单位8. 如图,在Rt△ABC中,∠ABC=90∘,AB=2√3,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.5√34−π2B.5√34+π2C.2√3−πD.4√3−π29. 如图,分别以等边三角形ABC的三个顶点为圆心,以其边长为半径画弧,得到的封闭图形是莱洛三角形,如果AB=2,那么此莱洛三角形(即阴影部分)的面积( )A.π+√3B.π−√3C.2π−2√3D.2π−√310. 如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70∘,则∠BOD的度数是( )A.35∘B.70∘C.110∘D.140∘11. 从−2,3,4,5中随机选取一个数作为二次函数y=ax2中a的值,则抛物线开口向下的概率是( )A.1B.12C.14D.3412. 平移小菱形可以得到美丽的“中国结”图案,下面四个图案是小菱形平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是( )A.800B.900C.1000D.1100二、填空题(本题共计4 小题,每题3 分,共计12分,)13. 国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为________.14. 已知m是一元二次方程x2−x−2=0的一个根,则2020−m2+m的值为________.15. 明明和亮亮分别解同一道一元二次方程,明明把一次项系数看错了,解得方程的两个根分别为−3和5,亮亮把常数项看错了,解得两根为2和2,则原方程是________.16. 若实数p,q(p≠q)满足p2−5p+6=0,q2−5q+6=0,则1p2+1q2的值为________.三、解答题(本题共计7 小题,共计72分,)17.(10分) 解方程:(1)x2+4x−4=0;(2)3x(2x+1)=4x+2.18.(10分) 已知a,b是关于x的一元二次方程x2−2(m+1)x+m2+5=0的两实数根.(1)若(a−1)(b−1)=39,求m的值;(2)已知等腰△AOB的一边长为7,若a,b恰好是△AOB另外两边的边长,求这个三角形的周长.19.(11分) 某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“新型冠状病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.20.(10分) 嘉嘉同学用配方法推导二次函数y=ax2+bx+c(a≠0)的顶点坐标,她是这样做的:由于a≠0,解析式y=ax2+bx+c变形为y=a(x2+bax)+c,···························································第一步y=a[x2+ba x+(b2a)2−(b2a)2]+c,·······················第二步y=a(x+b2a )2−b24a+c,················································第三步y=a(x+b2a )2+b2−4ac4a.···········································第四步(1)嘉嘉的解法从第________步开始出现错误;事实上,抛物线y=ax2+ bx+c(a≠0)的顶点坐标是________.(2)用配方法求抛物线y=2x2−4x−3的顶点坐标和对称轴.21.(10分) 为了解我校落实新课改精神的情况,现以我校某班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为________人,参加球类活动的人数的百分比为________;(2)请把图2(条形统计图)补充完整;(3)我校学生某年级共800人,则参加棋类活动的人数约为________;(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),现准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.22.(10分) 如图,在△ABC中,∠C=90∘,以BC为直径的⊙O交AB于点D,E是AC中点.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.x2+c,且在函数值y=−4时,只有一个自23.(11分) 已知二次函数y=14变量x的值与其对应.(1)求c的值;(2)点M, N在该二次函数的图象上,记该二次函数图象的顶点为C,且∠MCN=90∘,求证:MN必过原点O;(3)将该二次函数图象落在直线l:x=t左侧部分沿着x轴翻折,其余部分图象保持不变,得到函数f的图象.问:是否存在实数t,使得函数f的图象位于直线l:x=t两侧的部分在y轴上的正投影没有重合部分?若存在,求t的取值范围;若不存在,说明理由.参考答案与试题解析一、选择题(本题共计12 小题,每题 3 分,共计36分)1.【答案】C【考点】由实际问题抽象出一元二次方程一元二次方程的应用——其他问题【解析】设参加聚会的有x名学生,根据“每人都向其他人赠送了一份小礼品,共互送110份小礼品”,列出关于x的一元二次方程,解之即可.【解答】解:设参加聚会的同学有x人,根据题意得:x(x−1)=110,解得x1=11,x2=−10(舍),∴参加聚会的同学有11人.故选C.2.【答案】B【考点】解一元二次方程-因式分解法勾股定理等腰三角形的性质三角形的面积【解析】先求出一元二次方程x2−32x+240=0的实数根,再由三角形的三边关系判断出另一边的长度,由勾股定理的逆定理判断出三角形的性状,进而可得出结论.【解答】解:∵一元二次方程x2−32x+240=0,可化为(x−20)(x−12)=0,∴x1=20,x2=12,当x=12时,该三角形为以12为腰,16为底的等腰三角形,高∠=√122−82=4√5,则S=12×16×4√5=32√5;当x=20时,∵122+162=202,∴该三角形为以12和16为直角边,20为斜边的直角三角形.∴S=12×16×12=96.故选B.3.【答案】B【考点】一元二次方程的定义根的判别式二次根式有意义的条件【解析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到{m−2≠0 3−m≥0△=(−√3−m)2−4(m−2)×14≥0,然后解不等式组即可.【解答】解:根据题意,得{m−2≠0,3−m≥0,Δ=(−√3−m)2−4(m−2)×14≥0,解得m≤52且m≠2.故选B.4.【答案】C【考点】根的判别式【解析】直接利用判别式判断正负即可.【解答】解:由题意得:a=−c,则Δ=b2−4ac=b2+4a2.由于a≠0,所以Δ=b2−4ac=b2+4a2>0,所以方程必有两个不相等的实数根.故选C.5.【答案】D【考点】二次函数图象的平移规律【解析】根据抛物线图象平移规律:”左加右减“进行求解即可.【解答】解:根据抛物线图象平移规律:”左加右减,上加下减“可得,y=−2x2+4的图象向左平移2个单位,再向上平移3个单位,得到平移后抛物线的解析式为y=−2(x+2)2+4+3=−2(x+2)2+7.故选D.6.【答案】B【考点】二次函数图象与系数的关系二次函数的最值【解析】由抛物线的开口方向判断a与0的关系.由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①对称轴在y轴的右侧,则a,b异号,∴ab<0.由抛物线与y 轴的交点位于y 轴的正半轴,则c >0,∴ abc <0,故①正确;②∵抛物线的开口方向向下,顶点为(1,2),∴x =1时,函数的最大值是2,故②正确;③当x =12时,y >0,即14a +12b +c >0, ∴a +2b +4c >0,故③正确;④∵抛物线的对称轴为直线x =−b 2a =1,∴2a =−b ,故④正确;⑤∵抛物线过点(−1,0),∴a −b +c =0.∵ a =−12b , ∴−12b −b +c =0, ∴2c =3b ,故⑤错误.综上所述,正确的结论有4个故选B .7.【答案】D【考点】二次函数图象的平移规律【解析】此题暂无解析【解答】解:将抛物线y =−3(x +1)2+1向右移1个单位得到y =−3x 2+1,再向下移2个单位得到y =−3x 2−1.故选D .8.【答案】A【考点】扇形面积的计算解直角三角形求阴影部分的面积【解析】根据题意,作出合适的辅助线,即可求得DE 的长、∠DOB 的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.【解答】解:如图,连接OD,过点D作DE⊥AB于点E.∵在Rt△ABC中,∠ABC=90∘,AB=2√3,BC=2,则AC=4,AC=2BC,∴∠BAC=30∘,∴∠DOB=60∘.∵OD=12AB=√3,∴DE=32,∴阴影部分的面积是:2√3×22−√3×322−60×π×(√3)2360=5√34−π2.故选A.9.【答案】C【考点】扇形面积的计算等边三角形的性质三角形的面积【解析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60∘,∵AD⊥BC,∴BD=CD=1,AD=√3BD=√3,∴△ABC的面积为12×BC×AD=12×2×√3=√3,S扇形BAC =60π×22360=23π,∴莱洛三角形的面积S=3×23π−2×√3=2π−2√3.故选C.10.【答案】D【考点】圆内接四边形的性质圆周角定理【解析】由圆内接四边形的外角等于它的内对角知,∠A=∠DCE=70∘,由圆周角定理知,∠BOD =2∠A=140∘.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180∘,又∠BCD+∠DCE=180∘,∴∠A=∠DCE=70∘,∴∠BOD=2∠A=140∘.故选D.11.【答案】C【考点】二次函数图象与系数的关系概率公式【解析】根据抛物线的开口与系数的关系可知,当a<0时抛物线开口向下,在这一组数中只有−2为负数,所以当a=−2时抛物线开口向下,再根据概率公式解答即可.【解答】解:从−2,3,4,5四个数中,任意取一个数,有四种情况,满足抛物线开口向下的a值可以为−2,.∴该二次函数图象开口向下的概率是14故选C.12.【答案】A【考点】规律型:图形的变化类【解析】仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=20即可求得答案.【解答】解:∵第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;⋯以此类推,第n个图形有2n2个小菱形,∴第20个图形有2×202=800个小菱形.故选A.二、填空题(本题共计4 小题,每题 3 分,共计12分)13.【答案】5000(1+x)2=7500【考点】由实际问题抽象出一元二次方程【解析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.【解答】解:根据题意,可列方程为5000(1+x)2=7500.故答案为:5000(1+x)2=7500.14.【答案】2018【考点】一元二次方程的解列代数式求值【解析】由方程根的定义把m的值代入可求得m2−m的值,代入可求得值.【解答】解:∵m是一元二次方程x2−x−2=0的一个根,∴m2−m−2=0,∴m2−m=2,∴2020−∠2+∠=2020−(∠2−∠)=2018.故答案为:2018.15.【答案】∠2−4∠−15=0【考点】根与系数的关系【解析】此题暂无解析【解答】解:设方程解析式为:∠2+∠∠+∠=0,由题意及根与系数的关系可得:−3×5=∠,−∠=2+2,故∠=−15,∠=−4,故答案为:∠2−4∠−15=0.16.【答案】1336【考点】解一元二次方程-因式分解法列代数式求值【解析】由题意得到实数∠, ∠是方程∠2−5∠+6=0的两个根,∠+∠=5,∠∠=6,代入1∠2+1∠2=∠2+∠2(∠∠)2=(∠+∠)2−2∠∠(∠∠)2即可. 【解答】解:∵ 实数∠, ∠(∠≠∠)满足∠2−5∠+6=0,∠2−5∠+6=0,∴ 解得∠=2或∠=3,∠=2或∠=3.∵实数∠, ∠不相等,∴ 1∠2+1∠2=122+132=1336. 故答案为:1336. 三、 解答题 (本题共计 7 小题 ,共计72分 )17.【答案】解:(1)用公式法解:∠=1,∠=4,∠=−4,∴ ∠2−4∠∠=42−4×1×(−4)=32>0,∴ ∠=−∠±√∠2−4∠∠2∠=−4±√322×1=−2±2√2.(2)3∠(2∠+1)=2(2∠+1),3∠(2∠+1)−2(2∠+1)=0,(3∠−2)(2∠+1)=0,3∠−2=0或2∠+1=0,∴ ∠1=23,∠2=−12. 【考点】解一元二次方程-公式法解一元二次方程-因式分解法【解析】此题暂无解析【解答】解:(1)用公式法解:∠=1,∠=4,∠=−4,∴ ∠2−4∠∠=42−4×1×(−4)=32>0,∴ ∠=−∠±√∠2−4∠∠2∠=−4±√322×1=−2±2√2.(2)3∠(2∠+1)=2(2∠+1),3∠(2∠+1)−2(2∠+1)=0,(3∠−2)(2∠+1)=0,3∠−2=0或2∠+1=0,∴ ∠1=23,∠2=−12.18.【答案】解:(1)∵ ∠,∠是关于∠的一元二次方程∠2−2(∠+1)∠+∠2+5=0的两实数根, ∴ ∠+∠=2(∠+1),∠∠=∠2+5,∴ (∠−1)(∠−1)=∠∠−(∠+∠)+1=∠2+5−2(∠+1)+1=39,解得∠=−5或∠=7,当∠=−5时,原方程无解,故舍去,∴ ∠=7.(2)①当7为底边时,此时方程∠2−2(∠+1)∠+∠2+5=0有两个相等的实数根, ∴ ∠=4(∠+1)2−4(∠2+5)=0,解得∠=2,∴ 方程变为∠2−6∠+9=0,解得∠=∠=3,∵ 3+3<7,∴ 不能构成三角形.②当7为腰时,设∠=7,代入方程得:49−14(∠+1)+∠2+5=0,解得:∠=10或4,当∠=10时,方程变为∠2−22∠+105=0,解得∠=7或15,∴∠=15,∵7+7<15,∴不能组成三角形;当∠=4时,方程变为∠2−10∠+21=0,解得∠=3或7,∴∠=3,∴此时三角形的周长为7+7+3=17.综上所述,三角形的周长为17.【考点】根与系数的关系根的判别式三角形三边关系等腰三角形的判定与性质【解析】无无【解答】解:(1)∵∠,∠是关于∠的一元二次方程∠2−2(∠+1)∠+∠2+5=0的两实数根,∴∠+∠=2(∠+1),∠∠=∠2+5,∴(∠−1)(∠−1)=∠∠−(∠+∠)+1=∠2+5−2(∠+1)+1=39,解得∠=−5或∠=7,当∠=−5时,原方程无解,故舍去,∴∠=7.(2)①当7为底边时,此时方程∠2−2(∠+1)∠+∠2+5=0有两个相等的实数根,∴∠=4(∠+1)2−4(∠2+5)=0,解得∠=2,∴方程变为∠2−6∠+9=0,解得∠=∠=3,∵3+3<7,∴不能构成三角形.②当7为腰时,设∠=7,代入方程得:49−14(∠+1)+∠2+5=0,解得:∠=10或4,当∠=10时,方程变为∠2−22∠+105=0,解得∠=7或15,∴∠=15,∵7+7<15,∴不能组成三角形;当∠=4时,方程变为∠2−10∠+21=0,解得∠=3或7,∴∠=3,∴此时三角形的周长为7+7+3=17.综上所述,三角形的周长为17.19.【答案】解:(1)根据题意设∠=∠∠+∠(∠≠0),将(30, 100),(35, 50)代入得{30∠+∠=100, 35∠+∠=50,解得{∠=−10,∠=400,∴∠与∠之间的关系式为∠=−10∠+400.(2)设每天的利润为∠元,则∠=(∠−22)∠=(∠−22)(−10∠+400)=−10∠2+620∠−8800=−10(∠−31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)−10∠2+620∠−8800−100=350,解得∠=25或∠=37,结合图象和二次函数的特点得出25≤∠≤37,又∠≤22×(1+20%),综上可得25≤∠≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.【考点】待定系数法求一次函数解析式二次函数的应用一元二次方程的应用一元一次不等式的实际应用【解析】(1)利用待定系数法求解可得;(2)设每天的利润为∠元,根据“总利润=每支利润×每天销售量”得出函数解析式,配方成顶点式后利用二次函数的性质求解可得;(3)根据题意列出方程−10∠2+620∠−8800−100=350,解之求出∠的值,再根据二次函数的性质得出25≤∠≤37,结合∠≤22×(1+20%)可得答案.【解答】解:(1)根据题意设∠=∠∠+∠(∠≠0),将(30, 100),(35, 50)代入得{30∠+∠=100,35∠+∠=50, 解得{∠=−10,∠=400,∴ ∠与∠之间的关系式为∠=−10∠+400.(2)设每天的利润为∠元,则∠=(∠−22)∠=(∠−22)(−10∠+400)=−10∠2+620∠−8800=−10(∠−31)2+810,∴ 销售单价定为31元时,每天最大利润为810元.(3)−10∠2+620∠−8800−100=350,解得∠=25或∠=37,结合图象和二次函数的特点得出25≤∠≤37,又∠≤22×(1+20%),综上可得25≤∠≤26.4,∴ 按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元. 20.【答案】四,(−∠2∠,4∠∠−∠24∠)(2)∵ ∠=2∠2−4∠−3=2(∠−1)2−5,∴ 抛物线的顶点坐标是(1,−5),对称轴是直线∠=1.【考点】二次函数的三种形式解一元二次方程-配方法二次函数y=ax^2 、y=a (x-h )^2+k (a≠0)的图象和性质【解析】(1)运用正确的方法把二次函数的解析式化成顶点式即可解答.(2)运用配方法,把函数的解析式化成顶点式,进一步可得抛物线的顶点坐标和对称轴.【解答】解:(1)∠=∠∠2+∠∠+∠变形为∠=∠(∠2+∠∠∠)+∠,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯第一步∠=∠[∠2+∠∠∠+(∠2∠)2−(∠2∠)2]+∠,⋯⋯第二步∠=∠(∠+∠2∠)2−∠24∠+∠,⋯⋯⋯⋯⋯⋯⋯⋯⋯第三步∠=∠(∠+∠2∠)2+4∠∠−∠24∠.⋯⋯⋯⋯⋯⋯⋯⋯第四步∴ 嘉嘉的解法从第四步开始出现错误;事实上抛物线∠=∠∠2+∠∠+∠(∠≠0)的顶点坐标是(−∠2∠,4∠∠−∠24∠).故答案为:四;(−∠2∠,4∠∠−∠24∠). (2)∵ ∠=2∠2−4∠−3=2(∠−1)2−5,∴ 抛物线的顶点坐标是(1,−5),对称轴是直线∠=1. 21.【答案】7,30%(2)补全条形图如下:140(4)画树状图如下:共有12种情况,选中一男一女的有6种,则∠(选中一男一女)=612=12. 【考点】扇形统计图条形统计图用样本估计总体列表法与树状图法【解析】(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7(人),参加球类活动的人数的百分比为1240×100%=30%,故答案为:7;30%.(2)补全条形图如下:(3)我校学生某年级共800人,则参加棋类活动的人数约为800×740=140. 故答案为:140.(4)画树状图如下:共有12种情况,选中一男一女的有6种,则∠(选中一男一女)=612=12.22.【答案】(1)证明:连接∠∠,∠∠,如图,∵∠∠∠∠=90∘,∠∠为⊙∠直径,∴∠∠∠∠=∠∠∠∠=90∘.∠为∠∠中点,∴∠∠=∠∠=∠∠,∴∠∠∠∠=∠∠∠∠.又∵∠∠∠∠=∠∠∠∠,∴∠∠∠∠+∠∠∠∠=∠∠∠∠+∠∠∠∠=∠∠∠∠=90∘,即∠∠∠∠=90∘,∴∠∠是⊙∠的切线.(2)解:连接∠∠,交∠∠于点∠,如图,∵∠∠∠∠=90∘,∴∠∠为⊙∠的切线.∵∠∠是⊙∠的切线,∴∠∠平分∠∠∠∠,∴∠∠⊥∠∠,∠为∠∠的中点.∵点∠,∠别为∠∠,∠∠的中点,∴∠∠=12∠∠=12×10=5 .在∠∠△∠∠∠中,∠∠∠∠=90∘,∠∠=10,∠∠=6,由勾股定理得:∠∠=8.∵在∠∠△∠∠∠中,∠为∠∠的中点,∴∠∠=12∠∠=12×8=4.在∠∠△∠∠∠中,∠∠=12∠∠=12×6=3,在∠∠△∠∠∠中,∠∠=4,由勾股定理得:∠∠=5.由三角形的面积公式得:∠△∠∠∠=12×∠∠×∠∠=12×∠∠×∠∠,即4×3=5×∠∠,解得:∠∠=2.4 ,在∠∠△∠∠∠中,由勾股定理得:∠∠=√∠∠2−∠∠2=√32−2.42=1.8.【考点】切线的判定勾股定理切线的性质切线长定理【解析】(1)证明:连接∠∠,∠∠,∵∠∠∠∠=90∘,∠∠为⊙∠直径,∴∠∠∠∠=∠∠∠∠=90∘;∠为∠∠中点∴∠∠=∠∠=∠∠,∴∠∠∠∠=∠∠∠∠;又∵∠∠∠∠=∠∠∠∠∴∠∠∠∠+∠∠∠∠=∠∠∠∠+∠∠∠∠=∠∠∠∠=90∘∴∠∠是⊙∠的切线(2)解:连接∠∠,∵∠∠∠∠=90∘∴∠∠为⊙∠的切线,∵∠∠是⊙∠的切线,∴∠∠平分∠∠∠∠,∴∠∠⊥∠∠,∠为∠∠的中点,∵点∠、∠别为∠∠、∠∠的中点,∴∠∠=12∠∠=12×10=5 ,在∠∠△∠∠∠中,∠∠∠∠=90∘,∠∠=10.∠∠=6,由勾股定理得:∠∠=8,∵在∠∠△∠∠∠中,∠为∠∠的中点,∴∠∠=12∠∠=12×8=4,在∠∠△∠∠∠中,∠∠=12∠∠=12×6=3,∠∠−4,由勾股定理得:∠∠=5,由三角形的面积公式得:∠△∠∠∠=12×∠∠×∠∠=12×∠∠×∠∠,即4×3=5×∠∠,解得:∠∠=2.4 ,在∠∠△∠∠∠中,由勾股定理得:∠∠=√∠∠2−∠∠2=√32−2.42=1.8.【解答】(1)证明:连接∠∠,∠∠,如图,∵∠∠∠∠=90∘,∠∠为⊙∠直径,∴∠∠∠∠=∠∠∠∠=90∘.∠为∠∠中点,∴∠∠=∠∠=∠∠,∴∠∠∠∠=∠∠∠∠.又∵∠∠∠∠=∠∠∠∠,∴∠∠∠∠+∠∠∠∠=∠∠∠∠+∠∠∠∠=∠∠∠∠=90∘,即∠∠∠∠=90∘,∴∠∠是⊙∠的切线.(2)解:连接∠∠,交∠∠于点∠,如图,∵∠∠∠∠=90∘,∴∠∠为⊙∠的切线.∵∠∠是⊙∠的切线,∴∠∠平分∠∠∠∠,∴∠∠⊥∠∠,∠为∠∠的中点.∵点∠,∠别为∠∠,∠∠的中点,∴∠∠=12∠∠=12×10=5 .在∠∠△∠∠∠中,∠∠∠∠=90∘,∠∠=10,∠∠=6,由勾股定理得:∠∠=8.∵在∠∠△∠∠∠中,∠为∠∠的中点,∴∠∠=12∠∠=12×8=4.在∠∠△∠∠∠中,∠∠=12∠∠=12×6=3,在∠∠△∠∠∠中,∠∠=4,由勾股定理得:∠∠=5.由三角形的面积公式得:∠△∠∠∠=12×∠∠×∠∠=12×∠∠×∠∠,即4×3=5×∠∠,解得:∠∠=2.4 ,在∠∠△∠∠∠中,由勾股定理得:∠∠=√∠∠2−∠∠2=√32−2.42=1.8.23.【答案】(1)解:把∠=−4代入∠=14∠2+∠中,得∠2+4∠+16=0,∵此时只有一个自变量∠的值与其对应,∴∠=−4×(4∠+16)=0,解得∠=−4.(2)证明:设∠(∠1, ∠1),∠(∠2, ∠2),∠(0, −4),∵∠∠∠∠=90∘,即∠∠⊥∠∠,∴∠∠∠⋅∠∠∠=−1,∴∠1+4∠1⋅∠2+4∠2=−1,消去∠得,∠1∠2=−16,设直线∠∠的方程为∠=∠1−∠2∠1−∠2∠+∠,代入(∠1, ∠1),∠=14∠2−4,则有14∠12−4=14(∠12−∠22)∠1−∠2∠1+∠,1 4∠12=14∠12+14∠1∠2+∠+4,化简得0=−4+4+∠,即∠=0,∴∠∠的方程∠=∠1−∠2∠1−∠2∠过原点.(3)解:令∠=4,则4=14∠2−4,解得∠=±4√2,当∠>4√2时,画出图象如图:观察图象可知,无重合;当∠<−4√2时,画出图象如图:观察图象可知,无重合.∴∠的取值范围为∠<−4√2或∠>4√2. 【考点】二次函数的图象一次函数的应用函数的概念根的判别式【解析】此题暂无解析【解答】解:(1)把∠=−4代入∠=14∠2+∠中,得∠2+4∠+16=0,∵此时只有一个自变量∠的值与其对应,∴∠=−4×(4∠+16)=0,解得∠=−4.(2)证明:设∠(∠1, ∠1),∠(∠2, ∠2),∠(0, −4),∵∠∠∠∠=90∘,即∠∠⊥∠∠,∴∠∠∠⋅∠∠∠=−1,∴∠1+4∠1⋅∠2+4∠2=−1,消去∠得,∠1∠2=−16,设直线∠∠的方程为∠=∠1−∠2∠1−∠2∠+∠,代入(∠1, ∠1),∠=14∠2−4,则有14∠12−4=14(∠12−∠22)∠1−∠2∠1+∠,1 4∠12=14∠12+14∠1∠2+∠+4,化简得0=−4+4+∠,即∠=0,∴∠∠的方程∠=∠1−∠2∠1−∠2∠过原点.(3)解:令∠=4,则4=14∠2−4,解得∠=±4√2,当∠>4√2时,画出图象如图:观察图象可知,无重合;当∠<−4√2时,画出图象如图:观察图象可知,无重合.∴∠的取值范围为∠<−4√2或∠>4√2.。
人教版九年级数学上册大塘中学竞赛试卷
初中数学试卷金戈铁骑整理制作— 大塘中学九年级上册数学比赛试卷— —— 一、选择题(每题3 分,共 15 分)答 ———1 一元二次方程 3x 24x7 的二次项系数,一次项系数,常数项分别是(—_——A . 3, 4, 7 B. 3, 4,7C. 3,4,7D. 3,4, 7_—__—__—_2 x 2 中自变量 x 的取值范围是()__ 作 —__—A . x 2B. x 2C. x 2D. x 2_别— 3 一元二次方程x2x 5 0 的根的情况是()班—3A .有两个不相等的实数根B .有两个相等的实数根—— C .没有实数根 D .无法判断要 —4.下面的 5 个字母中,是中心对称图形的有 ( )— — CH INA— —— A .2个 B .3 个C .4 个D .5 个不 —5. 以下计算正确的选项是( )_——_—_A.8 22 B. 321C. 325D. 23_— __—__—_ 内_—_二、填空题(每题3 分,共 15 分)__—_6.计算: (7 )2= ___________; 27 = ___________. 50 =号 — 学—)612 =___ _ _ _ _ _ _ _ _ _ _ _ __ 名 姓— 线 —— — — — — — 封 —— — — — — —— — — 密 ———7.一元二次方程x 29 0的根是;2___________x5x 的根是___________.8.方程240,那么x x k的一个根是 2k 的值是___________;它的另一个根是 ___________.9. 在平面直角坐标系中,点P(2, 3)关于原点对称点 P 的坐标是.点 n 关于 X 轴对称的点 m的坐标是( -1 ,3),则 n 的坐标是10.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠予一张,全组共互赠了 182 张,若全组有 x 名学生,则依照题意列出的方程是三、计算题。
人教版九年级上学期数学竞赛试卷
图2 九年级上学期数学竞赛试卷 一,选择(本题共8个小题,每小题5分,共40分) 1、篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分) ( D ) 2、如果1-<<y x ,那么代数式x y x y -++11的值是 ( C ) (A ) 0 (B ) 正数 (C )负数 (D )非负数 3、如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为( B ) A . 349 B . 323 C . 343 D . 23 4、将一张四边形纸片沿两组对边的中点连线剪开, 得到四张小纸片,如图3所示.用这四张小纸片 一定可以拼成 ( D ) (A )梯形 (B )矩形 (C )菱形(D )平行四边形 图3 5、若不等式组⎩⎨⎧>++<+-m x x m x 1104的解集是4>x ,则 ( C ) (A )29≤m (B )5≤m (C )29=m (D )5=m图1 ————————————————装订线———————————————————装订线———————————————— 学校___________ 姓名____________ 班级_______6、把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( B ). (A )512 (B )49 (C )1736 (D )12 7.如图4,图中平行四边形共有的个数是( C ) (A) 40 (B )38 (C )36 (D )30 图4 8、任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解:q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定q p n F =)(.如:12=1×12=2×6=3×4,则43)12(=F ,则在以下结论: ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F ④若n 是一个完全立方数,即3a n =(a 是正整数),则a n F 1)(=。
人教版九年级数学上册竞赛试卷含答案
人教版九年级数学上册竞赛试卷含答案一、单选题1.一元二次方程,若,则它的一个根是()A.B.C.D.22.当4c>b2时,方程x2﹣bx+c=0的根的情况是()A.有两个不等实数根B.有两个相等实数根C.没有实数根D.不能确定有无实数根3.如图,在圆心角为90°的扇形OAB中,点F、C在半径OA、OB上,且OC=OF,以CF为边作正方形CDEF,另两顶点D、E在弧AB上,若扇形OAB的面积为25π,则正方形CDEF的面积为()A.25B.40C.50D.π4.三个实数-,-2,-之间的大小关系是( )A.B.C.D.5.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b >0;①﹣a+b+c>0;①b2﹣2ac>5a2.其中,正确结论的个数是()A.0B.1C.2D.36.关于一次函数y=x-3的图象,下列说法正确的是( )A.图象经过第一、二、三象限B.图象经过第一、三、四象限C.图象经过第一、二、四象限D.图象经过第二、三、四象限二、填空题7.已知,互为相反数,,互为倒数,的绝对值等于,则的值为__________.8.请把代数式化为的形式,然后完成填空;若代数式的最小值为,则_________________.9.若整式的值不大于整式5k-1的值,则k的取值范围是_________.10.“驴友”小明分三次从M地出发沿着不同的线路线,B线,C线去N地在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种他涉水行走4小时的路程与攀登6小时的路程相等线、C线路程相等,都比A线路程多,A线总时间等于C线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线,在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了,,,若他用了x小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且x,y,z都为正整数,则______.11.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.12.如果m﹣n=3,那么2m﹣2n﹣3的值是_____.三、解答题13.解不等式:≥.14.我市在创建全国文明城市过程中,决定购买A、B两种树苗对某路段道路进行绿化改造,已知购买A种树苗5棵,B种树苗3棵,需要840元;购买A种树苗3棵,B种树苗5棵,需要760元.(1)求购买A、B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过10000元,现需购进这两种树苗共100棵,怎样购买所需资金最少?15.解下列方程:(1)4x2=9;。
完整word版新人教版九年级数学竞赛试题详解
一、选择题〔每题3分,共18分〕1.以下说法中,正确的选项是〔〕.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.两角及其夹边对应相等的两个三角形全等D.面积相等的两个三角形全等2.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图〔不添加辅助线〕可以说明以下哪一个命题是假命题?〔〕.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形3.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是〔〕A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠04.如图,点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,那么PC的最小值为〔〕A.2B.2C.4D.45.点A、B分别在反比例函数y=〔x>0〕,y=〔x>0〕的图象上,且∠AOB=90°,那么∠B=30°,那么k的取值为〔〕第1页〔共21页〕A .B .C .﹣2D .﹣36.如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB ,AD 的中点,DE 、BF 相交于点G ,连接BD ,CG .有以下结论:△ABD =AB 2①∠BGD=120°;②BG+DG=CG ;③△BDF ≌△CGB ;④S 其中正确的结论有〔〕A .1个B .2个C .3个D .4个 二、填空题〔每题 3分,共18分〕 7.点 C 为线段AB 的黄金分割点,且 AC=1cm ,那么线段AB 的长为8.有三张正面分别写有数字﹣ 1,1,﹣2,的卡片,它们反面完全相同,现将这三张卡片 反面朝上洗匀后随机抽取一张,以其正面数字作为 m 的值,将抽出的卡片放回去,随机再 抽一张,以其正面的数字作为 n 的值,那么点〔 m ,n 〕在第二象限的概率为 . 9.甲乙丙三家超市为了促销一种定价为 m 元的商品,甲超市连续两次降价 20%;乙超市 一次性降价 40%;丙超市第一次降价 30%,第二次降价 10%,此时顾客要购置这种商品, 最划算的超市是 . 10. AB 是半⊙O 的直径,∠D=50°,AD 切⊙O 于点A ,连接DO 交半⊙O 于点E , 作EC ∥AB 交半⊙O 于C 点,连接 AC ,那么∠CAB 的度数为 .11.抛物线y=ax 2+bx+c 的顶点为 D 〔﹣1,2〕,与x 轴的一个交点 A 在点〔﹣3,0〕和〔﹣2,0〕之间,其局部图象如图,那么以下结论: b 2﹣4ac <0;②当x >﹣1时y 随x 增大而减小; a+b+c <0;④假设方程ax 2+bx+c ﹣m=0没有实数根,那么 m >2; 3a+c <0.其中,正确结论的序号是.第2页〔共21页〕12.如图,在矩形ABCD 中,AD=6,CD=4,AD 的中点为E ,点F 是AB 边上一点〔不与A 、B 重合〕,连接EF ,把∠A 沿EF 折叠,使点A 落在点G 处,连接CG .那么线段CG 的 取值范围是 .三、解答题〔本大题共7个小题,总分值64分〕13.〔6分〕x 是一元二次方程 x 2﹣2x+1=0的根,求代数式的值.14.〔9分〕在2021年的政府工作报告中提出了九大热词,某数学兴趣小组就 A 互联网+、B 民生底线、C 中国制造、D 能耗强度等四个热词进行了抽样调查,每个同学只能从中选择一个“我最关注〞的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题: 〔1〕本次调查中,一共调查了 名同学; 〔2〕条形统计图中, m= ,n= ;〔3〕扇形统计图中,热词B 所在扇形的圆心角的度数是 ; 〔4〕从该校学生中随机抽取一个最关注热词D 的学生的概率是多少?第3页〔共21页〕15.〔9分〕如图,在△ABC中,AB=AC=10cm,BC=12cm,E是BA延长线的一点.〔1〕利用尺规∠EAC的平分线AD〔保存作图痕迹,不写作法〕;〔2〕假设点P在射线AD上从点A开始运动,点Q在线段CB上从点C向点点B运动,运动的速度均为1cm/s,运动时间为t,假设P、Q同时运动.①连接PQ交AC于点O.求证:AO=CO;②填空:当t=秒时四边形APCQ一定是矩形;③填空:当t=秒时四边形APCQ一定是菱形.16.〔9分〕如图,函数y=﹣x+4的图象与函数y=〔x>0〕的图象交于A〔3a,2b﹣9〕、12B〔a,b﹣2〕两点.〔1〕求函数y2的表达式;〔2〕过A作AC⊥x轴,过B作BD⊥y轴,试问在线段AB上是否存在点P,使S△PBD=2S△PAC?假设存在请求出P点坐标;假设不存在请说明理由.第4页〔共21页〕17.〔10分〕如图,某水果店购进一批时令水果,在20天内销售完毕.店主将本次销售数据绘制成函数图象.如图1,日销售量y〔千克〕与销售时间x〔天〕之间的函数关系;如图2,销售单价 p〔元/千克〕与销售时间x〔天〕之间的函数关系.〔1〕求y关于x和p关于x的函数关系式;〔2〕假设日销售量不低于36千克的时间段为“最正确销售期〞,那么此次销售过程中“最正确销售期〞共有多少天?在此期间销售金额最高是第几天?18.〔10分〕平移、旋转、翻折是几何图形的最根本的三种图形变换,利用图形变换可将分散的条件相对集中,以到达解决问题的目的.〔1〕探究发现如图〔1〕,P是等边△ABC内一点,PA=3,PB=4,PC=5.求∠APB的度数.解:将△APC绕点A旋转到△APB′的位置,连接PP′,那么△APP′是三角形.∵PP′=PA=3,PB=4,PB′=PC=5,222∴P'P+PB=P'B∴△BPP′为三角形.∴∠APB的度数为.在正方形ABCD内部有一点P,连接PA、PB、PC,假设PA=2,PB=4,∠APB=135°,求PC的长;〔3〕拓展迁移如图〔3〕,在四边形ABCD中,线段AD与BC不平行,AC=BD=a,AC与BD交于点O,且∠AOD=60°,比拟AD+BC与a的大小关系,并说明理由.第5页〔共21页〕19.〔11分〕如图,抛物线y=ax 2+bx ﹣5与x 轴交于A 〔﹣2,0〕、B 〔5,0〕两点,与y 交于点C ,点P 〔m ,n 〕为x 轴下方抛物线上一动点.( 〔1〕求抛物线的解析式;〔2〕过点P 分别作x 轴、y 轴的垂线,D 、E 为垂足,用含有m 的代数式表示四边形OEPD 的周长l ,并求出周长l 的最大值;3〕作直线BC 、OP ,两直线交于点Q ,试问是否存在点P ,使得△QOC 是等腰三角形?假设存在,请直接写出点Q 的坐标;假设不存在,请说明理由.第6页〔共21页〕参考答案一、选择题〔每题 3分,共24分〕1.〔3分〕〔2005?四川〕以下说法中,正确的选项是〔 〕 A .两腰对应相等的两个等腰三角形全等 B .两锐角对应相等的两个直角三角形全等 C .两角及其夹边对应相等的两个三角形全等 D .面积相等的两个三角形全等【解答】解:A 、两腰对应相等的两个等腰三角形,只有两边对应相等,所以不一定全等;B 、两锐角对应相等的两个直角三角形,缺少对应的一对边相等,所以不一定全等;C 、两角及其夹边对应相等的两个三角形全等,符合ASA ;D 、面积相等的两个三角形不一定全等. 应选C .2.〔3分〕〔2021?资阳〕如图,△ABC 是等腰三角形,点D 是底边BC 上异于BC 中点的一个点,∠ADE=∠DAC ,DE=AC .运用这个图〔不添加辅助线〕可以说明以下哪一个命题是 假命题?〔 〕.一组对边平行,另一组对边相等的四边形是平行四边形 B .有一组对边平行的四边形是梯形C .一组对边相等,一组对角相等的四边形是平行四边形D .对角线相等的平行四边形是矩形【解答】解:∵△ABC 是等腰三角形, AB=AC ,∠B=∠C , 在△ADE 与△DAC 中,∵ ,∴△ADE ≌△DAC , ∴∠E=∠C ,∴∠B=∠E ,AB=DE ,但是四边形ABDE 不是平行四边形,故一组对边相等,一组对角相等的四边形是平行四边形说法错误; 应选:C .3.〔3分〕〔2021?襄阳〕如果关于 x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,那么k 的取值范围是〔〕A .k <B .k <且k ≠0第7页〔共21页〕C.﹣≤k<D.﹣≤k<且k≠0【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.应选:D.4.〔3分〕〔2021?西华县校级模拟〕如图,点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,那么PC的最小值为〔〕A.2B.2C.4D.4【解答】解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2OM=8,∴PD= OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4.应选C.5.〔3分〕点A、B分别在反比例函数y=〔x>0〕,y=〔x>0〕的图象上,且∠AOB=90°,那么∠B=30°,那么k的取值为〔〕A.B.C.﹣2 D.﹣3【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,第8页〔共21页〕∴△AOC∽△OBD,∵点A、B分别在反比例函数y=〔x>0〕,y=〔x>0〕的图象上,∴S△AOC=,S△OBD=||,∴S△AOC:S△OBD=1:|k|,∴〔〕2=1:|k|,那么在Rt△AOB中,tanB==,1:|k|=1:3,|k|=3∵y=〔x>0〕的图象在第四象限,k=﹣3.应选D.6.〔3分〕〔2021?孝感〕如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有以下结论:△ABD=AB2①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S其中正确的结论有〔〕A.1个B.2个C.3个D.4个【解答】解:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG= CG〔30°角所对直角边等于斜边一半〕、BG= CG,故可得出BG+DG=CG,即②也正确;③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;第9页〔共21页〕△ABD=AB?DE=AB?BE=AB?AB=AB 2,即④正确.④S综上可得①②④正确,共3个.应选C.二、填空题〔每题3分,共21分〕7.〔3分〕〔2021?高新区校级模拟〕点C为线段AB的黄金分割点,且AC=1cm,那么线段AB的长为或.【解答】解:①假设AC是较长的线段,∵AC=1cm,∴AB?=AC=1,解得AB=,②假设AC是较短的线段,∵AC=1cm,∴AB?〔1﹣〕=AC=1,解得AB=,综上所述,AB的长是或.故答案为:或8.〔3分〕〔2021?郑州校级三模〕有三张正面分别写有数字﹣1,1,﹣2,的卡片,它们背面完全相同,现将这三张卡片反面朝上洗匀后随机抽取一张,以其正面数字作为m的值,将抽出的卡片放回去,随机再抽一张,以其正面的数字作为n的值,那么点〔m,n〕在第二象限的概率为.【解答】解:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有〔﹣1,1〕〔﹣1,2〕共2个,所以,P=.故答案为:.9.〔3分〕〔2021?绥化〕甲乙丙三家超市为了促销一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购置这种商品,最划算的超市是乙.【解答】解:降价后三家超市的售价是:2第10页〔共21页〕乙为〔1﹣40%〕,丙为〔1﹣30%〕〔1﹣10%〕, 因为<<,所以此时顾客要购置这种商品最划算应到的超市是乙. 故答案为:乙.10.〔3分〕〔2021?郑州校级三模〕AB 是半⊙O 的直径,∠D=50°,AD 切⊙O 于点A ,连接DO 交半⊙O 于点E ,作EC ∥AB 交半⊙O 于C 点,连接AC ,那么∠CAB 的度数为20°.【解答】解:∵AD 切⊙O 于点A , ∴AD ⊥OA ,∴∠DAO=90°,∴∠AOD=90°﹣∠D=90°﹣50°=40°, ∴∠ECA= ∠AOE=20°,∵CE ∥AB ,∴∠CAB=∠ECA=20°. 故答案为 20°.11.〔3分〕〔2021?郑州校级三模〕抛物线y=ax 2+bx+c 的顶点为D 〔﹣1,2〕,与x 轴的一个交点A 在点〔﹣3,0〕和〔﹣2,0〕之间,其局部图象如图,那么以下结论: b 2﹣4ac <0;②当x >﹣1时y 随x 增大而减小; a+b+c <0;④假设方程ax 2+bx+c ﹣m=0没有实数根,那么 m >2; 3a+c <0.其中,正确结论的序号是 ②③④⑤ .【解答】解:∵抛物线与 x 轴有两个交点, b 2﹣4ac >0,∴结论①不正确.第11页〔共21页〕∵抛物线的对称轴 x=﹣1,∴当x >﹣1时,y 随x 增大而减小, ∴结论②正确.∵抛物线与x 轴的一个交点A 在点〔﹣3,0〕和〔﹣2,0〕之间,∴抛物线与x 轴的另一个交点在点〔0,0〕和〔1,0〕之间,∴当x=1时,y <0, a+b+c <0,∴结论③正确. ∵y=ax 2+bx+c 的最大值是 2, ∴方程ax 2+bx+c ﹣m=0没有实数根,那么 m >2, ∴结论④正确.∵抛物线的对称轴 x=﹣ =﹣1,b=2a ,a+b+c <0,∴a+2a+c <0,∴3a+c <0, ∴结论⑤正确.综上,可得正确结论的序号是:②③④⑤. 故答案为:②③④⑤.12.〔3分〕〔2021?郑州校级三模〕如图,在矩形ABCD 中,AD=6,CD=4,AD 的中点为E , 点F 是AB 边上一点〔不与A 、B 重合〕,连接EF ,把∠A 沿EF 折叠,使点A 落在点G 处, 连接CG .那么线段 CG 的取值范围是 <CG <2 .【解答】解:如下图,在 RT △A ,DC 中,AD=6,CD=4,∴AC==2,把∠A 沿EB 折叠,使点 A 落在点G 处,连接 AG ,DG , ∴∠EAG=∠EGA ,AE=EG , AE=DE ,∴EG=ED , ∴∠ADG=∠EGD ,∴∠AGD=∠AGE+∠EGD=∠DAG+∠ADG=90°,第12页〔共21页〕AE=3,AB=4,∴BE==5,AG?BE=AE?AB,∴AG=,在RT△ADG中,DG===,过G点作MN⊥AD,∴∠AMG=∠AGD=90°,∵∠MAG=∠GAD,∴△AMG∽△AGD,∴==,即==,∴AM=,MG=,∵BN=AM=,MN=CD=4,∴CN=6﹣=,GN=4﹣=,在RT△CNG中,CG==,∴线段CG的取值范围是<CG<2,故答案为<CG<2.三、解答题〔本大题共8个小题,总分值75分〕13.〔6分〕〔2021?兰州〕x是一元二次方程x 2﹣2x+1=0的根,求代数式的值.第13页〔共21页〕【解答】解:∵x 2﹣2x+1=0, x 1=x 2=1,原式=÷=?=,∴当x=1时,原式= .14.〔9分〕〔2021?乌审旗模拟〕在2021年的政府工作报告中提出了九大热词,某数学兴趣小组就A 互联网+、B 民生底线、C 中国制造、D 能耗强度等四个热词进行了抽样调查,每个同学只能从中选择一个“我最关注〞的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题: 1〕本次调查中,一共调查了300名同学; 2〕条形统计图中,m=60,n=90;〔3〕扇形统计图中,热词 B 所在扇形的圆心角的度数是 72°; 〔4〕从该校学生中随机抽取一个最关注热词 D 的学生的概率是多少? 【解答】解:〔1〕105÷35%=300〔人〕. 故答案为:300;2〕n=300×30%=90〔人〕,m=300﹣105﹣90﹣45=60〔人〕.故答案为:60,90; 3〕×360°=72°.故答案为:72°; 〔4〕 .答:从该校学生中随机抽取一个最关注热词 D 的学生的概率是.15.〔9分〕〔2021?郑州校级三模〕如图,在△ ABC 中,AB=AC=10cm ,BC=12cm ,E 是BA 延长线的一点.〔1〕利用尺规∠EAC 的平分线AD 〔保存作图痕迹,不写作法〕 ;〔2〕假设点P 在射线AD 上从点A 开始运动,点 Q 在线段CB 上从点C 向点点B 运动,运动的速度均为1cm/s ,运动时间为t ,假设P 、Q 同时运动.① 连接PQ 交AC 于点O .求证:AO=CO ;② 填空:当t=6 秒时四边形APCQ 一定是矩形;③ 填空:当t=秒时四边形APCQ 一定是菱形.第14页〔共21页〕【解答】解:〔1〕作图如下:2〕①∵AP 平分∠EAC ,∠EAC=2∠B=2∠C ,∴∠PAC=∠C , ∴AP ∥BC ,∵点P 和点Q 的速度均为1cm/s , ∴AP=CQ ,∴AO=CO ;②∵当∠AQC=90°时,四边形AQCP 为矩形, 此时AQ ⊥BC ,CQ= BC=6,∴当t=6时,四边形 AQCP 为矩形;③如图3:当四边形 APCQ 是菱形时,AQ=CQ , 作AD ⊥CQ 于点D , 那么CD=BC=6,CQ=AQ=t ,QD=t ﹣6, 在Rt △AQD 中,AQ 2=QD 2+AD 2,即:t 2=〔t ﹣6〕2+82, 解得:t= ,∴当t= 时,四边形 AQCP 为菱形.第15页〔共21页〕16.〔9分〕〔2021?郑州校级三模〕如图,函数y1=﹣x+4的图象与函数y2=〔x>0〕的图象交于A〔3a,2b﹣9〕、B〔a,b﹣2〕两点.〔1〕求函数y2的表达式;〔2〕过A作AC⊥x轴,过B作BD⊥y轴,试问在线段AB上是否存在点P,使S△PBD=2S △PAC?假设存在请求出P点坐标;假设不存在请说明理由.【解答】解:〔1〕∵函数y1的图象过A、B两点,∴把A、B两点分别代入函数y1的解析式可得,解得,∴A〔3,1〕,B〔1,3〕,∵函数y2的图象过A点,1=,解得k=3,y2=;〔2〕由〔1〕知A〔3,1〕,B〔1,3〕,第16页〔共21页〕BD=AC=1,∵P点在线段AB上,∴设P点坐标为〔x,﹣x+4〕,其中1≤x≤3,那么P到AC的距离为h A=3﹣x,P到BD的距离为h B=3﹣〔﹣x+4〕=x﹣1,∴S△PBD= BD?h B=×1×〔x﹣1〕=〔x﹣1〕,S△PAC=AC?h A=×1×〔3﹣x〕=〔3﹣x〕,∵S△PBD=2S△PAC,∴〔x﹣1〕=3﹣x,解得x=,且1≤≤3,符合条件,此时﹣x+4=,∴P〔,〕,综上可知存在满足条件的点P,其坐标为〔,〕.17.〔10分〕〔2021?郑州校级三模〕如图,某水果店购进一批时令水果,在20天内销售完毕.店主将本次销售数据绘制成函数图象.如图1,日销售量y〔千克〕与销售时间x〔天〕之间的函数关系;如图2,销售单价p〔元/千克〕与销售时间x〔天〕之间的函数关系.〔1〕求y关于x和p关于x的函数关系式;〔2〕假设日销售量不低于36千克的时间段为“最正确销售期〞,那么此次销售过程中“最正确销售期〞共有多少天?在此期间销售金额最高是第几天?【解答】解:〔1〕分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点〔15,45〕,∴15k1=45,解得k1=3,∴y=3x〔0≤x≤15〕;②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k 2x+b,∵点〔15,45〕,〔20,0〕在y=k2x+b的图象上,∴解得:y=﹣9x+180〔15<x≤20〕;综上,可知y与x之间的函数关系式为:y=.〔2〕∵第10天和第15天在第10天和第20天之间,第17页〔共21页〕∴当10≤x ≤20时,设销售单价p 〔元/千克〕与销售时间x 〔天〕之间的函数解析式为p=mx+n ,∵点〔10,25〕,〔20,15〕在p=mx+n 的图象上, ∴解得: y=﹣x+35〔10≤x ≤20〕, 假设日销售量不低于36千克,那么y ≥36. 当0≤x ≤15时,y=2x , 解不等式:2x ≥36,得,x ≥13; 当15<x ≤20时,y=﹣9x+180, 解不等式:﹣9x+180≥36, 得x ≤16, ∴13≤x ≤16,∴“最正确销售期〞共有:16﹣13+1=4〔天〕;∵p=﹣x+35〔10≤x ≤20〕,k=﹣1<0, ∴p 随x 的增大而减小,∴当13≤x ≤16时,x 取13时,p 有最大值,此时 p=﹣13+35=22〔元/千克〕.答:此次销售过程中“最正确销售期〞共有4天,在此期间销售金额最高是第 13天.18.〔10分〕〔2021?郑州校级三模〕平移、旋转、翻折是几何图形的最根本的三种图形变换,利用图形变换可将分散的条件相对集中,以到达解决问题的目的.〔1〕探究发现如图〔1〕,P 是等边△ABC 内一点,PA=3,PB=4,PC=5.求∠APB 的度数.解:将△APC 绕点A 旋转到△APB ′的位置,连接PP ′,那么△APP ′是 等边三角形.∵PP ′=PA=3,PB=4,PB ′=PC=5,∴P'P 2+PB 2=P'B 2∴△BPP ′为直角三角形.∴∠APB 的度数为150°.〔2〕类比延伸在正方形ABCD 内部有一点P ,连接PA 、PB 、PC ,假设PA=2,PB=4,∠APB=135°,求PC 的长; 〔3〕拓展迁移如图〔3〕,在四边形ABCD 中,线段AD 与BC 不平行,AC=BD=a ,AC 与BD 交于点O ,且∠AOD=60°,比拟AD+BC 与a 的大小关系,并说明理由.【解答】解:将△APC 绕点A 旋转到△APB ′的位置,连接 PP ′,那么△APP ′是等边三角形. ∵PP ′=PA=3,PB=4,PB ′=PC=5,第18页〔共21页〕P'P 2+PB 2=P'B 2,∴△BPP ′为直角三角形,∴∠APB 的度数为90°+60°=150° 故答案为:等边;直角; 150°〔2〕如图1,把△ABP 绕点B 顺时针旋转 90°得到△BCP ′,那么P ′B=PB=4,P ′C=PA=2,∵旋转角是90°,∴∠PBP ′=90°,∴△BPP ′是等腰直角三角形, ∴PP ′= PB=4 ,∠PP ′B=45°, ∵∠APB=135°,∴∠CP ′B=∠APB=135°,∴∠PP ′C=135°﹣45°=90°,在Rt △PP ′C 中,由勾股定理得, PC= =6;〔3〕AD+BC >a ,理由如下:如图2所示,以 AC 为边向左做等边三角形 PAC ,连接PB ,那么PA=PC=AC=BD=a ,∠PAC=60°,∵∠AOD=60°, ∴PA ∥BD ,∴四边形APBD 是平行四边形,∴AD=PB ,在△PBC 中,可得:PB+BC >PC ,即AD+BC >a .19.〔11分〕〔2021?郑州校级三模〕如图,抛物线y=ax 2+bx ﹣5与x 轴交于A 〔﹣2,0〕、B 〔5,0〕两点,与y 交于点C ,点P 〔m ,n 〕为x 轴下方抛物线上一动点.第19页〔共21页〕〔1〕求抛物线的解析式;〔2〕过点P 分别作x 轴、y 轴的垂线,D 、E 为垂足,用含有m 的代数式表示四边形OEPD 的周长l ,并求出周长l 的最大值;3〕作直线BC 、OP ,两直线交于点Q ,试问是否存在点P ,使得△QOC 是等腰三角形?假设存在,请直接写出点Q 的坐标;假设不存在,请说明理由.【解答】解:〔1〕根据题意得:,解得:,那么抛物线的解析式是: y=x 2﹣ x ﹣5;〔2〕P 〔m ,n 〕在抛物线上,那么 n= m 2﹣ m ﹣5,那么l=2m ﹣2〔 m 2﹣ m ﹣5〕,即l=﹣m 2+5m+10=﹣〔m ﹣〕2+ .l ≤,即l 的最大值为 .〔3〕在y= x 2﹣ x ﹣5中,令x=0,解得y=﹣5,那么C 的坐标是〔0,﹣5〕,那么OC=OB=5. 设线段BC 的解析式是 y=kx+b , 那么 ,解得: ,那么线段BC 的解析式是 y=x ﹣5〔0<x <5〕. 当OC 时等腰三角形的底边时,即 OQ=CQ 时,那么Q 的坐标是﹣ ,把y=﹣ 代入y=x ﹣5得:x= ,那么Q 的坐标是〔 ,﹣ 〕;当CQ 是等腰三角形的底边,即OC=OQ 时,此时Q 和B 重合,不符合题意;当OQ 是等腰三角形的底边,即OC=CQ 时,CQ=5,且∠OCQ=45°,作QF ⊥y 轴于点F .第20页〔共21页〕完整word版新人教版九年级数学竞赛试题详解那么CF=QF=,那么OF=5﹣=,那么Q的坐标是〔,〕.总之,Q的坐标是:〔,﹣〕或〔,〕.第21页〔共21页〕21 / 2121。
人教版九年级数学上册竞赛试题及答案
人教版九年级数学上册竞赛试题及答案题 号 一 二 三 四 五 总分 得 分(考试时间:90分钟,满分:120分)一、选择题。
(每小题4分,共32分)1. 某项工程估算总投资523亿元,用科学记数法表示正确的是( )。
A. 5.23×1010元B. 5.23×1011元C. 52.3×109元D. 0.523×1011元 2. 下面的图形可以折成一个正方体的盒子,折好后,与1相对的数是( )。
A. 5B. 6C. 4D. 33.不等式组⎪⎩⎪⎨⎧-≤-->-x x x x 32314315 的所有整数解的和是( )。
A. 1 B. 0 C. -1 D. -2 4. 弹簧的长度与所挂的物体的质量的关系为一次函数,如图 所示,由图可知不挂物体时弹簧的长度是( )。
A. 6厘米B. 4厘米C. 5厘米D. 3厘米5.甲是乙现在年龄时,乙10岁,乙是甲现在年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁6.若142=++y xy x ,282=++x xy y ,则y x +的值为( )A .-7B .6C .-7或6D .-6或7 7.已知长方形的长为8,宽为4,将长方形沿一条对角线折起压平, 如图所示,则重叠部分(阴影三角形)的面积是( ) A .10 B .12 C .14 D .16 8.已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过( ) A .第一、二象限 B .第二、三象限 C .第三、四象限 D .第一、四象限 二、填空题。
(每小题4分,共28分)9. 一个袋中装有12个红球,10个黑球,8个白球,每个球除颜色外都相同,从袋中摸出一个球,那么 摸到黑球的概率为_______________。
10.化简:____________4821319125=+-.11.分解因式:______________________4123=-+x x x . 12.计算:______________)3(333)3(2032=---÷++--.13. 若关于x 、y 的二元一次方程组⎩⎨⎧-=+=-1872223a y x ay x 的解x ,y 的值互为相反数,则a 的值为_________.14. 已知m 、n 都是方程020*******=++x x 的根,则代数式=______________.15. 如图,四边形ABCD 和BEFG 均为正方形,则________=DFAG. 三、解答题(每小题8分,共32分) 16.解方程:22412--=-x x17. 已知:点E ,F 分别是正方形ABCD 的边BC 上的一点,且∠EAF =45°,自E ,F 分别作AC 的垂线,垂足为P ,Q 。
邢台市九年级上学期基础学科竞赛数学试卷
邢台市九年级上学期基础学科竞赛数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列图形中,既是中心对称图形又是轴对称图形的是()A . 等边三角形B . 直角三角形C . 平行四边形D . 圆2. (2分)设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于().A .B .C .D . 13. (2分)两个相似三角形的周长比为4︰9,则面积比为()A . 4︰9B . 8︰18C . 16︰81D . 2︰34. (2分)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是()A .B .C .D .5. (2分)王芳将如图所示的三条水平直线m1 , m2 , m3的其中一条记为x轴(向右为正方向),三条竖直直线m4 , m5 , m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2﹣6ax﹣3,则她所选择的x轴和y轴分别为()A . m1 , m4B . m2 , m3C . m3 , m6D . m4 , m56. (2分) (2019八下·诸暨期中) 一元二次方程x2+x﹣1=0的两根分别为x1 , x2 ,则 =()A .B . 1C .D .7. (2分) (2018九上·苏州月考) 如图,已知直线与轴、轴分别交于,两点,是以为圆心,1为半径的圆上一动点,连接,,则面积的最大值是()A . 8B . 12C .D .8. (2分)已知点(-1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,下列结论中正确的是()A . y1>y2>y3;B . y1>y3>y2;C . y3>y1>y2;D . y2>y3>y1.9. (2分)如图,是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2m,BP=1.8 m,PD=12 m,那么该古城墙的高度是:A . 6 mB . 8 mC . 18 mD . 24 m10. (2分)已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于()A . 11πB . 10πC . 9πD . 8π11. (2分)如图,若▱ABCD与▱BCFE关于BC所在直线对称,∠ABE=86°,则∠E等于()A . 137°B . 104°C . 94°D . 86°12. (2分)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a<0②b<0③c>0④4a+2b+c=0,⑤b+2a=0⑥ b2-4ac>0其中正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)13. (1分) (2016八上·东营期中) 已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是________.14. (1分) (2016九上·南开期中) 如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是________.15. (1分)(2017·枣庄) 如图,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为________.16. (1分)一个圆锥的底面半径为1厘米,母线长为2厘米,则该圆锥的侧面积是________厘米2(结果保留π).17. (1分)(2013·衢州) 小芳同学有两根长度为4cm、10cm的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是________.18. (1分)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是________.19. (1分)(2016·扬州) 如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为________.20. (1分)如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC 与△A′B′C′是位似图形,则位似中心的坐标是________ .三、解答题 (共7题;共71分)21. (10分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.22. (5分) (2017九上·凉山期末) 如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)23. (6分)(2016·沈阳) 为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是________;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.24. (10分) (2016九上·南昌期中) 如图,在⊙O中,AB是直径,点D是⊙O上的一点,点C是的中点,弦CM垂直AB于点F,连接AD,交CF于点P,连接BC,∠DAB=30°.(1)求∠ABC的度数;(2)若CM=4 ,求的长度.(结果保留π)25. (15分)(2020·遵化模拟) 如图,一次函数y=kx+b与反比例函数y= .(其中mk≠0)图像交于A(-4,2),B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请写出当一次函数值大于反比例函数值时x的取值范围.26. (15分) (2017九上·江津期末) 如图,在平面直角坐标系中,抛物线经过点A(﹣3,0)和点B(2,0).直线(为常数,且)与BC交于点D,与轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求为何值时,△AEF的面积最大;(3)已知一定点M(﹣2,0).问:是否存在这样的直线,使△BDM是等腰三角形?若存在,请求出的值和点D的坐标;若不存在,请说明理由.27. (10分)(2016·邵阳) 已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共71分)21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共4页 ◎ 第2页 共4页
…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:
__
____
____
_姓名:___
___
__
班级:__
__
___
_考号:
_
_____
__ ……
…
…
内
…
…
…
…
○
…
…
…
…
装
…
…
…
…○…
…
……订
…
……
…
○
…
…
…
…
线
…
…
…
…
○
…
…
…
…
第11题图 人教版九年级数学(上册)竞赛试题 卷I (选择题) 一、 选择题 (本题共计9小题 ,每题 3 分 ,共计27分) 1、如图,AB 为⊙O 直径,CD 为弦, AB ⊥CD ,如果∠BOC=70°,那么∠A 的度数为( ) A .70° B .35° C .30° D .20° 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .m=2 B .m= —2 C .2±=m D .2±≠m 3、如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3、x 2=1,那么这个一元二次方程是( ) A. x 2+3x+4=0 B.x 2+4x-3=0 C.x 2-4x+3=0 D. x 2+3x-4=0 4、若⊙O 的半径长是4cm ,圆外一点A 与⊙O 上各点的最远距离是12cm ,则自A 点所引⊙O 的切线长为( ) A .16cm B .cm 34 C .cm 24 D .cm 64 5、如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO 绕点B 逆时针旋转60°得到⊿CBD ,若点B 的坐标为(2,0),则点C 的坐标为( ) )2,3.(D )1,3.(C )3,2.(B )3,1.(A ---- 6、若方程8x 2+2kx+k-1=0的两个实数根是x 1, x 2且满足x 21+x 22=1,则k 的值为( ). A.-2或6 B.-2 C.6 D.4 7、二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论: ①4ac ﹣b 2<0; ②4a +c <2b ; ③3b +2c <0; ④m (am +b )+b <a (m ≠﹣1), 其中正确结论的个数是( ) A . 4个 B .3个 C .2个 D .1个 8、如图所示,在平面直角坐标系中,半径均为1个单位 长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原 点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标( ) A.(2014,0) B. (2015,1) C. (2015,-1) D. (2016,0) 9、如图,点C 为⊙O 的直径AB 上一动点,2AB =,过点C 作DE AB ⊥交⊙O 于点D 、E ,连结AD ,AE . 当点C 在AB 上运动时,设AC 的长为x ,ADE △的面积为y ,下列图 象中,能表示y 与x 的函数关系的图象大致是( ) 卷II (非选择题) 二、 填空题 (本题共计9小题 ,每题 3 分 ,共计27分 ) 10、已知5)3)(1(2222=-+++y x y x ,则22y x +的值等于 。
11、如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是__________. 12、如图,点A B ,是⊙O 上两点,10AB =,点P 是⊙O 上的动点(P 与A B ,不重合),连结AP PB ,,过点O 分别作OE AP ⊥于E ,OF PB ⊥于F ,则EF = . 13、如果函数y =(a ﹣1)x 2+3x +的图象经过平面直角坐标系的四个象限,那么a 的取值范围是 . 14、如图,水平地面上有一面积为30πcm 2的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为 . 15、已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为 . 16、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份 营业额达到633.6万元,求3月份到5月份营业额的平均增长率是__________. 第1题图 第7题图 第5题图 P O 第9题 O 1 x y O 2 O 3 第14题图 A B O F P E 第12题图
第3页 共4页 ◎ 第4页 共4页 D C O A B E 第19题图 17、已知实数a 满足 a 2020a a 2019=-+-, 则 22019a - 的值___________. 18、如图,正方形ABCD 边长为2,E 为CD 的中点,以点A 为中心,把
△ADE 顺时针旋转90°得△ABF ,连接EF ,则EF 的长等于__________. 三、解答题 (46分) 19、(本小题10分)已知:如图所示,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.判断直线BD 与⊙O 的位置关系,并证明你的结论.
20、(本小题12分)某校数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量的相关信息如下表:
时间x (天) 1≤x <50 50≤x ≤90
售价(元/件) x +40 90
每天销量(件) 200﹣2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y 元. (1)求出y 与x 的函数关系式; (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
21、(本小题12分)已知关于x 的方程(a -1)x 2-(2a -3)x+a=0有实数根.
(1)求a 的取值范围; (2)设x 1,x 2是方程(a -1)x 2-(2a -3)x+a=0的两个根,且x 12+x 22=9,求a 的值.
22、(本小题12分)如图,已知二次函数y =a (x ﹣h )2+的图象经过原点O (0,0),A (2,0).
(1)写出该函数图象的对称轴; (2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点?
第18题图。