矿井瓦斯防治论文讲解
矿井安全生产工作中瓦斯治理技术措施论文
矿井安全生产工作中瓦斯的治理技术措施探讨摘要:煤矿安全是安全生产工作的重中之重,瓦斯防治又是煤矿安全生产的重中之重。
为此,国家相继出台了一系列政策措施着力推进瓦斯防治工作。
本文结合工作实际,从矿井瓦斯综合治理措施、技术创新、多措并举、制度保障、以人为本理念等方面阐述了矿井瓦斯防突与治理技术方法,对于矿井安全生产与可持续发展具有重要的现实意义。
关键词:矿井安全;生产工作;瓦斯治理;措施【中图分类号】td7120 引言矿井瓦斯是煤矿生产过程中,从煤、岩内涌出来的以甲烷为主的各种有害气体的总称。
瓦斯在适当的浓度能燃烧和爆炸,会造成人员伤亡,严重时摧毁井巷设施,中断生产,有时还会引起煤尘爆炸,给矿井造成灾难。
因此,瓦斯治理,迫在眉睫。
狠抓瓦斯治理才能实现矿井的本质安全,对煤炭工业的健康持续发展,具有重要意义。
1 影响煤层瓦斯含量的因素煤的瓦斯含量是指单位体积或重量的煤在自然状态下所含有的瓦斯量(标准状态下的瓦斯体积),是计算瓦斯蕴藏量、预测瓦斯涌出量的重要依据。
影响煤层瓦斯含量的主要因素有煤层的埋藏深度、煤层与围岩的透气性、煤层倾角和露头、地质构造、煤的吸附特性、水文地质条件等。
2 矿井瓦斯的抽放与涌出量矿井瓦斯涌出是指在矿井建设和生产过程中从煤与岩石内涌出的瓦斯,其涌出的严重与否,则由瓦斯涌出量来表示。
在研究瓦斯来源和瓦斯涌出量时,既要考虑矿井地质条件,也要分析采矿技术条件。
当用通风方法不能使工作地点涌出的瓦斯稀释到《煤矿安全规程》规定的最高允许浓度时,就必须预先抽放瓦斯。
瓦斯抽放已成为降低工作面瓦斯涌出量和防止突出的主要措施。
3 煤矿瓦斯事故原因分析3.1瓦斯爆炸的三要素瓦斯爆炸的条件是一定浓度的瓦斯、高温火源的存在和充足的氧气,这三个要素缺一不可。
当一定体积的空气中瓦斯浓度达到5%~16%时,就可以产生爆炸,而当浓度高于5%时,瓦斯的爆炸可能性逐渐增加,当浓度介于9.0%~9.5%时,瓦斯和氧气充分混合,会产生最强的爆炸威力。
煤矿瓦斯防治技术范文(二篇)
煤矿瓦斯防治技术范文煤矿瓦斯是一种常见而又危险的气体,对煤矿安全造成重大威胁。
因此,煤矿瓦斯防治技术的研究和应用显得尤为重要。
本文将介绍煤矿瓦斯防治技术的一些关键方面,包括瓦斯抽采、瓦斯抑制以及瓦斯监测等方面。
瓦斯抽采是煤矿瓦斯防治的主要手段之一。
它通过将瓦斯从煤矿开采工作面快速抽出,减少瓦斯积聚,降低瓦斯浓度,从而防止瓦斯爆炸事故的发生。
瓦斯抽采的方法主要有机械抽采和自然抽采两种。
机械抽采主要通过设置抽采管道和电机驱动抽风机来实现,可以有效抽出煤矿井下的瓦斯。
自然抽采则是依靠煤矿自身的特点,通过利用井下的气压差和温度差来实现瓦斯抽出。
这两种抽采方法的结合使用可以提高瓦斯的抽采效果,减少瓦斯的积聚。
瓦斯抑制是煤矿瓦斯防治的重要环节之一。
瓦斯抑制是通过采取措施降低煤矿瓦斯的生成量,从而减少瓦斯的积聚,并防止其引发爆炸。
瓦斯抑制的方法有多种,如煤层注水、煤层改造等。
煤层注水是将水注入到煤层中,通过水的阻隔作用,降低煤层中瓦斯的生成量。
煤层改造则是通过改变煤层的物理和化学性质,减少瓦斯的生成量。
这些瓦斯抑制的措施可以有效地降低煤矿瓦斯的积聚,提高煤矿的安全性。
瓦斯监测是煤矿瓦斯防治的关键环节之一。
瓦斯监测可以通过检测煤矿井下的瓦斯浓度,及时发现煤矿瓦斯的积聚情况,采取相应的防治措施。
瓦斯监测的方法主要有传感器监测和无线监测两种。
传感器监测是通过设置瓦斯传感器在煤矿井下进行实时监测,将监测结果通过数据传输装置传送到地面进行分析和处理。
无线监测则是采用无线通信技术,实现对煤矿井下瓦斯浓度的实时监测,可以方便地掌握瓦斯的积聚情况,及时采取相应的防治措施。
除了瓦斯抽采、瓦斯抑制和瓦斯监测等技术外,还有一些其他的煤矿瓦斯防治技术也具有重要的意义。
比如,瓦斯抑爆和瓦斯泄放技术等。
瓦斯抑爆是通过向瓦斯中引入抑制剂,减缓其爆炸速度,从而达到控制瓦斯爆炸的目的。
瓦斯泄放技术是通过在煤矿上部开挖竖井,将井下的瓦斯直接泄放到大气中,降低瓦斯浓度,减少瓦斯爆炸的危险性。
煤矿开采专业论文 浅析矿井瓦斯灾害与治理
我国煤炭资源丰富,煤炭开采历史悠久,矿地质构造比较复杂,自然灾害严重。
煤炭工业呈多层次发展,煤炭企业按所有制分为国有重点煤矿、国有地方煤矿和乡镇煤矿。
煤矿安全状况发展很不平衡,国有重点煤矿安全状况良好,国有地方煤矿较差,乡镇煤矿最差。
21世纪以来,加大了对煤矿的监管力度,关闭了一批不具备基本生产条件的小煤矿,乡镇煤矿经过了停业整顿;国有地方煤矿深化了安全专项整治,加大安全投入,完善安全设施和装备,增强了矿井防灾、抗灾能力;国有重点煤矿通过国家技改资金扶持以及“一通三防”专项监察和重点监控,改善了煤矿安全装备和设施。
全国煤矿安全状况有了较大的好转。
煤矿生产一般是地下作业,除了工作环境恶劣,工作地点经常移动外,还随时受到矿井瓦斯喷出、瓦斯突出、瓦斯爆炸、煤与瓦斯突出等威胁。
特别是瓦斯突出与爆炸、煤与瓦斯突出严重威胁矿井生产安全,因此必须做好矿井内瓦斯监测安全管理工作,随时做好监控涌出量并对瓦斯作抽排放工作,保证矿井安全生产关键词:瓦斯喷出、瓦斯爆炸、煤与瓦斯突出、瓦斯抽放1 引言 (3)1 矿井瓦斯喷出 (4)1.1概念和分类 (4)1.2瓦斯喷出防治 (4)1.2.1原始洞缝中瓦斯喷出的防治 (4)1.2.2采掘地压形成裂缝中瓦斯喷出的防治 (5)2防治煤与瓦斯突出 (5)2.1煤矿井下动力现象及分类 (5)2.1.1按动力现象的力学(能源)特征分类 (5)2.1.2按动力现象强度分类 (6)2.1.3突出危险程度的划分 (6)2.1.4关于防突措施与安全防护措施的实用规定 (7)2.2突出的基本特征 (7)2.3突出的机理 (8)2.4瓦斯突出的一般规律 (8)2.5预防煤与瓦斯突出的主要技术措施 (9)3矿井瓦斯爆炸及其预防 (11)3.1煤矿井下瓦斯爆炸原因分析 (11)3.2预防瓦斯爆炸技术措施 (12)4矿井瓦斯抽放 (13)4.1抽放瓦斯的可行性 (13)4.1.1抽放瓦斯的目的 (13)4.1.2新建抽放瓦斯矿井应同时具备的条件 (14)4.2抽放瓦斯方法 (14)4.3抽放设备 (17)5 总结 (19)参考文献: (20)致谢 (21)1 引言瓦斯爆炸产生的高温高压,促使爆源附近的气体以极大的速度向外冲击,造成人员伤亡,破坏巷道和器材设施,扬起大量煤尘并使之参与爆炸,产生更大的破坏力。
煤矿瓦斯灾害及防治策略探究
煤矿瓦斯灾害及防治策略探究煤矿瓦斯灾害是煤矿生产中常见且严重的问题,给矿工的生命安全和矿山的可持续发展带来巨大威胁。
本文将探讨煤矿瓦斯灾害的成因、防治策略以及未来的发展方向。
一、煤矿瓦斯灾害的成因瓦斯是煤矿中常见的可燃气体,主要由甲烷组成。
矿井中的瓦斯主要来源于煤层的煤岩中,当煤层被开采时,瓦斯会释放出来。
煤矿瓦斯灾害的成因主要有以下几个方面:1. 煤层条件:煤层中的煤岩孔隙度高、渗透性大,容易储存和释放瓦斯。
2. 矿井开采方式:不同的开采方式对瓦斯的释放有不同的影响。
例如,采用长壁工作面开采方法的矿井,瓦斯释放较为集中,容易形成高浓度的瓦斯。
3. 采煤工艺:采煤工艺中的钻孔、炮孔等作业会破坏煤层结构,导致瓦斯释放增加。
4. 矿井通风系统:不合理的通风系统设计和管理不善会导致瓦斯积聚和扩散。
以上是煤矿瓦斯灾害的主要成因,了解这些成因对于制定有效的防治策略至关重要。
二、煤矿瓦斯灾害的防治策略为了有效地防治煤矿瓦斯灾害,需要采取一系列的防治策略。
这些策略包括技术手段和管理手段两个方面。
1. 技术手段(1)瓦斯抽采技术:通过设置抽采设备,将瓦斯抽出矿井,减少瓦斯积聚,降低瓦斯浓度。
(2)通风技术:合理设计和管理通风系统,保证矿井中的空气流动,减少瓦斯积聚和扩散。
(3)瓦斯检测技术:采用瓦斯检测仪器,对矿井中的瓦斯浓度进行实时监测,及时发现瓦斯超标情况,采取相应措施。
2. 管理手段(1)加强安全管理:制定和执行严格的安全管理制度,加强对矿工的安全教育和培训,提高矿工的安全意识。
(2)加强监测和预警:建立完善的瓦斯监测和预警系统,及时掌握瓦斯浓度的变化,预测瓦斯灾害的发生可能性。
(3)强化应急救援:建立健全的瓦斯灾害应急救援体系,提高应急救援能力,减少瓦斯灾害造成的人员伤亡和财产损失。
以上是煤矿瓦斯灾害防治的一些常见策略,通过技术手段和管理手段的综合应用,可以有效地减少煤矿瓦斯灾害的发生。
三、未来的发展方向随着科技的不断进步,煤矿瓦斯灾害防治也在不断发展。
煤矿瓦斯治理论文
煤体对瓦斯的吸附能力主要取决于煤体的孔隙率和煤质,煤的变质程度不同,孔隙大小不同,其所含瓦斯的量就不同。成煤初期,煤的结构疏松,孔隙率大,储存游离瓦斯的空间大,瓦斯的吸附能力也很强。但此时煤质以褐煤为主,在成煤物化作用下尚未生成大量瓦斯,因此煤体中所含瓦斯量较少。在煤化地质作用下,煤质逐渐致密,孔隙率减少,吸附瓦斯的能力大大降低。随着煤的继续变质,煤体内部产生许多细微孔隙,使得煤的表面积不断扩大,至无烟煤达到最大,所以无烟煤对瓦斯的吸附能力最强。但并不是煤体吸附瓦斯能力强就一定含瓦斯量大,最终瓦斯含量除了需要煤体有瓦斯的吸附外,还需要密闭的空间使其得以保存。
煤矿瓦斯爆炸必须同时具备以下两个条件:一是空气中瓦斯含量达到爆炸范围内,即瓦斯的体积分数为5%~1ห้องสมุดไป่ตู้%时;二是存在引爆的火源,且其时间长度大于瓦斯引火感应期长度。所以,在煤矿实际作业环境中,对瓦斯爆炸事故的防控重点应放在防止瓦斯积聚和限制火源上。本文从引起矿井瓦斯含量的地质因素出发,探讨了煤的自身性质、煤层赋存条件和地质构造对煤层瓦斯含量的影响,最后又从管理角度给出了瓦斯事故防治的措施。
1矿井瓦斯地质影响因素
瓦斯主要是在煤的形成过程中产生的,按其成因可分为3种形成方式,即生物化学作用形成、煤变质形成和油气田的瓦斯侵入。瓦斯含量是指煤体或岩体在自然条件下所含的瓦斯量,包括游离态瓦斯和吸附瓦斯。影响矿井瓦斯含量的因素有很多,概括起来可分为两类:一是影响瓦斯生成量多少的因素;二是瓦斯的保存和放散条件。矿井中煤岩体内瓦斯含量与实际瓦斯生成量之间的差别很大,不同的煤田、同一煤田不同矿井、同一矿井不同采区的瓦斯含量也是大不相同。造成这一差异的主要因素来自于地质因素,主要表现在以下几个方面:
教育经历200709201106湖南大学本科在校学习情况院校级三等奖在校实践经验200803201010大学生英语周刊衡阳市推销员到衡阳市区域经理2008年推销员在学校新生开学期间向学生和家长推销学生英语报20092010年学生英语报衡阳地区区域经理负责在衡阳各高校组建团队销售学生英语报团队培训团队维护最后指导团队销售
煤矿生产中瓦斯事故防治措施论文
浅析煤矿生产中瓦斯事故的防治措施摘要:瓦斯的治理不是一个简单的工程,而是一个复杂的安全和资源工程,瓦斯治理的根本目的和最终目的是彻底杜绝瓦斯事故,维护矿工生命安全和国家财产安全。
本文以141713综采工作面为例,从瓦斯治理的基本原则、治理目标和主要内容,瓦斯治理的各种措施入手,谈谈对瓦斯的治理。
关键词:煤矿生产;瓦斯事故;防治措施【中图分类号】td712.70引言煤炭是我国的主要能源,在国民经济中发挥着重要作用。
我国煤炭资源丰富,矿井遍布全国各地,无数矿工在井下劳作,而矿井并不安全,瓦斯时刻威胁着矿工的生命安全。
因此,要采用瓦斯治理的关键技术,防患于未然。
煤矿瓦斯事故是制约煤炭工业安全发展和可持续发展、影响地区安全稳定好转的突出问题,煤矿必须认识瓦斯治理的重要性和必要性。
为切实搞好瓦斯综合治理,煤矿要认真严格贯彻“安全第一、预防为主、综合治理”的安全生产方针和“先抽后采、监测监控、以风定产”的瓦斯治理工作方针,切实建立健全“通风可靠、抽采达标、监控有效、管理到位”的瓦斯综合治理工作体系,紧紧抓住矿井通风系统、抽采系统、监测监控系统、现场管理四个关键环节,根据本矿井的安全生产条件及危害因素分析,采取行之有效的针对措施,坚持标本兼治、重在治本,进一步完善瓦斯治理结构,落实瓦斯防治管理制度,提高装备水平和提高矿井防治瓦斯灾害能力,建立健全稳定可靠的矿井通风系统、科学合理的瓦斯抽采体系、有效的监测监控网络和严格规范的现场管理制度,让我们坚信矿井瓦斯事故是可控、可防、可治的。
因此,煤矿要以更大的决心、更强的力度、更严的态度、更扎实的措施,锲而不舍地打好煤矿瓦斯治理攻坚战,彻底杜绝瓦斯事故的发生。
1 瓦斯治理基本原则1.1严格贯彻落实“安全第一、预防为主、综合治理”的安全生产工作方针,坚持标本兼治,重在治本的原则;1.2合理生产布局,确保抽、掘、采关系平衡;1.3瓦斯治理能力大于生产能力;1.4建立完善可靠的通风系统(通风可靠)确保系统合理、设施完好、风量充足、风流稳定;1.5加大瓦斯抽采力度(抽采达标),实现“多措并举、应抽尽抽、抽采平衡、效果达标”的要求;1.6建立有效的安全监测监控系统(监控有效),确保装备齐全、数据准确、断电可靠、处置迅速;1.7严格管理(管理到位),完善制度、落实责任、认真执行、严格监督;1.8排除隐患,将瓦斯事故消灭在萌芽状态之中,杜绝事故的发生。
煤矿瓦斯防治论文地质灾害防治论文-煤矿瓦斯爆炸的原因及防治措施
煤矿瓦斯防治论文地质灾害防治论文煤矿瓦斯爆炸的原因及防治措施【摘要】我国的能源工业中,煤炭占我国一次能源生产和消费结构中的70%左右,预计到2050年还将占50%以上,煤炭在相当长的时期内仍将是我国的主要能源。
我国目前国有重点煤矿大多数属于瓦斯矿井,其中高瓦斯矿井和突出矿井占全国矿井总数的44%。
预防、控制瓦斯爆炸事故,是实现煤矿安全生产的关键。
瓦斯防治是煤矿安全工作的重中之重,必须采取有利措施,有效防治煤矿重特大瓦斯事故的发生,以确保煤矿的安全生产。
【关键词】煤矿;瓦斯爆炸;防治措施矿井瓦斯的爆炸必须具备以下3个条件:(1)瓦斯浓度。
当空气中的瓦斯浓度达到5%~16%时,就达到爆炸浓度,也称爆炸界限。
(2)一定的引火温度。
点燃瓦斯所需的最低温度,称为引火温度。
在空气中瓦斯的引火温度是650~750℃。
明火、煤炭自燃、电气火花、炽热的金属表面、爆破等都能引起瓦斯爆炸。
(3)氧气的浓度。
氧气的作用是助燃,当空气中氧气的浓度超过12%时,瓦斯就能爆炸,这是最容易获得的条件,在正常通风风流中氧气的浓度通常大于20%。
一、煤矿常见的瓦斯爆炸的原因(1)装备不足、管理不落实,矿井安全装备配置不足。
“先抽后采,监测监控,以风定产”方针未得到完全落实。
很多煤矿发生的特大瓦斯事故都没有装备瓦斯抽放系统或抽放系统不能有效运行,监控系统也不能有效发挥作用。
瓦斯爆炸事故的发生,主要是由于管理上存在缺陷造成某些作业人员的违章失职。
(2)企业职工安全意识淡薄,文化素质较低。
据有关数据分析,大部分煤矿的瓦斯爆炸都是由于工作人员的违章操作造成,并且绝大多数瓦斯事故都是由于“三违”引起。
煤矿的很多职工文化程度低,没有经过正式安全培训就下井,常常采用师带徒的方式参与采掘等作业,缺乏基本的安全生产知识,不懂通风安全管理和操作规程,思想麻痹,违章作业,冒险蛮干现象严重。
(3)瓦斯积聚的存在。
瓦斯积聚是指采掘工作面及其他地点,体积大于0.5m3的空间内积聚瓦斯浓度达到或超过2%的现象。
浅析煤矿瓦斯治理及防治措施
浅析煤矿瓦斯治理及防治措施摘要:煤矿瓦斯是成煤过程中的一种伴生产物,如果不能从根本上清除,就会给煤矿造成很大的危害。
因此,对煤矿瓦斯治理过程中存在的问题进行分析,并对瓦斯进行防治,才能持续改善煤矿的安全生产能力,进而为社会的发展提供能源基础。
关键词:煤矿开采;瓦斯治理;防治引言瓦斯是影响我国煤矿开采安全与可持续发展的重要因素,随着行业的持续发展和科学技术的进步,煤炭管理部门和煤矿企业在煤矿安全生产方面的科研投资方面持续加大。
其中,要持续增强煤矿瓦斯综合治理、预防控制的能力,减少煤矿瓦斯事故的发生,进而推动煤矿企业的安全生产。
一、煤矿瓦斯概述煤矿瓦斯也叫煤层气或煤层瓦斯,是煤与围岩生成的甲烷、二氧化碳、氮气的混合物。
其中,甲烷和丁烷均为气态,但戊烷以液态为主。
一旦遇到明火,就会自燃,因而引起“瓦斯”爆炸。
为保证煤矿的安全,消除事故隐患,必须严格禁止燃放烟花爆竹,合理通风。
煤层气是一柄“双刃剑”,其利弊并存。
一方面,它对环境造成了严重的污染,同时也是一种极具破坏性的物质。
由于释放像CO2、CH4等温室气体,这将进一步加重大气层中的“温室效应”。
因瓦斯浓度的差异,极易造成窒息。
二、煤矿瓦斯治理过程存在的问题(一)瓦斯压力对事故的影响因地质条件存在明显的差异性,各煤层的瓦斯压力差异也较大。
随着煤矿开采的深度不断增加,煤矿中的瓦斯压力也越来越大,一旦在煤矿中的瓦斯治理工作中出现问题,就容易造成瓦斯爆炸。
就当前的采煤技术而言,取样控制法是最常见的处理方式。
(二)多因素控制对事故的影响从有关数据可以看出,引起瓦斯事故的因素很多,因此,很有必要强化瓦斯事故的风险因素控制。
通过对采煤工艺的合理控制,可以有效地降低煤层气事故的发生。
然而,许多煤矿企业在进行煤矿开采的时候,为了节省成本,没有将足够的人力和物力投入到瓦斯控制上,这就导致在采矿过程中,极易出现卡钻的情况,从而增加了发生事故的几率,给采矿人员的人身安全带来很大的风险。
应对高瓦斯矿井的瓦斯综合防治技术(2篇)
应对高瓦斯矿井的瓦斯综合防治技术1、建立合理可靠的通风系统1.1改造通风系统,提高通风能力,坚持以风定产xx年该矿东西两回风井分别改造使用了BDK轴流式节能通风机,增加矿井总进风量2880m³/min,减少矿井漏风311m³/min,增加矿井通风生产能力66万t/a,电机功率降低150kW,年平均节省电费50万元。
解决矿井通风能力不足问题,使矿井通风系统的能力和可靠程度有了明显提高。
1.2优化矿井通风网络,降低通风阻力针对矿井主要巷道失修,断面小,风阻增大,通风能力难以提高,该矿专门成立巷修队将主要通风巷道全部扩修为10.5m²断面U型钢支架巷道,共计3800m,同时,各下山采区实现专用回风巷,共计新掘专用回风巷3000m,通风网络缩短860m,实现了矿井降阻增风、减耗目标。
1.3完善通风设施,优化通风系统,提前升级改造机电设施22下山煤巷掘进工作面出现瓦斯动力现象后,该矿不等突出矿井鉴定结果,就严格按照突出矿井标准对通风、监测、机电等系统进行升级改造,用锚杆等加固加厚风门墙体,临时通风设施一律取消,安装防逆风装置,主要巷道及掘进巷道每隔50m安设一组压风自救装置,所有机电设施全部按照高突矿井井下电器要求进行升级改造。
1.4进行矿井通风系统可靠性评价每年进行一次反风演习和矿井通风系统优化设计及可靠性评价,测算反风率及矿井通风阻力,实现系统、设施可靠,风流稳定,具有较强的抗灾能力,发生灾变时风流易于控制,便于抢险救灾,保证通风系统合理、稳定、可靠。
2、加强瓦斯综合防治2.1建立瓦斯防治专业队伍成立专门机构和瓦斯抽放、预测专业队,负责瓦斯抽放、防突、监测及安全装备的管理。
2.2实施矿井瓦斯抽放严格落实瓦斯治理“十二字”方针,井下、地面各建立一个瓦斯抽放泵站,井下炮采放顶煤工作面、高瓦斯掘进工作面和综采放顶煤工作面分别实施顶板岩石钻孔抽放、高位巷道抽放、超前浅孔与巷帮钻孔抽放、采空区抽放、上隅角埋管抽放等,杜绝了采掘面瓦斯经常超限现象,产量与进尺提高了40%。
应对高瓦斯矿井的瓦斯综合防治技术(4篇)
应对高瓦斯矿井的瓦斯综合防治技术高瓦斯矿井是指煤矿中瓦斯含量较高的矿井。
瓦斯在矿井中积聚,一旦遇到火源,就可能引发瓦斯爆炸事故,严重威胁矿工的生命财产安全。
因此,对高瓦斯矿井进行瓦斯综合防治至关重要。
本文将介绍几种应对高瓦斯矿井的瓦斯综合防治技术。
首先,可以采取瓦斯抽采技术。
瓦斯抽采是指通过管道将瓦斯抽出矿井,以降低矿井中的瓦斯含量。
瓦斯抽采技术包括抽放法、抽采法和抽放兼采法等。
其中,抽放法是指将矿井中的瓦斯通过抽放装置抽出,当瓦斯达到一定浓度时自动抽放;抽采法是指将矿井中的瓦斯通过抽采装置抽出,以减少矿井中的瓦斯含量;抽放兼采法是指将矿井中的瓦斯通过抽放装置和抽采装置同时进行,以达到更好的瓦斯抽采效果。
其次,可以采取瓦斯抑爆技术。
瓦斯抑爆技术是指将矿井中的瓦斯稀释至可燃浓度以下,从而避免瓦斯爆炸的发生。
瓦斯抑爆技术包括稀释法、灭火法和隔离法等。
其中,稀释法是指通过通风系统将矿井中的瓦斯稀释至可燃浓度以下;灭火法是指通过喷雾灭火剂将矿井中的瓦斯灭火;隔离法是指通过设立隔离带将矿井中的瓦斯隔离开来,以防止瓦斯扩散。
另外,可以采取瓦斯检测技术。
瓦斯检测技术是指通过瓦斯检测设备监测矿井中的瓦斯含量,及时发现瓦斯积聚的情况,以便采取相应的预防措施。
瓦斯检测技术包括传感器检测、红外光谱法和质谱法等。
其中,传感器检测是指通过传感器对矿井中的瓦斯含量进行实时检测,并将检测结果传输至控制中心;红外光谱法是指利用红外光谱仪对矿井中的瓦斯进行测定,以判断瓦斯是否达到可燃浓度;质谱法是指利用质谱仪对矿井中的瓦斯进行分析,以确定瓦斯的成分和浓度。
最后,可以采取瓦斯引导排放技术。
瓦斯引导排放技术是指通过管道将矿井中的瓦斯引导至安全地方排放,从而减少矿井中的瓦斯含量。
瓦斯引导排放技术包括导流法、排瓦斯井和瓦斯钻孔等。
其中,导流法是指通过设置导流设备将矿井中的瓦斯引导至外部进行排放;排瓦斯井是指在矿井中开挖一定深度的井口,并通过管道将矿井中的瓦斯排出到地面;瓦斯钻孔是指在矿井中钻孔,并通过钻孔将矿井中的瓦斯引导至地面。
矿井瓦斯防治技术范文
矿井瓦斯防治技术范文矿井瓦斯是煤矿生产中常见的一种有害气体,其具有易燃、易爆、有毒等危险性质,对煤矿生产安全构成严重威胁。
因此,矿井瓦斯防治技术是煤矿生产中的关键环节之一。
本文将从矿井瓦斯的危害、矿井瓦斯的产生与分布、矿井瓦斯防治的基本原则和技术措施等方面,探讨矿井瓦斯防治技术。
一、矿井瓦斯的危害1.易燃易爆:矿井瓦斯具有一定的可燃性,在一定条件下容易引发火灾和爆炸事故,造成人员伤亡和财产损失。
2.有毒:矿井瓦斯中的主要成分是甲烷,长期暴露在高浓度的甲烷环境下,会导致中毒,严重时可致死。
3.刺激性:矿井瓦斯还含有一些其他有害气体,如二氧化碳、硫化氢等,对人体具有刺激性和腐蚀性,会造成呼吸道和皮肤等疾病。
二、矿井瓦斯的产生与分布1.矿井瓦斯的产生:煤矿瓦斯的产生是由于地下煤层中的煤炭在长期埋藏、压力和温度作用下,发生煤化、变质,释放出的甲烷等气体。
2.矿井瓦斯的分布:研究发现,矿井瓦斯具有分层分布特点,即瓦斯主要分布在靠近煤层的煤层岩层中,上部瓦斯含量相对较低,下部瓦斯含量相对较高。
同时,矿井瓦斯的分布受到地质构造、煤层厚度、地应力等因素的影响。
三、矿井瓦斯防治的基本原则矿井瓦斯防治的基本原则是预防为主、综合治理,主要包括以下几个方面:1.控制瓦斯源:采取措施降低煤层瓦斯含量,如合理布置通风系统、加强瓦斯抽放、科学施工等。
2.防御瓦斯:筑好防火墙,安装瓦斯抽风机、气液分离器等设备,预防和控制瓦斯的扩散蔓延,防止火灾和爆炸事故。
3.监测瓦斯:建立瓦斯监测系统,对矿井瓦斯含量、瓦斯浓度、瓦斯压力等进行实时监测和判断,为矿井防灾减灾工作提供科学依据。
4.应急措施:建立健全煤矿瓦斯事故应急预案,提前制定瓦斯事故应急措施,加强应急演练,提高事故处置能力。
四、矿井瓦斯防治的技术措施1.通风技术:合理布置通风系统,保证矿井内空气的流动,降低瓦斯浓度,破坏瓦斯积聚条件。
在煤矿内设置通风巷道、风井等,利用自然和人工通风方式,将瓦斯及时排出矿井,保持矿井内的空气清新。
矿井防治瓦斯管理范文
矿井防治瓦斯管理范文矿井防治瓦斯是保障煤矿生产安全的重要任务,有效管理瓦斯是预防矿井瓦斯事故的关键措施。
为了加强矿井瓦斯管理工作,提高瓦斯监测与防治水平,各煤矿单位不断探索瓦斯管理的新方法、新技术,并不断总结和提炼出一套行之有效的管理经验,形成了一套瓦斯管理范文。
本文将以某煤矿为例,介绍其瓦斯管理范文,以期为其他煤矿提供参考和借鉴。
一、瓦斯管理的重要性矿井瓦斯是煤矿生产中不可避免的一种危险因素,其主要成分是甲烷,具有易燃易爆的特性。
一旦瓦斯超过安全限量,就会引发瓦斯爆炸事故,给矿井安全带来严重威胁。
因此,加强瓦斯管理具有重要意义。
二、瓦斯管理的基本原则1、安全第一原则安全第一是矿井瓦斯管理的基本原则。
煤矿要始终坚持以安全为重点,将安全生产放在首位,做到安全生产无小事。
2、科学规划原则瓦斯管理工作要科学规划,合理布局瓦斯监测、抽采等设施,确保瓦斯监测全面、准确、及时。
3、预防为主原则瓦斯管理要以预防为主,通过采取安全措施,预防瓦斯积聚和瓦斯爆炸事故的发生。
4、全员参与原则瓦斯管理是个系统工程,需要全员参与。
煤矿工作人员要做到瓦斯安全意识强、瓦斯安全责任落实到位。
三、瓦斯管理的具体措施1、瓦斯监测措施(1)建立完善的瓦斯监测体系,配置瓦斯检测设备,对矿井各区域进行瓦斯浓度监测,确保监测数据准确可靠。
(2)加强对瓦斯监测设备的维护和保养,定期进行检查和校准,确保设备的正常运行。
(3)建立瓦斯监测数据分析和预警机制,对监测数据进行及时分析和处理,及时预警并采取相应措施。
2、瓦斯抽采措施(1)瓦斯抽采设备要按照规定进行布置和安装,确保各采区、巷道的瓦斯抽采能力达标。
(2)对瓦斯抽采设备进行定期检查和维护,确保设备的正常运行。
(3)严格执行瓦斯抽采规程,及时清理瓦斯抽采孔,保持瓦斯抽采通道畅通。
3、瓦斯防治措施(1)加强瓦斯防治技术培训,提高全员对瓦斯防治工作的认识和掌握。
(2)制定完善的瓦斯防治制度和操作规程,明确瓦斯防治的工作流程和方法。
高瓦斯突出矿井瓦斯防治工作的探讨
高瓦斯突出矿井瓦斯防治工作的探讨随着煤矿生产的发展,高瓦斯矿井的数量相应增加,高瓦斯突出的现象也越来越常见。
而瓦斯是一种具有爆炸性的有害物质,对煤矿生产安全和职工健康极具威胁。
因此,瓦斯防治工作成为了煤炭企业不可忽视的一项重要任务。
本文将从几个方面进行探讨高瓦斯突出矿井瓦斯防治工作的相关问题。
一、高瓦斯突出矿井瓦斯来源和形成机理高瓦斯矿井通常是由于岩层构造、地质构造、矿井开采方式等因素综合作用而形成的。
在煤矿工作面采掘过程中,瓦斯会随着煤层开采而释放,形成矿井内大量的瓦斯。
而高瓦斯矿井则是指瓦斯浓度高于千分之一的煤矿。
在高瓦斯矿井中,瓦斯容易在自然或人工条件下形成突出,这是因为瓦斯与煤层内部的岩石、煤与瓦斯层之间的拔动错动相结合,引起了煤与瓦斯层局部的变形,从而使瓦斯聚集于突出的区域,增加了瓦斯爆炸事故发生的风险。
二、高瓦斯突出矿井瓦斯防治的技术措施高瓦斯突出矿井的瓦斯防治是煤炭企业安全生产中的一项关键工作。
为了有效预防和处理高瓦斯突出,需要采取多种技术措施,包括以下几个方面:1. 采用科学合理的开采方式选择正确的开采方式对瓦斯防治具有重要的影响。
在高瓦斯矿井中,采用低瓦斯抽采、高排放以及局部液氮冻结等技术来控制煤层开采中的瓦斯涌出,大幅降低了瓦斯聚集,有效地控制了突出的发生。
2. 安装瓦斯抽放设备瓦斯抽放设备是防止瓦斯积存和突出的重要手段。
在高瓦斯煤矿中,要加强对煤层压力、瓦斯涌出、煤层变形、突出的地质条件进行分析和研究,安装科学合理的瓦斯抽放设备,及时抽取煤层内的瓦斯,保证矿井内瓦斯含量控制在安全范围内。
3. 加强通风管理煤矿通风是防治瓦斯积存和突出的主要手段之一。
在高瓦斯矿井工作面采掘时,要注重通风的科学管理,采用贯通通风和分散通风相结合的方式,协调矿井的风量、风速和风向,降低瓦斯积存和突出的风险。
三、完善高瓦斯矿井瓦斯防治的管理制度和技术标准高瓦斯矿井瓦斯防治工作需要完善的管理制度和技术标准。
煤与瓦斯突出防治技术范文
煤与瓦斯突出防治技术范文煤与瓦斯突出是煤矿生产中的一种危险现象,它在矿井中突然发生,导致煤与瓦斯大量喷出,对井下的安全造成了巨大威胁。
为了有效预防和控制煤与瓦斯突出事故的发生,科学家和工程师们不断探索和研发煤与瓦斯突出防治技术。
本文将重点介绍几种常见的煤与瓦斯突出防治技术,并对其原理和应用进行详细阐述。
首先,针对煤与瓦斯突出现象,矿井工程师们提出了“预先护盖”技术。
该技术是通过在煤层顶板上提前钻孔,将预先构筑的支护体系与采掘工作面紧密连接,从而达到预防煤与瓦斯突出的目的。
预先护盖技术的实施分为两个阶段:首先是预先钻孔,通常采用岩钻将较大直径的钻孔打入煤层顶板;其次是注水固化,通过向钻孔中注入水泥浆体系,形成预先构筑的支护体系。
这样,当采掘工作面逐步向前推进时,预先护盖技术能够起到积极的控制和预防煤与瓦斯突出的作用。
其次,煤与瓦斯突出防治技术的另一种方法是“抽放瓦斯”技术。
这种技术通过在井下设置抽采设备,将井下积聚的瓦斯抽出,以减少瓦斯压力,从而降低煤与瓦斯突出的风险。
抽放瓦斯技术的原理是利用抽采设备组织开采瓦斯,使其尽早与井下大气环境分离,减少瓦斯在煤层中的积聚和压力升高的可能性。
另外一种常见的煤与瓦斯突出防治技术是“探水灌注”技术。
该技术主要通过井下钻取水井,将地表或深层地下水引入瓦斯高压区域,降低瓦斯压力,减少瓦斯突出的危险。
探水灌注技术的应用需要根据具体矿山地质条件、瓦斯分布情况和井下水文地质条件进行选择,科学合理地确定水井的位置和深度。
通过探水灌注技术,还能够有效地降低矿井的温度,提高矿井的环境条件,为安全生产创造良好的条件。
此外,应用煤与瓦斯突出防治技术的过程中,还需要进行灵活的布置和调整。
例如,在采掘巷道时,可以采用错断巷、错层巷和错向巷的方式,以减少煤与瓦斯突出的可能性。
此外,合理设计巷道的宽度和高度,加强巷道支护,也是预防和控制煤与瓦斯突出的重要手段。
值得强调的是,在煤与瓦斯突出防治的过程中,要充分发挥矿井通风系统的作用,合理调整和控制气流,保持井下空气新鲜和温度适宜,提高矿井安全性和舒适性。
矿井瓦斯防治毕业论文
矿井瓦斯防治毕业论文目录第一章国外煤矿安全生产现状分析 (1)1.1 我国煤矿安全生产现状分析 (1)1.1.1 我国目前煤矿安全生产形势 (1)1.1.2 我国煤矿生产存在的主要问题 (1)1.2 煤矿安全生产体系建立健全的过程中所应采取的对策措施 (3)1.3、国外煤矿安全生产现状分析 (4)1.3.1 美国的煤矿安全生产现状分析 (5)1.3.2澳大利亚的煤矿安全现状分析 (6)第二章瓦斯赋存及流动规律 (8)2.1 瓦斯在煤层中的流动机理 (8)2.2 煤的吸附理论及煤层瓦斯含量 (8)2.2.1 瓦斯赋存状态 (8)2.2.2 煤的吸附性及其影响因素分析 (9)2.3 煤层瓦斯流动理论研究 (10)2.3.1 线性瓦斯流动理论 (10)2.3.2 瓦斯扩散理论 (10)2.3.3 瓦斯渗透—扩散理论 (13)2.3.4 非线性瓦斯流动理论 (14)2.3.5 地物场效应的煤层瓦斯流动理论 (14)2.3.6 多煤层系统瓦斯越流理论 (14)第三章煤矿瓦斯抽放方法以及引起事故危险因素的分析 (16)3.1 瓦斯抽放方法的分析 (16)3.1.1 抽放瓦斯方法分类 (16)3.1.2 开采煤层的瓦斯抽放分析 (16)3.1.3 邻近层的瓦斯抽放分析 (18)3.1.4 采空区的抽放 (19)3.1.5 瓦斯抽放新方法研究 (19)3.2 瓦斯燃烧或爆炸的分析 (23)3.2.1 瓦斯燃烧与爆炸的感应期 (23)3.2.2 瓦斯爆炸的类型 (23)3.3 瓦斯突出分析 (24)3.3.1 国外煤与瓦斯突出情况 (25)3.3.2 国外概况 (25)3.3.4 瓦斯突出的特征 (26)3.3.5 影响突出危险的形成的要素 (26)第四章某矿矿井概况 (27)4.1 某矿地质概况 (27)4.2 建井涌出情况 (30)4.2.1 瓦斯涌出情况 (30)4.2.2 瓦斯突出情况 (31)4.3 矿井通风及瓦斯抽放 (32)4.3.2 矿井瓦斯抽放概况 (32)4.4 7124综采工作面概况 (33)第五章瓦斯抽放设计 (37)5.1 瓦斯抽放的必要性 (37)5.2 抽放方法选择 (37)5.2.1 抽放瓦斯方法选择原则 (37)5.2.2 某矿瓦斯抽放方法的选择 (38)5.3 顶板高位钻孔抽放设计 (38)5.3.1 高位钻孔瓦斯抽放技术原理: (38)5.3.27124工作面高位钻场、钻孔布置 (39)5.4 采空区埋管抽放设计 (41)5.4.1采空区埋管布置 (41)5.4.2 立孔抽放设计 (42)5.5 瓦斯抽放工艺参数 (43)5.5.1 抽放瓦斯管管径计算 (43)5.5.2 瓦斯泵流量确定 (44)5.5.3 移动瓦斯泵流量计算公式 (44)5.5.4 移动抽放管路阻力计算 (45)5.5.5 瓦斯泵选型: (45)5.5.6 瓦斯泵站位置 (45)5.5.7 瓦斯抽放参数监测 (45)5.5.8 瓦斯抽放管路的附设装置 (46)第六章安全措施及建议 (47)6.1 安全管理措施及建议 (47)6.2 钻孔施工安全技术措施 (47)6.3 抽放系统管理措施及要求 (48)6.4 煤与瓦斯突出防治系统 (49)6.5 其他和煤矿安全有关的建议与措施 (50)第七章结论与展望 (52)7.1 全文总结 (52)7.2 建议与展望 (52)致谢 (54)第一章国外煤矿安全生产现状分析1.1 我国煤矿安全生产现状分析在我国的能源工业中,煤炭占我国一次能源生产和消费结构中的70%左右,预计到2050年还将占50%以上。
煤矿瓦斯灾害的预防技术论文
煤矿瓦斯灾害的预防技术摘要:搞好煤矿瓦斯灾害的预防工作,首先要提高干部职工对瓦斯及其危害性的认识,其次要抓好四道防线管理工作:第一,即加强矿井通风和瓦斯抽放管理;第二,即加强防火管理;第三,即加强瓦斯监测监控系统管理;第四,即加强职工培训,建设一支高素质的瓦斯管理队伍。
关键词:矿井通风管理;矿井瓦斯抽放管理;防火管理;瓦斯监测监控管理在煤矿生产过程中,井下采掘工作面进行采掘活动时,瓦斯涌出到生产巷道空间,对井下生产活动造成安全威胁。
不论瓦斯涌出量多少,一直是矿井生产中主要危险源,瓦斯灾害防治就成为矿井最根本、最重要的任务。
搞好矿井瓦斯防治工作,就要提高认识,抓好四道防线建设工作。
1 提高认识提高认识,就是要通过学习、培训,提高每个干部职工对瓦斯的认识,特别是对瓦斯危险性的认识。
掌握瓦斯的物理性质、化学性质、瓦斯爆炸的3 个条件,瓦斯事故前的预兆、特点和规律,掌握灾害预防、事故抢险、矿山救护的基本知识和一般技能,增强安全意识和自主保安能力。
通过提高认识,确立正确的安全指导思想,正确处理安全与生产的关系;坚持“安全第一、预防为主、综合治理”的安全生产方针,坚持“先抽厚采、监测监控、以风定产”十二字方针,构建“十六字”的煤矿瓦斯综合治理工作体系。
优化矿井生产布局,在确保安全的前提下,合理组织生产。
2 四道防线 2.1 加强通风和瓦斯抽放管理2.1.1 通风是排除瓦斯的最主要手段,井下所有采掘工作面、峒室等巷道都必须保证风量和风速,满足稀释瓦斯到《煤矿安全规程》的规定界限,杜绝瓦斯事故。
首先,对于采煤工作面应预防上隅角的瓦斯超限,保证工作面的风量。
采煤工作面是负压通风,合理的通风系统是保证工作面风量的基础。
整个矿井的生产和通风是相匹配的,为了避免采掘工作面的风量供给不足,首先应该采掘平衡,不要将矿井的采掘活动的安排过于集中。
其次,各采区在开拓工作面时,应该先掘中部车场,避免造成掘进与工作面的串联通风及掘进工作面之间的串联通风。
2024年矿井瓦斯防治安全技术(三篇)
2024年矿井瓦斯防治安全技术矿井瓦斯是指从煤岩中释放出的气体的总称,主要成分是甲烷(CH4),其次为氮气和二氧化碳,还有烃类气体等。
瓦斯是一种无色、无味的气体。
由于瓦斯的比重轻,容易聚集在巷道的上部。
瓦斯的渗透性很强,封闭在采空区内的瓦斯能不断地渗透到矿内空气中,从而增加空气中的瓦斯浓度。
空气中瓦斯浓度增加会相对降低空气中氧的含量。
当瓦斯浓度达到40%时,因缺乏氧气会使人窒息死亡。
瓦斯具有燃烧性与爆炸性。
瓦斯与空气混合达到一定浓度后,遇火能燃烧或爆炸,对矿井威胁很大。
井下瓦斯爆炸产生的高温、高压和大量有害气体,能形成破坏力很强的冲击波,不但伤害职工生命,而且会严重地摧毁矿井巷道和井下设备。
有时,还可能引起煤尘爆炸和井下火灾,从而扩大灾害的危险程度。
矿井瓦斯在煤体及围岩中的存在状态有游离状态(也称自由状态)和吸附状态两种。
(一)瓦斯含量及涌出量1.瓦斯含量及其影响因素瓦斯含量是指单位体积或单位质量的煤体或围岩中所含有的瓦斯量,单位通常用m3/m3、m3/t来表示。
瓦斯含量是确定矿井瓦斯涌出量的基础数据,是矿井通风及瓦斯抽放设计的重要参数。
影响煤体瓦斯含量的因素很多,可概括为两类:一类是影响瓦斯生成量多少的因素,如成煤前含有机质的量,煤化程度;另一类是瓦斯的保存和放散条件,如煤的性质,煤层赋存状况,煤层顶、底板和覆盖层的性质、厚度等。
2.矿井瓦斯涌出的形式瓦斯涌出是指储存在煤体内的部分瓦斯离开煤体而涌入采掘空间。
瓦斯涌出的形式分为普通涌出和特殊涌出两种。
瓦斯由煤层或岩层表面非常微细的裂隙和孔隙中缓慢、均匀而持久地涌出称为普通涌出。
瓦斯特殊涌出包括瓦斯喷出与突出,即在压力状态下,在很短的时间内自采掘工作面的局部地区,突然涌出大量的瓦斯或伴随瓦斯突然涌出有大量的煤和岩石被抛出。
3.矿井瓦斯涌出量的表示方法和主要影响因素矿井瓦斯涌出量是指开采过程中正常涌入采掘空间的瓦斯数量,通常用单位时间或单位质量的煤所放出的瓦斯数量来表示。
煤矿瓦斯治理论文煤矿瓦斯论文:煤矿瓦斯灾害防治技术探讨
煤矿瓦斯治理论文煤矿瓦斯论文:煤矿瓦斯灾害防治技术探讨摘要:在分析目前煤矿瓦斯治理存在问题的基础上,提出了利用井下水力压裂技术和地面采动井抽采与常规的井下瓦斯抽采技术相结合的综合瓦斯治理措施,分别阐述了煤矿井下水力压裂和地面采动井的原理和应用情况,实践表明:煤矿井下定向压裂增透消突成套技术可有效提高瓦斯抽采率,降低煤与瓦斯突出危险性,改善井下作业环境;地面采动井可“一井三用”,对抽放采动区域瓦斯效果较好。
关键词:煤矿;瓦斯;水力压裂;采动井我国是世界第一大产煤国,煤炭在我国一次能源消费中约占70%左右,因而煤炭行业是关系我国国家经济命脉的重要基础产业。
然而,煤炭行业又是我国安全生产形势最为严峻的行业之一,预防和控制煤矿重特大事故的发生,促进煤矿安全生产形势的根本好转已成为国家和政府层面上急需解决的重大问题,也是我国安全生产工作的核心任务。
在所有煤矿灾害事故中,尤以瓦斯事故为重,其中主要以煤与瓦斯突出以及由瓦斯超限而造成的瓦斯爆炸为最主要的表现形式。
近年来,虽然煤矿瓦斯防治工作已取得阶段性成效,但仍没有从根本上遏制重大瓦斯事故的发生,2008年全国共煤矿发生瓦斯事故182起,死亡778人,其中较大瓦斯事故63起,死亡290人;重特大瓦斯事故18起,死亡352人〔1〕。
瓦斯灾害已成为制约高效集约化开采技术发展和安全生产的最重要因素,常规或单一的瓦斯灾害防治技术已不能满足煤矿高效安全生产的需要,强化瓦斯抽采才是防止瓦斯灾害事故最有效的根本途径。
针对我国煤层赋存条件复杂,瓦斯抽采率低的特点,提出利用井下水力压裂技术和地面采动井抽采与常规的井下瓦斯抽采相结合的综合瓦斯治理新思路,以供商榷。
1瓦斯灾害防治技术评析1.1瓦斯治理存在的问题及解决思路我国煤储层构造复杂,且煤层多强烈变形〔2〕,多数煤田煤体构造破碎严重,Ⅲ、Ⅳ类煤所占比例较重,煤质松软、坚固性系数偏小,煤层透气性低,渗透率一般在(0.001~0.1)×10-3μm范围内,瓦斯抽采效果不佳,造成瓦斯治理困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤矿瓦斯及其防治技术探讨1、我国煤矿安全生产现状分析我国95%的煤矿开采是地下作业。
煤矿事故占工矿企业一次死亡10人以上特大事故的72.8%至89.6%(2002-2005年);煤矿企业一次死亡10人以上事故中,瓦斯事故占死亡人数的71%。
煤矿所面临的重大灾害事故是相当严峻的,造成的损失是极其惨重的。
由于煤矿事故多,死亡人数多,造成了我国煤矿的百万吨死亡率一直居高不下。
特别是煤矿重大及特大瓦斯(煤尘)灾害事故的频发,不但造成国家财产和公民生命的巨大损失,而且严重影响了我国的国际声誉。
实际上,这些瓦斯事故的发生不是偶然的,它是以往煤矿生产过程中存在问题的集中暴露,涉及许多方面。
既有自然因素、科技投入和研究的不足,也有人为因素以及国家的体制、管理、经济政策,社会的传统观念,煤矿企业的文化素质等。
2、瓦斯赋存及流动规律2.1 瓦斯在煤层中的流动机理瓦斯在煤层中的流动是一个十分复杂的运移过程,主要取决于煤层介质的孔隙结构和瓦斯在煤层中的赋存状态。
煤是一种多孔的微裂隙发育的介质,微裂隙间含有孔隙和大部分与微裂隙相连的毛细管通路,而孔隙和毛细管通路的数目是变化的,它们之间或多或少,变化到几mm不等。
互有联系,其直径由几m瓦斯在煤层中主要是以吸附和游离状态赋存在煤体中的,其中呈游离状态压缩在微裂隙和大孔隙中的较少,大部分为吸附在煤体中。
根据煤体中的孔隙分布和煤层中的联系系统以及周世宁教授的研究表明:瓦斯在煤层中的流动主要是层流渗透运动和扩散运动,其中前者基本上服从Darcy渗透定律,且主要发生在煤体大孔和微裂隙中;后者则基本上服从Fick扩散定律,且主要发生在煤体微孔隙之中。
因此,瓦斯在煤体中的运动可以认为是一个扩散渗透的过程。
2.2 煤的吸附理论及煤层瓦斯含量2.2.1 瓦斯赋存状态煤中瓦斯的赋存状态一般有吸附状态和游离状态两种。
固体表面的吸附作用可以分为物理吸附和化学吸附2种类型,煤对瓦斯的吸附作用是物理吸附,是瓦斯分子和碳分子间相互吸引的结果,如图2-1所示。
在被吸附的瓦斯中,通常以将进入煤体内部的瓦斯称为吸收瓦斯,把附着在煤体表面的瓦斯称为吸着瓦斯,吸收瓦斯和吸着瓦斯统称为吸附瓦斯。
在煤层赋存的瓦斯量中,通常吸附瓦斯量占80%~90%,游离瓦斯量占10%~20%;在吸附瓦斯量中又以煤体表面吸着的瓦斯量占多数。
在煤体中,吸附瓦斯和游离瓦斯在外界条件不变的条件下处于动态平衡状态,吸附状态的瓦斯分子和游离状态的瓦斯分子处于不断的交换之中;当外界的瓦斯压力或温度发生变化或给予冲击和振荡、影响了分子的能量时,则会破坏其动态平衡,而产生新的平衡状态。
煤是一种多孔介质,煤体吸附瓦斯是煤的一种自然属性,煤体表面吸附瓦斯量的多少,与煤体表面积的大小密切相关,而煤体表面积的大小则和煤体孔隙特征有关。
因此,煤体孔隙特征对吸附瓦斯有重要的作用。
1-游离瓦斯;2-图2-1 煤体中瓦斯的赋存状态2.2.2 煤的吸附性及其影响因素分析煤之所以具有吸附性是由于煤结构中分子的不均匀分布和分子作用力的不同所致,这种吸附性的大小主要取决于3个方面的因素,即:一是煤结构、煤的有机组成和煤的变质程度;二是被吸附物质的性质;三是煤体吸附的环境条件。
由于煤对瓦斯的吸附是一种可逆现象,吸附瓦斯所处的环境条件就显得尤为重要。
煤中吸附瓦斯量的大小主要取决于煤化变质程度、煤中水分、瓦斯性质、瓦斯压力以及吸附平衡温度等。
(1)瓦斯压力。
实验研究表明:在给定的温度下,吸附瓦斯量与瓦斯压力的关系呈双曲线变化,如图2-2所示,从图中可以看出:随着瓦斯压力的升高煤体吸附瓦斯量增大;当瓦斯压力大于3.0MPa时,吸附的瓦斯量将趋于定值。
(2)吸附温度。
目前的实验研究表明:温度每升高1C0,煤吸附瓦斯的能力将降低约8%。
其原因主要是:温度的升高,使瓦斯分子活性增大,故而不易被煤体所吸附;同时,已被吸附的瓦斯分子又易获得动能,会产生脱附现象,使吸附瓦斯量降低。
(3)瓦斯性质。
对于指定的煤,在给定的温度与瓦斯压力条件下,煤对二氧化碳的吸附量比甲烷的吸附量高,而对甲烷的吸附量又大于对氮气的吸附量。
图2-2吸附瓦斯量与瓦斯压力关系图(4)煤的变质程度。
煤的瓦斯生成量及煤的比表面积和煤的变质程度有关。
一般情况下,从中等变质程度的烟煤到无烟煤,相应的吸附量呈快速增加状态。
(5)煤中水分。
水分的增加会使煤的吸附能力降低。
目前可以采用俄罗斯煤化学家艾琴格尔的经验公式来确定煤的天然水分对甲烷吸附量的影响。
2.3 煤层瓦斯流动理论研究煤层瓦斯流动理论是专门研究煤层内瓦斯压力分布及瓦斯流动变化规律的理论,根据应用范围和使用条件的不同,煤层瓦斯流动理论有以下几种。
2.3.1 线性瓦斯流动理论线性瓦斯渗流理论认为,煤层内瓦斯运移基本符合线性渗透定律—达西定律(Dracy’s law) ,1856年,法国水力学家Darcy 通过实验总结出了著名的Darcy 定律:dxdp dx dp K v λμ-=•-= (1) 式中: v ———流速,m/s ; μ———瓦斯动力粘度系数,Pa·s ;K ———煤层的渗透率,m 2;dx ———和流体流动方向一致的极小长度,m ;dp ———在d x 长度内的压差,Pa ;λ———煤层透气系数,m 2/(MPa 2·d) 。
Darcy 定律是在常温和常压条件下,各向同性砂柱中的一维流动过程实验得到的结果。
在直角坐标系中,若以vx , vy , vz 表示三个坐标方向上的渗流速度分量,就得到三维流动下的Darcy 定律:zp v y p v x p v z y x ∂∂-=∂∂-=∂∂-=λλλ,, (2) Darcy 定律有一定的适用范围,超出这个范围就不再符合Darcy 定律了。
雷诺数Re 是个无量纲的数,用来表示作用在流体上的惯性力和粘滞力之比,它是判别层流和紊流的准则。
同样,多孔介质流体的雷诺数Re 为:γvdR e = (3)式中:d ———孔隙骨架的代表性长度,m ;v ———流体的渗流速度,m/s ;γ———流体的运动粘滞系数,m 2/s 。
经验表明,当Re 在1~10 之间时,属低雷诺数区,粘滞力占优势,流体的运动符合Darcy 定律。
2.3.2 瓦斯扩散理论煤是一种典型的多孔介质,根据气体在多孔介质中的扩散机理的研究,可以用表示孔隙直径和分子运动平均自由程相对大小的诺森数λd Kn = (4) 式中:d ———孔隙平均直径,m ;λ———气体分子的平均自由程,m 。
将扩散分为一般的菲克( Fick) 型扩散、诺森(Knudsen) 型扩散和过渡型扩散。
Kn ≥10 时,孔隙直径远大于瓦斯气体分子的平均自由程,这时瓦斯气体分子的碰撞主要发生在自由瓦斯气体分子之间,而分子和毛细管壁的碰撞机会相对较少,此类扩散仍然遵循菲克定理,称为菲克型扩散。
当Kn ≤0. 1 时,分子的平均自由程大于孔隙直径,此时瓦斯气体分子和孔隙壁之间的碰撞占主导地位,而分子之间的碰撞退居次要地位,此类扩散不再遵循菲克扩散,而为诺森扩散。
当0. 1 < Kn < 10 时,孔隙直径与瓦斯气体分子的平均自由程相似,分子之间的碰撞和分子与面的碰撞同样重要,因此此时的扩散是介于菲克型扩散与诺森扩散之间的过渡型扩散。
由于多孔特性及其大分子结构,煤是一种良好的吸附剂,当瓦斯气体分子被强烈地吸附于煤的固体表面时,就产生表面扩散。
对吸附性极强的煤来说,表面扩散占有很大比重。
当孔隙直径与瓦斯气体分子尺寸相差不大,压力足够大时,瓦斯气体分子就会进入微孔隙中以固溶体存在,发生晶体扩散,在煤体扩散中一般比较小。
1、菲克型扩散当Kn ≥10 时,由于孔隙直径远大于瓦斯气体分子的平均自由程,因此扩散是由于瓦斯气体分子之间的无规则运动引起的,可以用菲克扩散定律去描述,即XC D J f ∂∂-= (5) 式中:J ———瓦斯气体通过单位面积的扩散速度,kgP(s·m2 ) ;X C∂∂———沿扩散方向的浓度梯度;D f ———菲克扩散系数,m 2/s ;C ———瓦斯气体的浓度,kg/m 2 。
等式中由于扩散是沿着浓度减少的方向进行的,而扩散系数总是正的,故式中要加一个负号。
由于孔道是弯曲的各种形状,同时又是相互连通的通道,所以扩散路径因孔隙通道的曲折而增长,孔截面收缩可使扩散流动阻力增大,从而使实际的扩散通量减少。
考虑以上因素,瓦斯气体分子在煤层内有效扩散系数可定义为:τθf fe D D = (6)式中:D fe ———瓦斯气体在煤层内的有效Fick 扩散系数,m 2/s ;θ———有效表面孔隙率;τ———曲折因子,为修正扩散路径变化而引入的。
对于给定状态的某种瓦斯气体来讲,菲克型扩散的扩散系数大小取决于煤本身的孔隙结构特征。
2、诺森型扩散当Kn ≤0. 1 时,瓦斯气体在煤层中的扩散属于诺森型扩散,根据分子运动论,在半径为r 的孔隙内,由于壁面的散射而引起的瓦斯分子扩散系数为:MRT r D k π832= (7) 式中:D k ———诺森扩散系数;r ———孔隙平均半径,m ;R ———普适气体常数;T ———绝对温度,K ;M ———瓦斯气体分子量。
若考虑有效表面孔隙率、曲折因子半径变化等因素,则有效扩散系数为:MRT s M RT s D D k ke πρτθπρθτθ2388342=-== (8) 式中:s ———煤粒的比表面积,m 2/kg ;ρ———煤密度,kg/m 3 。
从上式中可以看出,诺森扩散系数与煤的结构和煤层的温度等有关。
3、过渡型扩散当0. 1 < Kn < 10 时,孔隙直径与瓦斯气体分子的平均自由程相近,分子之间的碰撞和分子与壁面的碰撞同样重要,扩散过程受两种扩散机理的制约,在恒压下其有效扩散系数与菲克扩散和诺森扩散系数的关系为:ke fe pe D D D 111+= (9)4、表面扩散对于凸凹不平的煤粒表面,具有表面势阱强度即表面能量Ea ,当瓦斯气体分子的能量等于表面能ΔEa 时,气体分子在煤表面形成表面扩散,见图2-3。
图2-3 瓦斯气体在煤表面上的表面扩散表面扩散经常同普通的菲克型扩散在煤层较大孔隙中同时进行,使扩散的总通量增大;另一种情况是当瓦斯气体被煤表面强烈吸附时,吸附层增厚使得瓦斯气体扩散通量减少。
5、晶体扩散煤晶体内的扩散阻力较大,扩散通量较小。
由煤大分子结构可知,煤是由周边联结有多种原子基团的缩聚芳香稠环、氢化芳香稠环通过各种桥键和交联键合边联结而成,在其中含有各种缺陷、位错或空位。
当瓦斯气体压力较低时,不易进入到芳香层之间或碳分子之间;而当瓦斯压力较高时,瓦斯气体分子则可能进入芳香层缺陷或煤物质大分子之间,发生晶体扩散。
当孔隙半径与瓦斯气体分子大小相差不大,且压力足够大时,瓦斯气体分子可以进入到煤微孔隙中以固溶体(取代式固溶体、填隙式固溶体) 形式存在,且不易脱附。