锐角三角函数的技巧及练习题
锐角三角变换经典练习题附带答案

锐角三角变换经典练习题附带答案锐角三角变换是三角学中的重要概念,是一种将锐角三角函数互相转换的方法。
掌握锐角三角变换可以简化计算过程,提高计算准确性。
下面是一些经典的锐角三角变换练题,附带答案供参考。
1. 计算 $\sin(90° - x)$ 的值。
- 解答:根据余角公式,$\sin(90° - x) = \cos x$。
2. 计算 $\cos(90° - x)$ 的值。
- 解答:根据余角公式,$\cos(90° - x) = \sin x$。
3. 计算 $\tan(90° - x)$ 的值。
- 解答:根据余角公式,$\tan(90° - x) = \cot x$。
4. 计算 $\cot(90° - x)$ 的值。
- 解答:根据余角公式,$\cot(90° - x) = \tan x$。
5. 计算 $\sec(90° - x)$ 的值。
- 解答:根据余角公式,$\sec(90° - x) = \csc x$。
6. 计算 $\csc(90° - x)$ 的值。
- 解答:根据余角公式,$\csc(90° - x) = \sec x$。
以上是锐角三角变换的经典练题及答案。
通过这些练,可以更好地理解锐角三角变换的概念,并熟练运用余角公式进行计算。
锐角三角变换在解决三角函数计算问题中起到了重要的作用,值得深入研究和掌握。
注意:以上答案中的角度单位均为度。
锐角三角变换经典练题附带答案锐角三角变换是三角学中的重要概念,是一种将锐角三角函数互相转换的方法。
掌握锐角三角变换可以简化计算过程,提高计算准确性。
下面是一些经典的锐角三角变换练题,附带答案供参考。
1. 计算 $\sin(90° - x)$ 的值。
- 解答:根据余角公式,$\sin(90° - x) = \cos x$。
锐角三角函数知识点及典型题目

锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)A 90B 90∠-︒=∠︒=∠+∠得由B A对边邻边CA90B 90∠-︒=∠︒=∠+∠得由B A锐角三角函数1.三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A B .23 C .34D .3.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )A .sin A =B .1tan 2A =C .cos 2B =D .tan B =5.如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( ) A .23B .32C .34D .436.如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若AC =AB =tan BCD ∠的值为( )(A(B(C(D7.在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . 8.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则sin α= .9.如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2.10.如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干? 11.如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;ACBDO(2)如果10AD AB =,=6,求sin EDF ∠的值.12.如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.13.在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值. 14.如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长. 一、选择题1. sin30°的值为( )ABC .12D2.菱形OABC在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,则点B 的坐标为( )A.B. C.11),D.1)3.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B. CDDABC E4.已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒80 5. A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .123⎛- ⎝⎭,B .23⎛- ⎝⎭,C .123⎛-- ⎝⎭,D .122⎛⎫- ⎪ ⎪⎝⎭, 6.计算:2cos 45tan 60cos30+等于( )(A )1 (B (C )2 (D7. 104cos30sin60(2)2008)-︒︒+--=______.8.如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.计算:(1)1sin 60cos302-=. 10.计算sin 60tan 45cos30︒-︒︒的值是 。
专题——求锐角三角函数值的常用方法+课件+2024-2025学年鲁教版(五四制)九年级数学上册

【解】连接 EF,设 CF=k. 则 CD=AD=AB=BC=4k,∴DF=3k. ∵E 为 BC 的中点,∴BE=EC=2k,
根据勾股定理,得 AF=5k,EF= 5k,AE=2 5k,
∴EF2+AE2=25k2=AF2. ∴△AEF 是直角三角形,且∠AEF=90°.
∴sin∠EAF=EAFF= 55kk= 55,
(2)利用(1)中的结论,解答下面问题:已知∠α 与∠β 互余, sin α=25,求 sin β 的值. 【解】∵∠α 与∠β 互余,∴sin2α+sin2β=1, ∴sin β= 1-sin2α=
返回
6.如图,在正方形 ABCD 中,E 为 BC 的中点,点 F 在 CD 边上,且 CF=14CD,求∠EAF 的正弦值、余弦值.
的面积为 5,则 sin ∠CEF 的值为( )
A.35 C.45
B.
5 5
D.2 5 5
【点拨】连接 BF. ∵CE 是斜边 AB 上的中线,EF⊥AB, ∴EF 是 AB 的垂直平分线. ∴AF=BF,S△ AFE=S△ BFE=5. ∴∠FBA=∠A,S△AFB=10=12AF·BC. ∵BC=4,∴AF=BF=5. 在 Rt△ BCF 中,BC=4,BF=5,∴CF= 52-42=3.
cos∠EAF=AAEF=2
5k5k=2 5
5 .
【点方法】当出现边与边的比时,可引入参数,用 这个参数表示三角形三边长,再用定义求解.
返回
7.如图,在 Rt△ACB 中,∠C=90°,D 是 AC 的中点, AC=8,tan A=12,求 sin∠ABD 的值.
【解】过点 D 作 DE⊥AB 于点 E. ∵D 是 AC 的中点,∴AD=CD=12AC=12×8=4. ∵在 Rt△ABC 中,tan A=BACC=12,AC=8,∴BC=4. ∴BD2=CD2+BC2=32,∴BD=4 2.
锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。
一、 化简或求值例1 (1)已知tan 2cot 1a a -=,且a 是锐角,求22tan cot 2a a +-的值。
(2)化简()()22sin cos cos sin a b a b a a a a ++-。
分析分析 (1)由已知可以求出tan a 的值,化简22tan cot 2a a +-可用1tan cot a a =×;(2)先把平方展开,再利用22sin cos 1a a +=化简。
化简。
解 (1)由tan 2cot 1a a -=得2tan 2tan a a -=,解关于tan a 的方程得tan 2a =或tan 1a =-。
又a 是锐角,∴tan 2a =。
∴22tan cot 2a a +-=22tan 2tan cot cot a a a a -×+=2(tan cot )a a -=tan cot a a -。
由tan 2a =,得1cot 2a =,∴22tan cot 2a a +-=tan cot a a -=13222-=。
(2)()()22sin cos cos sin a b a b a a a a ++-=2222sin 2sin cos cos a ab b a a a a +××++2222cos 2cos sin sin a ab b a a a a -××+=()()222222sin cos sin cos a b a a a a +++=22a b +。
说明说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1a a +=,tan cot 1a a ×=等。
等。
二、已知三角函数值,求角例2 在△ABC 中,若223cos sin 022A B æö-+-=ç÷ç÷èø(),A B ÐÐ均为锐角,求C Ð的度数。
锐角三角函数知识点总结与典型习题

锐角三角函数知识点总结讲义1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、0°、30°、45°、60°、90°特殊角的三角函数值(重要)5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大A 90B 90∠-︒=∠︒=∠+∠得由B A邻边直角三角形中 的边角关系解直角三角形一、知识性专题专题1:锐角三角函数的定义例 1 在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 ( )A .sin A =32 B .tan A =12C .cos B =32D .tan B =3 分析 sin A =BC AB =12,tan A =BC AC =33,cos B =BC AB =12.故选D.例2 在△ABC 中,∠C =90°,cos A =35,则tan A 等于 ;分析 在Rt △ABC 中,设AC =3k ,AB =5k ,则BC =4k ,由定义可知tan A =4433BC k AC k ==.分析 在Rt △ABC 中,BC =222254AB AC -=-=3,∴sin A =35BC AB =.故填35.例3(12·哈尔滨)在Rt △ABC 中,∠C=900,AC=4,AB=5,则sinB 的值是 ; 例4(2012内江)如图4所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为 ;例5 ( 2012宁波),R t △ABC,∠C=900,AB=6,cosB=23,则BC 的长为 ;例6(2012贵州铜仁)如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctan α, 即ctan α=BCAC=的对边角的邻边角αα,根据上述角的余切定义,解下列问题:(1)ctan30◦= ;(2)如图,已知tanA=43,其中∠A 为锐角,试求ctanA 的值.例7(2012山东滨州)把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 例8(2012湖南)观察下列等式 ①sin30°= cos60°=②sin45°=cos=45°=③sin60°=cos30°=根据上述规律,计算sin 2a+sin 2(90°﹣a )= .C BA图4DC B A图4例9 (2012山东德州)为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如下图形,其中AB BE ⊥,EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有哪 组【解析】对于①,可由公式AB=BC ×tan ∠ACB 求出A 、B 两点间的距离;对于②,可设AB 的长为x ,则BC=x tan ACB∠,BD=xtan ADB ∠,BD-BC=CD ,可解出AB .对于③,易知△DEF ∽△DBA ,则DE BDEF AB=,可求出AB 的长;对于④无法求得,故有①、②、③三组【点评】此题考查解直角三角形和三角形相似的性质与判定.在直角三角形中至少要有已知一边和一角才能求出其他未知元素;判定两三角形相似的方法有:AA ,SAS ,SSS ,两直角三角形相似的判定还有HL .例10(2012江苏泰州18)如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .例11. (2011江苏苏州)如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于 .分析:根据三角形的中位线定理即可求得BD 的长,然后根据勾股定理的逆定理即可证得△BCD 是直角三角形,然后根据正切函数的定义即可求解.解答:解:连接BD .∵E 、F 分別是AB 、AD 的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD 是直角三角形.∴tanC= 43例12(2011山东日照)在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( ) ABCDEFFA .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1解答:解:根据锐角三角函数的定义,得 A 、tanA•cotA=a b b a ⋅=1,关系式成立;B 、sinA=c a ,tanA•cosA=cac b b a =⋅,关系式成立;C 、cosA=,cotA•sinA=c b a b c a =⋅,关系式成立;D 、tan 2A+cot 2A=(ba )2+(a b)2≠1,关系式不成立.故选D .点评:本题考查了同角三角函数的关系.(1)平方关系:sin 2A+cos 2A=1(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=BAcos sin 或sinA=tanA•cosA .(3)正切之间的关系:tanA•tanB=1. 例13(2011•贵港)如图所示,在△ABC 中,∠C=90°,AD 是BC 边上的中线,BD=4,AD=2,则tan ∠CAD 的值是 .解答:解:∵AD 是BC 边上的中线,BD=4,∴CD=BD=4,在Rt △ACD 中,AC===2,∴tan ∠CAD===2.故选A .例14(2011烟台)如果△ABC 中,sin A =cos B =22,则下列最确切的结论是( )A. △ABC 是直角三角形 B. △ABC 是等腰三角形C. △ABC 是等腰直角三角形D. △ABC 是锐角三角形解:∵sinA=cosB=22,∴∠A =∠B =45°,∴△ABC 是等腰直角三角形.故选C . 例15(2011四川)如图所示,在数轴上点A 所表示的数x 的范围是( )A 、330sin 602sin x ︒︒<< B 、3cos302x ︒︒<<cos45C 、3tan 302x ︒︒<<tan45D 、3cot 4502x ︒︒<<cot3 解答:故选D .同步练习1(2011甘肃)如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ’B ’,则tanB ’的值为 .2 (2011甘肃兰州)点M (-sin60°,cos60°)关于x 轴对称的点的坐标是 . 3(2011广东)已知:45°<A <90°,则下列各式成立的是( ) A 、sinA =cosA B 、sinA >cosA C 、sinA >tanA D 、sinA <cosA 4、(2011•宜昌)教学用直角三角板,边AC=30cm ,∠C=90°,tan ∠BAC=33,则边BC 的长为 .cm5、 (2011福建莆田)如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC=5,则tan ∠AFE 的值为 .6、(2012连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°的角的正切值是 .EC DA BF7、(2012福州)如图15,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)8、(2012南京)如图,将45°的∠AOB 按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合.OB 与尺上沿的交点B 在尺上的读书恰为2厘米,若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数为 厘米.(结果精确到0.1厘米,参考数据sin370≈0.60,cos370≈0.80,tan370≈0.75)ABCC ’ B ’C B AO43219、(2012·湖南张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A =∠D=90°,AB=BC=15千米,CD=23千米,请据此解答如下问题:(1) 求该岛的周长和面积(结果保留整数,参考数据2≈1.41473.13≈ 45.26≈)(2) 求∠ACD 的余弦值.10、(2011新疆建设兵团)如图,在△ABC 中,∠A =90°.(1)用尺规作图的方法,作出△ABC 绕点A 逆时针旋转45°后的图形△AB 1C 1(保留作图痕迹); (2)若AB =3,BC =5,求tan ∠AB 1C 1.AC专题2 特殊角的三角函数值例1(2012,湖北孝感)计算:cos 245°+tan30°·sin60°=________.【答案】1例2(2012陕西)计算:(02cos 45=︒_______例3(2012广安)计算:---)32(218cos45o +13- ;例4 计算|-3|+2cos 45°-1)0.例5 计算-12⎛⎫- ⎪⎝⎭+(-1)2007-cos 60°.例6 计算||+(cos 60°-tan 30°)0例7 计算312-⎛⎫⎪⎝⎭-(π-3.14)0-|1-tan 60°|.例8(2012呼和浩特)计算:11|12sin 45---+︒例9(2011天水)计算:si n 230°+tan 44°tan 46°+si n 260°= . 分析:根据特殊角的三角函数值计算.tanA •tan (90°﹣A )=1. 解答:解:原式=14+1+34=2.故答案为2. 例10(2011•莱芜)若a=3﹣tan60°,则196)121(2-+-÷--a a a a = 。
用锐角三角函数概念解题的常见方法(含答案)

用锐角三角函数概念解题的常见方法1.锐角三角函数(1)锐角三角函数的定义我们规定:sinA=ac,cosA=bc,tanA=ab,cotA=ba.锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2直角三角形中,30°的锐角所对的直角边等于斜边的一半.3.锐角三角函数的性质(1)0<sinα<1,o<cosα<1(0°<α<90°)(2)tan α·cot α=1或tan α=1cot α; (3)tan α=sin cos αα,cot α=cos sin αα. (4)sin α=cos (90°-α),tan α=cot (90°-α).有关锐角三角函数的问题,常用下面几种方法: 一、设参数例1. 在ABC ∆中,︒=∠90C ,如果125tan =A ,那么sinB 的值等于( ) 512.125.1312.135.D C B A 解析:如图1,要求sinB 的值,就是求AB AC 的值,而已知的125tan =A ,也就是125=AC BC 可设k AC k BC 125==, 则k k k AB 13)12()5(22=+=13121312sin ==∴k k B ,选B 二、巧代换例2. 已知3tan =α,求ααααcos sin 5cos 2sin +-的值。
解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式3cos sin tan ==ααα,作代换ααcos 3sin =,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以αcos 。
锐角三角函数及应用经典例题

锐角三角函数及应用经典例题锐角三角函数是指在单位圆上,从原点出发,与 x 轴正半轴之间的夹角小于90° 的角的三角函数。
其中包括正弦函数sinα、余弦函数cosα、正切函数tanα,以及它们的倒数函数cscα、secα、cotα。
锐角三角函数在数学中有广泛的应用,尤其在几何、物理以及工程学中涉及到角度测量、距离计算等方面经常用到。
下面我们来看一些经典的例题,以加深对锐角三角函数的理解:例题1:已知在锐角 ABC 中,边长 BC = 5, AC = 13、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。
解答:由于边长BC=5,AC=13,我们可以根据勾股定理求得边长AB=√(AC^2-BC^2)=12角 A 的正弦值 sinA = BC / AC = 5 / 13,余弦值 cosA = AB / AC = 12 / 13,正切值 tanA = BC / AB = 5 / 12例题2:已知在锐角 ABC 中,角B = 35°,边长 BC = 8、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。
解答:由于已知角B = 35°,边长 BC = 8,我们可以根据正弦函数的定义求得角 A 的正弦值为 sinA = BC / AC。
由于 sinA = BC / AC,我们可以得到 AC = BC / sinA = 8 /sin(180° - A - B)。
根据余弦定理,可以计算出边长AC = √(AB^2 + BC^2 - 2 * AB * BC * cosB)。
代入已知的B = 55° 和 BC = 8,我们可以求得AC = √(AB^2 +8^2 - 2 * AB * 8 * cos35°)。
我们可以进一步根据余弦函数的定义计算 AB 的值,即 cosA = AB / AC,所以 AB = AC * cosA。
新初中数学锐角三角函数的技巧及练习题附答案(1)

新初中数学锐角三角函数的技巧及练习题附答案(1)一、选择题1.如图,△ABC 的外接圆是⊙O ,半径AO=5,sinB=25,则线段AC 的长为( )A .1B .2C .4D .5【答案】C【解析】【分析】 首先连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,又由⊙O 的半径是5,sinB=25,即可求得答案. 【详解】解:连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,∵∠B 和∠D 所对的弧都为弧AC ,∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,∴CD=10,∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45【答案】C【解析】【分析】根据题意画出草图,因为C点位置待定,所以分情况讨论求解.【详解】利用垂径定理可知:AD=3222AE,.sin∠AOD=3,∴∠AOD=60°;sin∠AOE=22,∴∠AOE=45°;∴∠BAC=75°.当两弦共弧的时候就是15°.故选:C.【点睛】此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.3.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )A.833B.433C.8 D.83【答案】A 【解析】【分析】根据折叠性质可得BE=12AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM中,利用∠ABM 的余弦求出BM 的长即可.【详解】∵对折矩形纸片ABCD ,使AD 与BC 重合,AB=4,∴BE=12AB=2,∠BEF=90°, ∵把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A’处,并使折痕经过点B , ∴A ′B=AB=4,∠BA ′M=∠A=90°,∠ABM=∠MBA ′,∴∠EA ′B=30°,∴∠EBA ′=60°,∴∠ABM=30°,∴在Rt △ABM 中,AB=BM ⋅cos ∠ABM ,即4=BM ⋅cos30°,解得:BM=833, 故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.4.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A .78.6米B .78.7米C .78.8米D .78.9米【答案】C【解析】【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度【详解】如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G∵BC 的坡度为1:0.75∴设CF 为xm ,则BF 为0.75xm∵BC=140m∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112∴CF=112m ,BF=84m∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形∵DE=55m ,CE=FG=36m∴DG=167m ,BG=120m设AB=ym∵∠DAB=40°∴tan40°=1670.84120DG AG y ==+ 解得:y=78.8故选:C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.5.为了方便行人推车过某天桥,市政府在10m 高的天桥一侧修建了40m 长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是( )A .B .C .D .【答案】A【解析】【分析】 先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A .【详解】解:因为AC=40,BC=10,sin∠A=BC AC,所以sin∠A=0.25.所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A.点睛:本题考查了计算器-三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.6.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A.3B.33C.23D.23【答案】D【解析】【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC33,∴BD=AB=2m,DC=3,∴tan∠ADC=ACCD23m m+=23故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()A .2244x y +=B .2244x y -=C .2288x y -=D .2288x y += 【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD =12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,∴CD =12AB =AD =4, ∴∠A =∠ACD ,∵EF 垂直平分CD , ∴CE =12CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,∴∠ACD =∠FCE ,∴△CEG ∽△FEC , ∴GE CE =CE FE , ∴y =2FE, ∴y 2=24FE ,∴24y=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,∴24y=x 2﹣4, ∴24y+4=x 2, 故选:A .【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.8.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣2【答案】C【解析】 分析:根据题意可以求得点B 的坐标,从而可以求得k 的值.详解:∵四边形ABCD 是菱形,∴BA=BC ,AC ⊥BD ,∵∠ABC=60°,∴△ABC 是等边三角形,∵点A (1,1),∴OA=,∴BO=,∵直线AC 的解析式为y=x ,∴直线BD 的解析式为y=-x ,∵OB=,∴点B 的坐标为(−,), ∵点B 在反比例函数y=的图象上, ∴,解得,k=-3,故选C .点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.9.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( ) A .3B .43C .5D .13 【答案】A【解析】根据锐角三角函数的性质,可知cosA=AC AB =23,然后根据AC=2,解方程可求得AB=3. 故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A ∠的邻边斜边,然后带入数值即可求解.10.如图,在Rt ABC V 中,90C ∠︒=,30B ∠=︒,AD 是BAC ∠的角平分线,6AC =,则点D 到AB 的距离为( )A .33B 3C .23D .33【答案】C【解析】如图,过点D 作DE ⊥AB 于E ,根据直角三角形两锐角互余的性质可得∠BAC=60°,由AD 为∠BAC 的角平分线可得∠DAC=30°,根据角平分线的性质可得DE=CD ,利用∠DAC 的正切求出CD 的值即可得答案.【详解】∵∠B=30°,∠C=90°,∴∠BAC=60°,∵AD 平分∠BAC ,∴∠DAC=30°,DE=CD ,∵AC=6,∴CD=AC·tan ∠DAC=6×33=23,即DE=23, ∴点D 到AB 的距离为23,故选:C .【点睛】本题考查解直角三角形及角平分线的性质,在直角三角形中,锐角的正弦是角的对边比斜边;余弦是邻边比斜边;正切是对边比邻边;余切是邻边比对边;角平分线上的点到角两边的距离相等;熟练掌握三角函数的定义是解题关键.11.某同学利用数学知识测量建筑物DEFG 的高度.他从点A 出发沿着坡度为1:2.4i =的斜坡AB 步行26米到达点B 处,用测角仪测得建筑物顶端D 的仰角为37°,建筑物底端E 的俯角为30°,若AF 为水平的地面,侧角仪竖直放置,其高度BC=1.6米,则此建筑物的高度DE 约为(精确到0.1米,参考数据:3 1.73370.60sin ≈︒≈,,370.80370.75cos tan ︒≈︒≈,)( )A .23.0米B .23.6米C .26.7米D .28.9米【答案】C【分析】如图,设CB⊥AF于N,过点C作CM⊥DE于M,根据坡度及AB的长可求出BN的长,进而可求出CN的长,即可得出ME的长,利用∠MBE的正切可求出CM的长,利用∠DCM 的正切可求出DM的长,根据DE=DM+ME即可得答案.【详解】如图,设CB⊥AF于N,过点C作CM⊥DE于M,∵沿着坡度为1:2.4i=的斜坡AB步行26米到达点B处,∴BN1 AN 2.4=,∴AN=2.4BN,∴BN2+(2.4BN)2=262,解得:BN=10(负值舍去),∴CN=BN+BC=11.6,∴ME=11.6,∵∠MCE=30°,∴CM=MEtan30︒=11.63,∵∠DCM=37°,∴DM=CM·tan37°=8.73,∴DE=ME+DM=11.6+8.73≈26.7(米),故选:C.【点睛】本题考查解直角三角形的应用,正确构造直角三角形并熟练掌握三角函数的定义及特殊角的三角函数值是解题关键.12.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.303m B.205m C.302m D.156m【答案】D【解析】分析:过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.详解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°.∵△BCD是等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH=32×30=153,∴AD=2DH=156m.故从A地到D地的距离是156m.故选D.点睛:本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.13.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B (﹣2,24b b a a -),由△AOB 为等边三角形,得到2b 4a =tan60°×(﹣2b a ),即可求解;【详解】解:抛物线y =ax 2+bx+c (a >0)过原点O ,∴c =0,B (﹣2,24b b a a-), ∵△AOB 为等边三角形,∴2b 4a=tan60°×(﹣2b a ), ∴b =﹣23;故选B .【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=︒,70DAC ∠=︒,则竹竿AB 与AD 的长度之比为( ).A .2sin70︒B .2cos70︒C .2tan70︒D .2tan 70︒【答案】B【解析】【分析】 直接利用锐角三角函数关系分别表示出AB ,AD 的长,即可得出答案.【详解】解:∵∠BAC=60°,∠DAC=70°,∴cos60°=12AC AB =, 则AB=2AC , ∴cos70°=AC AD,∴AC=AD •cos70°, AD=cos70AC ︒, ∴2cos70AC AC AB AD=︒=2cos70°. 故选:B .【点睛】此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.15.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC .22aD 3 【答案】C 【解析】【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°,∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =16.已知在 Rt ABC 中,∠C = 90°,AC= 8, BC = 15 ,那么下列等式正确的是()A.8sin17A=B.cosA=815C.tan A =817D.cot A=815【答案】D【解析】【分析】根据锐角三角函数的定义进行作答.【详解】由勾股定理知,AB=17;A.15sin17BCAAB== ,所以A错误;B.8cos17ACAAB==,所以,B错误;C.15tan8BCAAC==,所以,C错误;D.cotACABC==815,所以选D.【点睛】本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是本题解题关键.17.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q3a,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ =2×3v =23v ,y =12⨯AB ×BQ =12⨯6v ×23v =63,解得:v =1, 故点P 、Q 的速度分别为:3,3,AB =6v =6=a ,则AC =12,BC =63,如图当点P 在AC 的中点时,PC =6,此时点P 运动的距离为AB +AP =12,需要的时间为12÷3=4,则BQ =3x =43,CQ =BC ﹣BQ =63﹣43=23,过点P 作PH ⊥BC 于点H ,PC =6,则PH =PC sin C =6×12=3,同理CH =3,则HQ =CH ﹣CQ =333,PQ 22PH HQ +39+3,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.18.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosA 的值是( )A .45B .35C .43D .34【答案】B【解析】【分析】根据勾股定理,可得AB 的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】解:在Rt △ABC 中,∠C=90°,AC=3,BC=4,由勾股定理,得22AC BC +cosA=AC AB =35故选:B .【点睛】本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.19.如图,河堤横断面迎水坡AB的坡比是,堤高BC=10m,则坡面AB的长度是()A.15m B.C.20m D.【答案】C【解析】【分析】【详解】解:∵Rt△ABC中,BC=10m,tanA=,∴AC===m.∴AB=m.故选C.【点睛】本题考查解直角三角形的应用(坡度坡角问题),锐角三角函数,特殊角的三角函数值及勾股定理,熟练掌握相关知识点正确计算是本题的解题关键.20.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A3B.3C.32D.33【答案】A 【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°3故选A。
锐角三角函数的技巧及练习题附答案解析

【分析】
根据特殊角的三角函数值计算即可.
【详解】
解:原式 .
故选A.
【点睛】
本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.
8.如图,在 中, , , 为 边上的中线, 平分 ,则 的值()
A. B. C. D.
【答案】D
【解析】
【分析】
根据角平分线定理可得AE:BE=AC:BC=3:4,进而求得AE= AB,再由点D为AB中点得AD= AB,进而可求得 的值.
∴BO′=4 ,CO′=4,
∴BC=AB= ,
∵AC=8,
∴△ABC是等边三角形,
∴∠ABC=60°,
∴CP=BC×sin60°=8× =4 ,BP=4,
BN=4x,BM=2x,
, ,
∴ ,
又∵∠NBM=∠CBP,
∴△NBM∽△CBP,
∴∠NMB=∠CPB=90°,
∴ ;
∴ ,
即y= ,
当2<x⩽4时,作NE⊥AB,垂足为E,
【详解】
解:∵ 平分 ,
∴点E到 的两边距离相等,
设点E到 的两边距离位h,
则S△ACE= AC·h,S△BCE= BC·h,
∴S△ACE:S△BCE= AC·h: BC·h=AC:BC,
又∵S△ACE:S△BCE=AE:BE,
∴AE:BE=AC:BC,
∵在 中, , ,
∴AC:BC=3:4,
∴AE:BE=3:4
∴
在Rt△ADC中,DC2=AC2﹣AD2,
∴
即a2+c2=b2+ac,
∴
故选C.
【点睛】
本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.
初中数学锐角三角函数的技巧及练习题附解析

初中数学锐角三角函数的技巧及练习题附解析一、选择题1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( )A .23B .22C .10D .243【答案】D 【解析】【分析】分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,∵点O 为△ABC 边 AC 的中点,AC=8,∴AO=CO=4,∵∠AOD =120°,∴∠AOB=60°,∠COD=60°, ∴342AM AM sin AOB AO ===∠, 342CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ⨯===g △ 12231232BD CN S ⨯===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形故选:D.【点睛】本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键.2.如图,在ABC ∆中,4AC =,60ABC ∠=︒,45C ∠=︒,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( )A .22B .223C .23D .322【答案】C【解析】【分析】在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD−DE 即可求出AE 的长度.【详解】∵AD ⊥BC∴∠ADC=∠ADB=90︒在Rt △ADC 中,AC=4,∠C=45︒∴AD=CD=22在Rt △ADB 中,AD=22ABD=60︒∴326. ∵BE 平分∠ABC ,∴∠EBD=30°.在Rt △EBD 中,BD=263,∠EBD=30° ∴3223 ∴AE=AD −DE=22223=23 故选:C【点睛】本题考查了等腰直角三角形的性质,以及利用特殊角三角函数解直角三角形.3.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(31)π+【答案】C【解析】【分析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.可计算边长为2,据此即可得出表面积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.∴正三角形的边长32 ==.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为12222ππ⨯⨯=,∵底面积为2rππ=,∴全面积是3π.故选:C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.35B.45C.34D.43【答案】C【解析】试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4.∵∠A=12∠BOC ,∴∠A=∠BOD. ∴tanA=tan ∠BOD=43BD OD =. 故选D .考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.5.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A 5B .35C .22D .23【答案】B【解析】【分析】先根据翻折变换的性质得到DEF AEF ∆≅∆,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.【详解】解:∵△DEF 是△AEF 翻折而成,∴△DEF ≌△AEF ,∠A =∠EDF ,∵△ABC 是等腰直角三角形,∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,∴∠BED =∠CDF ,设CD =1,CF =x ,则CA =CB =2,∴DF =FA =2﹣x ,∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2﹣x )2,解得:34x =, 3sin sin 5CF BED CDF DF ∴∠=∠==. 故选:B .【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.6.如图,点E 从点A 出发沿AB 方向运动,点G 从点B 出发沿BC 方向运动,同时出发且速度相同,DE GF AB =<(DE 长度不变,F 在G 上方,D 在E 左边),当点D 到达点B 时,点E 停止运动.在整个运动过程中,图中阴影部分面积的大小变化情况是( )A .一直减小B .一直不变C .先减小后增大D .先增大后减小【答案】B【解析】【分析】连接GE ,过点E 作EM ⊥BC 于M ,过点G 作GN ⊥AB 于N ,设AE=BG=x ,然后利用锐角三角函数求出GN 和EM ,再根据S 阴影=S △GDE +S △EGF 即可求出结论.【详解】解:连接GE ,过点E 作EM ⊥BC 于M ,过点G 作GN ⊥AB 于N设AE=BG=x ,则BE=AB -AE=AB -x ∴GN=BG·sinB=x·sinB ,EM=BE·sinB=(AB -x )·sinB ∴S 阴影=S △GDE +S △EGF=12DE·GN +12GF·EM =12DE·(x·sinB )+12DE·[(AB -x )·sinB] =12DE·[x·sinB +(AB -x )·sinB] =12DE·AB·sinB∵DE、AB和∠B都为定值∴S阴影也为定值故选B.【点睛】此题考查的是锐角三角函数和求阴影部分的面积,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.7.直角三角形纸片的两直角边长分别为6,8,现将ABCV如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE∠的值是()A.247B.7C.724D.13【答案】C【解析】试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+62,解得x=254,故CE=8-254=74,∴tan∠CBE=724 CECB=.故选C.考点:锐角三角函数.8.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A.3B.33C.23D.23【答案】D【解析】【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt △ABC 中,∵∠C =90°,∠ABC =30°,∴AB =2AC =2m ,BC =3AC =3m ,∴BD =AB =2m ,DC =2m+3m ,∴tan ∠ADC =AC CD =23m m+=2﹣3. 故选:D .【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则c a a b c b+++的值为( )A .12B 2C .1D 2【答案】C【解析】【分析】先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin60︒=cos60°=12,可求13,,22DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.【详解】解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°,∴13,,2DB c AD == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝⎭, 即a 2+c 2=b 2+ac ,∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b++++++++++====++++++++++ 故选C .【点睛】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.10.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A.60海里B.45海里C.3D.3【答案】D【解析】【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:22303AB AP-=故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.11.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A.45B.35C.43D.34【答案】B【解析】【分析】根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB=22AC BC +=5cosA=AC AB =35故选:B .【点睛】 本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.如图,△ABC 的外接圆是⊙O ,半径AO=5,sinB=25,则线段AC 的长为( )A .1B .2C .4D .5【答案】C【解析】【分析】 首先连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,又由⊙O 的半径是5,sinB=25,即可求得答案. 【详解】解:连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,∵∠B 和∠D 所对的弧都为弧AC ,∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,∴CD=10,∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.13.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且3cos 5α=,则AC 的长为( )A .3B .163C .203D .165【答案】C【解析】【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC .【详解】解:∵DE ⊥AC ,∴∠ADE+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠ACD=∠ADE=α,∵矩形ABCD 的对边AB ∥CD ,∴∠BAC=∠ACD ,∵cos α=35,35AB AC ∴=, ∴AC=520433⨯=. 故选:C .【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键.14.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.15.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.5342π-B.5342π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=323BCAB==,∴∠A=30°,∴OH=12OA=3,AH=AO•cos∠A=3332⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()2603113232322360π⨯⨯⨯-⨯⨯-=5342π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A 的正对记作sadA ,即sadA =底边:腰.如图,在ABC ∆中,AB AC =,2A B ∠=∠.则sin B sadA ⋅=( )A .12B .2C .1D .2【答案】C【解析】【分析】证明△ABC 是等腰直角三角形即可解决问题.【详解】解:∵AB=AC ,∴∠B=∠C ,∵∠A=2∠B ,∴∠B=∠C=45°,∠A=90°,∴在Rt △ABC 中,BC=sin AC B ∠=2AC , ∴sin ∠B •sadA=1AC BC BC AC=g , 故选:C .【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(23)2--B .33(2222---C .3(3,22--D .(3)-【解析】【分析】过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==22=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=︒,70DAC ∠=︒,则竹竿AB 与AD 的长度之比为( ).A .2sin70︒B .2cos70︒C .2tan70︒D .2tan 70︒【解析】【分析】直接利用锐角三角函数关系分别表示出AB,AD的长,即可得出答案.【详解】解:∵∠BAC=60°,∠DAC=70°,∴cos60°=1 2ACAB=,则AB=2AC,∴cos70°=ACAD,∴AC=AD•cos70°,AD=cos70AC︒,∴2cos70ACACABAD=︒=2cos70°.故选:B.【点睛】此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.19.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A.14B.16C.26D.310【答案】B【解析】【分析】过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=12x,CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x+=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.20.如图,已知圆O的内接六边形ABCDEF的边心距2OM=,则该圆的内接正三角形ACE的面积为()A.2 B.4 C.63D.43【答案】D【解析】【分析】连接,OC OB,过O作ON CE⊥于N,证出COB∆是等边三角形,根据锐角三角函数的定义求解即可.【详解】解:如图所示,连接,OC OB ,过O 作ON CE ⊥于N ,∵多边形ABCDEF 是正六边形,∴60COB ∠=o ,∵OC OB =,∴COB ∆是等边三角形,∴60OCM ∠=o ,∴sin OM OC OCM =•∠, ∴43()sin 60OM OC cm ︒==. ∵30OCN ∠=o , ∴123,22ON OC CN ===, ∴24CE CN ==, ∴该圆的内接正三角形ACE 的面积123344323=⨯⨯⨯=, 故选:D .【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC 是解决问题的关键.。
专题06锐角三角函数重难点突破解析版

专题06 锐角三角函数重点锐角三角函数的概念,特殊角的三角函数值,利用计算器求锐角三角函数值难点锐角三角函数之间的关系易错混淆特殊角的三角函数值一、锐角三角函数概念熟记锐角三角函数的概念,可以简记为“正弦等于对比斜,余弦等于邻比斜,正切等于对比邻”.【例1】如图,点A 为a Ð边上的任意一点,作AC BC ^于点C ,CD AB ^于点D ,下列用线段比表示出sin a 的值,正确的是( )A .BDBC B .ADAC C .ADDC D .CDAC【答案】B【详解】AC BC ^Q ,CD AB ^,90BAC BAC ACD a \Ð+=Ð+Ð=°,ACD a \Ð=,sin AC CD AD AB BC ACa \===;故正确的是B 选项;故选:B .【例2】已知在Rt ABC △中,90C Ð=°,sin A tan B 的值等于( )A B .2C D .12【答案】D【详解】解:∵sin BC A AB==,∴可设5BC AB ==,则AC ==∴1tan 2AC B BC ===,故选:D .二、锐角三角函数之间的关系同一锐角的三角函数之间的关系:(1)22sin cos 1A A +=;(2)sin tan cos A A A=.【例1】已知a 为锐角,且5sin 13a =,那么a 的正切值为( )A .512B .125C .513D .1213【答案】A【详解】∵5sin 13a =,a 为锐角,∴12cos 13a ==,∴sin 5tan cos 12a a a ==.故选:A .【例2】在Rt △ABC 中,∠C =90°,若sin A =23,则cos A =( )A B C D 【答案】C【详解】解:由题意得:sin 2A +cos 2A =1,∴245cos 199A =-=,∴cos A =,故选C .三、30°,45°,60°角的三角函数值及有关计算熟记特殊角的锐角三角函数值是进行锐角三角函数计算的关键.【例1】在Rt ABC △中,90C Ð=°,60A Ð=°,则cos A 的值为( ).A .12B C D 【答案】A【详解】解:Rt ABC △中,90C Ð=°,60A Ð=°,∴1cos cos 602A =°=,故选:A【例2】如图,在一块直角三角板ABC 中,30A Ð=°,则sin A 的值是( )A B .12C D 【答案】B【详解】解:∵30A Ð=°,∴1sin sin 302A =°=.故选:B .四、利用计算器求锐角三角函数值或锐角化简形如的式子时,先转化为|a|的形式,再根据a 的符号去绝对值.【例1】若用我们数学课本上采用的科学计算器计算tan 3512¢°,按键顺序正确的是( )A .B .C .D .【答案】D【详解】解:科学计算器计算tan 3512¢°,按键顺序是故选:D .【例2】用我们数学课本上采用的科学计算器求cos85¢°的值,按键顺序正确的是( ).A .B .C .D .【详解】解:采用科学计算器计算cos85¢°,按键顺序正确的是B 选项中的顺序.故选:B .五、对概念本质理解不透锐角三角函数值的本质是一个比值,它的大小只与锐角A 的大小(即度数)有关,与所在的直角三角形的边的长度无关,即只要锐角A 确定,其三角函数值也随之确定.【例1】在Rt ABC △中,如果各边长度都扩大为原来的3倍,则锐角A Ð的余弦值A .扩大为原来的3倍B .没有变化C .缩小为原来的13 D .不能确定【错解】A【错因分析】误认为直角三角形各边的长度都扩大为原来的3倍,则∠A 的正弦值也扩大为原来的3倍.【解析】设原来三角形的各边分别为a ,b ,c ,则cos A =b c,若把各边扩大为原来的3倍,则各边为3a ,3b ,3c ,那么cos A =33b c =b c,所以余弦值不变.故选B .【正解】B一、单选题1.如图,在Rt ABC D 中,90C Ð=°,点D 是AB 的中点,DE AB ^交AC 于点E ,DE CE ==AB 的长为( )A .3B .C .6D .【详解】解:连接BE ,∵D 是AB 的中点,∴BD=AD=12AB∵∠C=∠BDE=90°,在Rt △BCE 和Rt △BDE 中,∵DE=CE BE=BE ìíî,∴△BCD ≌△BDE ,∴BC=BD=12AB .∴∠A=30°.∴∴AD=3,∴AB=2AD=6.故选C .2.如图,AB 是⊙O 的直径,点C 和点D 是⊙O 上位于直径AB 两侧的点,连接AC ,AD ,BD ,CD ,若⊙O 的半径是13,BD =24,则sin ∠ACD 的值是( )A .1213B .125C .512D .513【答案】D【详解】∵AB 是直径,∴∠ADB =90°,∵⊙O 的半径是13,∴AB =2×13=26,由勾股定理得:AD =10,∴sin ∠B =1052613AD AB ==∵∠ACD =∠B ,∴sin ∠ACD =sin ∠B =513,故选D .3.如图,点P 在第二象限,OP 与x 轴负半轴的夹角是a ,且35,cos 5OP a ==,则P 点的坐标为()A .()3,4B .()3,4-C .()4,3-D .()3,5-【答案】B 【详解】过点P 作PA ⊥x 轴于A ,∵35,cos 5OP a ==,∴3cos 535OA OP a =×=´=,∴PA ==4,∵点P 在第二象限,∴点P 的坐标是(-3,4)故选:B.4.如图,AB 是⊙O 的直径,直线DE 与⊙O 相切于点C ,过A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足为点D ,E ,连接AC ,BC ,若AD CE =3,则 AC 的长为( )A B C D 【答案】D【详解】解:连接OC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,BE ⊥DE ,∴∠DAC +∠ACD =90°,∴∠DAC =∠ECB ,∵∠ADC =∠CEB =90°,∴△ADC ∽△CEB ,∴ACADBC CE =,即AC BC =∵tan ∠ABC =AC BC =∴∠ABC =30°,∴AB =2AC ,∠AOC =60°,∵直线DE 与⊙O 相切于点C ,∴∠ACD =∠ABC =30°,∴AC =2AD =∴AB =∴⊙O 的半径为∴ AC ,故选:D .5.如图,地面上点A 和点B 之间有一堵墙MN (墙的厚度忽略不计),在墙左侧的小明想测量墙角点M 到点B 的距离.于是他从点A 出发沿着坡度为i =1:0.75的斜坡AC 走10米到点C ,再沿水平方向走4米到点D ,最后向上爬6米到达瞭望塔DE 的顶端点E ,测得点B 的俯角为40°.已知AM=8米,则BM 大约为( )米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)A .8.6B .10.7C .15.4D .16.7【答案】B 【详解】如图,过E 点作DF ⊥AB 于F 点,过C 点作CG ⊥AB 于G 点,∵AC=10,坡比为i =1:0.75,∴CG=8,AG=6,∴EF=ED+DF=6+8=14,又∠B=40°,∴BF=tan40EF °=140.84=16.7,又GM=AM-AG=2,∴AF=AM-FG-GM=2,∴BM=AB-AM=16.7+2-8=10.7,故选B.6.如图,面积为24的▱ABCD 中,对角线BD 平分∠ABC ,过点D 作DE ⊥BD 交BC 的延长线于点E ,DE =6,则sin ∠DCE 的值为( )A.2425B.45C.34D.1225【答案】A【详解】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵Y ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=13 2DE=,∴AC=6,∵Y ABCD的面积为24,∴1242BD AC·=,∴BD=8,∴BC CD==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=75,∴DF=245,∴sin ∠DCE =24245525DF DC ==.故选:A .二、填空题7.将BAC Ð放置在55´的正方形网格中,顶点A 、B 、C 在格点上.则sin BAC Ð的值为______.【详解】解:如图所示:连接BC ,AB BC =Q ,AC =222AB BC AC \+=,90ABC \Ð=°,45BAC ACB Ð\Ð==°,sin BAC \Ð=...8.如图,边长为1的小正方形网格中,点,,,,A B C D E 均在格点上,半径为2的A e 与BC 交于点F ,则tan DEF Ð=____________.【答案】12【详解】解:∵ DFDF =,∴DEF DBF Ð=Ð,∴在Rt BCD △中,∴21tan tan 42DC DEF DBC BD Ð=Ð===.故答案为:12三、解答题9.计算:(1)2cos 230°﹣2sin60°•cos45°;(2【答案】(1)32(2)【详解】解:(1)原式=2×)2﹣=32(2=2)=1﹣10.如图,A ,B ,C 是半径为2的O e 上三个点,AB 为直径,BAC Ð的平分线交O e 于点D ,过点D 作AC 的垂线,交AC 的延长线于点E ,延长ED 交AB 的延长线于点F .(1)求证:EF 是O e的切线;(2)若DF =tan EAD Ð的值.【答案】(1)见解析;(2【详解】解:(1)证明:连接OD ,∵OD OA =,∴ODA OAD Ð=Ð,∵AD 是BAC Ð的平分线,∴EAD OAD Ð=Ð,∴ODA EAD Ð=Ð,∴//OD AE ,∵EF AE ^,∴EF OD ^,∵OD 是O e 的半径,∴EF 是O e 的切线.(2)解:∵Rt FOD △中,2OD OA ==,DF =∴根据勾股定理得6OF ==,∵//OD AE ,∴FOD FAE ∽△△,∴FO OD FA AE =即628AE ==∴AE =∴DE∴在Rt ADE △中,8tan 3DE EAD AE Ð===.一、单选题1.关于x 的一元二次方程2sin 0x a +=有两个相等的实数根,则锐角a 等于( )A .15°B .30°C .45°D .60°【答案】B【详解】解:由题意可得:24sin 0a D =-=,解得1sin 2a =,可得30a =°,故选:B 2.如图,在边长为1的正方形网格中,连结格点A ,B 和C ,D ,AB 与CD 相交于点E ,则tan AEC Ð的值为( )A .12B .13C .34D .1【答案】A 【详解】解:连接格点FD FC 、,如图所示:则四边形ABDF 是平行四边形,AFC △和CGD △都是等腰直角三角形,∴AB FD ∥,45ACF DCG Ð=Ð=°,FC ==,CD ==,∴180180454590AEC FDC FCD DCG Ð=ÐÐ=-Ð=°-°-°=°,,∴tan tan AEC FDC Ð=Ð=12FC CD ==,故选:A .3.如图,在菱形ABCD 中,60ABC Ð=°,E 是BC 上一点,连接AE ,将ABE V 沿AE 翻折,使点B 落在点F 处,连接BF DF 、.若BF =,则tan CDF Ð的值为( )ABC.2D.2【答案】D【详解】解:设AF 与CD 的交点为M ,设==AB AD a,则BF =由菱形的性质可得,120BAD Ð=°,60ABC ADC Ð=Ð=°由折叠的性质可得,AF AB a ==,则22222AB AF a BF +==,∴ABF △为等腰直角三角形,90BAF Ð=°,∴30DAF Ð=°,即90AMD Ð=°,在Rt ADM △中,30DAF Ð=°,∴12=DM a ,AM MF AF AM =-=tan 2MF CDF DM Ð===故选:D4.在ABC V 中,B Ð,C Ð都是锐角,tan 1B =,cos C =,则对ABC V 的形状最确切的判断是( )A .锐角三角形B .等腰直角三角形C .等腰三角形D .直角三角形【答案】B【详解】解:由tan 1B =,cos C =45BÐ=°,45C Ð=°.90A \Ð=°.则对ABC V 形状的判断最确切的是等腰直角三角形.故选:B .5.如图,已知直线l :y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ;L ;按此作法继续下去,则点2016A 的坐标为( )A .()02016,B .()04032,C .()201604,D .()201602,【答案】C【详解】∵直线l 的解析式为y =,设直线l 与x 轴的夹角为a ,∴tan a =,即30a =°,∴直线l 与x 轴的夹角为30°,∵AB x ∥轴,∴30ABO Ð=°,60AOB Ð=°∵1OA =,AB y ^轴,∴90OAB Ð=°∴22OB OA ==,∵1A B l ^,且60AOB Ð=°∴130BA O Ð=°,∴124A O OB ==,∴()104A ,,∵11A B y^∴11A B x ∥轴,∴1130A B O Ð=°,∴1128OB OA ==∵1290OB A Ð=°,且60AOB Ð=°,∴2130A B O Ð=°∴21216A O OB ==∴()2016A ,,∴()0,4n n A ∴点2016A 的坐标为()201604,.故选:C .6.如图,正方形ABCD 的对角线,AC BD 相交于点O ,点F 是CD 上一点,OE OF ^交BC 于点E ,连接,AE BF 交于点P ,连接OP .则下列结论:①AE BF ^;②OAP EAC △∽△;③四边形OECF 的面积是正方形ABCD 面积的14;④AP BP -=;⑤若:2:3BE CE =,则4tan 7CAE Ð=.其中正确的结论有( )个.A .2个B .3个C .4个D .5个【答案】C 【详解】解:在正方形ABCD 中,AB BC CD ==,AC BD ^,45ABD DBC ACD °Ð=Ð=Ð=,∴90BOE EOC Ð+Ð=°,∵OE OF ^,∴90FOC EOC Ð+Ð=°,∴FOC BOE Ð=Ð,又∵OB OC =,∴()ASA BOE COF V V ≌∴BE CF =,又∵AB BC =,90ABC BCF Ð=Ð=°,∴()SAS ABE BCF ≌△△,∴BAE CBF Ð=Ð,∵90ABP CBF Ð+Ð=°,∴90ABP BAP Ð+Ð=°,即AE BF ^,故①正确;∵90APB AOB Ð=Ð=°,∴点A O P B 、、、四点共圆,∴45APO ABO Ð=Ð=°,∴45APO ACE Ð=Ð=°,又∵OAP EAC Ð=Ð,∴OAP EAC △∽△,故②正确;在正方形ABCD 中,OA OB OC OD ===,90AOB BOC COD DOA Ð=Ð=Ð=Ð=°,∴OAB OBC OCD ODA V V V V ≌≌≌,∴14OBC ABCD S S =V 正方形,即14OBE OCE ABCD S S S +=V V 正方形,∵BOE COF V V ≌,∴BOE COF S S =V V ,∴14OBE OCE ABCDOECF S S S S =+=四边形V V 正方形,则四边形OECF 的面积是正方形ABCD 面积的14,故③正确;过点O 作OH OP ⊥,交AE 于点H ,如下图:∵45OH APO OP =°Ð,⊥,∴OH OP ==,即HP =,∴OH OP ⊥,∴90POB HOB Ð+Ð=°,∵90AOH BOH Ð+Ð=°,∴AOH BOP Ð=Ð,∵OBP OBC CBF Ð=Ð-Ð,OAH OAB BAE Ð=Ð-Ð,∴OAH OBP Ð=Ð,又∵OA OB =,∴()ASA OAH OBP V V ≌,∴AH BP =∴AP BP AP AH HP -=-==,故④正确;由:2:3BE CE =,设2BE x =,则3CE x =5AB BC x ==,AE ==,AC =,过点E 作EG AC ^,如下图:∵45ACB Ð=°,∴EG CG x ===,∴AG AC CG x =-,在Rt AEG △中,3tan 7E A G CAE G Ð===,故⑤错误;综上,正确的个数为4,故选:C二、填空题7.计算:0212)()3p --+--°=______.【答案】92-【详解】原式219=+-32192=+-+92=-.故答案为:92-.8.如图,在平行四边形ABCD 中,AE 平分BAD Ð,交BC 于点E ,BF 平分ABC Ð,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD .若4AB =,6AD =,60ABC Ð=°,则tan ADP Ð的值为________.【详解】解:四边形ABCD 是平行四边形,AD BC \∥,AFB FBE \Ð=Ð,ABF FBE Ð=ÐQ ,ABF AFB \Ð=Ð,AB AF \=,同理AB BE =,\四边形ABEF 是菱形;AE BF \^,60ABC Ð=°Q ,30ABF \Ð=°,60BAP FAP Ð=Ð=°,4AB =Q ,2AP \=,如图,过点P 作PM AD ^于M ,PM \=1AM =,6AD =Q ,5DM \=,在R t PMF V 中,tan MP ADP DM Ð==.三、解答题9.计算:(1)cos453tan302sin60°+°-°;4cos 60tan 60tan 45°°-°.【答案】(2)2-【详解】(1)解:cos453tan302sin60°+°-°32(24cos 60tan 60tan 45°°-°==)11=--2=-10.如图,在矩形ABCD 中,3AB =,4BC =,对角线AC 、BD 交于点O ,点M 为线段AC 上一点,联结BM ,在ABM Ð内部作射线BP 分别与线段AO 、线段AD 交于点N (不与点A 、点D 重合)、点P 且MBN DBC =∠∠.(1)当1CM =时,求APB Ð的正切值;(2)射线BP 交射线CD 与点Q ,若BDQ BMC ∽△△,求CM 的长;(3)设线段CM x =,BN y MN =,写出y 关于x 的函数解析式,并写出定义域.【答案】(1)1211(2)75(3)1605y x ö÷ø<<【详解】(1)解:∵MBN DBC =∠∠,∴PBD MBC =∠∠,∵四边形ABCD 为矩形,∴BCM DAC BDP Ð=Ð=Ð,∴BPD BMC ∽V V ,∴PD BDMC BC =,∴BDPD MC BC =´,∵3AB =,4BC =,∴5AC BD ===,∵1MC =,∴54PD =,∴312tan 51144AB AB APB AP AD PD Ð====--;(2)如图,∵BMC BDQ ∽V V ,3AB =,4BC =,∴Q BCM Ð=Ð,CM BCDQ BQ =,∴3tan tan 4ABBC BCM Q BC QC Ð==Ð==,∴163QC =,∴73DQ QC DC =-=,∵222256169BQ QC BC =+=+,∴203BQ =,∵CM BC DQ BQ=,∴47720353BC CM DQ BQ=´=´=;(3)如图,过点M 作ME BC ^于E ,即有90MEC ABC Ð=Ð=°,又∵ACB MCE Ð=Ð,∴ACB MCE ∽V V ,∴MC ME CE AC AB BC ==,∴534x ME CE ==,∴35ME x =,45CE x =,∴445BE x =-,∴BM ==,∵PBM DBC ACB Ð=Ð=Ð,BNM CNB Ð=Ð,∴BNM CNB ∽V V ,∴BN BC MN BM ==∴y =,当P 点与D 点重合时,MBN Ð与DBC Ð重合,此时M 点与C 点重合,即有:0x CM ==,当P 点与A 点重合时,此时A 、N 、P 三点重合,BM 的延长线交AD 于G点,如图,∵MBN DBC =∠∠,又∵tan AG MBN AB =∠,tan DC AB DBC BC BC ==∠,∴334AG =,∴94AG =,∵在矩形ABCD 中,AD BC ∥,∴AG AM AC CM BC CM CM -==,∵5AC =,∴165CM =,∵点P 不与点A 、点D 重合,∴1605x <<,综上所述,1605y x ö=÷ø<<.。
专题01 锐角的三角函数重难点题型专训(7大题型)(原卷版)

【题型目录】题型一题型二【经典例题一1.(22·235.(2021秋·河北石家庄5AB=,3AC=.(1)求AD的长;(2)求sin DABÐ的值.【经典例题二求角的正弦值1.(22·23下·沈阳·开学考试)如图,6BD=,则sin ACDÐ的值是(A.34B.32.(22·23上·青岛·期末)如图,值为( )A.5B.3.(21·22下·哈尔滨·阶段练习)在5.(2023·浙江温州<),连接(AE EC(1)求证:四边形DEBF为菱形.(2)记菱形ABCD的面积为1S,菱形长.【经典例题三1.(22·23D,若A.22.(22·23下·深圳·阶段练习)如图,的距离是( )A.556B.6553.(22·23下·绵阳·阶段练习)如图,在上,1BAE ABCÐ=Ð,点F4.(22·23下·合肥·三模)在Rt上,将BDE△沿直线DE翻折,使得点(1)求证:CE是Oe的切线;(2)若2sin,53E AC==,求DF 【经典例题四求角的余弦值A.11 152.(2022春·福建福州格点.已知菱形的一个角为A.13B.123.(2023秋·全国·九年级专题练习)如图,在AC于点D、E,且13AB AC==,4.(2023·黑龙江齐齐哈尔的两边长分别是2和3,则5.(2022秋·黑龙江大庆·八年级校考期末)沿着过点B的某条直线折叠,使点(1)求点A、B、C、D的坐标;(2)求ABCÐ的余弦值.【经典例题五已知余弦值求边长】1.(2023·广西北海·统考模拟预测)如图,在直角梯形3 BD=,2cos3CDBÐ=,则下底AB的长是(A.212B.92.(2023春·四川南充·九年级校考阶段练习)如图,A.94B.1253.(2023·山东聊城·统考三模)在Rt ABC△5.(2023秋·山东聊城·九年级校考阶段练习)于点E .(1)求证;BEA ADC V V ∽(2)求证:··CD AD AC BE =(3)若2AD =5,cos ABE Ð【经典例题六1.(2023点F 在边A .272.(2023秋·重庆沙坪坝90BAC EAD Ð=Ð=°的值为( )A .13B 3.(2023秋·江苏常州·九年级统考期末)如图,连接BD ,将BCD △沿BD4.(2022春·湖北武汉AB AC =,CD AB ^的值是.5.(2022春·黑龙江绥化等腰Rt CEF △的直角顶点与正方形线FE 与AD 交于点P ,与(1)求证:CDE CBF △△≌;(2)求CF 的长;【经典例题七1.(2022落在边A .53B .22.(2023·广东深圳·深圳市高级中学校考二模)如图,平行四边形4tan 3BAD Ð=,点O 为对角线A .4033B .33403.(2023秋·全国·九年级专题练习)如图,在1tan 3ABG Ð=,那么BC 的长等于4.(2022秋·黑龙江哈尔滨5OP =,点M ,(1)求证:四边形BCEF^于点G,连结(2)BG CE①求CG的长.②求平行四边形BCEF【重难点训练】1.(21·22A.42.(23·24上·长春上,且90Ð=°AEFA.273.(22·23下·江门·期中)在A.247B.4.(22·23下·株洲·自主招生)的值为()A.3 35.(21·22下·深圳·模拟预测)如图,已知平行四边形A.12B.136.(23·24上·黄浦·期中)如图已知在7.(21·22·武汉·模拟预测)如图,E为AB边上一动点,DEFV为等边三角形,则线段8.(22·23下·深圳·模拟预测)如图,在1tan 2A =,8BC =,CF AB ∥9.(21·22·武汉·模拟预测)如图,在矩形GBE V ,BG 的延长线交则cos DEC Ð的值为10.(23·24上·专题练习)如图,在四边形点M 、N 分别在AB11.(21·22·哈尔滨·模拟预测)如图,在小正方形的边长均为方形的顶点上.(1)在图1中画一个以线段AB 为一边的平行四边形ABCD 的面积为8;(2)在图2中画一个钝角三角形ABE ,点E 在小正方形顶点上,直接写出AE 的长.13.(21·22下·宜昌·模拟预测)如图,已知平行四边形(1)如图当点E 在边AD 上时.①求证AEF BGF V V ∽.②当4DCE BFG S S =V V 时,求:AE ED 的值.(2)当点E 在边AD 的延长线上时,是否存在这样的点E 使AEF △与五、作图题14.(23·24上·哈尔滨·期中)如图,在边长为1的小正方形网格中,ABC V 的三个顶点均在格点上,坐标分别为()2,4A ,()1,2B ,()5,3C . 请解答下列问题:(1)画出ABC V 关于y 轴的对称图形111A B C △.(2)将ABC V 绕点O 顺时针旋转90°得到222A B C △,画出222A B C △.(3)连接1B B 、12B C ,写出12BB C Ð的正切值.六、证明题15.(23·24上·齐齐哈尔·期中)已知,四边形ABCD 是正方形,DEF V 绕点D 旋转()DE AB <,90,EDF DE DF Ð=°=,连接AE ,CF ;直线AE 与CF 相交于点G 、交CD 于点P .(1)如图1,猜想AE 与CF 的关系,并证明:(2)如图2,BM AG ^于点M ,^BN CF 于点N ,则四边形BMGN 是________形;(3)如图3,连接BG ,若4,2AB DE ==,直接写出在DEF V 旋转的过程中,①当点E 在正方形ABCD 的内部,且EF CD ^时BG =_________;②线段BG 长度的最小值__________;。
锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。
一、 化简或求值例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。
(2)化简()()22sin cos cos sin a b a b αααα++-。
分析 (1)由已知可以求出tan α1tan cot αα=⋅;(2)先把平方展开,再利用22sin cos 1αα+=化简。
解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得tan 2α=或tan 1α=-。
又α是锐角,∴tan 2α==tan cot αα-。
由tan 2α=,得1cot 2α==tan cot αα-=13222-=。
(2)()()22sin cos cos sin a b a b αααα++-=2222sin 2sin cos cos a ab b αααα+⋅⋅++2222cos 2cos sin sin a ab b αααα-⋅⋅+=()()222222sin cos sin cos a b αααα+++=22a b +。
说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα⋅=等。
二、已知三角函数值,求角例2 在△ABC 中,若2cos sin 02A B ⎛--= ⎝⎭(),A B ∠∠均为锐角,求C ∠的度数。
分析 几个非负数的和为0,则这几个数均为0。
由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。
解由题意得cos 0,2sin 0.A B ⎧-=⎪⎪-=解得cos 2sin 3A B ⎧=⎪⎪⎨⎪=⎪⎩又∵,A B ∠∠均为锐角,∴45A ∠=,60B ∠=。
∴18075C A B ∠=-∠-∠=.说明 解这类问题首先要熟记特殊角的三角函数值,还要掌握一些化简的技巧。
初中数学锐角三角函数的技巧及练习题附答案

【答案】C
【解析】
【分析】
根据同角的余角相等求出∠ADE=∠ACD,再根据两直线平行,内错角相等可得∠BAC=∠ACD,然后求出AC.
【详解】
解:∵DE⊥AC,
∴∠ADE+∠CAD=90°,
∵∠ACD+∠CAD=90°,
∴∠ACD=∠ADE=α,
∵矩形ABCD的对边AB∥CD,
【答案】B
【解析】
【分析】
画出图形,根据锐角三角函数的定义求出即可.
【详解】
如图,∠C=90°,∠A=α,BC=a,
∵cotα ,
∴AC=BC•cotα=a•cotα,
故选:B.
【点睛】
本题考查了锐角三角函数的定义的应用,在直角三角形中,锐角的正弦是角的对边与斜边的比;余弦是角的邻边与斜边的比;正切是对边与邻边的比;余切是邻边与对边的比;熟练掌握三角函数的定义是解题关键.
12.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(8 ,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()
过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN−DE即可求出结论.
【详解】
解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.
在Rt△ABE中,AB=10米,∠BAM=30°,
(完整版)求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法一、定义法当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( )(A )513 (B )1213 (C )512 (D )135 对应训练:1.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为( )A .5 B .25 C .12D .2 二、参数(方程思想)法锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =512,那么sin B 的值是 . 对应训练:1.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 432.已知△ABC 中,ο90=∠C ,3cosB=2, AC=52 ,则AB= .3.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC求:AB 及OC 的长.D C B A Oyx第8题图AD ECBF三、等角代换法当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决.例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .432. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.453. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( )A .2B .2C .1D .224. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( )A .12 B .32 C .35D .455.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则sin α= .6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2.7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求 ∠B 的度数及边BC 、AB 的长.DABCCBA四、构造(直接三角形)法直角三角形是求解或运用三角函数的前提条件,故当题目中已知条件并非直角三角 形时,需通过添加辅助线构造直角三角形,然后求解,即化斜三角形为直角三角形. (1)化斜三角形为直角三角形例4 在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )(A )5714 (B )35 (C )217 (D )2114对应训练:1.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .2.(重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)(2)利用网格构造直角三角形例5 如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12 B .55 C .1010D .255 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 2.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为( )A.41B.31C.21D.13.正方形网格中,AOB∠如图放置,则tan AOB∠的值是()A.5B.25C.12D.24. 如图,在边长为1的小正方形组成的网格中,ABC△的三个顶点在格点上,请按要求完成下列各题:(1)用签字笔...画AD∥BC(D为格点),连接CD;(2)线段CD的长为;(3)请你在ACD△的三个内角中任选一个锐角..,若你所选的锐角是,则它所对应的正弦函数值是.(4)若E为BC中点,则tan∠CAE的值是 .三角函数与四边形:1.如图,四边形ABCD中,∠BAD=135°,∠BCD=90°,AB=BC=2,tan∠BDC=63.(1) 求BD的长;(2) 求AD的长.2.如图,在平行四边形ABCD中,过点A分别作AE⊥BC于点E,AF⊥CD于点F.(1)求证:∠BAE=∠DAF;(2)若AE=4,AF=245,3sin5BAE∠=,求CF的长.三角函数与圆:3.如图,DE是⊙O的直径,CE与⊙O相切,E为切点.连接CD交⊙O于点B,在EC上取一个点F,使EF=BF. (1)求证:BF是⊙O的切线;(2)若54Ccos=, DE=9,求BF的长.ABO。
中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。
xx 。
]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。
初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中三角函数练习及解答1.锐角三角函数1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;3.若tan 3α=求2sin sin 13sin cos αααα-+的值.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .6.已知sin cos αα+=,求sin cos αα的值.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.13.不查表,求15︒的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).15.求sin18︒的值.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.2解直角三角形1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.6.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC .12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC .13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.16.如图(a ),正方形ABCD 的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?1.锐角三角函数(详细解答)1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.解析(1)利用互余角的三角函数关系式,将cos70︒化sin 20︒,再与sin19︒比大小.因为()cos70cos 9020sin 20︒=︒-︒=︒,而sin19sin 20︒<︒,所以sin19cos70︒<︒.(2)余切函数与余弦函数无法化为同名函数,但是可以利用某些特殊的三角函数值,间接比较它们的大小.32cot 60cos 4532︒=<︒=,再将cot 65︒,cos40︒分别与cot 60︒,cos45︒比大小.因为cot 65cot 60︒<︒=,cos 40cos 45︒>︒>,所以cot 60cos45︒<︒,所以cot 65cos40︒<︒.(3)tan 451︒=,显然cos1︒,sin88︒均小于1,而tan 46︒,cot 38︒均大于1.再分别比较cos1︒与sin88︒,以及tan 46︒与cot 38︒的大小即可.因为()cos38cot 9052tan52︒=︒-︒=︒,所以tan52tan 46tan 451︒>︒>︒=.因为()cos1cos 9089sin89︒=︒-︒=︒,所以sin88sin891︒<︒<,所以cot 38tan 46cos1sin88︒>︒>︒>︒.评注比较三角函数值的大小,一般分为三种类型:(1)同名的两个锐角三角函数值,可直接利用三角函数值随角变化的规律,通过比较角的大小来确定三角函数值的大小.(2)互为余函数的两锐角三角函数值,可利用互余角的三角函数关系式化为同名三角函数,比较其大小.(3)不能化为同名的两个三角函数,可通过与某些“标准量”比大小,间接判断它们的大小关系,常选择的标准量有:0,1以及其他一些特殊角如30︒,45︒,60︒的三角函数值.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;解析(1)原式=tan1tan 2tan3tan 44tan 45cot 44cot 43cot 3cot 2cot1︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ ()()()tan1cot1tan 2cot 2tan 44cot 44tan 45=︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ 1111=⋅⋅⋅= .(2)原式1cos7cos71cos7=︒=⋅︒=︒.(3)原式()22442242222sin sin sin sin cos 1sin sin sin 1cos sin cos ααααααααααα⋅====--.(4)原式sin11cos11sin11cos11sin11cos110-︒-︒=︒-︒-︒-︒=.3.若tan 3α=求2sin sin 13sin cos αααα-+的值.原式2222sin cos sin sin cos sin 13sin cos sin cos 3sin cos αααααααααααα--==+++2222tan tan 336tan 13tan 313319αααα--===-++++⨯.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒解析显然0sin 481<︒<,0cos481<︒<0<cos48°<1.因此有:sin 48sin 48tan 48cos 48︒︒<=︒︒,cos 48cos 48cot 48sin 48︒︒<=︒︒所以A 最大.5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .解析我们将sin 3cos x x =代入22sin cos 1x x +=,得到210cos 1x =,并且x 是锐角,因此cos x=所以sin x =.因此3sin cos 10x x =.6.已知sin cos αα+=,求sin cos αα的值.解析由sin cos αα+=两边平方得()22sin cos αα+=.又22sin cos 1αα+=,所以12sin cos 2αα+=,得1sin cos 2αα=.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.解析由根与系数的关系知1sin cos 3αα=.则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-=.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.解析由于90A B +=︒,故由互余关系得()sin sin 90cos B A A =︒-=.因此条件即为sin cos A A -=,①将上式平方,得221sin cos 2sin cos 2A A A A +-=,由正、余弦的平方关系,即有12sin cos 2A A =,所以()2223sin cos sin cos 2sin cos 12sin cos 2A A A A A A A A +=++=+=,因sin A 、cos A 均为正数,故sin cos 0A A +>.因此由上式得sin cos A A +=,②由①、②得sin A =,cos A =sin B =9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.解析设方程的两个实根1x 、2x 分别是直角三角形ABC 的锐角A 、B 的正弦.则()22222212sin sin sin cos 190x x A B A A A B +=+=+=+=︒,又122112m x x m -+=+,12122x x m =+,所以()2222111212211242122m x x x x x x m m -⎛⎫+=+-=-= ⎪++⎝⎭.化简得224230m m -+=,解得1m =或23.检验,当1m =时,()()22114820m m =--+<△;当23m =时,()()22114820m m =--+△≥.所以23m =.评注本题是三角函数与一元二次方程的综合,基本解法是利用韦达定理和22sin cos 1αα+=列方程求解.要注意最后检验方程有无实数根.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .解析根据韦达定理,有12125 , 4.4x x k x x ⎧+=-⎪⎪⎨⎪=⎪⎩并且由于其两根是直角三角形的两个锐角的正弦,所以又有22121x x +=.于是有()2222121212512244k x x x x x x ⎛⎫=+=+-=--⨯ ⎪⎝⎭.解得98k =.11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?解析(1)设A 、B 是某个直角三角形两个锐角,sin A 、sin B 是方程20x px q ++=的两个根,则有240p q =-△≥.①由韦达定理,sin sin A B p +=-,sin sin A B q =.又sin 0A >,sin 0B >,于是0p <,0q >.由于()sin sin 90cos B A A =︒-=.所以sin cos A A p +=-,sin cos A A q =,所以()()22sin cos 1sin cos 12p A A A A q -=+=+=+,即221p q -=.由①得21240q p q -=-≥,则12q ≤.故所求条件是0p <,102p <≤,221p q -=.②(2)设条件②成立,则24120p q q -=-≥,故方程有两个实根:α==,β==.由②知p -=p <=-,所以0p p <--+,故0βα>≥.又()2222221p q αβαβαβ+=+-=-=,故01αβ<<≤.12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.解析设题中所述的两个锐角为A 及B ,由题设得()241160 , 1cos cos , 2cos cos .4m m m A B m A B ⎧=+-⎪⎪+⎪+=⎨⎪⎪=⎪⎩△≥因为cos sin B A =,故()2, 1cos sin , 2cos sin , 410m A A m A m m A ++==⎧=-⇒⎪⎪⎪⎨⎪⎪⎪⎩可△≥取任意实数①②①式两边平方,并利用恒等式22sin cos 1A A +=,得()()221cos sin 12sin cos 4m A A A A ++=+=.再由②得()21124m m ++=,解得m =.由cos 0A >,sin 0A >及②知0m >.所以m =.13.不查表,求15︒的四种三角函数值.解析30︒、45︒、60︒这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15︒角的三角函数值,也可以利用直角三角形的性质将其推出.如图所示.在ABC △中,90C ∠=︒,30ABC ∠=︒,延长CB 到D ,使BD BA =,则1152D BAD ABC ∠=∠=∠=︒.设1AC =,则2AB =,3BC =2BD =,所以 23CD CB BD =+=+所以()()())2222123843242323123162AD AC CD =++++++=+=+.所以162sin15462AC AD -︒===+,2362cos15462CD AD ++︒===+1tan152323AC CD ︒===-+cot1523CDAC︒==.评注将15︒角的三角函数求值问题,通过构造适当的三角形,将它转化为30︒角的三角函数问题,这种将新的未知问题通过一定途径转化为旧的已解决了的问题的方法,是我们研究解决新问题的重要方法.根据互余三角函数关系式,我们很容易得到75︒角的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).解析4522.52︒︒=,所以设法构造一个含22.5︒角的直角三角形,用定义求值.如图,Rt ABC △中,90C ∠=︒,45B ∠=︒,延长CB 到D ,使BD BA =,则122.52D B ∠=∠=︒.设AC b =,有222AB b b b =+=,()21DC DB BC b =+=+.故()tan 22.52121ACDCb︒==+.15.求sin18︒的值.解析构造一个顶角A 为36︒的等腰ABC △,AB AC =,如图,作内角平分线则36ABD DBC ∠=∠=︒,设1AC =,BC x =.由于36DBA DAB ∠=∠=︒,72BDC BCD ∠=∠=︒,故CB BD DA x ===,而CAB △∽CBD △(36CAB CBD ∠=∠=︒),故AC BC BC DC =,故11xx x=-,有512x -=(舍去512-).再作AH BC ⊥于H ,则18CAH ∠=︒,514CH -=.所以1sin184-︒=.评注本题所构造的等腰三角形是圆内接正十边形的相邻顶点与圆心确定的三角形,利用它可以求出半径为R 的圆内接正十边形的边长.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.解析由221x y +=,22sin cos 1αα+=,得()()2222sin cos 1x y αα++=,即22222222sin cos cos sin 1x y x y αααα+++=,加一项减一项,得22222222sin 2sin cos cos cos 2cos sin sin 1x xy y x xy y αααααααα+++-+=.即()()2sin cos cos sin 1x y x y αααα2++-=,因为()2cos sin 0x y αα-≥,所以()2sin cos 1x y αα+≤,故sin cos 1x y αα+≤.2解直角三角形(详细解答)1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.解析由角平分线想到对称性,考虑过D 作DE AB ⊥,交AB 于E ,则由90C ∠=︒得CD DE ==.在直角三角形BDE 中,1sin 2DE B DB ==,则60B ∠=︒,所以3tan3AC BC B ==+⋅=,2sin ACAB AC B===,BC CD DB =+=.故ABC △的三边长分别为,.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.解析作DF AC ⊥于F ,EG AC ⊥于G ;DP BC ⊥于P ,EQ BC ⊥于Q .令BP PQ QC a ===,AG GF FC b ===.则2DF a =,EG a =.在Rt CDF △和Rt CEG △中,由勾股定理,得()2222sin a b x +=,及()2222cos a b x +=,两式相加得()2251a b +=,2215a b +=.所以35AB BD ===.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .解析已知Rt ABH △中,10AB =,要求BH ,可求出BAH ∠的正弦值,而BAH CAD ∠=∠,因而可先求出DC 的长.作DE AB ⊥于E ,有6AE AC ==,ED CD =.设3DC k =,由三角形内角平分线性质有106BD DC =,则5BD k =.Rt BDE △中,222DE BE BD +=,即()()()22231065k k +-=,得1k =.33CD k ==,AD ==sin10BHDAC ∠==,故BH =.4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.解析如图,过B 、C 两点作BM AC ∥、CN AB ∥分别交AD 、AE 于M 、N .易知2AC BM =,2AB CN =,tan BM BAD AB ∠=,tan CNCAE AC∠=,从而,1tan tan 4BAD CAE ∠∠=.因为tan 1BAD ∠=,则1tan 4CAE ∠=.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.解析设O 是矩形对角线AC 的中点.连结CF ,由折叠知CF AF =,故FO AC ⊥,即EF AC ⊥.由3AB =,4BC =,得5AC =,从而1522AO AC ==.在Rt AOF △中,90AOF ∠=︒,故tan OF AO FAO =⋅∠.又由Rt ADC △得3tan tan 4DC FAO DAC AD ∠=∠==,所以5315248OF =⋅=,1524EF OF ==.7.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.解析由题意可设10a b +=,30α=︒,则125sin 24S ab α==△,即1125224ab ⋅=,得25ab =.于是,由10a b +=,25ab =,得a 、b 是方程210250x x -+=的两个根.而此方程有两个相等的根,所以5a b ==,即此三角形为等腰三角形.评注也可以直接由()()2240a b a b ab -=+-=,得a b =.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.解析由于斜边长是斜边上中线长的2倍,故2AB c ==.于是,由题设及勾股定理,得224. a b a b ⎧++==⎪⎨⎪⎩①②把①式两边平方,得2226a ab b ++=.再由②得1ab =.③由①、③知,a 、b 分别是二次方程210u +=的两根,解得622u ±=.因为BC AC >(即a b >),故12BC =,12AC =,所以tan 2BC A AC ===+.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .解析(1)根据题意,尝试从边来判断.因为4a b c +=+,()42ab c =+,所以()2222a b a b ab +=+-()()224242c c c =+-⨯+=,从而知ABC △是直角三角形,90C ∠=︒.(2)由90C ∠=︒,3tan 4A ∠=,得34a b =.令3a =,()40b k k =>,则5c k =,于是754k k =+,得2k =,从而有6a =,8b =,10c =.9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.解析(1)由题设得 , 32.ab m a b m =⎧⎨+=⎩消去b ,得32m a a m -⎛⎫= ⎪⎝⎭,故实数a 满足二次方程2320x mx m -+=.①所以()224240m m m m =-=-△≥.因为0m >,所以24m ≥.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.解析因为tan CECDE CD∠=,已知2AB CD =,因此,只需求出AB 与CE 的比值即可.不妨设1CD =,则2AB =.在Rt ABF △中,90A ∠=︒,30ABF ∠=︒,所以cos30AB BF ==︒.在Rt BEF △中,90BEF ∠=︒,45BFE ∠=︒,所以2cos 452BE BF =︒==在Rt BEC △中,90EBC ∠=︒,60ECB ∠=︒,42sin 603BE CE ===︒,所以42tan 3CE CDE CD ∠==.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC.解析作AD BC ⊥于D ,设AD x =,在Rt ABD △中,因为4sin 5B =,所以3cos 5B ==,所以sin 4tan cos 3B B B ==,所以43AD BD =,34BD x =.在Rt ADC △中,因为tan 2AD C DC ==,所以22AD x CD ==,所以35424x BC BD CD x x =+=+=.①因为1102ABC S BC AD =⨯=△,所以151024x x ⨯⋅=,所以4x =.由①知5454BC =⨯=.评注在一般三角形中,在适当位置作高线,将其转化为直角三角形求解,这是解斜三角形常采用的方法.12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC.解析作CE AD ⊥于E ,设CE x =,BE y =,则有()2222225 , 37. x y x y ⎧+=⎪⎨++=⎪⎩①②②-①得22697524y +=-=,所以52y =.因为2x =,所以512cos 52BE CBE CB ∠===,所以60CBE ∠=︒,18060120CBD ∠=︒-︒=︒,所以5356sin 4522CE AC ==︒.13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.解析作BE AC ⊥B ,交AC 的延长线于E ,设BC x =.则sin 45BE BC =⨯︒=,cos 45CE BC =⋅︒=由DC BE ∥,D 是AB 的中点,知2AE EC ==.而222AE BE AB +=,得221+=.即x =,所以BC =.评注通过构造直角三角形,使用三角函数、勾股定理等知识将边角联系起来是求线段长的常用方法.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.解析ADE ACD B ∠=∠=∠,而tan AE ADE DE ∠=,tan ED ACD EC ∠=,tan DFB BF=,所以tan AE ED DFB DE EC FB===,又DF EC =,所以3tan AE ED EC B DE EC BF ⋅⋅=,所以3tan AEB BF=.又tan ACB BC=,所以33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.解析作DF AC ⊥于F ,不妨设3AB =,因AD BM ⊥,90BAM ∠=︒,所以DAF ABM ∠=∠.又112tan 2AC MA ABM AB AB ∠===.1tan 2DF DAF FA ∠==.又90BAC ∠=︒,AB AC =,45C ∠=︒,而90DFC ∠=︒,故FC FD =.由于12FC FA =,而3FC FA +=,1FC =,2FA =,而32MC =,31122FM =-=,1FD =,即1tan 212FD CMD FM ∠===,又tan 2AB AMB AM ∠==,AMB ∠,CMD ∠是锐角.因此AMB CMD ∠=∠.16.如图(a ),正方形ABCD的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.解析记正方形ABCD 的边长为2a .由题设易知BFN △∽DAN △,则有21AD AN DN BF NF BN ===,得2AN NF =,所以23AN AF =.在直角ABF △中,2AB a =,BF a =,则AF ==,于是cos 5AB BAF AF ∠==.由题设可知ADE △≌BAF△,所以AED AFB ∠=∠,18018090AME BAF AED BAF AFB ∠=︒-∠-∠=︒-∠-∠=︒.于是cos AM AE BAF =⋅∠=,23MN AN AM AF AM =-=-=,从而415MND AFD S MN S AF ==△△.又()()212222AFD S a a a =⋅⋅=△,所以2481515MND AFD S S a ==△△.因a =8MND S =△.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.解析由已知条件b a c >=可知,这是一个等腰三角形,且底边b 最长,则最大角为B ∠,求出ABC △中的底角A (或C )即可.我们可以先求角A (或C )的三角函数值,再确定角的大小,如图所示.由图知2cos 2b AD b A AB c c===,则关键是求出b 与c 的比值.通过一元二次方程中的条件,可得到关于c 、b 的方程,则问题得到解决.因为a c =,所以方程为20cx c +=.设1x 、2x 为方程的两个根,则有122b x x c +=,121x x =.因为12x x -=,()2122x x -=,即()2121242x x x x +-=,所以2242c ⎛⎫-= ⎪ ⎪⎝⎭,c =,b c =,所以cos 22b A c ==,所以30A ∠=︒,所以1803030120B ∠=︒-︒-︒=︒.评注这是一道方程与几何知识的综合题.三角形的边是一元二次方程的系数,利用方程条件导出边的关系,由边的关系再进一步求角的大小.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.解析由AB CD ∥,得CDE △∽ABE △.所以22::CDE ABE S S DE BE =△△.连结AD ,则90ADB ∠=︒.故由Rt ADE △,有cos DE AEθ=,又AE BE =,所以2:cos CDE ABE S S θ=△△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD 与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).解析如图,延长AD 交地面于点E ,过点D 作DF CE ⊥于点F .因为45DCF ∠=︒,60A ∠=︒,4CD =,所以2sin 4542CF DF CD ==︒=⨯=,tan 60EF DF =︒==.因为3tan 303AB BE =︒=,所以(()8.5m 33AB BE ==++⨯=≈.20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.解析若设船不改变航向,与小岛S 的最近距离为SC .则有tan 60tan 45152SC SC ︒-︒=⨯,解得1542SC =<.因此需要改变航向,以免触礁.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?解析要使造价最小,只需考虑AD DC CB ++最小,故首先设法用h 、S 、θ表示AD DC CB ++.()()()1122cot cot 22S AB CD h CD h h CD h h θθ=+=+=+.有cot S CD h h θ=-,则2AD DC CB AD CD ++=+2cot sin h S h θθ⎛⎫=+- ⎪⎝⎭()2cos sin h S hθθ-=+.因S 、h 为常数,则要求AD DC CB ++的最小值,只需求2cos sin m θθ-=的最小值.设2cos sin m θθ-=,两边平方整理得()()2221cos 4cos 40m m θθ+---=,cos θ=由上式知()2230m m -≥,解得m m =时,2cos sin θθ-有最小值.当m =时,221cos 12m θ==+,从而得60θ=︒,此时排污渠造价最小.。
专题 求锐角三角函数值的常用方法

专题 求锐角三角函数值的常用方法题型一 定义法直接根据定义求三角函数值,首先求出相应边的长度﹐然后代入三角函数公式计算即可. 类型1 直接定义法例1、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =5 (1)求AB 的长.(2)求sinA ,cosA ,tanA ,sinB , cosB , tanB 的值.巩固练习1、如图,在△ABC 中,AB =15,AC =13,AD 上BC 于点D .CD =5时,求tan C 的值;2、如图,在Rt △ABC 中,∠C =90°,AB =4,AC =3,则cos B 的值为 。
类型2、网格中的三角函数例2、如图,在4×8的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为巩固练习1、正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为2、如图所示,∠AOB 是放置在正方形网格中的一个角,则cos ∠AOB =3、如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A 、B 、C 都在格点上,则 cos ∠BAC 的值为 。
类型3、构造直角三角形例3、如图,在△ABC 中,AB =AC =13,BC =10, 则tan ∠BDE 的值等于巩固练习1、如图,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则sinC 等于2、如图,在 Rt △ABC 中,∠C =90°,∠ABC =45° ,D 是AC 的中点,则sin ∠DBA =3、如图,在 Rt △BAD 中,延长斜边BD 到点C ,使DC =13BD ,连接AC ,若tanB =74,则tan ∠CAD 的值为 。
题型二 参数法若已知两边的比值或一个三角函数值,而不能直接求出三角函数相应边的长,则可采用设参数的方法﹐先用参数表示出三角函数相应边的长,再根据三角函数公式计算它们的比值,即可得出三角函数值.例3、在Rt △ABC 中,∠C =90°,AC =6,cosA =23 求 BC 的长,sinA ,tanA巩固练习1、在△ABC 中,∠C =90 , BC :CA =8:15,那么 sinA 等于 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选A.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90 的圆周角所对的弦是直径.也考查了解直角三角形.
10.直角三角形纸片的两直角边长分别为6,8,现将 如图那样折叠,使点 与点 重合,折痕为 ,则 的值是()
A. B. C. D.
【答案】C
【解析】
试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,
∵OB=5,OD=3,∴根据勾股定理得BD=4.
∵∠A= ∠BOC,∴∠A=∠BOD.
∴tanA=tan∠BOD= .
故选D.
考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.
解得:BM= ,
故选A.
【点睛】
本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.
6.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()
A. B. C.6 D.3
【答案】B
【解析】
【分析】
证明△OBE是等边三角形,然后解直角三角形即可.
【详解】
∵四边形ABCD是菱形,∴OD=OB,CD=BC.
∵DE⊥BC,∴∠DEB=90°,∴OE=OD=OB.
∵∠DOE=120°,∴∠BOE=60°,∴△OBE是等边三角形,∴∠DBC=60°.
∵∠DEB=90°,∴BD= .
【详解】
解:∵矩形纸片 ,点 在 边上,将 沿 折叠,点 落在点 处,
根据折叠性质,可得:△DCP≌△DEP,
∴.DC=DE=4,CP= EP,
在△OEF和△OBP中
∴△OEF≌△OBP(AAS)
∴ОE=OB,EF= ВР.
设EF=x,则BP=x,DF= DE-EF=4-X,
又∵BF=OB+OF=OE+OP=PE=PC,РС=ВC-BP=3-x,
【解析】
【分析】
根据特殊角的三角函数值计算即可.
【详解】
解:原式 .
故选A.
【点睛】
本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.
15.如图所示, 中, ,顶点 分别在反比例函数 与 的图象器上,则 的值为()
A. B. C. D.
【答案】B
【解析】
【分析】
过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO= ,S△AOC= ,根据相似三角形的性质得到= ,根据三角函数的定义即可得到结论.
∵对折矩形纸片ABCD,使AD与BC重合,AB=4,
∴BE= AB=2,∠BEF=90°,
∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,
∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,
∴∠EA′B=30°,
∴∠EBA′=60°,
∴∠ABM=30°,
∴在Rt△ABM中,AB=BM cos∠ABM,即4=BM cos30°,
A. B. C. D.
【答案】C
【解析】
试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.
在Rt△BCE中,x2=(8-x)2+62,
解得x= ,故CE=8- = ,
∴tan∠CBE= .
故选C.
考点:锐角三角函数.
11.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()
∴∠GAM=∠BAE,AB=AG=2 ,
∵AG分别平分∠EAD,
∴∠BAE=∠EAG,
∵∠BAD=90°,
∴∠GAM=∠BAE=∠EAG=30°,
∵GM⊥AD,
∴∠AMG=90°,
∴在Rt△AGM中,sin∠GAM= ,cos∠GAM= ,
∴GM=AG•sin30°= ,AM=AG•cos30°=3,
CF2+CD2=DF2,
即x2+1=(2﹣x)2,
解得: ,
.
故选:B.
【点睛】
本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
8.如图,矩形纸片 , , ,点 在 边上,将 沿 折叠,点 落在点 处, 、 分别交 于点 、 ,且 ,则 的值为()
A.2B.4C. D.6
【答案】A
【解析】
【分析】
连结CD如图,根据圆周角定理得到∠ACD=90 ,∠D=∠B,则sinD=sinB= ,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.
【详解】
连结CD,如图,
∵AD是⊙O的直径,
∴∠ACD=90 ,
∵∠D=∠B,
∴sinD=sinB= ,
在Rt△ACD中,∵sinD= = ,
∴AF=AB-BF=1+x.
在Rt△DAF中,AF2+AD2= DF2,即(1+x)2+32= (4-x)2
解得: x=
∴DF=4-x=
∴cos∠ADF=
故选: C.
【点睛】
本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.
9.如图, 是 的外接圆, 是 的直径,若 的半径是4, ,则线段 的长是().
故选B.
【点睛】
本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13.利用量角器可以制作“锐角余弦值速查卡”.制作方法如下:如图,设 ,以 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,利用“锐角余弦值速查卡”可以读出相应锐角余弦的近似值.例如: , .下列角度中余弦值最接近0.94的是()
【详解】
解:过A作AC⊥x轴,过B作BD⊥x轴于D,
则∠BDO=∠ACO=90°,
∵顶点A,B分别在反比例函数 与 的图象上,
∴S△BDO= ,S△AOC= ,
∵∠AOB=90°,
∴∠BOD+∠DBO=∠BOD+∠AOC=90°,
∴∠DBO=∠AOC,
∴△BDO∽△OCA,
∴ ,
∴ ,
∴tan∠BAO= .
【答案】A
【解析】
【分析】
连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.
锐角三角函数的技巧及练习题
一、选择题
1.如图,在矩形ABCD中,AB=2 ,BC=10,E、F分别在边BC,AD上,BE=DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG、CH分别平分∠EAD、∠FCB,则GH长为()
A.3B.4C.5D.7
【答案】B
【解析】
【分析】
A. B. C.8D.
【答案】A
【解析】
【分析】
根据折叠性质可得BE= AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM中,利用∠ABM的余弦求出BM的长即可.
【详解】
设EC=x,则EF= ,
∴
,
故选:A
【点睛】
此题主要考查了菱形的性质以及解直角三角形,正确得出EF的长是解题关键.
3.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在 上找一点 ,取 , , ,要使 , , 成一直线,那么开挖点 离点 的距离是()
A. B. C. D.
【答案】B
【解析】
【答案】C
【解析】
【分析】
在Rt△ADC中,利用等腰直角三角形的性质可求出AD的长度,在Rt△ADB中,由AD的长度及∠ABD的度数可求出BD的长度,在Rt△EBD中,由BD的长度及∠EBD的度数可求出DE的长度,再利用AE=AD−DE即可求出AE的长度.
【详解】
∵AD⊥BC
∴∠ADC=∠ADB=
在Rt△ADC中,AC=4,∠C=
2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°, 、 、 都是格点,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】
直Байду номын сангаас利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用 得出答案.
【详解】
解:连接DC,交AB于点E.
由题意可得:∠AFC=30°, DC⊥AF,
如图作GM⊥AD于M交BC于N,作HT⊥BC于T.通过解直角三角形求出AM、GM的长,同理可得HT、CT的长,再通过证四边形ABNM为矩形得MN=AB=2 ,BN=AM=3,最后证四边形GHTN为平行四边形可得GH=TN即可解决问题.
【详解】
解:如图作GM⊥AD于M交BC于N,作HT⊥BC于T.
∵△ABE沿着AE翻折后得到△AGE,
∴AD=CD=
在Rt△ADB中,AD= ,∠ABD=
∴BD= AD= .
∵BE平分∠ABC,
∴∠EBD= .
在Rt△EBD中,BD= ,∠EBD=