概率统计学答案
概率论与数理统计学1至7章课后答案
第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P 41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。
概率论与数理统计学1至7章课后答案
一、习题详解:3.1设二维随机向量(,)X Y 的分布函数为:1222,0,0,(,)0,x y x y x y F x y ----⎧--+≥≥=⎨⎩其他求}{12,35P X Y <≤<≤.解:因为 257(2,5)1222F ---=--+,6512221)5,1(---+--=F5322221)3,2(---+--=F ,4312221)3,1(---+--=F所以 )3,1()3,2()5,1()5,2()53,21(F F F F Y X P +--=≤<≤<==+--=----745672322220.02343.2 盒中装有3个黑球, 2个白球. 现从中任取4个球, 用X 表示取到的黑球的个数, 用Y 表示取到的白球的个数, 求(X , Y ) 的概率分布.解:因为X + Y = 4,所以(X ,Y )的可能取值为(2,2),(3,1)且 0)1,2(===Y X P ,6.053)2,2(452223=====C C C Y X P 4.052)1,3(451233=====C C C Y X P ,0)2,3(===Y X P 故(X ,Y )的概率分布为3.3 将一枚均匀的硬币抛掷3次, 用X 表示在3次中出现正面的次数, 用Y 表示3次中出 现正面次数与出现反面次数之差的绝对值,求(X , Y ) 的概率分布.解:因为|32||)3(|-=--=X X X Y ,又X 的可能取值为0,1,2,3 所以(X ,Y )的可能取值为(0,3),(1,1), (2,1),(3,3)且 81)21()3,0(3====Y X P ,83)21()21()1,1(2113====C Y X P 83)21()21()1,2(1223====C Y X P ,81)21()3,3(3====Y X P故(X ,Y )3.4设二维随机向量(,)X Y 的概率密度函数为:(6),01,02,(,)0,a x y x y f x y --≤≤≤≤⎧=⎨⎩其他 (1) 确定常数a ;(2) 求}{0.5, 1.5P X Y ≤≤(3) 求{(,)}P X Y D ∈,这里D 是由0,0,1x y x y ==+=这三条直线所围成的三角形区域.解:(1)因为dxdy y x a dxdy y x f ⎰⎰⎰⎰--=+∞∞-+∞∞-102)6(),(dx x x a dx y x a ⎰⎰---=---=10221022])4()6[(2])6(21[a dx x a 9)5(210=-=⎰由1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,得9a =1,故a =1/9.(2) dxdy y x Y X P ⎰⎰--=≤≤5.005.10)6(91)5.1,5.0( dx x dx y y x ⎰⎰--=--=5.005.005.102]89)6(23[91]21)6([91 125)687(5.00=-=⎰dx x (3) 1101{(,)}(,)(6)9xDP X Y D f x y dxdy dx x y dy -∈==--⎰⎰⎰⎰278)1211(181]21)6([9110210102=--=--=⎰⎰-dx x x dx y y x x3.5 设二维随机向量(,)X Y 的概率密度函数为:(2)2,0,0,(,)0,x y e x y f x y -+⎧>>=⎨⎩其他(1) 求分布函数(,)F x y ; (2) 求}{P Y X ≤解:(1) 求分布函数(,)F x y ; 当0,0x y >>,(2)220(,)(,)22(1)(1)yxyxx yu v u v x y F x y f u v dudv e dudv e du e dv e e -+-----∞-∞====--⎰⎰⎰⎰⎰⎰其他情形,由于(,)f x y =0,显然有(,)F x y =0。
概率论与数理统计(茆诗松)第二版课后第八章习题参考答案
⎧Yij = µ + a i + ε ij , i = 1, 2, L , r , j = 1, 2, L , m; ⎪ r ⎪ ⎨∑ a i = 0; ⎪ i =1 2 ⎪ ⎩ε ij 相互独立,且都服从N (0, σ ).
检验的原假设与备择假设为 H0:a 1 = a 2 = … = a r = 0 8.1.3 平方和分解 vs H1:a 1 , a 2 , …, a r 不全等于 0.
i =1 j =1 i =1 j =1 r m r m r m r m r m
= ∑∑ (Yij − Yi⋅ ) 2 + ∑∑ (Yi⋅ − Y ) 2 + 2∑∑ (Yij − Yi⋅ )(Yi⋅ − Y )
i =1 j =1 i =1 j =1 i =1 j =1
= S e + S A + 2∑ [(Yi⋅ − Y )∑ (Yij − Yi⋅ )] = S e + S A + 2∑ [(Yi⋅ − Y ) × 0] = S e + S A + 0 = S e + S A ,
ε i⋅ =
1 m ∑ ε ij , i = 1, 2, …, r, m j =1
ε=
1 r m 1 r ε = ε i⋅ . ∑∑ ij r ∑ n i =1 j =1 i =1
显然有 Yi⋅ = µ i + ε i⋅ , Y = µ + ε . 在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平 A1 A2 ┆ Ar Y11 Y21 ┆ Yr1 Y12 Y22 ┆ Yr2 试验数据 … … ┆ … Y 1m Y 2m ┆ Yrm 和 T1 T2 ┆ Tr 和的平方 平方和
概率统计学第一章
开 关 a,b,c闭
合 ,D表
示 灯 亮
则可
=(Π v歹 丿z「 D≡ ABt/c; D ∶ (B取 6、设 Ⅱ () 1在 什 么 条 件 下 P/) ,B是 两事件且 P(爿 )=0.6,P(B)=0.7,问 大值,最 大值是 多少? (2)在 什 么条件下 P(刀B)取 到最小值,最 小值是 多少? ^9、 ^PCA丿 ‘ 沟 涕 欠伍 . c∧ D’ l冫 【 ∧Cβ . 卩
万 9`CB/n^丿
=3 =:J ` 9D/
=空 '击 十亠一r
° /口 。
学院
班 姓
名
学 号
^′自 溺 袋平″ ″从 甲 社 u乙 筅牢屮 谄 泅ˉ
"AA罕
19、设有甲、乙两袋,甲 袋装有 ″只白球,〃 只红球;乙 袋中装有 Ⅳ只白球,M只 红球 , 一 今从 甲袋中任取一 只球放入 乙袋中,再 从 乙袋中任意取 只球 ,问 取到 白球的概率是 ^11” 自耐 ∴
、 。 午
`(B/泅
∷
'm:丨 疒
上旦 %1锆 宁
I
(B/∠ =置 ⒓ 凵口 =÷
;''H乙
/B,-^型
'A c·
’ BA ’丿 ( / ’
锱 罕
亠 △ ⒉ /' 亻孚
卜A√叮 男 峁 搓 呈 三等 芾 辂 双功 目 击
一枪 ,求 目标被 击 中的概率.
:广
⒐%乙
6+l ltfl/t+l=豸 ′
击 中辘
生产的可能性最 大 ?
焰 At="f饣 -Ht r岁
Dˉ
P(^l厂 素
"frT1
、 `(^· 厂 斋 `Fc^3`=浩 口、’' ′ =而 丿
统计学课后答案第七八章
6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。
随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确定样本均值偏离总体均值不超过0.3盎司的概率。
令狐采学解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=~,因此,样本均值不超过总体均值的概率P为:====21,查标准正态分布表得=0.8159因此,=0.63186.2在练习题6.1中,我们希望样本均值与总体均值的偏差在0.3盎司之内的概率达到0.95,应当抽取多大的样本?解:===6.3 ,,……,表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b,使得解:由于卡方分布是由标准正态分布的平方和构成的:设Z1,Z2,……,Zn是来自总体N(0,1)的样本,则统计量服从自由度为n的χ分布,记为χ~??χ(n)因此,令,则,那么由概率,可知:b??,查概率表得:b??????6.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差的标准正态分布。
假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差,确定一个合适的范围使得有较大的概率保证S2落入其中是有用的,试求b1,b2,使得解:更加样本方差的抽样分布知识可知,样本统计量:此处,n=10,,所以统计量根据卡方分布的可知:又因为:因此:则:查概率表:=3.325,=19.919,则=0.369,=1.887.1 从一个标准差为5的总体中采用重复抽样方法抽出一个样本容量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少(2)在95%的置信水平下,估计误差是多少?7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
真题模拟考试:2021 概率论与数理统计(经管类)真题模拟及答案(3)
真题模拟考试:2021 概率论与数理统计(经管类)真题模拟及答案(3)1、对于具体的元件,故障模式及影响分析(FMEA)通常包括的详细信息有( )A.故障模式B.故障原因C.故障影响D.纠正措施E.危害点评(多选题)A. 错B. 对试题答案:暂无答案2、根据不同类型的质量特性与顾客满意之间的关系而对质量特性进行分类的质量管理专家是( ) (单选题)A. 朱兰B. 狩野纪昭C. 休哈特D. 费根堡姆试题答案:B3、26.设随机变量X的概率密度为则常数a= (单选题)A. -10B.C.D. 10试题答案:D4、(09年真题)一个企业的外部顾客主要包括( )(多选题)A. 购买者B. 中间商C. 加工者D. 供应商E. 潜在顾客试题答案:A,B,C,D,E5、外汇风险的构成要素包括 ()(多选题)A. 时间B. 本币C. 外币D. 空间E. 汇率试题答案:A,B,C6、设是μ0次独立重复A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有 ( ) (单选题)A. 0B. -1C. >0D. 不存在试题答案:A7、下列对于盲法特点的陈述正确的是()(多选题)A. 盲法包括单盲和双盲B. 盲法仅是针对受试者而设计的C. 仅在指标观测和数据收集阶段实施盲法D. 盲法可以减少来自于受试者主观因素所致的偏倚E. 盲法中资料收集者一定知道研究对象是否处于干预组8、除了可测量性外,过程还具备的另一个条件是()(单选题)A. 可预测性B. 效益性C. 周期性D. 可重复性试题答案:D9、分类统计、相关分析和风险分析是( ) (单选题)A. 简单的因果分析B. 单变量分析C. 数据语义分析D. 双变量分析试题答案:D10、票据的基本职能是 () (单选题)A. 信用功能B. 兑换功能C. 结算功能D. 保值功能试题答案:C11、最基本的文献类型是【】(单选题)A. 零次文献B. 一次文献C. 二次文献D. 三次文献12、销售合同双方分别作为申请人,各开出一份以对方为受益人的信用证是 ( ) (单选题)A. 循环信用证B. 对开信用证C. 对背信用D. 保兑信用证试题答案:B13、《海牙规则》生效于()(单选题)A. 1912年6月B. 1931年6月C. 1913年7月D. 1924年6月试题答案:B14、若X服从泊松分布P(3),则 ( ) (单选题)A. 1B. 1/9C. 1/3D. 3试题答案:A15、按照国际惯例,国际储备应当满足( )个月的进口需要量,或全年进口额的25%。
统计学试题及答案
一、名词解释1。
总体(population)2。
样本(sample)3。
同质(homogeneity)4。
变异(variation)5。
参数(parameter)6。
统计量(statistic)7.抽样误差(sampling error)8。
概率(probability)二、最佳选择题1. 若以舒张期血压≥90mmHg为高血压,调查某地100人,其中有36名高血压患者,此资料为( B )A。
计量资料B。
计数资料C。
等级资料D。
以上都不是2。
参数( D )A.由样本数据计算得到的统计指标B.无法由样本信息推测C。
任何情况,都无法计算 D.反映总体统计特征的量值3。
资料类型转换(A )A。
计量资料可以转换为计数资料B。
计量资料不可以转换为等级资料C。
等级资料可以转换为计量资料 D.资料类型不可以互相转换4. 属于计量资料的是( D )A。
血型B。
病情程度C。
职业 D.细胞计数5。
通过样本信息推断总体特征,要求样本(D )A。
总体中的一部分B。
总体外的一部分C。
总体中随意部分 D.总体中的随机部分二、是非题1.所谓“随机”就是“随意”或“随便”的意思. ( ×)2.样本是从总体中随机抽取的一部分观察对象。
(√ )3。
统计学中的变异是指研究对象有异常。
( ×)4.小概率事件是指某随机事件发生概率小于等于0。
05的事件。
(×)5.同质的观测值之间无差异。
(×)参考答案一、名词解释(略)二、最佳选择题1。
B 2。
D 3.A 4。
D 5.D三、是非题1。
×2。
√ 3.× 4。
× 5.×一、名词解释1.均数(arithmetic mean)2.几何均数(geometric mean)3。
中位数(median)4。
百分位数(percentile)5.四分位数间距(quartile range)6。
方差(variance)7。
变异系数(coefficient of variation)8.标准差(standard deviation)9。
概率论与数理统计(茆诗松)课后第五章习题参考答案
第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。
概率论与数理统计学1至7章课后答案
第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于 解:设应配备m 名设备维修人员。
概率论与数理统计学1至7章课后答案
第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201k k V V ==∑,求(105)P V >的近似值。
【样本】概率论与数理统计习题册
【关键字】样本第六章样本及抽样分布一、选择题1. 设是来自总体的简单随机样本,则必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C独立同分布; D.不能确定2.下列关于“统计量”的描述中,不正确的是().A.统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3下列关于统计学“四大分布”的判断中,错误的是().A. 若则B.若C.若D.在正态总体下4.设表示来自总体的容量为的样本均值和样本方差,且两总体相互独立,则下列不正确的是().A. B.C. D.5. 设是来自总体的样本,则是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量6是来自正态总体的样本,分别为样本均值与样本方差,则( ).A. B. C. D.7. 给定一组样本观测值且得则样本方差的观测值为( ).B. D.8设X服从分布, ,则为( ).A. B. C. D.9设是来自正态总体的简单随机样本,若服从分布,则的值分别为().A. B. C. D.10设随机变量X和Y相互独立,且都服从正态分布,设和分别是来自两总体的简单随机样本,则统计量服从分布是( ).A. B. C. D.2、填空题1.在数理统计中,称为样本. 2.我们通常所说的样本称为简单随机样本,它具有的两个特点是.3.设随机变量相互独立且服从相同的分布,,令,则;4.是来自总体的一个样本,则.5.已知样本取自正态分布总体,为样本均值,已知,则.10.6设总体,是样本均值,是样本方差,为样本容量,则常用的随机变量服从分布.第七章参数估计一、选择题1. 设总体,为抽取样本,则是( ).的无偏估计 的无偏估计 的矩估计 的矩估计 2 设在[0,a]上服从均匀分布,是未知参数,对于容量为的样本,a 的最大似然估计为( ) (A ) (B ) (C ) (D );3 设总体分布为,为未知参数,则的最大似然估计量为( ). (A ) (B ) (C ) (D )4 设总体分布为,已知,则的最大似然估计量为( ). (A ) (B ) (C ) (D )5 设为来自总体的样本,下列关于的无偏估计中,最有效的为( ). (A ) (B ) (C ) (D )6 设)2(,,,21≥n X X X n 是正态分布),(2σμN 的一个样本,若统计量∑-=+-1121)(n i i i X X K 为2σ的无偏估计,则K 的值应该为( )(A )n 21 (B )121-n (C )221-n (D )11-n 7. 设θ为总体X 的未知参数,21,θθ是统计量,()21,θθ为θ的置信度为)10(1<<-a a 的置信区间,则下式中不能恒成的是( ).A. a P -=<<1}{21θθθB. a P P =<+>}{}{12θθθθC. a P -≥<1}{2θθD. 2}{}{12aP P =<+>θθθθ 8 设),(~2σμN X 且2σ未知,若样本容量为n ,且分位数均指定为“上侧分位数”时,则μ的95%的置信区间为( )A. )(025.0u n X σ±B. ))1((05.0-±n t n S XC. ))((025.0n t nS X ±D. ))1((025.0-±n t nS X9 设22,),,(~σμσμN X 均未知,当样本容量为n 时,2σ的95%的置信区间为( )A. ))1()1(,)1()1((2025.022975.02----n x S n n x S nB. ))1()1(,)1()1((2975.022025.02----n x S n n x S nC. ))1()1(,)1()1((2975.022025.02----n t S n n t S n D. ))1((025.0-±n t nS X 二、填空题1. 点估计常用的两种方法是: 和 .2. 若X 是离散型随机变量,分布律是{}(;)P X x P x θ==,(θ是待估计参数),则似然函数是 ,X 是连续型随机变量,概率密度是(;)f x θ,则似然函数是 .3. 设总体X 的概率分布列为:X 0 1 2 3P p 2 2 p (1-p ) p 2 1-2p其中p (2/10<<p ) 是未知参数. 利用总体X 的如下样本值: 1, 3, 0, 2, 3, 3, 1, 3 则p 的矩估计值为__ ___,极大似然估计值为 . 4. 设总体X 的一个样本如下:1.70,1.75,1.70,1.65,1.75 则该样本的数学期望)(X E 和方差)(X D 的矩估计值分别_ ___.5. 设总体X 的密度函数为:⎩⎨⎧+=0)1()(λλx x f 其他10<<x ,设n X X ,,1 是X 的样本,则λ的矩估计量为 ,最大似然估计量为 .6. 假设总体),(~2σμN X ,且∑==ni i X n X 11,n X X X ,,,21 为总体X 的一个样本,则X 是 的无偏估计.7 设总体),(~2σμN X ,n X X X ,,,21 为总体X 的一个样本,则常数k= , 使∑=-ni i X X k 1为σ 的无偏估计量.8 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为40=S .设电子管寿命分布未知,以置信度为95.0,则整批电子管平均寿命μ的置信区间为(给定96.1,645.1025.005.0==Z Z ) . 9设总体),(~2σμN X ,2,σμ为未知参数,则μ的置信度为1α-的置信区间为.10 某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,给定05.0=α则滚珠的平均直径的区间估计为 .)96.1,645.1(025.005.0==Z Z 11. 某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为:14.6 15.1 14.9 14.8 15.2 15.1已知原来直径服从)06.0,(N μ,则该天生产的滚珠直径的置信区间为 ,(05.0=α,645.105.0=Z ,96.1025.0=Z ).12. 某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,则σ的置信区间为 (1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ).第八章 假设检验一、选择题1. 关于检验的拒绝域W,置信水平α,及所谓的“小概率事件”,下列叙述错误的是( ). A. α的值即是对究竟多大概率才算“小”概率的量化描述 B .事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件C .设W 是样本空间的某个子集,指的是事件120{(,,,)|}n X X X H 为真D .确定恰当的W 是任何检验的本质问题2. 设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,要采用检验估计量( ).A.nX /0σμ- B.nS X /0μ- C.nS X /μ- D.nX /σμ-3. 样本n X X X ,,,21 来自总体)12,(2μN ,检验100:0≤μH ,采用统计量( ). A.nX /12μ- B.nX /12100- C.1/100--n S X D.nS X /μ-4设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题 拒绝域形式为 . A.}C > B. }/100{C nS X <- C. }10/100{C S X >- D. }{C X >5.设n X X X ,,,21 为来自总体)3,(2μN 的样本,对于100:0=μH 检验的拒绝域可以形 如( ).A .}{C X >-μ B. {100}X C ->C. }C >D. {100}X C -<6、 样本来自正态总体),(2σμN ,μ未知,要检验100:20=σH ,则采用统计量为( ). A.22)1(σS n - B. 100)1(2S n - C. n X 100μ- D. 1002nS7、设总体分布为),(2σμN ,若μ已知,则要检验100:20≥σH ,应采用统计量( ).A.nS X /μ- B.22)1(σSn - C.100)(21∑=-ni iXμ D.100)(21∑=-ni iX X二、填空题1. 为了校正试用的普通天平, 把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H 为 .2.设样本2521,,,X X X 来自总体μμ),9,(N 未知.对于检验00:μμ=H ,01:μμ=H , 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .第六章 样本及抽样分布答案一、选择题1. ( C )2.(C ) 注:统计量是指不含有任何未知参数的样本的函数3.(D )对于答案D,由于~(0,1),1,2,,i X N i n μσ-=,且相互独立,根据2χ分布的定义有4.(C) 注:11~(1)t n -才是正确的.5.(D)6C) 注:1~(0,)X N n~(1)t n -才是正确的7.(A) ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑8.(A) 9.(B) 解:由题意可知122~(0,20)X X N +,345~(0,12)X X X N ++,6789~(0,16)X X X X N +++,且相互独立,因此()()()()22212345678922~3201216X X X X X X X X X χ++++++++,即111,,201216a b c === 10(A) 解:()99211~(0,9)9~0,1ii i i XN X N ==⇒∑∑,()92219~9i i Y χ=∑由t()9t 二、填空题1.与总体同分布,且相互独立的一组随机变量2.代表性和独立性3.μ,2nσ4. 0.15.26.2(1)n χ-第七章 参数估计一、选择题1.答案: D.[解] 因为)()(222X E X E -=σ,∑===n i i X n A X E 12221)(ˆ,∑===n i i X n A X E 111)(ˆ, 所以,∑=-=-=n i i X X n X E X E 12222)(1)(ˆ)(ˆˆσ. 2.答案: A.[解]因为似然函数n i in X a a L )max (11)(≤=,当i i X a max =时,)(a L 最大, 所以,a 的最大似然估计为},,,max{21n X X X . 3 答案 A .[解]似然函数⎥⎦⎤⎢⎣⎡--=∏=2212)(21exp 21),(μσσπσμi ni x L , 由0ln ,0ln 2=∂∂=∂∂L L σμ,得22A =∧σ. 4. 答案 C.[解]在上面第5题中用μ取代X 即可. 5答案 B. 6.答案 C. 7答案 D. 8.答案 D. 9.答案 B.二、填空题:1. 矩估计和最大似然估计;2.∏iix p );(θ,∏iix f );(θ;. 341, 0.2828; [解] (1) p 的矩估计值28/1681===∑=i iXX ,令X p X E =-=43)(,得p 的矩估计为 4/14/)3(ˆ=-=X p. (2)似然函数为令 0218126])(ln [=----='pp p p L , 0314122=+-⇒p p 12/)137(±=⇒p . 由 2/10<<p ,故12/)137(+=p 舍去 所以p 的极大似然估计值为 .2828.012/)137(ˆ=-=p4、 1.71,0.00138;[解] 由矩估计有:nX X E X X Eii ∑==22)(ˆ,)(ˆ,又因为22)]([)()(X E X E X D -=,所以71.1575.165.17.175.17.1)(ˆ=++++==X X E且00138.0)(1)(ˆ12=-=∑=n i i X X n X D . 5、XX --=112ˆλ, ∑∑==+-=ni ini iXX n 11ln ln ˆλ;[解] (1)λ的矩估计为:样本的一阶原点矩为:∑==ni i x n X 11所以有:XX X --=⇒=++112ˆ21λλλ (2)λ的最大似然估计为:得:∑∑==+-=ni ini iXX n 11ln ln ˆλ.6、μ;[解]μμ===∑=nn X E n X E n i i 1)(1)(.7、)1(2-n n π;[解]注意到n X X X ,,,21 的相互独立性, 所以,)1,0(~2σnn N X X i --, 因为:⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==n i i n i i X X E k X X k E 11||||σσπ=-=nn kn122 所以,)1(2-=n n k π.8、. [992.16,1007.84];[解] 这是分布未知,样本容量较大,均值的区间估计,所以有:05.0,40,1000=α==S X ,96.1025.0=Zμ的95%的置信区间是:]84.1007,16.992[],[025.0025.0=+-Z nSX Z n S X . 9、22((1),(1))X n X n αα-+-; [解]这是2σ为未知的情形,所以)1(~/--n t nS X μ.10、 [14.869,15.131];[解] 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x ,代入计算可得:]96.192.015,96.192.015[⨯+⨯-, 化间得:]131.15,869.14[. 11、 [14.754,15.146];[解] 这是方差已知,均值的区间估计,所以有:置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X 代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯- 所以为:]146.15,754.14[ 12、. [0.15,0.31]; [解] 由2222221)1(ααχσχ≤-≤-S n 得: 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:[)11()1(222αχS n -,)11()1(2212αχ--S n ] , 将12=n ,2.0=S 代入得 [15.0,31.0].第八章 假设检验一、选择题1.C 、2.B 、3.B 、4.C 、5.B 、6.B 、7.C 、8.B 二、填空题 1.100=μ 2. 1.176此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
统计学习题答案 第3章 概率与概率分布
第3章 概率与概率分布——练习题(全免)1 .某技术小组有12人,他们的性别和职称如下,现要产生一名幸运者。
试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师,(4)女性或工程师。
并说明几个计算结果之间有何关系?解:设A =女性,B =工程师,AB =女工程师,A+B =女性或工程师(1)P(A)=4/12=1/3(2)P(B)=4/12=1/3(3)P(AB)=2/12=1/6(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/22. 某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。
试求这种零件的次品率。
解:求这种零件的次品率,等于计算“任取一个零件为次品”(记为A )的概率()P A 。
考虑逆事件A =“任取一个零件为正品”,表示通过三道工序都合格。
据题意,有:()(10.2)(10.1)(10.1)0.648P A =---=于是 ()1()10.6480.352P A P A =-=-=3. 已知参加某项考试的全部人员合格的占80%,在合格人员中成绩优秀只占15%。
试求任一参考人员成绩优秀的概率。
解:设A 表示“合格”,B 表示“优秀”。
由于B =AB ,于是)|()()(A B P A P B P ==0.8×0.15=0.124. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。
某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。
求该选手两发都脱靶的概率。
解:设A =第1发命中。
B =命中碟靶。
求命中概率是一个全概率的计算问题。
再利用对立事件的概率即可求得脱靶的概率。
)|()()|()()(A B P A P A B P A P B P +==0.8×1+0.2×0.5=0.9脱靶的概率=1-0.9=0.1或(解法二):P (脱靶)=P (第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.15.已知某地区男子寿命超过55岁的概率为84%,超过70岁以上的概率为63%。
统计学试题及答案(共9篇)
统计学试题及答案(共9篇)统计学试题及答案(一): 统计学测试题,第一题、单项选择题1、统计学的研究对象是()的数量特征和数量关系A、社会经济总体现象B、社会经济个体现象C、任意现象D、自然现象2、将统计总体按某一标志分组的结果表现为( ).A、组内同质性,组间差异性B、组内差异性,组间差异性C、组内差异性,组间同质性D、组内同质性,组间同质性3、序时平均数与一般平均数的共同点是( ).A、两者均是反映同一总体的一般水平B、都是反映现象的一般水平C、两者均可消除现象波动的影响D、共同反映同质总体在不同时间上的一般水平4、相关系数的取值范围是().A、r=0B、-1≤r≤0C、0≤r≤1D、-1≤r≤15、两个变量间的相关关系称为().A、单相关B、复相关C、无相关D、负相关第二题、多项选择题1、重点调查( ).A、可以用于一次性调查B、可以用于经常性调查C、可以用于一次性调查,也可用于经常性调查D、不能用于一次性调查E、不能用于经常性调查2、抽样平均误差( )A、不包括登记性误差B、不包括系统性误差C、包括登记性误差D、包括系统性误差E、不包括偏差3、抽样推断包括( )A、点估计B、区间估计C、双侧检验D、单侧检验E、定值估计4、抽样推断具有的特点是( )A、可以根据部分的实际资料对总体未知的数量特征作出估计,是非全面调查B、是非全面调查,只能了解总体的基本情况C、是按随机原则从总体中抽取单位D、抽样误差是必然存在的.但可以事先计算和控制E、样本单位是根据人的主观意志确定的5、下列现象属相关关系的是().A、家庭收入越多,则消费也增长B、圆的半径越大,则圆面积也越大C、一般地说,一个国家文化素质越高,则人口的平均寿命也越长D、一般地说,施肥量增加,农作物收获率也增加E、体积随温度升高而膨胀,随压力加大而收缩题目太多,懒得回答.统计学试题及答案(二): 统计学试题答案五种新型车的最高时速为100、125、115、175、120.则标准差为()A、28.4165B、807.5C、25.4165D、6468个变量值,其对6的离差分别为-3、-2、0、0、4、3、4、2,可知()A、这8个数中有负数B、这8个数的均值为0C、这8个数的均值为7D、这8个数的均值为6某班统计学成绩平均70分,最高96分,最低62分,可计算的离散程度指标是()A、方差B、极差C、标准差D、变异系数在集中趋势的测量中,不受极端值影响的是()A、均值B、几何平均数C、调和平均数D、众数总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所求置信水平的临界值乘以()A、样本均值的抽样标准差B、样本标准差C、样本方差D、总体标准差对于右偏分布,均值、中位数和众数之间的关系为()A、均值>中位数>众数B、中位数>均值>众数C、众数>中位数>均值D、众数>均值>中位数将某企业职工的月收入划分为为2023以下、2023-3000、3000-4000、4000-5000、5000以上共5组.第一组的组中值为()A、2023B、1000C、1500D、2500满足不同年份产品成本的直线方程为 ,回归系数1.75表示()A、时间每增加一个单位,产品成本平均增加1.75个单位B、时间每增加一个单位,产品成本平均下降1.75个单位C、产品成本每变动一个单位,平均需要1.75年D、时间每减少一个单位,产品成本平均增加1.75个单位如果相关系数r=0,则表明两个变量之间()A、相关程度低B、不存在任何关系C、不存在线性相关关系D、存在非线性相关关系如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率称为()A、临界值B、统计量C、P值D、事先给定的显著性水平第一章绪论一、判断题:1、社会经济统计的研究对象是社会经济现象总体的各个方面.(×)2、统计调查过程中采用的大量观察法,是指必须对研究对象的所有单位进行调查.(×)3、总体的同质性是指总体中的各个单位在所有标志上都相同. (×)4、个人的工资水平和全部职工的工资水平,都可以称为统计指标.(×)5、对某市工程技术人员进行普查,该市工程技术人员的工资收入水平是数量标志.(×)6、某一职工的文化程度在标志的分类上属于品质标志,职工的平均工资在指标的分类上属于质量指标.(√)7、总体和总体单位是固定不变的. (×)8、质量指标是反映总体质的特征,因此可以用文字来表述. (×)9、指标与标志一样,都是由名称和数值两部分组成的. (×)10、数量指标由数量标志值汇总而来,质量指标由品质标志值汇总而来.(× )11、一个统计总体可以有多个指标. (√ )二、单选题:1、属于统计总体的是(B )A、某县的粮食总产量B、某地区的全部企业C、某商店的全部商品销售额D、某单位的全部职工人数2、构成统计总体的个别事物称为( D).A、调查单位B、标志值C、品质标志D、总体单位3、对某城市工业企业未安装设备进行普查,总体单位是(B ).A、工业企业全部未安装设备B、工业企业每一台未安装设备C、每个工业企业的未安装设备D、每一个工业企业4、工业企业的设备台数、产品产值是(D ).A、连续变量B、离散变量C.前者是连续变量,后者是离散变量 D、前者是离散变量,后者是连续变量5、在全国人口普查中(B ).A、男性是品质标志B、人的年龄是变量C、人口的平均寿命是数量标志D、全国人口是统计指标6、总体的变异性是指(B ).A.总体之间有差异 B、总体单位之间在某一标志表现上有差异C.总体随时间变化而变化 D、总体单位之间有差异7、几位学生的某门课成绩分别是67分、78分、88分、89分、96分,“学生成绩”是(B ).A、品质标志B、数量标志C、标志值D、数量指标8、某年级学生四门功课的最高考分分别是98分、86分、88分和95,这四个数字是( D )A.指标B.标志C.变量D.标志值9、下列指标中属于质量指标的是(B ).A、社会总产值B、产品合格率C、产品总成本D、人口总数10、下列属于质量指标的是( D )A.产品的产量B.产品的出口额C.产品的合格品数量D.产品的评价11、下列属于离散型变量的是( D )A.职工的工资B.商品的价格C.粮食的亩产量D.汽车的产量12、标志的具体表现是指( A )A.标志名称之后所列示的属性或数值B.如性别C.标志名称之后所列示的属性D.标志名称之后所列示的数值三、多选题:1、统计一词的含义是( CDE )A.统计设计B.统计调查C.统计工作D.统计学E.统计资料2、统计研究的基本方法包括( ACDE )A.大量观察法B.重点调查法C.统计分组法D.归纳推断法E.综合指标法3、品质标志和数量标志的区别是( AD )A.数量标志可以用数值表示B.品质标志可以用数值表示C.数量标志不可以用数值表示D.品质标志不可以用数值表示E.两者都可以用数值来表示4、在全国人口普查中(BCE )A、全国人口总数是统计总体B、男性是品质标志表现C、人的年龄是变量D、每一户是总体单位E、人口的平均年龄是统计指标5、在工业普查中( BCE)A、工业企业总数是统计总体B、每一个工业企业是总体单位C、固定资产总额是统计指标D、机器台数是连续变量E、职工人数是离散变量6、下列属于数量标志的有( CE )A.性别B.所有制形式C.收入D.民族E.工龄7、下列统计指标中,属于质量指标的有(BDE )A、工资总额B、单位产品成本C、出勤人数D、人口密度E、合格品率第二章统计数据搜集一、判断题:1、对某市下岗职工生活状况进行调查,要求在一个月内报送调查结果.所规定的一个月时间是调查时间.(×)2、对我国主要粮食作物产区进行调查,以掌握全国主要粮食作物生长的基本情况,这种调查是重点调查.(√)3、我国人口普查的总体单位和调查单位都是每一个人,而填报单位是户.(√ )4、采用重点调查搜集资料时,选择的调查单位是标志值较大的单位.(×)5、对调查资料进行准确性检查,既要检查调查资料的登记性误差,也要检查资料的代表性误差.(× )6、重点调查是在调查对象中选择一部分样本进行的一种全面调查. (√ )7、多种调查方式结合运用,会造成重复劳动,不应该提倡. (×)8、全面调查和非全面调查是以调查组织规模的大小来划分的. (×)9、在统计调查中,调查单位与填报单位有时是不一致的. (√)二、单选题:1、调查几个重要铁路枢纽,就可以了解我国铁路货运量的基本情况和问题,这种调查属于( B).A、普查B、重点调查C、典型调查D、抽样调查2、某市工业企业2023年生产经营成果年报呈报时间规定在2023年1月31日,则调查期限为( B).A、一日B、一个月C、一年D、一年零一个月3、下列调查中,调查单位与填报单位一致的是(D ).A、企业设备调查B、人口普查C、农村耕地调查D、工业企业现状调查4、对一批商品进行质量检验,最适宜采用的方法是(B ).A、全面调查B、抽样调查C、典型调查D、重点调查5、调查时间是指(A ).A、调查资料所属的时间B、进行调查的时间C、调查工作的期限D、调查资料报送的时间6、有意识地选择三个农村点调查农民收入情况,这种调查方式属于(A).A、典型调查B、重点调查C、抽样调查D、普查7、通过调查大庆、胜利、辽河等几大油田,了解我国石油生产的基本情况.这种调查方式是( B ).A.典型调查B.重点调查C.抽样调查D.普查8、人口普查是( C ).A.重点调查B.典型调查C.一次性调查D.经常性调查9、人口普查规定标准时间是为了( C ).A.确定调查时限B.确定调查单位C.避免登记重复和遗漏D.确定调查对象10、重点调查中的重点单位是指( A ).A.标志值在总体中占有很大比重的单位B.具有典型意义或代表性的单位C.那些具有反映事物属性差异的品质标志的单位D.能用以推算总体标志总量的单位三、多选题:1、抽样调查和重点调查的共同点是(AB )A、两者都是非全面调查B、两者选取单位都不受主观因素的影响C、两者都按随机原则选取单位D、两者都按非随机原则选取单位E、两者都可以用来推断总体指标2、普查是一种( ABE)A、专门组织的调查B、一次性调查C、经常性调查D、非全面调查E、全面调查3、在工业企业设备普查中(BDE )A、工业企业是调查对象B、工业企业的全部设备是调查对象C、每台设备是填报单位D、每台设备是调查单位E、每个工业企业是填报单位4、我国第四次人口普查的标准时间是1990年7月1日零时, 下列情况应统计人口数的有 (BDE )A、1990年7月2日出生的婴儿B、1990年6月29日出生的婴儿C、1990年6月29日晚死亡的人D、1990年7月1日1时死亡的人E、1990年6月26出生,7月1日6时死亡的的婴儿5、下列调查属于非全面调查的有( BCD)A.普查B.重点调查C.典型调查D.抽样调查E.统计报表6、对某地区高校进行办学质量评估,则该地区每一所高校属于(BC)A.调查对象B.调查单位C.填报单位D.典型单位E.重点单位第三章数据整理和描述数据整理一、判断题:1、统计分组的关键问题是确定组距和组数.(× )2、某企业职工按文化程度分组形成的分配数列是一个单项式分布数列.(×)3、连续型变量和离散型变量在进行组距式分组时,均可采用相邻组组距重叠的方法确定组限.(√ )4、对资料进行组距式分组,是假定变量值在各组内部的分布是均匀的,所以这种分组会使资料的真实性受到损害.(√ )5、统计分组以后,掩盖了各组内部各单位的差异,而突出了各组之间单位的差异.(√ )6、离散型变量既可以编制单项变量数列,也可以编制组距变量数列;连续型变量只能编制组距变量数列,且相邻组的组限必须重叠.(√)7、按品质标志分组所形成的次数分布数列就是变量数列.(×)二、单选题:1、在组距分组时,对于连续型变量,相邻两组的组限( A).A、必须是重叠的B、必须是间断的C、可以是重叠的,也可以是间断的D、必须取整数2、有一个学生考试成绩为70分,在统计分组中,这个变量值应归入( B).A、60---70分这一组B、70---80分这一组C、60-70或70-80两组都可以D、作为上限的那一组3、某主管局将下属企业先按轻、重工业分类,再按企业规模分组,这样的分组属于(B ).A、简单分组B、复合分组C、分析分组D、结构分组4、划分连续变量的组限时,相邻组的组限必须(A ).A、重叠B、相近C、不等D、间断5、在等距数列中,组距的大小与组数的多少成(C ).A、正比B、等比C、反比D、不成比例6、有12名工人分别看管机器台数资料如下:2、5、4、4、3、4、3、4、4、2、2、4,按以上资料编制变量数列,应采用( A).A、单项式分组B、等距分组C、不等距分组D、以上几种分组均可三、多选题:1.统计分组( ACD).A、是一种统计方法B、对总体而言是“合”C、对总体而言是“分”D、对个体而言是“合”E、对个体而言是“分”2、在组距数列中,组中值(ABE )A、上限和下限之间的中点数值B、用来代表各组标志值的平均水平C、在开放式分组中无法确定D、就是组平均数E、在开放式分组中,可以参照相邻组的组距来确定3、分布数列的两个组成要素为(CD ).A、品质标志B、数量标志C、各组名称D、次数E、分组标志.4、根据分组标志性质不同,分布数列可分为(CD ).A、等距数列B、异距数列C、品质数列D、变量数列E、次数与频率.5、下列数列属于(BCDE )按生产计划完成程度分组(%)\x09企业数(个)80─90 \x091590─100\x0930100─110\x095合计\x0950A、品质分布数列B、变量分布数列C、组距式变量分布数列D、等距变量分布数列E、次数分布数列数据描述——总量指标和相对指标一、判断题:1、统计资料显示,× ×年全国净增加人口1320万人,这是时点指标.(× )2、我国耕地面积占世界的7%,养活占世界人口总数22%的人口,这两个指标都是结构相对指标.(√ )3、全国粮食总产量与全国人口对比计算的人均粮食产量是平均指标.(×)4、某年甲、乙两地社会商品零售额之比为1:3,这是一个比例相对指标.(×)5、某企业生产某种产品的单位成本,计划在上年的基础上降低2%,实际降低了3%,则该企业差一个百分点,没有完成计划任务.(× )6、同一总体的一部分数值与另一部分数值对比得到的相对指标是比较相对指标.(× )二、单选题:1、一工厂2023年10月份产值30万元,10月底半成品库存额25万元,这两个指标( C).A、均为时期指标B、均为时点指标C、前者为时期指标,后者为时点指标D、前者为时点指标,后者为时期指标2、某厂1996年完成产值2023万元,1997年计划增长10%,实际完成2310万元,超额完成计划(B ).A、5.5%B、5%C、115.5%D、15.5%3、反映不同总体中同类指标对比的相对指标是(B ).A、结构相对指标B、比较相对指标C、强度相对指标D、计划完成程度相对指标4、下列相对数中,属于不同时期对比的指标有( B).A、结构相对数B、动态相对数C、比较相对数D、强度相对数5、总量指标按照其反映的内容不同,分为(A )A.总体单位总量和总体标志总量B.时期指标和时点指标C.实物指标、价值指标和劳动量指标D.平均指标和相对指标6、下列指标中,属于相对数的是(C )A.某企业的工人劳动生产率B.某种商品的平均价格C.某地区的人均粮食产量D.某公司职工的平均工资三、多选题:1、下列统计指标属于时点指标的有( ACE)A、某地区人口数B、某地区人口死亡数C、某城市在校学生数D、某农场每年拖拉机台数E、某工厂月末在册职工人数2、下列属于时期指标的有(BCD )A.职工人数B.大学生毕业人数C.婴儿出生数D.固定资产折旧额3、相对指标中,分子和分母有可能互换的有(BCE )A.计划完成百分比B.比例相对数C.强度相对数D.比较相对数4、下列指标中的结构相对指标是(ACD )A、国有制企业职工占总数的比重B、某工业产品产量比上年增长的百分比C、大学生占全部学生的比重D、中间投入占总产出的比重E、某年人均消费额5、下列指标属于相对指标的是( BDE)A、某地区平均每人生活费245元B、某地区人口出生率14.3%C、某地区粮食总产量4000万吨D、某产品产量计划完成程度为113%E、某地区人口自然增长率11.5‰数据描述——平均指标和变异指标一、单选题:1、某公司下属五个企业,共有2023名工人.已知每个企业某月产值计划完成百分比和实际产值,要计算该公司月平均产值计划完成程度,采用加权调和平均数的方法计算,其权数是(B ).A、计划产值B、实际产值C、工人数D、企业数2、加权算术平均数计算公式的权数是(C ).A、fB、∑fC、f/∑fD、X3、权数对算术平均数的影响作用,实质上取决于(A ).A、作为权数的各组单位数占总体单位数比重的大小B、各组标志值占总体标志总量比重的大小C、标志值本身的大小D、标志值数量的多少4、比较两个不同水平数列总体标志的变异程度,必须利用(B ).A、标准差B、标志变动系数C、平均差D、全距5、用标准差比较分析两个同类总体平均指标的代表性的前提条件是(B ).A、两个总体的标准差应相等B、两个总体的平均数应相等C、两个总体的单位数应相等D、两个总体的离差之和应相等6、甲、乙两数列的平均数分别为100和14.5,它们的标准差为12.8和3.7,则(A ).A、甲数列平均数的代表性高于乙数列B、乙数列平均数的代表性高于甲数列A、两数列平均数的代表性相同B、两数列平均数的代表性无法比较7、若某一变量数列中,有变量值为零,则不适宜计算的平均指标是(B)A.算数平均数B.调和平均数C.中位数D.众数二、多选题:1、平均数的种类有(ABCDE )A、算术平均数B、众数C、中位数D、调和平均数E、几何平均数2、影响加权算术平均数的因素有( AB)A、各组频率或频数B、各组标志值的大小C、各组组距的大小D、各组组数的多少E、各组组限的大小3、在下列条件下,加权算术平均数等于简单算术平均数( ADE)A、各组次数相等B、各组变量值不等C、变量数列为组距数列D、各组次数都为1E、各组次数占总次数比重相等4、可以衡量变量离散程度的指标有( ABCD)A.全距B.平均差C.标准差D.标准差系数5、位置平均数有(CD )A.算数平均数B.调和平均数C.中位数D.众数6、受极端值影响较大的平均指标有(ABC )A.算术平均数B.调和平均数C.几何平均数D.众数第五至七章抽样推断一、判断题:1、抽样推断是利用样本资料对总体的数量特征进行估计的一种统计分析方法,因此不可避免地会产生误差,这种误差的大小是不能进行控制的.(×)2、从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本.(×)3、在抽样推断中,作为推断的总体和作为观察对象的样本都是确定的、唯一的.(×)4、抽样估计置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度.(√)5、在其它条件不变的情况下,提高抽样估计的可靠程度,可以提高抽样估计的精确度.(×)6、抽样平均误差反映抽样的可能误差范围,实际上每次的抽样误差可能大于抽样平均误差,也可能小于抽样平均误差.(×)二、单选题:1、抽样误差是指( C).A.在调查过程中由于观察、测量等差错所引起的误差B.在调查中违反随机原则出现的系统误差C.随机抽样而产生的代表性误差D.人为原因所造成的误差2、在一定的抽样平均误差条件下( A ).A.扩大极限误差范围,可以提高推断的可靠程度B.扩大极限误差范围,会降低推断的可靠程度C.缩小极限误差范围,可以提高推断的可靠程度D.缩小极限误差范围,不改变推断的可靠程度3、反映样本指标与总体指标之间的平均误差程度的指标是(C ).A.抽样误差系数B.概率度C.抽样平均误差D.抽样极限误差4、抽样平均误差是( C ).A.全及总体的标准差B.样本的标准差C.抽样指标的标准差D.抽样误差的平均差5、抽样平均误差说明抽样指标与总体指标之间的( B ).A.实际误差B.平均误差C.实际误差的平方D.允许误差6、总体均值和样本均值之间的关系是( A ).A.总体均值是确定值,样本均值是随机变量B.总体均值是随机变量,样本均值是确定值C.两者都是随机变量D.两者都是确定值7、所谓大样本是指样本单位数( B ).A.30个 B.大于等于30个C.大于等于50个 D.50个8、样本容量是指( B ).A.样本的个数 B.样本中所包含的单位数C.样本的大小 D.总体单位数第八章相关与回归分析一、判断题:1、正相关是指两个变量之间的变化方向都是上升的趋势,而负相关是指两个变量之间的变化方向都是下降的趋势.(×)2、函数关系是一种完全的相关关系.(√)3、已知两变量直线回归方程为:Y^=-45.25+1.61x,则可断定这两个变量之间一定存在正相关关系.(√)4、相关系数的数值越大,说明相关程度越高;同理,相关系数的数值越小,说明相关程度越低.(×)5、不具有因果关系的两个变量之间,一定不存在相关关系.(×)二、单选题:1、当相关系数r=O时,说明(C ).A、现象之间相关程度较小B、现象之间完全相关C、现象之间无直线相关D、现象之间完全无关2、若两个变量之间的线性相关程度是高的,则计算出的相关系数应接近( C )A、 0B、 0.5C、-1或+1D、 25、下列各组列出为同一个问题的回归方程和相关系数,哪一组肯定是错误的(C)A、y=50+0.3x,r=0.8;B、y=-75+13x, r=0.91;C、y=5-2.6x, r=0.78;D、y=-130+3.5x, r=0.966、下列现象中,相关密切程度高的是(D )A、商品销售量与商品销售额之间的相关系数为0.90B、商品销售额与商业利润率之间的相关系数为0.60C、商品销售额与流通费用率之间的相关系数为-0.85D、商业利润率与流通费用率之间的相关系数为-0.957、回归方程 ^Y=a+bx 中的回归系数 b 说明自变量变动一个单位时, 因变量( B)A、变动b个单位B、平均变动b个单位C、变动a+b个单位D、变动1/b个单位第九章时间序列分析一、判断题:1、发展水平就是动态数列中的每一项具体指标数值,它只能表现为绝对数.(×)2、若将1990-1995年末国有企业固定资产净值按时间先后顺序排列,此种动态数列称为时点数列.(√)3、定基发展速度等于相应各个环比发展速度的连乘积,所以定基增长速度也等于相应各个环比增长速度的连乘积.(×)4、发展速度是以相对数形式表示的速度分析指标,增长量是以绝对数形式表示的速度分析指标.(×)5、定基发展速度和环比发展速度之间的关系是两个相邻时期的定基发展速度之积等于相应的环比发展速度.(×)6、平均增长速度不是根据各个增长速度直接来求得,而是根据平均发展速度计算的.(√)二、单选题:3、某企业的职工工资水平比上年提高5%,职工人数增加2%,则企业工资总额增长(B ).A. 10%B. 7.1%C. 7%D. 11%解释:工资总额指数=工资水平指数*职工人数指数所以,工资总额指数=(1+5%)*(1+2%)=107.1%4、间隔相等的间断时点数列计算序时平均数应采用(D ).A.几何平均法B.加权算术平均法C.简单算术平均法D.首末折半法5、定基发展速度和环比发展速度的关系是( A ).A.两个相邻时期的定基发展速度之商等于相应的环比发展速度B.两个相邻时期的定基发展速度之差等于相应的环比发展速度C.两个相邻时期的定基发展速度之和等于相应的环比发展速度D.两个相邻时期的定基发展速度之积等于相应的环比发展速度6、下列数列中哪一个属于动态数列(D ).A.学生按学习成绩分组形成的数列B.工业企业按地区分组形成的数列C.职工按工资水平高低排列形成的数列D.出口额按时间先后顺序排列形成的数列7、说明现象在较长时期内发展的总速度的指标是( C ).A.环比发展速度B.平均发展速度C.定基发展速度D.定基增长速度8、已知各期环比增长速度为2%、5%、8%和7%,则相应的定基增长速度的计算方法为( A ).A.(102%×105%×108%×107%)-100%。
高中概率与统计试题及答案
高中概率与统计试题及答案一、选择题(每题4分,共40分)1. 某班级有50名学生,其中男生30人,女生20人。
随机抽取一名学生,抽到男生的概率是多少?A. 0.4B. 0.6C. 0.8D. 1.02. 在一次掷骰子的实验中,掷得的点数为奇数的概率是多少?A. 0.5B. 0.25C. 0.75D. 1.03. 某工厂生产的产品中,有5%的产品是次品。
如果随机抽取100件产品,计算至少有1件次品的概率。
A. 0.95B. 0.975C. 0.995D. 1.04. 某篮球队在一场比赛中,投篮命中率为40%。
如果该队在一场比赛中投篮20次,求至少投中8次的概率。
A. 0.1B. 0.3C. 0.5D. 0.95. 某次考试共有100道选择题,每题4个选项,随机猜测,求至少猜对20题的概率。
A. 0.1B. 0.3C. 0.5D. 0.96. 某城市有两家电影院,A影院的观众满意度为70%,B影院的观众满意度为80%。
随机选择一家影院,求观众满意度超过70%的概率。
A. 0.5B. 0.7C. 0.8D. 1.07. 某公司有5名员工,其中2名是女性。
随机选择2名员工参加培训,求至少有1名女性的概率。
A. 0.5B. 0.6C. 0.7D. 0.88. 某班有40名学生,随机选择5名学生参加竞赛,求至少有1名男生的概率,已知该班男生比例为60%。
A. 0.9B. 0.95C. 0.99D. 1.09. 某地区一年中下雨的天数占总天数的30%,求连续3天都下雨的概率。
A. 0.027B. 0.09C. 0.3D. 1.010. 某彩票中奖率为1/100,求购买一张彩票中奖的概率。
A. 0.01B. 0.1C. 0.5D. 1.0二、解答题(每题10分,共60分)11. 某学校有200名学生,其中100名男生和100名女生。
如果随机抽取4名学生组成一个小组,求该小组中恰好有2名男生的概率。
12. 某工厂的零件合格率为90%,求从100个零件中随机抽取10个,至少有8个合格的概率。
概率论与数理统计学1至7章课后答案解析
第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{Λ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯=2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{Λ===k k X P k,求 };6,4,2{)1(Λ=X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++==ΛΛΛX P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。
统计学第七章、第八章课后题答案
统计学第七章、第⼋章课后题答案统计学复习笔记第七章参数估计⼀、思考题1.解释估计量和估计值在参数估计中,⽤来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本⽐例、样本⽅差等。
根据⼀个具体的样本计算出来的估计量的数值称为估计值。
2.简述评价估计量好坏的标准(1)⽆偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的⽅差尽可能⼩。
对同⼀总体参数的两个⽆偏估计量,有更⼩⽅差的估计量更有效。
(3)⼀致性:是指随着样本量的增⼤,点估计量的值越来越接近被估总体的参数。
3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道⼀些调查结果只给出百分⽐和误差(即置信区间),并不说明置信度,也不给出被调查的⼈数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查⼈数是负责任的表现。
这样则可以由此推算出置信度(由后⾯给出的公式),反之亦然。
4.解释95%的置信区间的含义是什么置信区间95%仅仅描述⽤来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,⽆穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某⼀样本数据得到总体参数的某⼀个95%置信区间,就以为该区间以的概率覆盖总体参数。
5.简述样本量与置信⽔平、总体⽅差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信⽔平1-α、总体⽅差、估计误差E 之间的关系为与置信⽔平成正⽐,在其他条件不变的情况下,置信⽔平越⼤,所其中: 2222α2222)(E z n σα=n z E σα2=需要的样本量越⼤;与总体⽅差成正⽐,总体的差异越⼤,所要求的样本量也越⼤;与与总体⽅差成正⽐,样本量与估计误差的平⽅成反⽐,即可以接受的估计误差的平⽅越⼤,所需的样本量越⼩。
统计学答案第七章
1 估量量的含义是指()。
A.用来估量整体参数的统计量的名称B.用来估量整体参数的统计量的具体数值C.整体参数的名称D.整体参数的具体数值2 在参数估量中,要求通过样本的统计量来估量整体参数,评判统计量的标准之一是使它与整体参数的离差越小越好。
这种评判标准称为()。
A.无偏性B.有效性C.一致性D.充分性3 依照一个具体的样本求出的整体均值的95%的置信区间()。
A.以95%的概率包括整体均值B.有5%的可能性包括整体均值C.必然包括整体均值D.要么包括整体均值,要么不包括整体均值4 无偏估量是指()。
A.样本统计量的值恰好等于待估的整体参数B.所有可能样本估量值的数学期望等于待估整体参数C.样本估量值围绕待估整体参数使其误差最小D.样本量扩大到和整体单元相等时与整体参数一致5 整体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。
A.样本均值的抽样标准差B.样本标准差C.样本方差D.整体标准差6 当样本量一按时,置信区间的宽度()。
A.随着置信系数的增大而减小B.随着置信系数的增大而增大C.与置信系数的大小无关D.与置信系数的平方成反比7 当置信水平一按时,置信区间的宽度()。
A.随着样本量的增大而减小B.随着样本量的增大而增大C.与样本量的大小无关D.与样本量的平方根成正比8 一个95%的置信区间是指()。
A.整体参数有95%的概率落在这一区间内B.整体参数有5%的概率未落在这一区间内C.在用一样方式构造的整体参数的多个区间中,有95%的区间包括该整体参数D.在用一样方式构造的整体参数的多个区间中,有95%的区间不包括该整体参数9 95%的置信水平是指()。
A.整体参数落在一个特定的样本所构造的区间内的概率为95%B.在用一样方式构造的整体参数的多个区间中,包括整体参数的区间比例为95%C.整体参数落在一个特定的样本所构造的区间内的概率为5%D.在用一样方式构造的整体参数的多个区间中,包括整体参数的区间比例为5%10 一个估量量的有效性是指()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读书破万卷下笔如有神
单项选择题:
1.D
对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器在有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。
当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于()。
A、0.9
B、0.75
C、0.675
D、0.525
2.D
袋中有5个球(3个新球,2个旧球)。
现每次取一个,无放回的抽取两次,则第二次取到新球的概率是()。
A、3/5
B、3/4
C、1/2
D、3/10
3.B
已知在10个电子元件中有2只是次品,从其中取两次,每次随机的取一只,做不放回抽取,则第二次取出的是次品的概率是()。
A、1/45
B、1/5
C、16/45
D、8/45
4.A
已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=3/16,则事件A,B,C全不发生的概率等于()。
A、7/16
B、3/4
C、1/4
D、9/16
5.D
6.C
读书破万卷下笔如有神
7.B
8.B
甲、乙两袋内都装有两个黑球和两个白球,现从甲、乙两袋中各摸取一个球,记事件A为“从甲袋中摸出白球”,B为“从乙袋中摸出白球”,C为“摸出的两个球颜色不同”,则有()。
A、A,B,C相互独立
B、A,B,C三个事件两两独立
C、A,B,C三个事件两两互不相容
D、AB与C互不相容
9.D
10.C
对于任意两个事件A与B,则有P(A-B)为()
A、P(A)-P(B)
B、P(A)-P(B)+P(AB)
C、P(A)-P(AB)
D、P(A)+P(AB)
11.C
读书破万卷下笔如有神
12.D
13.A
14.C
15.B
读书破万卷下笔如有神
16.B
17.D
18.B
19.A
读书破万卷下笔如有神20.B
21.D
22.A
23.D
读书破万卷下笔如有神
24.D
25.A
设随机变量X~N(0,1),Y=3X+2,则Y服从()分布。
A、N(2,9)
B、N(0,1)
C、N(2,3)
D、N(5,3)
26.B
27.C
读书破万卷下笔如有神
28.A
29.A
人的体重ξ~φ(x),E(ξ)=a,D(ξ)=b,10个人的平均体重记为η,则()正确。
A、E(η)=a
B、E(η)=0.1a
C、D(η)=0.01b
D、D(η)=b
30.B
31.A
设两个相互独立的随机变量X和Y的方差分别为6和3,则随机变量2X-3Y的方差是()。
A、51
21
、B.
读书破万卷下笔如有神
C、-3
D、36
32.C
33.D
34.A
35.D
设二独立随机变量X与Y之和X+Y与X和Y服从同一名称的分布,如果X和Y都服从()。
A、均匀分布
B、二项分布
C、指数分布
D、泊松分布
36.C
假设随机变量X服从参数为(9,0.6)的二项分布,则其最可能数为()。
A、5
B、6
C、5和6
7
和6、D.
读书破万卷下笔如有神
37.C
假设X是只有有限个可能值的离散型随机变量,随机变量Y服从正态分布,且X和Y相互独立,则随机变量X+Y的分布函数()。
A、是阶梯函数
B、恰好有一个间断点
C、是连续函数
D、恰好有两个间断点
38.A
39.A
40.C
41.A
读书破万卷下笔如有神
42.D
43.C
44.A
45.C
读书破万卷下笔如有神
46.B
47.B
48.C
在假设检验中,一般情况下()错误。
A、只犯第一类
B、只犯第二类
C、既可能犯第一类也可能犯第二类
D、不犯第一类也不犯第二类
49.C
读书破万卷下笔如有神
填空题:
1.0.3
某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸的住户百分比是___。
2.7/12
已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/6,则事件A,B,C 全不发生的概率等于___。
3.1/18
已知A1,A2,A3,为一完备事件组,且P(A1)=0.1,P(A2)=0.5,P(B|A1)=0.2,P (B|A2)=0.6,P(B|A3)=0.1,P(A1|B)=___。
4.0.2
设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有1件是不合格品,则另外1件也是不合格品的概率为___。
5.0.436
电路元件A与两个关联的元件B,C串联而成,若A,B,C损坏与否是相互独立的,且它们损坏的概率依次为0.3,0.2,0.1,则电路断路的概率是___。
6.0.5,1/π,0.5
7.9/64
8. 65/81
设随机变量X服从参数为(2,P)的二项分布,随机变量Y服从参数为(3,P)的二项分布,若P{x≥1}=5/9,则P{Y≥1}=___.
9.3/4,0,1/2
10. 20,19.49
从废品率为5%的一批产品中每次取一个产品,直到渠道废品为止,平均要取___个产品,。
___所取产品个数的均方差为
读书破万卷下笔如有神
11. 0.495
设离散型随机变量ξ的取值是在两次独立试验中事件A发生的次数,如果在这次试验中事件发生的概率相同并且已知ξE(ξ)=0.9,则D(ξ)=___。
12. 65/81
若随机变量ξ~B(2,p),η~B(4,p),且P{ξ≥1}=5/9,则P{η≥1}=___。
13. 20/27
设随机变量X在[1,4]上服从均匀分布,现在对X进行3次独立试验,则至少有两次观察值大于2的概率为___。
14. 0.06415,0.3303,0.009,0.6606,超过240V
设电源电压U~N(220,625)(单位:V)有三种情况:(1)不超过200V;(2)200V~240V;(3)超过240V,在以上三种情况下,某电子元件损坏的概率分别为0.1,0.001,0.2,电子元件损坏的概率___;若已知电子元件损坏,电压处在___情况可能性最大。
15. t(n-1)
16.极大似然估计
在学过的内容中,矩估计和___是点估计的两种常用方法。
17. [0.101,0.224]
从一大批产品中抽取样本容量为100的样本,经检验发现有16个次品,则这种产品的次品率p 的置信度为0.95的置信区间为___。
18. 否,否
19.不正常,显著变大
问答题:
1. P(A1)=70%,P(A2)=30%,P(B|A1)=95%,P(B|A2)=80%
市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的表示产品为合格品,试写B分别表示甲、乙两厂的产品,A2、A1%。
若用事件80合格率是
读书破万卷下笔如有神
出有关事件的概率P(A1),P(A2),P(B|A1),P(B|A2)。
2. 3/4,11/12
已知P(A)=1/4,P(B)=2/3.(1)若A与B相互独立,求P(A+B);(2)若A与B不相容,求P(A+B).
3. 0.039,0.0006,0.000006,0.000004,0.00000001
某人买了四节电池,已知这批电池有百分之一的产品不合格,求这人买到的四节电池中恰好有一节、二节、三节、四节是不合格的概率。
4. 1/π,1/3
5. 1/λ
6. 7.5,7,0.0460,0.9540
自优质品率为15%的一批产品中进行50次还原抽样检验,假设检验不影响产品的质量。
试求:(1)抽到优质品的平均件数;(2)抽到优质品的最可能件数;(3)抽到优质品不超过3次的概率;(4)抽到优质品超过3次的概率。
7. 0.802
ξ服从参数为a,P的二项分布,已知P(ξ≥1)=5/9,那么成功率为P的4重贝努里试验中至少有一次成功的概率是多少?
8. 13/8,41/8,12
9. 0.05
1000个这样的元件使用3小时)的指数分布。
1000=λ/1(λ服从参数为ξ某元件寿命
读书破万卷下笔如有神
小时后,都没有损坏的概率是多少?
10. 37
11. 0.008
已知某种白炽灯泡寿命服从正态分布,在某星期所生产的该种灯泡中随机抽取10只,则得寿命(以小时记)为1067,919,1196,785,1126,936,918,1156,920,948,若总体参数均未知,使用极大似然估计法估计这个星期中生产的灯光能使用1300小时以上的概率。
12. 可以认为。