无线电能传输技术
无线电能传输技术研究
无线电能传输技术研究一、引言无线电能传输技术作为一种新兴的能源传输方式,越来越受到人们的关注。
本文将对无线电能传输技术的研究现状和发展趋势进行介绍和分析。
二、无线电能传输技术的基本原理和分类无线电能传输技术是利用无线电波将能量从发射器传输到接收器的一种技术。
根据传输距离的不同,可以将无线电能传输技术分为近距离无线电能传输和远距离无线电能传输两种。
1. 近距离无线电能传输技术近距离无线电能传输技术主要应用于小范围内的能量传输,如无线充电技术。
该技术通过将能量转化为电磁波,并通过电磁场将能量传输给接收器,实现设备的无线充电。
近距离无线电能传输技术常用的传输方式有磁共振耦合传输和电磁感应传输。
2. 远距离无线电能传输技术远距离无线电能传输技术主要应用于大范围内的能量传输,如太阳能无线输电。
该技术利用太阳能发电站产生的直流电,将其转化为高频交流电,然后通过天线将能量传输到接收天线,最终转化为直流电。
远距离无线电能传输技术常用的传输方式有微波传输和激光传输。
三、无线电能传输技术的应用领域无线电能传输技术具有广泛的应用领域,以下是一些常见的应用领域:1. 智能家居无线电能传输技术可以在家庭内实现智能家居设备的无线充电,提高家庭用电的便利性和安全性。
2. 移动通信无线电能传输技术可以为移动通信设备提供长时间的续航能力,减少用户频繁充电的困扰。
3. 无人机与机器人无线电能传输技术可以为无人机和机器人等设备提供能源支持,延长其工作时间和工作距离。
4. 新能源领域无线电能传输技术可以解决新能源发电和输电的难题,提高能源利用效率和节能减排效果。
四、无线电能传输技术的发展趋势无线电能传输技术在不断发展壮大的同时,也面临一些挑战和发展趋势。
1. 传输效率的提高目前无线电能传输技术的传输效率还不高,需要进一步提高能量传输的效率,降低能量在传输过程中的损耗。
2. 安全性的增强无线电能传输技术涉及到大量的能源传输和电磁波的产生与传输,需要加强对无线电波辐射对人体和环境的安全性研究和保障。
无线电能传输原理
无线电能传输原理无线电能传输是指通过无线电波将能量传输到远距离的技术。
这种技术在现代社会中得到了广泛的应用,包括手机充电、电动汽车充电等领域。
无线电能传输原理是基于电磁感应和电磁波传播的物理原理,下面我们将详细介绍无线电能传输的原理和相关技术。
首先,无线电能传输的基本原理是利用发射端的电磁场感应接收端产生感应电流,从而实现能量传输。
在无线电能传输系统中,发射端通过电源产生高频交流电,然后通过天线将电能转换成电磁波并辐射出去。
当接收端的天线接收到这些电磁波时,会产生感应电流,从而实现能量的传输。
这种原理类似于变压器的工作原理,但无线电能传输可以实现远距离的能量传输,而不需要物理上的接触。
其次,无线电能传输的关键技术包括功率传输、距离衰减和安全性。
在实际应用中,无线电能传输需要考虑功率传输的效率和距离衰减的影响。
功率传输的效率取决于发射端和接收端的天线设计、工作频率和传输距离等因素。
距离衰减是指随着传输距离的增加,电磁波的能量密度会随之减小,因此需要合理设计系统以克服距离衰减的影响。
此外,无线电能传输还需要考虑安全性的问题,避免对人体和其他设备造成危害。
最后,无线电能传输技术的发展趋势是提高传输效率、扩大传输距离和提高安全性。
为了提高传输效率,研究人员正在开发新的天线设计和工作频率选择,以提高能量传输的效率。
同时,为了扩大传输距离,研究人员也在探索新的传输技术和材料,以克服距离衰减的影响。
此外,为了提高安全性,研究人员正在开发新的安全控制技术,以确保无线电能传输不会对人体和其他设备造成危害。
总的来说,无线电能传输是一种基于电磁感应和电磁波传播的技术,通过发射端产生的电磁波感应接收端产生感应电流,从而实现能量传输。
在实际应用中,无线电能传输需要考虑功率传输、距离衰减和安全性等关键技术,未来的发展趋势是提高传输效率、扩大传输距禿和提高安全性。
通过不断的研究和创新,无线电能传输技术将会在更多领域得到应用,并为人们的生活带来便利和舒适。
无线电能传输技术的原理与应用
无线电能传输技术的原理与应用1. 引言无线电能传输技术是一种可以通过空气中的电磁波将能量传输到指定目标的技术,其应用范围非常广泛。
本文将围绕着无线电能传输技术的原理与应用进行介绍。
2. 原理无线电能传输技术的原理是基于电磁波。
电磁波长期以来一直被视为一种携带信息的手段,但是近几十年来却被人们用于无线电能传输。
电磁波是由交变电场和交变磁场组成的一种波动,因此它可以在空气中传播,并且可以穿透一些特定的物质。
无线电能传输技术就是利用这个原理,通过将电磁波接收器和发射器配对,建立起一个稳定的电场,并且通过电磁波将这个电场传递到接收器中,从而实现能量的传输。
3. 应用无线电能传输技术的应用非常广泛。
以下是一些应用示例:(1)无线充电无线电能传输技术最常见的应用之一就是无线充电。
现在,越来越多的智能设备都支持无线充电,例如智能手机、智能手表和智能家居设备等。
通过无线电能传输技术,这些设备可以在不需要接触任何电线或插头的情况下进行充电。
(2)工业领域无线电能传输技术还广泛应用于工业领域。
例如,可以利用这个技术无线传输能量到遥远的机器人或者深海探测设备上。
(3)医疗领域无线电能传输技术在医疗领域也有一定的应用。
例如,可以通过这种技术在炎症或癌症区域内部输送能量,以加速治疗。
(4)智能家居在智能家居领域,无线电能传输技术也有很多应用。
例如,可以通过这种技术让家具自动充电,从而避免使用电线。
4. 未来展望尽管无线电能传输技术已经发展了很长时间,但是它在未来的发展仍然有着不可估量的潜力。
例如,可以通过这种技术为移动设备和车辆提供无线充电,从而让人们在平日里更充满活力和更不依赖于插座。
另外,无线电能传输技术在有限的范围内也可以用来供电,从而为全球提供更加独立和平衡的能源方案。
5. 结论无线电能传输技术是一种非常令人振奋的技术,它将能源输送高科技化。
它不仅为我们提供了更便捷的充电方案,而且也为我们提供了一个更加绿色、更加清洁和更加可持续的未来。
无线电能传输技术在电力系统中的应用研究
无线电能传输技术在电力系统中的应用研究随着科技的不断发展,人类对电力系统的需求日益增长。
然而,传统的电力输送方式存在一些局限性,如输电线路损耗、电缆成本高昂等问题,给电力系统的可靠性和可持续性带来了一定的挑战。
而无线电能传输技术作为一种新兴的能源传输方式,正逐渐成为电力系统研究的热点领域。
一、无线电能传输技术的基本原理和发展历程无线电能传输技术是一种通过无线电波将能量从发射端传输到接收端的技术。
它的基本原理是利用发射端产生的电磁波,通过对电磁波进行调制和控制,将能量传输到接收端并恢复为电能。
无线电能传输技术的发展历程可以追溯到19世纪末的无线电通信技术,但直到近年来,随着无线电技术和功率电子技术的进步,无线电能传输技术才取得了较大的突破和应用。
二、无线电能传输技术在电力系统中的应用1. 无线电能传输技术在电动汽车充电中的应用电动汽车充电是近年来的一个热门话题。
传统的有线充电方式存在充电效率低、充电设施建设困难等问题。
而无线电能传输技术可以通过地面或道路上的电磁感应装置,实现对电动汽车的无线充电。
这种方式不仅可以提高充电效率,减少充电时间,还可以减少对公共区域的占用和充电桩的建设成本。
因此,无线电能传输技术在电动汽车充电中的应用具有广阔的前景。
2. 无线电能传输技术在无线传感器网络中的应用无线传感器网络是一种由大量节点组成的、能够自组织和自适应的网络系统,可以实时监测和采集环境数据。
然而,传统的无线传感器网络中,节点的电池寿命通常较短,需要频繁更换电池,给维护和管理带来了一定困难。
而无线电能传输技术可以为无线传感器网络提供长时间稳定的能量供应,解决节点电池寿命问题,并延长无线传感器网络的使用寿命。
3. 无线电能传输技术在远程无人岛屿供电中的应用远程无人岛屿供电一直是一个难题,传统的供电方式通常需要铺设长距离的电缆,不仅造成资源浪费,还增加了维护成本。
而无线电能传输技术可以实现对远程无人岛屿的无线供电,大大降低了供电成本,提高了供电可靠性。
国内 无线电能传输技术
国内无线电能传输技术标题:中国无线电能传输技术的发展与应用一、引言无线电能传输(Wireless Power Transfer,WPT)是一种通过非物理接触方式传递电能的技术。
这种技术的发展和应用在很大程度上改变了人们的生活方式,为我们的日常生活带来了极大的便利。
在中国,无线电能传输技术的研究和应用也取得了显著的成果。
二、无线电能传输技术的基本原理无线电能传输技术主要利用电磁感应、电磁谐振等原理,将电能从电源端无线传输到负载端。
其中,电磁感应是利用两个线圈之间的磁场变化来产生电流;而电磁谐振则是通过两个具有相同谐振频率的线圈之间的能量交换来实现电能的无线传输。
三、中国无线电能传输技术的发展近年来,中国的无线电能传输技术发展迅速。
国内科研机构和企业对无线电能传输技术进行了大量的研究,并取得了一系列的重要成果。
例如,一些高校和科研机构成功研发出了高效率、大功率的无线电能传输系统,并在电动汽车充电、无人机供电等领域得到了实际应用。
四、中国无线电能传输技术的应用目前,中国的无线电能传输技术已经在多个领域得到了广泛应用。
在电动汽车充电方面,无线电能传输技术可以实现电动汽车的无接触充电,大大提高了充电的便利性。
在医疗设备供电方面,无线电能传输技术可以实现植入式医疗设备的无线供电,降低了手术风险。
此外,无线电能传输技术还在智能家居、消费电子等领域有着广阔的应用前景。
五、结论总体来看,中国的无线电能传输技术已经取得了显著的进步,并且在多个领域得到了广泛的应用。
未来,随着科技的进步和市场需求的变化,中国的无线电能传输技术将会得到进一步的发展,为人们的生活带来更多的便利。
无线电能传输技术的应用与发展
无线电能传输技术的应用与发展在当今科技飞速发展的时代,无线电能传输技术正逐渐从科幻走向现实,为我们的生活带来前所未有的便利和变革。
这项技术打破了传统有线电能传输的束缚,让电能的传输不再受限于电线的连接,为众多领域带来了新的可能性。
无线电能传输技术,顾名思义,就是无需通过导线连接,就能实现电能从电源到负载的传输。
其基本原理主要包括电磁感应、电磁共振和无线电波等方式。
电磁感应式无线电能传输就如同变压器的原理,通过初级线圈和次级线圈之间的电磁感应来传递能量;电磁共振式则是让发射端和接收端的线圈在相同的频率下共振,从而实现高效的能量传输;而无线电波式则是通过发射电磁波来传递电能,但这种方式的能量传输效率相对较低,目前应用较少。
在消费电子领域,无线电能传输技术已经得到了广泛的应用。
最常见的就是无线充电手机和无线充电耳机。
想象一下,当我们回到家或者办公室,只需将手机随意放在充电板上,无需再繁琐地插拔充电线,就能让手机电量满满。
这不仅方便了我们的生活,还减少了因频繁插拔充电线而导致的接口磨损。
无线充电耳机也让我们在使用时摆脱了线缆的束缚,更加自由舒适。
此外,无线充电技术还应用于平板电脑、智能手表等设备,为我们的智能生活提供了更加便捷的能源支持。
在交通运输领域,无线电能传输技术也展现出了巨大的潜力。
电动汽车无线充电正在成为一种新兴的充电方式。
传统的电动汽车充电需要使用充电枪连接车辆和充电桩,不仅操作不便,而且在恶劣天气条件下还存在一定的安全隐患。
而无线充电技术可以让电动汽车在停车时自动进行充电,无需人工干预。
例如,一些停车场已经开始安装无线充电设施,当电动汽车停入指定位置时,就能通过地下的充电装置进行无线充电。
这不仅提高了充电的便利性,还能有效利用停车时间,增加电动汽车的续航里程。
此外,无线电能传输技术还可以应用于轨道交通,如磁悬浮列车等,为列车提供持续稳定的电能供应。
在医疗领域,无线电能传输技术也为医疗器械的发展带来了新的机遇。
国内 无线电能传输技术
国内无线电能传输技术的发展与应用一、引言无线电能传输(Wireless Power Transmission,简称WPT)是一种利用电磁波将电能从一个地方传输到另一个地方的技术。
近年来,随着科技的快速发展,无线电能传输技术在国内也取得了显著的进步,并在多个领域得到了广泛的应用。
二、技术原理无线电能传输主要基于电磁感应和磁共振两种方式。
电磁感应是通过变化的磁场产生电流,而磁共振则是通过两个谐振频率相同的线圈之间的能量传递。
三、国内发展现状我国在无线电能传输技术的研发方面投入了大量的资源,已取得了一系列重要的研究成果。
例如,我国已经成功研发出可以实现长距离、大功率无线输电的设备,并在电动汽车充电、无人机充电等领域进行了实际应用。
四、应用领域1. 电动汽车充电:无线电能传输技术能够实现电动汽车的无接触式充电,大大提高了充电的便利性。
2. 无人机充电:无人机可以通过无线电能传输技术进行空中充电,从而延长其飞行时间。
3. 家用电器:一些家用电器如电动牙刷、剃须刀等已经开始采用无线电能传输技术进行充电。
五、未来展望随着科技的进步,无线电能传输技术将会得到更广泛的应用。
在未来,我们有望看到更多的设备使用无线电能传输技术进行充电,这将极大地提高我们的生活便利性。
同时,无线电能传输技术也有望在空间太阳能发电、深海能源开采等领域发挥重要作用。
六、结论总体来看,无线电能传输技术在我国的发展前景十分广阔。
然而,要实现这一技术的大规模应用,还需要我们在技术研发、标准制定等方面做出更大的努力。
我们期待无线电能传输技术能够在未来的日子里为我们的生活带来更多的便利。
无线电能传输技术研究
无线电能传输技术研究现如今,人们对于电能的需求是越来越高。
然而,传统有线电路方式传输电能存在众多的限制和缺陷,比如不能跨越大片区域,容易造成漏电等问题。
而无线电能传输技术的诞生,则在一定程度上缓解了这些问题,成为了一种备受关注的新型能源技术。
下面,本文将就无线电能传输技术进行深入探究。
一、无线电能传输技术的概念与分类无线电能传输技术,简称无线能量传输技术,是指使用电磁波进行无线传输能量的技术。
它可以将电能转化为无线电能,实现电能在空间上的传输,从而实现电能的遥控、无线供电等功能。
一般来讲,无线电能传输技术可以分为短距离和长距离两种。
1.短距离无线电能传输技术短距离无线电能传输技术,主要指定向传输和环向传输两种技术方式。
其中定向传输是指通过微波或激光束将电能传送到指定的接收器,而环向传输则是通过电磁波将电能传输到空间中的任意位置。
2.长距离无线电能传输技术长距离无线电能传输技术,则被称为远距离微波无线电能传输技术。
它通过在两个距离较远的位置分别设置发射器和接收器,利用微波来传送电能,实现了跨越大片区域的无线电能传输。
二、无线电能传输技术的应用与发展现状无线电能传输技术,优点很多,比如使用方便、可遥控、能够跨越一定距离、安全可靠等等,并且还可以应用到很多领域上。
比如在医疗方面,无线电能传输技术可以用于生产医疗器械,使其更加智能化;在农业方面,该技术可以应用于土壤水分监测、作物灌溉等方面。
除此之外,它还可以应用于智能家居、无人机等方面,为我们的生活带来了更加方便和高效。
目前,无线电能传输技术的发展还处于探索和研究阶段,还需要不断地努力和不断地完善。
近年来,各大科技企业都在积极探索该领域,并取得了一定的成果。
比如,日本的 NTT 通信公司就已经研发出了将电气能力进行转换成为无线电波并进行远距离传输的控制技术,相信随着科技的不断进步,该技术在未来会得到更加广泛和深入的应用。
三、无线电能传输技术的优缺点分析无线电能传输技术的优点非常明显,主要包括以下几个方面:1.避免了传统有线电路形成的耗能、漏电等负面影响。
无线电能传输技术
无线电能传输技术无线电能传输技术指的是传播能量时不使用电缆和线路的技术,也称为无线电能传导或无线电能外射。
无线电能传输技术可以实现远距离传输,它是无线网络技术的一个重要组成部分,广泛应用于军事和民用领域。
无线电能传输技术分为容量和时间两类。
容量传输要求能量在接收端可以稳定存在,而时间传输要求能量的持续时间足够短,能量的损耗较小。
无线电能传输技术也可以根据传输系统的架构来分类,准确性更高。
无线电能传输技术的发展受到了技术的不断进步的推动。
在过去的几十年里,无线电能传输技术经历了从单路径到多路径、从广播到半导体等技术改进,以及无线信号模式发展等,使传输效率和质量显著提高,技术飞速发展,利用率持续提高。
传统的无线电能传输技术主要是微波和红外线的传输,其中,微波传输技术主要利用发射天线发射微波信号,然后用接收天线接收微波信号并且转换成电能,从而达到长距离传输的效果。
红外线传输技术利用被称为发射光源的红外线发射器,发射一定强度的红外线,接收端利用接收光源接收红外线信号,并且转换成电能,从而达到传输目的。
随着科学技术的不断发展,无线电能传输技术发生了很大的改变,不仅在传输距离和传输效率上有了显著提高,而且在应用单位上也发生了变化。
如今,无线电能传输技术已经应用于电力行业、制造业和航空航天等,能够高效、安全地实现远距离能量传输,也成为电子产品和装备的重要基础技术。
从实际应用和研究上来说,无线电能传输技术主要有自动发射、智能发射、无线能量联网等,这些技术都是由传统的微波传输和红外线传输技术发展而来的,但在应用、研究过程中充分利用了新兴技术,使系统更加强大,传输效率更高。
无线电能传输技术在未来发展前景很广,已经成为现代社会的重要技术和应用领域。
未来,无线电能传输技术将发展到更高水平,能够更有效地实现远距离传输,应用于电力行业、制造业、军事领域等更为广泛,更可靠,更安全。
无线电能传输技术将在未来发挥越来越主要的角色,为电子产品和各类装备的发展提供更多的可能性,改变我们的生活。
无线电能传输技术及其应用研究
无线电能传输技术及其应用研究随着科技的不断进步和发展,越来越多的新技术不断涌现出来,其中无线电能传输技术是一项备受瞩目的技术。
它是利用电磁波在空气或其他介质中进行能量传递的一种技术,可以实现无线充电、远程供电等应用,具有广泛的应用前景。
本文将对无线电能传输技术及其应用进行研究和探讨。
一、无线电能传输技术简介无线电能传输技术是一种通过电磁波传输能量的技术。
在传统的有线电力传输方式中,电能是通过导线进行传输,这种方式存在着能量损耗大、安全隐患等问题。
而无线电能传输技术可以减少能量损耗,避免电线带来的安全隐患,具有更高的稳定性和可靠性。
无线电能传输技术主要分为两种:磁共振和电磁辐射。
磁共振是一种通过磁场共振转换能量的技术,它需要特殊的电路和设备来产生强磁场进行能量传输。
而电磁辐射则是通过电磁波在空气或介质中进行能量传输的技术,需要在发射端和接收端之间建立电磁场。
二、无线电能传输技术的应用领域无线电能传输技术具有广泛的应用前景,以下列举一些典型的应用领域:1.无线充电:无线充电是无线电能传输技术的一个重要应用领域。
通过将电磁场的能量传输到手机、电动汽车等设备中,实现对它们进行无线充电。
目前,无线充电技术已经广泛应用于移动设备、数码相机等电子产品中,正在逐步向其他领域拓展。
2.空间电力传输:空间电力传输是指将太阳能等可再生能源通过无线电能传输技术传输到地面或其他地方进行利用。
这种技术可以有效地解决能源短缺问题,同时也有助于保护环境。
目前,空间电力传输技术正在逐渐成熟。
3.医疗应用:无线电能传输技术在医疗领域也有广泛的应用。
例如,可以将无线电能传输到implantable medical device中,为患者提供持续的能量供应,避免患者不得不进行频繁的充电。
这对于一些身体残疾或严重疾病患者来说,具有非常重要的意义。
三、无线电能传输技术的优势无线电能传输技术相较于传统的有线传输技术具有多方面的优势,以下列举一些典型的优势:1.噪声较小:与传统的有线传输技术相比,无线电能传输技术传输过程中噪声会更小。
无线电能传输技术 (修改)
究和应用
3 在无线通信方面,国内在5G技术、物联网、智能家居等领域都取得了重要进展
4
5G技术的发展为无线通信带来了更高的传输速率和更低的延迟,推动了物联网、智能家居等领域的快 速发展
无线电能传输技术
1
同时,国内也在积极推进物联网的建设和应用,涉及到智能家居、智能交通、智能城市等多个领域.此 外,国内也在积极探索无线传输技术在医疗、工业等领域的应用
2
例如华中科技大学研究团队提出了一种基于磁共振的无线电能传输技术,可以将电能以高效、可靠的 方式传输到远离电源的设备中,具有较高的应用价值
3
同时,在工业界也存在着对无线电能传输技术的应用探索,例如近年来各大手机厂商开始采用无线充 电技术,可以将手机电池以无线电波的形式进行充电,解决用户使用手机时传输线缆带来的不便
无线电能传输技术
3. 工业自动化和智能制造的需求增长:工业自动化和智能制造领域对于无线传输技术的需求将会持续增 长。无线传输技术能够实现高效、可靠的数据传输,为工业自动化和智能制造提供更好的解决方案 4. 物联网和智能家居的广泛应用:物联网和智能家居领域对于无线传输技术的需求将会持续增长。无线 传输技术能够实现设备之间的无缝连接和数据传输,为人们的生活带来更多的便利和智能化 5. 安全性提高和互操作性增强:随着无线传输技术的广泛应用,安全性和提高互操作性将是未来发展的 重要方向。采用加密技术、建立安全的网络协议和加强用户身份验证等措施,能够提高无线传输的安全 性。同时,加强设备的互操作性测试,能够提高不同设备之间的兼容性和无缝连接能力 总之,无线传输技术在未来几年中具有广阔的发展前景,将在各个领域得到广泛应用。随着技术的不断 进步和应用场景的不断扩展,无线传输技术将会在更多领域发挥重要作用
无线电能传输技术的国内外研究现状
无线电能传输技术的国内外研究现状无线电能传输技术是指通过无线电波将能量从一个地方传输到另一个地方的技术。
相比传统的有线电力传输方式,无线电能传输技术具有传输距离长、灵活性强、无接触、无线电磁污染等优点,被广泛应用于无人机、电动汽车、医疗设备等领域。
本文将介绍国内外无线电能传输技术的研究现状。
国外研究:1.麻省理工学院麻省理工学院的研究人员在2024年提出了一种利用磁共振原理进行无线电能传输的方法。
该方法通过共振发射器将电能转化为磁场能,然后通过同频共振接收器将磁场能转化为电能。
在实验中,他们成功地将60W的电能传输到距离2米的LED灯泡上。
2.日本大阪府立大学日本大阪府立大学的研究人员在2024年提出了一种基于磁共振耦合的无线电能传输系统。
他们通过调节发送器和接收器之间的共振频率,实现了高效的能量传输。
在实验中,他们成功地将100W的电能传输到距离30厘米的LED灯泡上。
3.美国电气和电子工程师协会(IEEE)IEEE是一个国际性的专业学术组织,致力于推动无线电能传输技术的发展。
他们通过组织国际会议、出版学术论文等方式,促进学术界和工业界的交流与合作。
此外,IEEE还制定了一系列无线电能传输技术的标准,为技术的商业化和应用提供了支持。
国内研究:1.清华大学清华大学的研究人员在2024年提出了一种基于磁共振原理的无线电能传输系统。
他们通过优化送电线圈的设计,提高了能量传输效率。
在实验中,他们成功地将100W的电能传输到距离70厘米的灯泡上。
2.中国科学技术大学中国科学技术大学的研究人员在2024年提出了一种基于电磁辐射场的无线电能传输系统。
他们通过优化天线的结构和材料,提高了能量传输的效率和距离。
在实验中,他们成功地将200W的电能传输到距离1米的设备上。
3.武汉大学武汉大学的研究人员在2024年提出了一种基于超导材料的无线电能传输系统。
他们利用超导材料的低损耗特性,提高了能量传输的效率。
在实验中,他们成功地将500W的电能传输到距离2米的设备上。
电能无线传输技术
电能无线传输技术电能无线传输技术:让电力无处不在你是否曾经为电线的束缚而感到烦恼?你是否曾经为找不到插座而感到焦虑?你是否曾经为手机没电而感到恐慌?如果你有过这些经历,那么你一定会对电能无线传输技术感兴趣。
电能无线传输技术,顾名思义,就是不需要通过电线就能将电能传输到需要的地方。
这项技术听起来很神奇,但其实它已经在我们的生活中得到了广泛的应用。
比如,我们每天使用的手机、平板电脑、无线耳机等设备,都是通过电能无线传输技术来充电的。
此外,一些电动汽车也开始采用电能无线传输技术来充电,这样就可以避免插拔充电器的麻烦,提高充电效率。
那么,电能无线传输技术是如何实现的呢?其实,它的原理并不复杂。
简单来说,就是通过电磁感应、电磁共振、射频等方式,将电能从发送端传输到接收端。
其中,电磁感应是最常用的方式,它利用了变压器的原理,通过初级线圈和次级线圈之间的电磁耦合,将电能从初级线圈传输到次级线圈。
电磁共振则是利用了共振的原理,让发送端和接收端的线圈在相同的频率下产生共振,从而实现电能的传输。
射频则是利用了无线电波的原理,将电能转换为无线电波,然后通过天线发送出去,接收端再通过天线接收无线电波,并将其转换为电能。
虽然电能无线传输技术已经取得了很大的进展,但它仍然面临着一些挑战。
比如,传输效率还不够高,传输距离还不够远,传输安全性还不够好等。
不过,随着技术的不断进步,这些问题都会逐渐得到解决。
相信在不久的将来,电能无线传输技术将会更加普及,为我们的生活带来更多的便利。
如果你对电能无线传输技术感兴趣,想要了解更多关于它的信息,那么你可以通过以下几种方式来获取:1. **阅读相关的书籍和文章**:你可以在图书馆或者网上搜索关于电能无线传输技术的书籍和文章,这些资源可以帮助你深入了解这项技术的原理、应用和发展趋势。
2. **观看相关的视频和纪录片**:你可以在网上搜索关于电能无线传输技术的视频和纪录片,这些资源可以帮助你直观地了解这项技术的工作原理和应用场景。
无线电能传输技术
无线电能传输技术
自从1882年物理学家尤金伯纳德达尔文发明了无线电之后,无线电技术就发展迅猛,由于它的先进性和高效性,它已成为我们现代社会的重要组成部分。
无线电能量传输是一种利用无线电技术来给有效荷载,如设备、光源、电机或空调,提供能量的技术。
无线电能传输技术使能量从数据发射源进行远距离传输,传输过程中无需物理介质即可实现能源供给,不仅对采矿,涉及深海或难以接近的工作场所的特殊工作环境有着重要的意义,而且还有利于提高传输的效率。
无线电能传输技术的机理:它采用一种特殊的电磁波,称为“电磁感应”,将能量传输到接收器处,其发射器由发射机、发射线圈、射频电缆和传输设备构成,发射出的电磁波可以快速和平稳地传输能量,接收器由接收线圈和接收器两部分组成,由接收线圈接收电磁波,并将其转化为能量。
此外,无线电能传输技术还可以用于卫星接收台,将边远地区的能源高效地传递到消费者的手中,并有助于实现更绿色、更平等的能源供给。
此外,“无线电能传输技术”可以改善传统“有线传输技术”的缺点,如低效率、不可靠性和成本昂贵,从而使用户能够极大地提高传输效率,节省能源和资金。
无线电能传输技术已被广泛应用于许多行业,比如水文自动化,温度测量和应用研究,自动联网等行业,它可以在无缆、无金属的地
方供电,也可以实现智能操作,比如:遥控无线充电、远程监控及运行控制等,以实现有效能源储存利用,满足不同应用环境的需求。
总之,无线电能传输技术为我们现代社会带来了很多方便,能够将远距离传输的能源以有效的方式传递出去,并且具有高效率、易操作等优点,相信它在未来会发挥更大的作用。
电气工程中的无线电能传输技术
电气工程中的无线电能传输技术在当今科技飞速发展的时代,电气工程领域不断涌现出各种创新技术,其中无线电能传输技术无疑是一颗耀眼的明星。
这项技术的出现,为电能的传输方式带来了革命性的变革,极大地拓展了电能应用的范围和场景。
无线电能传输技术,顾名思义,就是无需通过传统的导线连接,就能实现电能从电源端到负载端的传输。
想象一下,不再有杂乱无章的电线束缚,电子设备可以在无需频繁插拔充电线的情况下持续获取电能,这不仅为我们的生活带来了极大的便利,更是在工业、医疗、交通等众多领域展现出了巨大的潜力。
从原理上来说,无线电能传输技术主要包括电磁感应式、电磁共振式和无线电波式等几种类型。
电磁感应式无线电能传输就如同我们常见的变压器原理,通过初级线圈和次级线圈之间的电磁感应来实现电能的传递。
这种方式传输效率较高,但传输距离相对较短,通常适用于近距离的无线充电应用,比如手机无线充电器、电动牙刷充电器等。
电磁共振式无线电能传输则是基于共振原理,让发射端和接收端的线圈在相同的频率下发生共振,从而实现电能的高效传输。
相比电磁感应式,它的传输距离有所增加,可以为一些中等距离的设备进行无线供电,例如为智能家居中的小型电器供电。
无线电波式无线电能传输技术则是通过发射电磁波来传输电能。
虽然这种方式能够实现远距离的电能传输,但由于能量在传输过程中容易散失,传输效率目前还相对较低,因此在实际应用中还面临着诸多挑战。
在实际应用方面,无线电能传输技术已经在多个领域取得了显著的成果。
在消费电子领域,无线充电技术的普及让我们告别了繁琐的充电线。
手机、平板电脑、无线耳机等设备都可以通过放置在无线充电底座上进行充电,为我们的生活带来了便捷和整洁。
在医疗领域,无线电能传输技术为植入式医疗设备的供电问题提供了全新的解决方案。
例如,心脏起搏器、神经刺激器等植入式设备,以往需要通过手术定期更换电池,不仅增加了患者的痛苦和风险,也限制了设备的使用寿命。
而无线电能传输技术的应用,可以实现对这些设备的非侵入式供电,大大提高了患者的生活质量和治疗效果。
无线电能传输技术的现状与发展
无线电能传输技术的现状与发展在当今科技飞速发展的时代,无线电能传输技术正逐渐从科幻走向现实,为我们的生活带来前所未有的便利和变革。
这项技术的出现,有望彻底改变我们对电能传输的认知和使用方式。
无线电能传输技术,简单来说,就是在不通过导线直接接触的情况下,实现电能从电源端到用电设备端的传输。
这一概念的提出可以追溯到很久以前,但直到近年来,随着相关技术的不断突破,才真正开始走向实用化。
目前,无线电能传输技术主要有以下几种常见的类型。
电磁感应式无线电能传输是其中较为成熟的一种,它的原理类似于变压器,通过初级线圈和次级线圈之间的电磁感应来实现电能传输。
这种方式在一些小型电子设备的充电领域,如手机无线充电、电动牙刷充电等,已经得到了广泛的应用。
但其传输距离较短,通常需要设备与充电器紧密靠近。
磁共振式无线电能传输则是通过让发射端和接收端的线圈在相同的共振频率下工作,从而实现高效的能量传输。
相比电磁感应式,它能够在更远的距离上传输电能,传输效率也有所提高。
目前,这一技术在电动汽车无线充电、智能家居等领域有着广阔的应用前景。
除此之外,还有无线电波式无线电能传输,它通过发射电磁波来传输能量。
然而,这种方式的传输效率较低,且电磁波的辐射可能会对周围环境和人体健康造成一定影响,因此目前应用相对较少。
在无线电能传输技术的发展现状方面,我们可以看到许多令人鼓舞的成果。
首先,在消费电子领域,越来越多的手机、平板电脑等设备开始支持无线充电功能,这不仅为用户带来了更加便捷的充电体验,也推动了无线充电技术的不断升级和改进。
同时,一些汽车制造商也在积极研发电动汽车的无线充电技术,旨在解决电动汽车充电不便的问题。
例如,某些品牌已经推出了具备无线充电功能的概念车型,为未来的电动汽车发展指明了方向。
在工业领域,无线电能传输技术也有着重要的应用。
例如,在一些危险的工作环境中,如化工厂、煤矿等,使用无线电能传输可以避免因电线磨损、短路等原因引发的安全事故。
无线电能传输技术及其应用
无线电能传输技术及其应用一、引言随着无线通信技术的不断发展,无线电能传输技术日益成为研究的热点领域。
无线电能传输技术是指利用电磁波的传输特性,将电能通过无线电波进行传输的一种技术。
本文将详细介绍无线电能传输技术及其应用。
二、无线电能传输技术的原理利用电磁波传输电能的原理是将电能通过能量的形式传播,甚至是传播到很远的地方。
无线电能传输技术的实现原理主要有两种方式:电磁感应和磁共振。
1. 电磁感应电磁感应原理是指将电流感应在回路上。
利用这种原理将能量传输的方式被称为电感式电能传输。
电感式电能传输的基本原理是将电流通过导线放入一个线圈中,当这个线圈比接受器的线圈离得非常近时,电流会在接受器的线圈中感应出电流,从而将电能传输到接受器中。
2. 磁共振磁共振原理是指当两个系统的自然频率相同时,它们通过能量传输可以实现高效传输。
通过利用磁场的相互作用,将能量从一个系统传输到另一个系统。
当发射器和接收器的自然频率相同时,它们之间的磁场会更强、更稳定,从而能够非常高效地传输能量。
三、无线电能传输技术的优点与传统有线传输方式相比,无线电能传输技术具有明显的优点:1. 无需线缆连接采用无线电能传输技术可以省去线缆连接,使能量传输更为方便快捷,适用于一些需要快速取电的场合。
2. 能适应远距离传输无线电能传输可以实现远距离能量的传输,利于远距离供电。
3. 使用方便、效果显著无线电能传输技术无需接触,使用起来非常方便,使得能量传输的效果更为显著。
四、无线电能传输技术的应用领域无线电能传输技术不仅可以应用于家庭电器,同时还可以应用于移动设备、机器人、医疗设施等多个领域。
1. 家庭电器无线电能传输技术可用于智能家居的场景,例如灯光、空调、电视等家用电器的无线供电。
2. 移动设备无线电能传输将在移动设备的领域有广泛应用。
用户可以通过无线充电器为手机、平板电脑和笔记本电脑充电。
3. 机器人无线电能传输技术还可以应用于机器人的供电和控制。
无线电能传输技术的典型案例
无线电能传输技术的典型案例
嘿,朋友们!今天咱来聊聊无线电能传输技术的典型案例。
你们想想看啊,手机不用插线就能充电,这多神奇呀!就好比魔法一样,电就这么轻轻松松地传到了手机里。
比如说,现在很多电动汽车也在采用无线充电技术呢。
你能想象吗,以后不用再费劲地插拔充电线,车子停在那儿就能自动充电啦!“哇塞,这也太方便了吧!”是不是超级酷呀!
再给你们说个例子,有些医疗设备也是靠无线电能传输技术来供电的哦!这就好像给病人带来了一颗“安心丸”呀。
病人不用再担心被各种线缆束缚,能够更加自由地活动和恢复健康呢。
这不就像是给医疗领域注入了一股强大的力量嘛!
还有啊,在一些特殊环境下,比如在水下或者一些难以布线的地方,无
线电能传输技术那可真是大显身手啦!就像一个勇敢的战士,无畏地解决那些难题。
比如说水下的监测设备,有了无线电能传输技术,它们就能持续稳定地工作啦。
“哎呀,这可解决了大麻烦呀!”
无线电能传输技术真的是在方方面面改变着我们的生活呀。
它让我们的生活变得更加便捷、高效,就像给我们的生活装上了翅膀一样,能带着我们飞向更美好的未来。
我觉得无线电能传输技术简直就是科技发展的一颗璀璨明星,未来肯定还会有更多令人惊叹的应用和发展呢!相信它会给我们带来更多的惊喜和便利,让我们一起期待吧!。
无线电能传输原理
无线电能传输原理无线电能传输是一种通过无线电波将能量传输到远距离的技术。
它可以应用于许多领域,如电力传输、通信、医疗设备等。
无线电能传输的原理是基于电磁感应和电磁辐射的物理现象,通过这些原理可以实现能量的传输和接收。
首先,无线电能传输的原理基于电磁感应。
根据法拉第电磁感应定律,当一个导体在磁场中运动或者磁场的强度发生变化时,就会产生感应电动势。
这意味着,通过在发射端产生变化的磁场,就可以在接收端诱发感应电动势,从而实现能量的传输。
其次,无线电能传输还依赖于电磁辐射。
根据麦克斯韦方程组,当电流通过导线时就会产生电磁场,而变化的电流则会产生电磁辐射。
因此,通过在发射端产生变化的电流,就可以在接收端接收到电磁辐射,从而实现能量的传输。
无线电能传输的原理还涉及到天线的设计和匹配。
天线是用来发射和接收无线电波的装置,它的设计和匹配对于能量传输的效率至关重要。
合适的天线设计可以使得无线电能传输的效率最大化,从而实现更远距离的能量传输。
在实际应用中,无线电能传输可以通过不同的技术实现。
其中,磁共振耦合是一种常见的无线电能传输技术。
在磁共振耦合中,发射端和接收端的磁共振装置可以实现高效能量传输,而且可以在一定距离内实现能量传输,而不需要直接接触。
另外,射频能量传输是另一种常见的无线电能传输技术。
通过射频信号的发射和接收,可以实现能量的传输和接收。
这种技术在无线充电、无线通信等领域有着广泛的应用。
总的来说,无线电能传输是一种基于电磁感应和电磁辐射原理的技术,通过合适的天线设计和匹配,以及不同的无线电能传输技术,可以实现能量的高效传输和接收。
这种技术在未来有着广阔的应用前景,可以为人类生活带来更多便利和可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所谓无线电能传输,就是借助于电磁场或电磁波进行能量传递的一种技术。
无线输电分为:电磁感应式、电磁共振式和电磁辐射式。
电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。
近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。
电源电线频繁地拔插,既不安全,也容易磨损。
一些充电器、电线、插座标准也并不完全统一,这样即造成了浪费,也形成了对环境的污染。
而在特殊场合下,譬如矿井和石油开采中,传统输电方式在安全上存在隐患。
孤立的岛屿、工作于山头的基站,很困难采用架设电线的传统配电方式。
在上述情形下,无线输电便愈发显得重要和迫切,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。
在此旨在阐述当前的技术进展,分析无线输电原理。
1 无线电能传输技术的发展历程最早产生无线输能设想的是尼古拉·特斯拉(Nikola Tesla),因而有人称之为无线电能传输之父。
1890年,特斯拉就做了无线电能传输试验。
特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8 Hz的低频共振,利用环绕地球的表面电磁波来传输能量。
最终因财力不足,特斯拉的大胆构想没能实现。
其后,古博(Goubau)、施瓦固(Sohweing)等人从理论上推算了自由空间波束导波可达到近100%的传输效率,并随后在反射波束导波系统上得到了验证。
20世纪20年代中期,日本的H.Yagi和S.Uda发明了可用于无线电能传输的定向天线,又称为八木一宇田天线。
20世纪60年代初期雷声公司(Raytheon)的布朗(W.C.Brown)做了大量的无线电能传输研究工作,从而奠定了无线电能传输的实验基础,使这一概念变成了现实。
在实验中设计了一种效率高、结构简单的半波电偶极子半导体二极管整流天线,将频率2.45GHz的微波能量转换为了直流电。
1977年在实验中使用GaAs—Pt 肖特基势垒二极管,用铝条构造半波电偶极子和传输线,输入微波的功率为8 W,获得了90.6%的微波——直流电整流效率。
后来改用印刷薄膜,在频率2.45 GHz时效率达到了85%。
自从Brown实验获得成功以后,人们开始对无线电能传输技术产生了兴趣。
1975年,在美国宇航局的支持下,开始了无线电能传输地面实验的5 a计划。
喷气发动机实验室和Lewis科研中心曾将30 kW的微波无线输送1.6 km,微波——直流的转换效率达83%。
1991年,华盛顿ARCO电力技术公司使用频率35 GHz的毫米波,整流天线的转换效率为72%。
1998年,5.8 GHz印刷电偶极子整流天线阵转换效率为82%。
前苏联在无线电能传输方面也进行了大量的研究。
莫斯科大学与微波公司合作,研制出了一系列无线电能传输器件,其中包括无线电能传输的关键器件——快回旋电子束波微波整流器。
近几年,无线电能传输发展更是迅速。
Wildcharge、Powercast、SplashPower、东京大学,相继开发出非接触式充电器。
MIT在2007年6月宣布,利用电磁共振成功地点亮了一个离电源约2 m远的60 w电灯泡,这项技术被称为WiTricity。
该研究小组在实验中使用了两个直径为50 cm的铜线圈,通过调整发射频率使两个线圈在10MHz 产生共振,从而成功点亮了距离电力发射端2 m以外的一盏60 w灯泡。
2 无线电能传输的原理(1)非接触电能传输系统利用疏松感应耦合系统和电力电子技术相结合的方法,实现了电能的无物理连接传输。
它将系统的变压器紧密型耦合磁路分开,初、次级绕组分别绕在具有不同磁性的结构上,实现在电源和负载单元之间进行能量传递而不需物理连接。
其一次侧、二次侧之间通过电磁感应实现电能传输,因气隙导致的耦合系数的降低由提高一次侧输入电源的频率加以补偿。
理论和经验都表明:当原边电流频率、幅值越高,原、副边距离越小,与空气相比,磁心周围介质的相对磁导率越大时,可分离式变压器的传输效率越高。
但实际应用当中原副边距离不可能无限小,必须对原副边采取相应的补偿措施,这种无线电能传输效率较低。
(2)对无线电能传输来说,能量传递的效率是最重要的。
因此,方向性强、能量集中的激光与具有类似性质的微波束是值得考虑的选择。
但激光光束在空间传输易受到空气和尘埃的散射,非线性效应明显,且输出功率小,因此微波输能成为首选。
微波输能,就是将微波聚焦后定向发射出去,在接收端通过整流天线(rect—enna)把接收到的微波能量转化为直流电能。
布朗的微波输电系统。
上世纪60年代,William C.Brown向世人展示的微波传输电能示意图。
该微波传输系统包括微波源、发射天线、接受天线3部分。
微波源内有磁控管,能控制源在2.45 GHz 频段输出5~200 W 的功率;微波源输出的能量通过同轴电缆连接至和波导管之间的适配器上;亚铁酸盐的循环器连接在波导管上,使波导管和发射天线相匹配。
发射天线包含8个部分,每个部分上都有8个缝隙。
这64个缝隙均匀的向外发射电磁波。
这种开孔的波导天线很适合用于无线电能传输,因为它有高达95%的孔径效率和很高的能量捕捉能力。
硅控整流二极管天线用来收集微波并把它转换成直流电,在布朗展示的系统中该接收天线拥有25%的收集和转换效率,这种天线在2.45GHz 测试时曾经达到甚至超过90%的效率。
传输距离较远之后,增强天线的方向性和效率会十分困难。
微波输能的传输效率。
若D 代表微波在自由空间传输的距离,t A 、r A 分别代表发射天线和接收天线的面积,入表示工作波长,则微波在自由空间的传输效率n 是参数τ的函数。
D 1τλ⎫=-⎪⎭由公式知传输效率和传输距离没有直接的联系,而是由决定。
故距离D 增大的效应V 可由t A 、r A 的增加或入的减小来补偿。
微波输能的总效率等于直流到微波、微波传输和接收整流三部分效率之积。
故可知当前微波传输能量的效率还不高,但是还是很有发展潜力的。
(3)辐射性传输,虽然完全适合于传输信息,但是将其应用于电能传输却会引起很多的困难:如果辐射是全方向性的,则电能传输效率会十分的低;如果是定向辐射,也要求具有不间断可视的方位和十分复杂的追踪仪器设备,而磁谐振却没有这么复杂。
自谐振线圈的模型描述。
A 是一个半径为25 cm 的单匝铜环,它是激励电路的一部分,输出频率为9.9 MHz 的正弦波。
S 和D 是自谐振线圈。
B 是连接到负载(灯泡)的单匝导线环。
不同的K 代表箭头表示的对象之间的直接耦合。
调整线圈D 和A 之间的角度,保证它们之间的直接耦合等于零。
线圈S 和D 同轴排列。
线圈B 和A 以及B 和s 的直接耦合是可以忽略不计的。
强耦合磁谐振下的电能传输效率。
在 耦合谐振系统(如声音、电磁、磁、核等)里,经常 会产生“强耦合”运行状态。
如果处于给定系统中的这种状态,谐振体之间的能量交换则可期望达到很高的效率。
如果不考虑周围空间的结构,并且在干涉损耗和散失在周围环境中的损耗很低时,中等距离的能量传输用这种方法可以在接近全方向的状态下实现并达到很高的效率。
3 结束语一些边远山区、牧区、高原、海岛,人口稀少,居住分散,交通不便,经济落后,那儿缺乏常规能源,又远离大电网,严重影响当地经济发展。
这种情况下,利用微波输能技术,可以解决电网的死角。
输电工程最关心的是效率和经济性。
无线电能传输的效率取决于微波源的效率、发射/接收天线的效率和微波整流器的效率;其经济性如何,依赖于所用频段的微波元器件的价格与有线输电系统所用器材价格的比较,也与具体的输电网络的参数有关系。
除了关心经济和效率以外,还要对大功率微波对环境和身体健康可能造成的影响进行研究,需保证如下方面:(1)传输微波能流密度不能对电离层产生明显扰动;(2)必须保证不干扰Et常通信;(3)地面整流接收站不能对飞机等交通工具及周围的生物体(如鸟类、居民等)产生不良作用。
来自:科学技术附英文原文:Wireless Transmission TechniquesThe so-called radio transmission technology is an energy transfer technique by means of electromagnetic fields or electromagnetic wave. The wireless transmission is divided into: electromagnetic induction-type, electric type and magnetic resonance electromagnetic radiation type. Electromagnetic induction can be used for low-power, short distance transmission; electric magnetic resonance is suitable for medium-power, medium-distance transmission; electromagnetic radiation can be used for high-power, long-distance transmission. In recent years, a number of portable electrical appliances such as notebook computers, mobile phones, music players and other mobile devices will need batteries and charger. Power cable plug frequently, that is neither safe, nor easy to wear and tear. Some chargers, cables, socket standards are not entirely unified.That would result in a waste and environmental pollution. And in special occasions, such as mining and oil exploration, the traditional transmission approach in terms of security risks exist. Isolated islands, the work of the hills of the base station, it is difficult to set up cables using the traditional distribution methods. In these cases, the wireless transmission will be increasingly more important and urgent, so it is the United States, "Technology Review" magazine top ten for the future research directions. In wireless transmission areas, our research has only just started, compared with Europe and the United States lagging behind. This sets out the current technological progress, analyze the wireless transmission principles.1 The development process of radio transmission technologyProduce the first wireless transmission can be envisaged is • Nikola Tesla (Nikola Tesla), which was known as the father of the radio can transmit. In 1890, Tesla made a radio is able to carry on the experiment. Tesla idea of radio transmission method is to be able to, within the earth as a conductor, the Earth's ionosphere as the outer conductor,through the amplification of electromagnetic waves transmitter to the radial oscillation mode, set up between the Earth and ionosphere of about 8 Hz low-frequency resonance the use of electromagnetic waves around the Earth's surface to transmit the energy. The end of insufficient financial resources, Tesla failed to achieve a bold vision.Subsequently, the Goubau, Sohweing, who calculated the theoretical free-space beam guided wave can reach nearly 100% transmission efficiency, and subsequently reflected beam waveguide system has been verified. 20 mid-20th century, Japan's H. Yagi, and S. Uda invention can be used to transmit radio directional antenna, also known as a Yagi Uda antenna. 60 in the early 20th century, Raytheon Company , w.C.Brown have done a lot of radio is able to carry research work, which laid the foundation of radio transmission experiments can be the basis to make this concept become a reality.In the experiment designed a high efficiency, simple structure, the half-wave rectifier diode electric dipole antenna, the frequency of 2.45GHz microwave energy conversion to DC. 1977, used in experiments GaAs-Pt Schottky barrier diode, constructed of aluminum half-wave electric dipole and transmission lines, input microwave power of 8 W, won 90.6% of the microwave - the efficiency of DC rectifier . Then use print film, in the frequency of 2.45 GHz when the efficiency reaches 85%.Since the Brown experiment a success, people began to radio transmission technology can produce interest. In 1975, NASA's support, began a radio transmission on the ground can experiment 5 a plan. Jet Engine Laboratory and Lewis Research Center who will be 30 kW of microwave radio transmission 1.6 km, microwave - DC conversion efficiency of up to 83%. In 1991, Washington, ARCO Power Technologies, Inc. 35 GHz millimeter-wave frequency, the conversion efficiency of rectenna 72%. In 1998, 5.8 GHz printed dipole rectenna array conversion efficiency is 82%.Radio is able to carry the former Soviet Union also carried out a lot of research. Moscow State University and microwave companies, developed a series of radio is able to carry devices, including radio can transmit a key device - fast cyclotron wave of e-beam microwave rectifiers.In recent years, radio is able to carry the development of even more rapid. Wildcharge, Powercast, SplashPower, University of Tokyo have developed a non-contacttype charger. MIT in June 2007, announced the successful use of electric magnetic resonance of a place of light from the power supply of about 2 m away 60 w light bulb, the technology is known as WiTricity. The research team in experiments using two 50 cm diameter copper coils, by adjusting the transmission frequency to the two coils resonate at 10 MHz, thus successfully lit the distance 2 m away from the transmitter power of a 60 w bulb .2 The pirnciple of radio transmission(1)Non-contact power transmission system, the use of loose coupling system and power electronic induction method of combining technologies to achieve the non-physical connection of the power transmission. It will compact the system transformer-coupled magnetic circuit to separate the primary and secondary windings, respectively around with different magnetic structure, achieve the power and energy transfer between the load cell without the need for physical connection. Its primary side and secondary side through electromagnetic induction between the realization of power transmission and coupling coefficients due to air gap caused by the reduction by an increase in the frequency of one side to compensate for input power.Theory and experience indicate that: When the primary side current frequency, amplitude of the higher of both sides of the smaller distance, and the air compared to the surrounding medium core relative permeability greater when the detachable transformer transfer efficiency more high. However, when the Central Plains of both sides of the practical application of the distance can not be infinitely small, former deputy side must take appropriate compensatory measures, which the radio is able to carry less efficient.(2)On the radio can transmit, the energy transfer efficiency is the most important. Therefore, the orientation strong energy concentration in laser and microwave beams of a similar nature is worth considering options. However, in the space laser beam transmission vulnerable to air and dust scattering, nonlinear effects are more obvious, and the output power is small, so can become the first choice of microwave transmission. Microwave input energy, that is, after the directional microwave focusing launched, at the receiving end through the rectifier antenna (rect-enna) the received microwave energyinto DC can be.Brown's microwave transmission system. The last century, 60 years, William C. Brown to show the world the microwave transmission power diagram. The microwave transmission system, including microwave source, transmitting antenna, receiving antenna part 3. There are magnetron microwave source can control the source in the 2.45 GHz frequency band output of 5 ~ 200 W of power; microwave source output power through the coaxial cable connected to and between the waveguide adapter; Ferrous Salts loop device connected to the waveguide, the waveguide tube and the transmitting antenna to match. Transmitting antenna contains eight parts, each part of the gap on both 8. This is a uniform gap of 64 out emit electromagnetic wave.Such openings waveguide antenna can be very suitable for radio transmission, because it has up to 95% of the aperture efficiency and high energy capture capabilities. Silicon-controlled rectifier diode microwave antennas used for the collection and put it into DC, Brown demonstrated that the receiving antenna system has a 25% collection and conversion efficiency, this antenna has 2.45GHz tested to meet or exceed 90% efficiency . After the transmission distance and enhance the antenna directivity and efficiency will be very difficult.Microwave transmission energy transmission efficiency. If the D on behalf of microwave transmission distance in free space, t A 、r A representing the transmitting antenna and receiving antenna area, into the said operating wavelength, then the microwave in free space transmission efficiency n is the parameter τfunction.D 1τλ⎫=-⎪⎭By a formula known transmission efficiency and transmission distance is no direct link, but by the decision. Therefore, the distance D increases the effect of V can be t A 、 r A of the increase or the decrease of income to compensate. The overall efficiency of microwave energy input is equal to DC to microwave, microwave transmission and reception efficiency rectifier three-part product. Therefore, we can see the current microwave transmission of energy efficiency is not high, but it is still great potential for development.(3)Radiative transfer, though perfectly suited to transmit information, but it will be applied to energy transfer but it will give rise to many problems: If the radiation is a full-directional, then the energy transfer efficiency will be very low; if it is directional radiation, but also requires a continuous visual orientation and very complex tracking equipment, and magnetic resonance but not so complicated.Self-resonant coil model description. A is a radius of 25 cm single-turn copper ring, which is to stimulate a part of the circuit, the output frequency of 9.9 MHz sine wave. S and D is a self-resonant coils. B is connected to the load (light bulbs) in a single turn wire loop. Representative of the different K-arrows direct coupling between the objects. Adjust the coil the angle between D and A to ensure that the direct coupling between them is zero. S and D coaxial coil arrangement. Coil B and A and B, s, the direct coupling is negligible.Under the strong-coupling magnetic resonance energy transfer efficiency. In the coupled resonant systems (such as sound, electromagnetic, magnetic, nuclear, etc.), the often have a "strong coupling" operation status. If you are in a given system in this state, resonance energy exchange between the body can be expected to achieve high efficiency. If you do not take into account the structure of the surrounding space, and interfering loss and dissipation loss in the surrounding environment is low, medium-distance power transmission using this method can be close to the direction of a state-wide implementation and achieve high efficiency.3 ConclusionSome of the remote mountainous areas, pastoral areas, highlands, islands, sparsely populated, scattered habitations, inconvenient transportation, economic backwardness, where the lack of conventional energy, but also away from the large power grids, a serious impact on the local economic development. This case, the use of microwave transmission energy technologies can solve the grid corners. Transmission Project is most concerned about the efficiency and economy. The efficiency of the radio can transmit microwave source depends on the efficiency of transmit / receive antenna efficiency and the efficiency of microwave rectifiers; its economy to rely on the components used in the price band of microwave transmission systems and cable equipment for the pricecomparison, but also with specific parameters of the transmission network are related.Concerning the economy and efficiency, but also for high-power microwave on the environment and the possible impact of health research, it is need to ensure the following aspects: (1) transmission of microwave energy density will not create a noticeable disturbance on the ionosphere; (2) it must be Et guarantee and will not to interfere with regular communication; (3) ground receiving stations can not have a negative effect on aircraft and other modes of transport of organisms (such as birds, people, etc.).From:Science and Technology。