一元一次方程应用题(4)分配问题

合集下载

一元一次方程应用题(很系统,附答案)

一元一次方程应用题(很系统,附答案)

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程应用_调配问题含答案

一元一次方程应用_调配问题含答案

一元一次方程应用——分配问题1.课外活动中一些学生分组参加活动.原来每组6人.后来重新编组.每组10人.这样比原来减少4组.问这些学生共有多少人?2.一个车间加工轴杆和轴承.每人每天平均可以加工轴杆12根或者轴承16个.1根轴杆与2个轴承为一套.该车间共有90人.应该怎样调配人力.才能使每天生产的轴承和轴杆正好配套?3.皖蒙食品加工厂收购了一批质量为1000kg的某种山货.根据市场需求对其进行粗加工和精加工处理.已知精加的这种山货质量比粗加工的质量的3倍还多200kg.求粗加工的这种山货的质量.4.马年新年即将来临.七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个.那么比计划多了7个;如果每人做5个.那么比计划少了13个.该小组计划做多少个“中国结”?5.某车间有22名工人.每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.应安排生产螺钉和螺母的工人各多少名?6.某人原计划用26天生产一批零件.工作两天后因改变了操作方法.每天比原来多生产5个零件结果提前4天完成任务.问原来每天生产多少个零件?这批零件有多少个?7.把一些图书分给某班学生阅读.如果每人分3本.则剩余20本;如果每人分4本.则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?8.《九章算术》中有一道阐述“盈不足术”的问题.原文如下:今有人共买物.人出八.盈三;人出七.不足四.问人数.物价各几何?译文为:现有一些人共同买一个物品.每人出8元.还盈余3元;每人出7元.则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)10.在手工制作课上.老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人.其中男生人数比女生人数少2人.并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底.为了使每小时剪出的筒身与筒底刚好配套.应该分配多少名学生剪筒身.多少名学生剪筒底?11.某校组织学生种植芽苗菜.三个年级共种植909盆.初二年级种植的数量比初一年级的2倍少3盆.初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?12.为迎接6月5日的“世界环境日”.某校团委开展“光盘行动”.倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加.七(1)班参加的人数比七(2)班多10人.请问七(1)班和七(2)班各有多少人参加“光盘行动”?13.列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?14.暑假.某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动.如图是划船须知.(1)他们一共租了10条船.并且每条船都坐满了人.那么大、小船各租了几只?(2)他们租船一共花了多少元钱?15.列方程或方程组解应用题:在“五一”期间.小明、小亮等同学随家长一同到某公园游玩.下面是购买门票时.小明与他爸爸的对话(如图).试根据图中的信息.解答下列问题:(1)小明他们一共去了几个成人.几个学生?(2)请你帮助小明算一算.用哪种方式购票更省钱?参考答案与试题解析1.【分析】设这些学生共有x人.先表示出原来和后来各多少组.其等量关系为后来的比原来的少2组.根据此列方程求解.【解答】解:设这些学生共有x人.根据题意.得﹣=4.解得x=60.答:这些学生共有60人.【点评】此题考查的知识点是一元一次方程的应用.其关键是找出等量关系及表示原来和后来各多少组.难度一般.2.【分析】设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据1根轴杆与2个轴承为一套列出方程.求出方程的解即可得到结果.【解答】解:设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据题意得:12x×2=16(90﹣x).去括号得:24x=1440﹣16x.移项合并得:40x=1440.解得:x=36.则调配36个人加工轴杆.54个人加工轴承.才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用.找出题中的等量关系是解本题的关键.3.【分析】等量关系为:精加工的山货总质量+粗加工的山货总质量=1000kg.把相关数值代入计算即可.【解答】解:设粗加工的该种山货质量为x千克.则精加工(3x+200)千克.由题意得:x+(3x+200)=1000.解得:x=200.答:粗加工的该种山货质量为200千克.【点评】本题考查一元一次方程的应用.得到山货总质量的等量关系是解决本题的关键.难度一般.4.【分析】设小组成员共有x名.由题意可知计划做的中国结个数为:(6x﹣7)或(5x+13)个.令二者相等.即可求得x的值.可得小组成员个数及计划做的中国结个数.【解答】解:设小组成员共有x名.则计划做的中国结个数为:(6x﹣7)或(5x+13)个∴6x﹣7=5x+13解得:x=20.∴6x﹣7=113.答:计划做113个中国结.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系列出方程.再求解.5.【分析】设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系.就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由题意得2000x=2×1200(22﹣x).解得:x=12.则22﹣x=10.答:应安排生产螺钉和螺母的工人10名.12名.【点评】此题主要考查了一元一次方程的应用.列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.【分析】设原来每天生产x个零件.表示出所有零件的个数.进而得出等式求出即可.【解答】解:设原来每天生产x个零件.根据题意可得:26x=2x+(x+5)×20.解得:x=25.故26×25=650(个).答:原来每天生产25个零件.这批零件有650个.【点评】此题主要考查了一元一次方程的应用.根据题意表示出零件的总个数是解题关键.7.【分析】(1)设这个班有x名学生.根据这个班人数一定.可得:3x+20=4x﹣25.解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生.这批图书共有155本.【点评】解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程.再求解.8.【分析】根据这个物品的价格不变.列出一元一次方程进行求解即可.【解答】解:设共有x人.可列方程为:8x﹣3=7x+4.解得x=7.∴8x﹣3=53(元).答:共有7人.这个物品的价格是53元.【点评】本题考查了一元一次方程的应用.解题的关键是明确题意.找出合适的等量关系.列出相应的方程.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)【分析】(1)先设该单位参加旅游的职工有x人.利用人数不变.车的辆数相差1.可列出一元一次方程求出.(2)可根据租用两种汽车时.利用假设一种车的辆数.进而得出另一种车的数量求出即可.【解答】解:(1)设该单位参加旅游的职工有x人.由题意得方程:.解得x=360;答:该单位参加旅游的职工有360人.(2)有可能.因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人.正好坐满.【点评】此题主要考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程再求解.10.【分析】(1)设七年级(2)班有女生x人.则男生(x﹣2)人.根据全班共有44人建立方程求出其解即可;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x人.则男生(x﹣2)人.由题意.得x+(x﹣2)=44.解得:x=23.∴男生有:44﹣23=21人.答:七年级(2)班有女生23人.则男生21人;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由题意.得50a×2=120(44﹣a).解得:a=24.∴生产筒底的有20人.答:分配24人生产筒身.20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用.一元一次方程的解法的运用.解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.11.【分析】设初一年级种植x盆.则初二年级种植(2x﹣3)盆.初三年级种植(2x ﹣3+25)盆.根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆.依题意得:x+(2x﹣3)+(2x﹣3+25)=909.解得.x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量.直接设要求的未知量或间接设一关键的未知量为x.然后用含x的式子表示相关的量.找出之间的相等关系列方程、求解、作答.即设、列、解、答.12.【分析】首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动.由此列一元一次方程求解.【解答】解:设七(2)班有x人参加“光盘行动”.则七(1)班有(x+10)人参加“光盘行动”.依题意有(x+10)+x+48=128.解得x=35.则x+10=45.答:七(1)班有45人参加“光盘行动”.七(2)班有35人参加“光盘行动”.【点评】此题考查的知识点是一元一次方程组的应用.关键是先确定相等关系.然后列方程求解.13.【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(元).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.14.【分析】(1)设大船租了x只.则小船租了(10﹣x)只.那么6x+4(10﹣x)就等于该班总人数;(2)他们租船一共花了10x+8×(10﹣5)元.【解答】解:(1)设大船租了x只.则小船租了(10﹣x)只.则6x+4(10﹣x)=50解得:x=5.答:大、小船各租了5只;(2)他们租船一共花了10×5+8×5=90元.答:他们租船一共花了90元.【点评】列方程解应用题的关键是正确找出题目中的相等关系.用代数式表示出相等关系中的各个部分.把列方程的问题转化为列代数式的问题.15.【分析】(1)设去了x个成人.则去了(12﹣x)个学生.根据爸爸说的话.可确定相等关系为:成人的票价+学生的票价=400元.据此列方程求解;(2)计算团体票所需费用.和400元比较即可求解.【解答】解:(1)设去了x个成人.则去了(12﹣x)个学生.依题意得40x+20(12﹣x)=400.解得x=8.12﹣x=4;答:小明他们一共去了8个成人.4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400.∴按团体票购票更省钱.【点评】考查利用方程模型解决实际问题.关键在于设求知数.列方程.此类题目贴近生活.有利于培养学生应用数学解决生活中实际问题的能力.。

北师大版数学七年级上册《一元一次方程应用题分类》(4)

北师大版数学七年级上册《一元一次方程应用题分类》(4)

北师大版数学七年级上册--《一元一次方程应用题分类》一、形积问题1、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长4厘米、宽2厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?2、一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。

3、把一块长宽高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱体玻璃杯中(盛有水,铁块被水完全淹没)水面将增高多少?(不外溢)二、打折销售问题1.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,?结果每件仍获利15元,这种服装每件的成本为多少元?2、某商品的进价为700元,为了参加市场竞争,商店按标价的九折再让利40元销售,此时仍可获利10%,此商品的标价为多少元?13、一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?4、五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了几折优惠?5、新华书店准备将一套图书打折出售,如果按定价的6折出售将赔60元,若按定价出售则赚20元,试问这套图书的进价是多少?6、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?7、某服装店出售某种服装,已知售价比进价高20%以上才能出售,为了获得更多利润,该店老板以高出进价80%的价格标价,若你想买下标价360元的这种服装,最多降价多少元,该店老板还会出售?三、希望工程问题(调配问题)1、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?2、甲、乙两个水池共蓄水50吨,甲池用去5吨,乙池又注入8吨水后,甲池的水比乙池的水少3吨,问原来甲、乙两个水池各有多少吨水?3、某工厂第一车间人数比第二车间人数的少30人,如果从第二车间调10人到第一车间,那么第一车间的人数就是第二车间人数的,求原来每个车间的人数?4、甲班有54人,乙班有48人,要使甲班人数是乙班人数的2倍,则应从乙班调往甲班多少人?四、行程问题(一)相遇问题和追及问题1、已知A、B两地相距100千米,甲以16千米/小时的速度从A地出发,乙以9千米/小时的速度从B地出发。

用一元一次方程解应用题典型例题荟萃

用一元一次方程解应用题典型例题荟萃

用一元一次方程解应用题典型例题荟萃1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:(1)甲每天生产某种零件80个,3天能生产个零件。

一元一次方程应用题问题

一元一次方程应用题问题

1、盒子里有三种颜色的纽扣一共312个,其中红色纽扣的个数比蓝色的3倍还多8个,绿色纽扣的个数比蓝色的少1个,求这三种颜色的纽扣各是多少?
2、一批宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住,那么这批宿舍有多少间,人有多少个?
3、某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?
4、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。

已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。

5、甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站
出发,每小时行驶80千米,问:
(1)两车同时开出,相向而行,出发后多少小时相遇?
(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?
6、一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。

问:若已知队长320米,则通讯员几分钟返回?若已知通讯员用了25分钟,则队长为多少米?
7、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?
8、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,。

人教版七年级上册数学 一元一次方程应用题

人教版七年级上册数学 一元一次方程应用题

七年级数学上册一元一次方程应用题1.一元一次方程的应用-年龄问题(1)2005年,兄妹两人的年龄分别是16岁和10岁,那么当哥哥的年龄是妹妹年龄的2倍时,应是哪一年?(2)小丽的年龄乘以3再减去3是18,那么小丽现在的年龄为多少岁?(3)小新出生时父亲28岁,现在父亲的年龄是小新的3倍,现在小新的年龄是多少岁?(4)刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年多少岁了?,而九年前弟弟的年龄,只是哥哥年(5)现在弟弟的年龄恰好是哥哥年龄的12,则哥哥现在的年龄是多少岁?龄的152.一元一次方程的应用—方案设计问题(1)一家三口在假期期间去北方旅游,当地有甲、乙两家旅行社,其定价都一样,但对家庭旅游都有优惠,甲旅行社表示大人不打折,小孩打六折;乙旅行社表示一家三口全部打八折,经核算,乙旅行社要便宜240元,则大人定价为多少元?(2)为了促销,元旦期间,甲、乙两家商店都采取了优惠措施.甲店推出八折后再打八折优惠;乙店则一次性六折优惠.若购买相同价格的商品,哪个店更优惠?元;(3)父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)(4)某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余45个座位.①则准备包车回家过春节的农民工人数为多少?②已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,则租用几辆几座客车更合算?(5)超市推出如下优惠方案①一次性购物不超过100元不享受优惠;②一次性购物超过100元,但不超过300元一律9折;③一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款多少钱?3.一元一次方程的应用—利息问题(1)某人存入5000元参加三年期储蓄(免征利息税),到期后本息和共得5417元,那么这种储蓄的年利率为多少?(2)小明将前年春节所得的压岁钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年春节他将得到利息288元,则小明前年春节的压岁钱为多少元?(3)《个人所得税条例》规定,公民工资每月不超过2000元者不必纳税,超过2000元的部分按超过金额分段纳税,详细税率如下表,某人12月份纳税35元,则该人月薪为多少元?(4)小明过年得到1000元的压岁钱,存入银行,准备到期后的利息捐给希望工程.已知三年定期存款的年利率为2.25%,那么三年后小明可捐给希望工程(国家规定要收取20%的利息税)多少元?(5)某银行规定:客户定期存款到期后,客户如不前往银行办理转存手续,银行会自动将到期的存款本息按相同存期一并转存,不受次数限制,续存期利率按前期到期日的利率计算.某人在2014年10月24日在此银行存入一年定期存款若干元.存款年利率为3%.2015年10月24日.该客户没有前往该银行办理转存手续,且该银行一年定期存款年利率于当日调整为1.5%.若该客户在2016年10月24日到银行取出该笔存款,可得到利息909元,则该客户在2014年10月24日存入的本金为多少元?4.一元一次方程的应用—配套问题(1)一张方桌由一个桌面和四条桌腿组成,若1m³木料可制作50个桌面或300条桌腿,现有5m³木料,要使得生产出来的桌面和桌腿恰好都配成方桌,则用来生产桌面的木料有多少m³?(2)制作一个桌子要用一个桌面和4条桌腿,1m3木料可制作15个桌面,或者制作300条桌腿,现有12m3木料,应计划使用多少m3木料制作桌面,使用多少m3木料制作桌腿?(3)某车间有工人56名,生产一种桌面和桌腿,每人每天平均能生产桌面24个或桌腿32条,应分配多少人生产桌面,多少人生产桌腿,桌面桌腿刚好配套?(一个桌面配四条腿)(4)某品牌电脑由一个主机和一个显示器配套构成,每个工人每天可以加工100个主机或者加工60个显示器,现有24名工人,每天多少人生产的主机,多少人生产显示器才能使每天生产的主机和显示器配套?(5)一个工人一天能生产100个螺栓或150个螺帽,一个螺栓要与2个螺帽配套.若有42个工人,应安排多少人生产螺栓,多少人生产螺帽才能使每天生产的螺栓和螺帽刚好配套?5.一元一次方程的应用—数字问题(1)三个连续奇数的和是75,这三个数分别是多少?(2)一个数与它一半的差是34,则这个数是多少?(3)首位数字是2的六位数,若把首位数字2移到末位,所得到的新的六位数恰好是原数的3倍,原来的六位数为多少?(4)一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是多少?(5)一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为多少?6.一元一次方程的应用—调配问题(1)如果甲、乙两班共有90人,如果从甲班抽调3人到乙班,则甲乙两班的人数相等,则甲班原有多少人?(2)某车间有技工85人,平均每人每天可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件正好配成一套.要使每天加工的甲、乙两种部件刚好配套,则应安排加工甲种部件的人数为多少人, 乙种部件的人数为多少人?(3)用白铁皮做罐头盒.每张铁皮做盒身10个或盒底30个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用几张做盒身,几张做盒底既可以充分利用白铁皮又能使作出的盒身与盒底配套?(4)甲乙两仓库分别贮存粮食600吨和250吨,如果从甲仓库运出粮食的重量比乙仓库运出粮食的重量的3倍还多140吨,那么甲仓库所剰粮食的重量与乙仓库所剩粮食的重量相等.问甲仓库运出了多少吨粮食; 乙仓库运出了多少吨粮食?(5)某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条(一件衣服配一条裤子),应安排多少人生产上衣,多少人生产裤子,才能使每天生产的上衣和裤子配套?(6)“圣诞节”将至,某商场购进了一种手套30双和一种围巾20条,围巾的售价是手套2倍,销售一段时间后,手套和围巾卖出的数量恰好相同,此时商场决定调价,把手套的售价提高48%,把围巾的售价降低40%,当商场卖完这两种商品后,发现这批围巾和手套的平均售价是一样的,那么调价前卖出的围巾和手套的数量都是多少?7.一元一次方程的应用-行程问题(1)甲乙两人同时同地同向出发沿400米环形跑道跑步,甲的速度比乙快,当甲第二次追上乙时,甲比乙跑的路程多还是少,多或少多少?(2)甲、乙两地相距256千米,快车每小时行48千米,慢车每小时行32千米,慢车从甲地出发,快车从乙地出发,相向而行.若慢车开出0.5时后,快车才出发,则快车开出几小时,两车相遇?(3)小王在公路上行走,速度是每小时6千米,一辆车长20米的汽车从背后驶来,并从小王身旁驶过,驶过小王身旁的时间为1.5秒,则汽车行驶的速度是多少千米/小时?(4)小王骑车从A地到B地共用了4个小时,从B地返回A地,他先以去时的速度骑车行2小时,后因车出了毛病,修车耽误了半个小时,接着他用比原速度每小时快6千米的速度回到A地,结果返程比去时少用了10分钟,求小王从A地到B地的骑车速度多少千米/小时?(5)敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,在距敌军0.6千米处向敌军开火,然后用48分钟将敌军全部歼灭.问敌军从逃跑到被我军歼灭共花多少小时?8.一元一次方程的应用-工程问题(1)某工厂计划每天烧煤5吨,实际每天少烧2吨,m吨煤多烧了20天,则可列的方程是?(2)甲生产某种零件需要80天,乙生产这种零件需要60天,甲生产3天后,乙也加入生产同一种零件,再经过多少天,两人可以完成全部的工程?(3)一项工程甲单独完成需要8小时,乙单独完成需要12小时,则乙先做4小时,然后甲乙合作,完成了这项工程,则甲乙合作了多少小时?(4)整理一批数据,由一人做需要80小时完成。

一元一次方程——调配和分配问题

一元一次方程——调配和分配问题

一元一次方程应用题——调配和分配问题一、学习重点:调配和分配问题:1、找准调配前后的数量关系;2、找数量关系时可借助列表等形式。

需要注意人或者物品的流向,流动之后形成了一种什么样的关系,例如:从甲队调一些人去乙队,其中甲队要减去这些人,而乙队要加上这些人。

再根据题意中给的关系设未知数表示出来。

二、基础练习:1、有甲乙两个运输队,甲队32人,乙队28人,从甲调走5人到乙队,则甲队_____人,乙队____人。

2、有甲乙两个运输队,甲队32人,乙队28人,从甲调走x人到乙队,〔1〕使甲乙两队人数恰好相等,则x=______;〔2〕假设乙队人数恰好是甲队人数的2倍,则x=_____;〔3〕假设乙队人数比甲队人数的4倍还多5人,则x=_____。

例1、某厂一车间有64人,二车间有56人。

现因工作需要,需求第一车间人数是笫二车间人数的一半。

问需从第一车间调多少人到第二车间?练习:甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下來的人数是原乙队人数的一半还多15人。

求甲、乙两队原有人数各多少人?做题:3、4例2、甲车队有15辆汽车,乙车队有28辆汽年,现调来10辆汽分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?练习:甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?做题:5、6例3、某班同学利用假期参加夏令营活动,分成几个小组,假设每组7人还余1人,假设每组8人还缺6人,问该班分成几个小组,共有多少名同学?练习:学校新进假设干箱教学设备,某班同学去运,假设每人运8箱,还余16箱;假设每人运9箱,还缺少32箱,这批设备共有多少箱?这个班有多少名同学?做题:7、8三、应用题: A卷3、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?4、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。

用一元一次方程解应用题(匹配、分配问题)

用一元一次方程解应用题(匹配、分配问题)

变式训练:
1、某水利工地派48人去挖土和运土,如果每人每天平均挖 土5方或运土3方,那么应怎样安排人员,正好能使挖出的土 及时运走?
分析:挖出的土方数=运走的பைடு நூலகம்方数
解:设安排 x 人去挖土,则有(48 – x )人运土, 根据题意,得 5 x = 3 ( 48 – x ). 去括号,得 5x = 144 –3x. 移项、合并同类项,得 8x = 144. 系数化为1,得 x = 18. 运土的人数为 48 – x = 48 –18 = 30. 答:应安排18人去挖土,30人去运土,正好能使挖出的土及 时运走。
变式训练:
2、某车间每天能生产甲种零件120个或乙种零件100个,甲、乙 两种零件分别取3个、2个才能配成一套,现要在90天内生产最多 的成套产品,问怎样安排生产甲、乙两种零件的天数?
分析:生产甲、乙两种零件的天数之和为90天,甲、乙两种零 件的件数之比为3:2。
解:设生产甲种零件用x天,则生产乙种零件用(90-x)天,且该车间能生产甲 种零件120x个,生产乙种零件100(90-x)个, 由题意,得 2×120x=3×100(90-x), 解得 x=50 , 90-x=40 答:生产甲种零件用50天,则生产乙种零件用40天。
列一元一次方程解应用题典型 例题
把一些图书分给某班学生阅读,如果每人分3本,则剩余 20本;如果每人分4本,则还缺25本.问这个班有多少名学 生?图书共有多少本?
分析:第一次分的书的总数=第二次分的书 的总数 .
解:设这个班有x名学生,则图书数量为(3x+20 )本,或(4x-25)本 由题意,得 3x+20= 4x-25. 解得x=45 . 3x+20=155. 答:该班有45名学生,这一些图书共有155本。

一元一次方程应用题典型例题-答案

一元一次方程应用题典型例题-答案

一元一次方程解應用題典型例題1、分配問題:例題1、把一些圖書分給某班學生閱讀,如果每人分3本,則剩餘20本;如果每人分4本,則還缺25本.問這個班有多少學生?設這個班有x個學生,則3x+20=4x-25x=45變式1:某水利工地派48人去挖土和運土,如果每人每天平均挖土5方或運土3方,那麼應怎樣安排人員,正好能使挖出の土及時運走?解:設X人挖土,運土の則有(48-X)人,則:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:應安排18人挖土,30人運土變式2:某校組織師生春遊,如果只租用45座客車,剛好坐滿;如果只租用60座客車,可少租一輛,且餘30個座位.請問參加春遊の師生共有多少人?解:設租x輛45做客車45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配問題:例題2、某車間22名工人生產螺釘和螺母,每人每天平均生產螺釘1200個或螺母2000個,一個螺釘要配兩個螺母。

為了使每天の產品剛好配套,應該分配多少名工人生產螺釘,多少名工人生產螺母?解:設x名工人生產螺釘,則有(22-x)人生產螺母,可得:2x1200x=2000(22-x)x=10所以生產螺母の人數為:22-10=12(人)變式1:某車間每天能生產甲種零件120個,或乙種零件100個,甲、乙兩種零件分別取3個、2個才能配成一套,現要在30天內生產最多の成套產品,問怎樣安排生產甲、乙兩種零件の天數?解:設安排生產甲零件の天數為x天,則安排生產乙零件の天數為(30-x)天,根據題意可得:2×120x=3×100(30-x),解得:x=50/3,則30-50/3=40/3(天),答:安排生產甲零件の天數為15天,安排生產乙零件の天數為12天變式2:用白鐵皮做罐頭盒,每張鐵片可制盒身10個或制盒底30個。

一個盒身與兩個盒底配成一套罐頭盒。

現有100張白鐵皮,用多少張制盒身,多少張制盒底,可以既使做出の盒身和盒底配套,又能充分利用白鐵皮?解:設用x張做盒身,則做盒底為(100-x)張則:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60張做盒身,40張做盒底.3、利潤問題(1)一件衣服の進價為x元,售價為60元,利潤是______元,利潤率是_______.變式:一件衣服の進價為x元,若要利潤率是20%,應把售價定為________.(2)一件衣服の進價為x元,售價為80元,若按原價の8折出售,利潤是______元,利潤率是__________.變式1:一件衣服の進價為60元,若按原價の8折出售獲利20元,則原價是______元,利潤率是__________.變式2:一臺電視售價為1100元,利潤率為10%,則這臺電視の進價為_____元.變式3:一件商品每件の進價為250元,按標價の九折銷售時,利潤為15.2%,這種商品每件標價是多少?解:設這種商品每件標價是x元,則x×90%-250=250×15.2%x=320變式4:一件夾克衫先按成本提高50%標價,再以八折(標價の80%)出售,結果獲利28元,這件夾克衫の成本是多少元?解:設成本為X元,則售價為X(1+50%)×80%,(獲利28元,即售價-成本=28元),則X(1+50%)×80%-X=28解得X=140元。

一元一次方程应用题

一元一次方程应用题

一、行程问题1、(相遇问题)甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?2、(追击问题)甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?3、(环形跑道问题)甲、乙两人沿着400米的环形跑道跑步,他们从同一地点同时出发,相向而行,甲每分钟跑280米,乙每分钟跑240米,经过多少分钟后,甲乙两人第一次相遇?4、(火车过隧道问题)已知某一铁路桥长1000米,现有一列火车从桥上通过,小亮和小芳分别从不同的角度进行了观测.请根据以上信息求出火车的长度和火车的速度.5、(顺逆流问题)一艘轮船从甲地顺流而行9小时到达乙地,原路返回需要11小时才能到达甲地,已知水流速度为2千米/时,求轮船在静水中的速度。

6、甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场,如果甲飞机的速度是乙飞机的1.5倍,求乙飞机的速度。

7、一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?8、小明和小丽同时从学校出发到运动场看体育比赛,小明每分钟走80米,他走到运动场等了5分钟,比赛才开始,小丽每分钟走60米,她进入运动场时,比赛已经开始3分钟,问学校到运动场有多远?9、A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?10、甲乙两人在400米环形跑道上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟,甲第一次超过乙,30分钟时甲第二次超过乙。

假设两人速度不变,那么出发时甲在乙后面多少米?11、某人在同一河流乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A,C两地的距离为10千米,求A,B两地的距离。

用一元一次方程解应用题匹配、分配问题

用一元一次方程解应用题匹配、分配问题
问:插入后,甲班有学生______人,乙班有学生__ _____人,若已知插入后,甲班学生人数的3倍比乙班学 生人数的2倍还多4人,列出方程是: __________ ______.
○ 48+X ○ 52+(12-X)
● 3(48+X)=2[52+(12-X)]+4
例1、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮 食15吨,应分配给两仓库各多少吨,才能使得甲仓 库的粮食数量是乙仓库的两倍?
列一元一次方程解应用 题 典型例题
添加副标题
汇报人姓名
教学目的
01
学习列一元一次方程解 决分配、匹配问题。
02
初步掌握列一元一次方 程解应用题的一般步骤。
03
初步培养我们分析问题、 解决实际问题的能力。
基础题
• 1.某人用三天做零件330个,已知第二天比第一天多做3个,第三天做的是第二天的2倍少3个,则他第 一天做了多少个零件?
分析:租用45座客车的车 辆数=租用60座客车的车 辆数 1
课内小结:列一元一次方程解应用题的一般步骤:
“审”、“设”、“列”、“解”、“验”、“答”六环节 审题:分析题意,找出题中的数量及数量关系;(审) 设元:选择一个适当的未知数用字母表示(例如x);(设) 列方程:根据相等关系列出方程;(列) 解方程:求出未知数的值; (解) 检验:检查求得的值是否正确和符合实际情形;(验) 答:把所求的答案写出来。(答)
分析 :若设应分给甲仓库粮食X吨,则数量关系如下表
甲仓库 乙仓库
原有粮食 35 19
新分给粮食 现有粮食
X
35+X
(15-X) 19+(15-X)
故相等关系为 : 甲仓库现有粮食的重量=2×乙仓库现有粮食的重量

《一元一次方程应用题》(难题及详细答案)

《一元一次方程应用题》(难题及详细答案)

《一元一次方程应用题》——难题荟萃【典型例题1】销售问题某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?【解】设盈利25%的那件衣服的进价是x元则:x+0.25x=60,解得:x=48,设另一件亏损衣服的进价为x元则:x-25%x=60,x=80那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.120-128=-8元,【类型题训练1A 】工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工 艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进 价、标价分别是多少元?【解】设该工艺品每件的进价是x 元,标价是(45+x )元.依题意,得:8(45+x )×0.85-8x =(45+x -35)×12-12x【类型题训练1B 】某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?等量关系:利润率=利润/进价【解】设标价是x 元,80%604060100x -=解之:x =105 优惠价为),(8410510080%80元=⨯=x【典型例题2】工程问题一项工程甲做40天完成,乙做50天完成,现在先由甲做,中途甲有事离去,由乙接着做,共用46天完成.问甲、乙各工作了多少天?【分析】由题意知,甲每天完成全部工作量的140,乙每天完成150,【解】设工程总量为1,设甲工作了x 天,则乙工作了(46x -)天,根据题意,得4614050x x-+=.解得16x =,则461630-=(天). 故甲工作了16天,乙工作了30天. 答:甲工作16天,乙工作30天.【类型训练2A 】一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 【分析】设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

七年级数学一元一次方程解应用题------配套、分配、数字问题专题练习

七年级数学一元一次方程解应用题------配套、分配、数字问题专题练习

一元一次方程的应用------配套、分配、数字问题一、配套问题1、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?3、某车间每天能制作甲种零件500只,或者乙种零件250只,甲、乙两种各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?4、制作一张桌子要用一个桌面和4条桌腿,1m的立方木材可制作20个桌面,或者制作400条桌腿,现有12m的立方木材,应怎样计划用料才能制作尽可能多的桌子?5、车间有22名工人,每人一天平均生产螺钉1200个或螺母2000个,一个螺钉配两螺母,为使每天的产品刚好配套则应该分配多少名工人生产螺钉?多少名工人生产螺母?6、一套仪器由一个A部件和三个B部件构成。

用1立方米钢材可做40个A部件或240个B 部件。

现要用6立方米钢材做这种仪器,应用多少钢材做A、B两种部件,恰好配成这种仪器多少套?7、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?8、包装厂有42人,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?9、铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?10、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?11、某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,美加工一个乙零件可获利24元,若此车间一共获利1440元。

一元一次方程应用题典型例题-答案

一元一次方程应用题典型例题-答案

一元一次方程解应用题典型例题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?设这个班有x个学生,则3x+20=4x-25x=45变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?解:设X人挖土,运土的则有(48-X)人,则:5X=3×(48-X)5X=144-3X8X=144X=1848—X=30答:应安排18人挖土,30人运土变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位。

请问参加春游的师生共有多少人?解:设租x辆45做客车45x=60(x—1) —3045x=60x-9015x=90x=66X45=270人2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2x1200x=2000(22—x)x=10所以生产螺母的人数为:22-10=12(人)变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30—x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解:设用x张做盒身,则做盒底为(100—x)张则:2×10x=30(100—x),x=60.100—x=100-60=40.答:用60张做盒身,40张做盒底.3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______。

一元一次方程应用题(4)分配问题[技巧]

一元一次方程应用题(4)分配问题[技巧]

一元一次方程应用题(4)——分配问题比例分配问题例1:某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?练习1:甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运货物12吨,则三辆卡车共运货物多少吨。

例2:某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?练习2:甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?整体和部分问题5,丙班分例3:学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的7到的比乙班少20本,问共有多少练习本?练习1:如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种练习2:学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块砖,其他年级同学每人搬8块,总共搬了400块砖,问初一同学有多少人参加搬砖?分析:设初一同学有x人参加搬砖,列表如下,可列出方程:_________________有调入无调出例4:学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?练习1:甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?练习2:在一次美化校园中,先安排32人去拔草,17人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?有调入有调出:例5:某班级开展活动而分为甲乙两个小组,甲队29人,乙队19人:(1) 若从甲组调x名学生到乙组,使得两组人数相等,则可列方程:;(2) 若从乙组调y名学生到甲组,使得甲组人数是乙组人数的两倍,则可列方程:。

《一元一次方程》应用题 (4)

《一元一次方程》应用题 (4)

1.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?2.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮和3个小齿轮配成一套,问应如何安排工人使生产的产品刚好配成套?3.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?4.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?5.修一条公路,甲队单独修需要10天完成,乙队单独需要12天完成,丙队单独修需15天完成,现在先由甲队单独修2.5天,再由乙队接着修,最后还剩下一段路,由三队合修2天才完成任务,乙队在整个修路工程中工作了多少天?6.将连续的奇数1,3,5,7,9,…,排成如图所示的数阵.(1)设中间数为a,用式子表示十字框中五数之和并化简.(2)若将十字框上下左右移动,可框住另外五个数,这五个数的和还有这种规律吗?十字框中五数之和能等于2005吗?若能,请写出这五个数,若不能,说明理由.7.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?8.甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B 地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?9.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.08元/分;(B)包月制,50元/月(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元/分.(1)某用户某月上网时间为x分钟,则该用户在A、B两种收费方式下应支付费用各多少元?(2)如果一个月内上网200分钟和300分钟,按两种收费方式各需交费多少元?(3)是否存在某一时间,会出现两种收费方式一样的情况?如果存在,请求出这时的上网时间.10.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.11.某移动通讯公司开设了两种通讯业务“全球通”和“神舟行”.全球通:使用者先交50元月租费,然后每通话一分钟付0.4元话费,累计起来作为使用者一个月的通讯费;神州行:不缴月租费,每通话一分钟,付话费0.6元现有甲、乙二人分别使用“全球通“和”神州行“,设他们在一个月内通话时间均为x分钟.(1)如果x=30小时,分别计算甲、乙二人这一个月的通讯费;(2)当他们在这一个月中缴纳的通讯费相等时,你能通过自己学习的知识求出他们的通话时间是多少吗?试一试.12.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?13.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒3个单位长度的速度向右运动,同时,点B以每秒1个单位长度向右运动,点C以每秒7个单位长度向左运动.问:①点A运动多少秒时追上点B?②点A运动多少秒时与点C相遇?14.已知数轴上有A、B、C三个点,分别表示有理数﹣12、﹣5、5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P从点A出发,向点C移动,点Q以每秒3个单位从点C出发,向终点A移动,请求出经过几秒点P与点Q两点相遇?(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.15.某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:进价(元/台)售价(元/台)甲种45 55乙种60 80(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?16.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90 超过30吨的部分 6.00 0.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)17.某市有A、B两种出租车.A的计价方式为:当行驶路程不超过3千米时收费9元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);B的计价方式为:当行驶路程不超过3千米时收费6元,每超过1千米则另外收费1.8元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.(1)当x=4时,请分别求出乘坐A、B两种出租车的费用;(2)①此人若乘坐A种出租车比乘坐B种出租车的费用省3元,则求x的值;②某人乘坐的路程大于3千米,请帮他规划如何选择乘坐哪种出租车较合算?《一元一次方程》应用题参考答案1.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?【答案】解:设分配x人生产甲种零部件,根据题意,得3×12x=2×15(22﹣x),解得:x=10,22﹣x=12,答:分配10人生产甲种零部件,12人乙种零部件.2.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮和3个小齿轮配成一套,问应如何安排工人使生产的产品刚好配成套?【答案】解:设安排x人生产大齿轮,则安排(85﹣x)人生产小齿轮,可使生产的产品刚好配成套,根据题意得:3×16x=2×10(85﹣x),解得:x=25,∴85﹣x=60.答:应安排25个工人生产大齿轮,安排60个工人生产小齿轮才能使生产的产品刚好配成套.3.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?【答案】解:设每件服装的成本价为x元,那么每件服装的标价为:(1+40%)x=1.4x;每件服装的实际售价为:1.4x×0.8=1.12x;每件服装的利润为:0.12x;由此,列出方程:0.8×(1+40%)x﹣x=15;解方程,得x=125;答:每件服装的成本价是125元.4.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?【答案】解:设应分配x名工人生产螺钉,则有(20﹣x)名工人生产螺母,由题意得,800(20﹣x)=2×600x,解得:x=8.答:应分配8人生产螺钉.5.修一条公路,甲队单独修需要10天完成,乙队单独需要12天完成,丙队单独修需15天完成,现在先由甲队单独修2.5天,再由乙队接着修,最后还剩下一段路,由三队合修2天才完成任务,乙队在整个修路工程中工作了多少天?【答案】解:设乙单独修了x天,根据题意可得:2.5×+x+2(++)=1,解得:x=3,故x+2=5.答:乙队在整个修路工程中工作了5天.6.将连续的奇数1,3,5,7,9,…,排成如图所示的数阵.(1)设中间数为a,用式子表示十字框中五数之和并化简.(2)若将十字框上下左右移动,可框住另外五个数,这五个数的和还有这种规律吗?十字框中五数之和能等于2005吗?若能,请写出这五个数,若不能,说明理由.【答案】解:(1)设中间数为a,则另外四个数分别为a﹣10、a﹣2、a+2、a+10,∴十字框中五数之和为(a﹣10)+(a﹣2)+a+(a+2)+(a+10)=5a.(2)无论如何移动,这五个数的和还有这种规律,十字框中五数之和不能等于2005,理由如下:设中间数为x时,五数之和为2005,根据题意得:5x=2005,解得:x=401,∵401为第201个奇数,且201=40×5+1,∴401为第40行的第一个数,∴401不能为中间数,∴十字框中五数之和不能等于2005.7.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?【答案】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.8.甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B 地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?【答案】解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x(3﹣)+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.9.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.08元/分;(B)包月制,50元/月(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元/分.(1)某用户某月上网时间为x分钟,则该用户在A、B两种收费方式下应支付费用各多少元?(2)如果一个月内上网200分钟和300分钟,按两种收费方式各需交费多少元?(3)是否存在某一时间,会出现两种收费方式一样的情况?如果存在,请求出这时的上网时间.【答案】解:(1)A收费方式所需费用为(0.08+0.02)x=0.1x(元),B收费方式所需费用为50+0.02x(元).(2)当x=200时,0.1x=20,50+0.02x=54;当x=300时,0.1x=30,50+0.02x=56.(3)根据题意得:50+0.02x=0.1x,解得:x=625.答:存在625分钟时间,使得两种收费方式一样.10.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.【答案】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+(20﹣5×2)×8=280(元),∵288>280,∴选择乙商场购买更合算.11.某移动通讯公司开设了两种通讯业务“全球通”和“神舟行”.全球通:使用者先交50元月租费,然后每通话一分钟付0.4元话费,累计起来作为使用者一个月的通讯费;神州行:不缴月租费,每通话一分钟,付话费0.6元现有甲、乙二人分别使用“全球通“和”神州行“,设他们在一个月内通话时间均为x分钟.(1)如果x=30小时,分别计算甲、乙二人这一个月的通讯费;(2)当他们在这一个月中缴纳的通讯费相等时,你能通过自己学习的知识求出他们的通话时间是多少吗?试一试.【答案】解:(1)30小时=1800分钟,甲一个月的通讯费为50+0.4×1800=770(元),乙一个月的通讯录为0.6×1800=1080(元).(2)根据题意得:50+0.4x=0.6x,解得:x=250.答:当通话时间为250分钟时,两人通讯费用相等.12.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?【答案】解:(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.13.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒3个单位长度的速度向右运动,同时,点B以每秒1个单位长度向右运动,点C以每秒7个单位长度向左运动.问:①点A运动多少秒时追上点B?②点A运动多少秒时与点C相遇?【答案】解:(1)根据题意得:AB=14,BC=20;故答案为:14;20;(2)①设点A运动x秒时追上B,根据题意得:3x﹣x=14,解得:x=7,则点A运动7秒时追上点B;②设A点运动y秒时与点C相遇,根据题意得:3y+7y=34,解得:y=3.4.则点A运动3.4秒时与点C相遇.14.已知数轴上有A、B、C三个点,分别表示有理数﹣12、﹣5、5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P从点A出发,向点C移动,点Q以每秒3个单位从点C出发,向终点A移动,请求出经过几秒点P与点Q两点相遇?(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.【答案】解:(1)用含t的代数式表示P到点A和点C的距离:PA=t,PC=AC﹣AP=17﹣t,故答案为:t,17﹣t;(2)由题意,得(3+1)t=17解得t=.答:经过秒点P与点Q两点相遇;(3)当P点在Q点右侧,且Q点还没有追上P点时,3(t﹣7)+2=t解得:t=,∴此时点P表示的数为﹣,当P点在Q点左侧,且Q点追上P点后,相距2个单位,3(t﹣7)﹣2=t解得:t=,∴此时点P表示的数为﹣,当Q点到达C点后,|5﹣3(t﹣)﹣(﹣5+t)|=2.解得:t=或t=,此时点P表示的数为或.综上所述:点P表示的数为﹣,﹣,、.15.某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:进价(元/台)售价(元/台)甲种45 55乙种60 80(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?【答案】解:(1)设商场购进甲型号台灯x台,则购进乙型号台灯(1000﹣x)台,由题意,得45x+60(1000﹣x)=54000,解得:x=400,购进乙型台灯1000﹣x=1000﹣400=600(台).答:购进甲型台灯400台,购进乙型台灯600台进货款恰好为54000元.(2)设乙型节能灯需打a折,0.1×80a﹣60=60×20%,解得a=9,答:乙种型号台灯需打9折.16.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.00 0.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)【答案】解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.17.某市有A、B两种出租车.A的计价方式为:当行驶路程不超过3千米时收费9元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);B的计价方式为:当行驶路程不超过3千米时收费6元,每超过1千米则另外收费1.8元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.(1)当x=4时,请分别求出乘坐A、B两种出租车的费用;(2)①此人若乘坐A种出租车比乘坐B种出租车的费用省3元,则求x的值;②某人乘坐的路程大于3千米,请帮他规划如何选择乘坐哪种出租车较合算?【答案】解:(1)当x=4时,乘坐A出租车的费用=9+(4﹣3)×1.2=10.2(元),乘坐B出租车的费用=6+(4﹣3)×1.8=7.8(元).答:乘坐A、B两种出租车的费用分别为10.2元,7.8元.(2)①当0<x≤3时,乘坐A出租车的费用为9元,乘坐B出租车的费用为6元,∵6﹣9=﹣3(元),∴0<x≤3不符合题意;当x>3时,乘坐A出租车的费用=9+(x﹣3)×1.2=(1.2x+5.4)元,乘坐B出租车的费用=6+(x﹣3)×1.8=(1.8x+0.6)元,∴1.8x+0.6﹣(1.2x+5.4)=3,解得:x=13.答:x的值为13.②当1.2x+5.4>1.8x+0.6时,x<8,∴当3<x≤7时,选择B出租车较合算;当1.2x+5.4=1.8x+0.6时,x=8,∴当7<x≤8时,他乘坐两种出租车所需费用一样多;当1.2x+5.4<1.8x+0.6时,x>8,∴当x>8时,选择A出租车较合算.答:当3<x<8时,选择B出租车较合算;当x=8时,他乘坐两种出租车所需费用一样多;当x>8时,选择A出租车较合算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题(4)——分配问题
比例分配问题
例1:某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?
练习1:甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运货物12吨,则三辆卡车共运货物多少吨。

例2:某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
练习2:甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?
整体和部分问题例3:学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的
7
5,丙班分到的比乙班少20本,问共有多少练习本?
练习1:如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种笔的价格分别是多少?
练习2:学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块砖,其他年级同学每人搬8块,总共搬了400块砖,问初一同学有多少人参加搬砖?
分析:设初一同学有x人参加搬砖,列表如下,可列出方程:_________________
有调入无调出
例4:学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?
练习1:甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?
练习2:在一次美化校园中,先安排32人去拔草,17人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?
有调入有调出:
例5:某班级开展活动而分为甲乙两个小组,甲队29人,乙队19人:
(1) 若从甲组调x名学生到乙组,使得两组人数相等,则可列方程:;
(2) 若从乙组调y名学生到甲组,使得甲组人数是乙组人数的两倍,则可列方程:。

练习1:甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。

求甲、乙两队原有人数各多少人?
练习2:甲乙两人分别存书108本和54本,现要让甲给乙一些书,使甲有的书占乙有书的20%,问甲给了一多少书?有调出无调入:
例6:甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人?
练习1:甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少?
练习2:某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?
思考:某班女生人数比男生的2/3还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的7/9,那问男、女生各多少人?
家庭作业
1.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:
(1)如果把0.5千克的菜放在秤上,指针转过多少角度?
(2)如果指针转了540,这些菜有多少千克?
2.由车头与14节车厢组成的客车共重347.5吨,已知车头比4节车厢重14.5吨,则车头重多少吨?每节车厢重多少吨?
3. 某果园用硫磺、石灰、水制成一种杀虫药水,其中硫磺2份,石灰1份,水10份,要制成这种药水520千克,需要硫磺多少千克?
4.甲队原有工人68人,乙队原有工人44人,现又有42名工人调入这两队,为了使乙队人数是甲队人数的2倍,应调往甲乙两队各多少人?
5. 甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?
6.某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍
7.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?
8.小明用172元钱买了两种书,共10本,单价分别为18元、10元。

每种书小明各买了多少本?。

相关文档
最新文档