100kW光伏并网逆变器设计方案讲解

合集下载

光伏工程并网设计方案

光伏工程并网设计方案

光伏工程并网设计方案一、项目概况本项目是一座位于中国南部城市的光伏电站,并网装机容量为100兆瓦,占地面积约1000亩。

该光伏电站采用多晶硅光伏组件,采用集中式逆变器,并通过变电站与电网进行并网发电。

本项目旨在利用可再生能源,减少对传统化石燃料的依赖,减少温室气体排放,为当地提供清洁的电力资源。

二、工程设计1. 光伏组件选型根据该地区的气候条件,我们选择了适合高温高湿环境的多晶硅光伏组件。

组件的规格为156x156mm,功率在300-330W之间,具有良好的耐高温性能和抗PID效果。

2. 支架系统设计考虑到地形和日照条件,我们选用了钢结构支架系统,支撑光伏电池板的安装和固定。

支架系统具有优异的抗风能力和适应性,可以适应区域内不同地形和地貌环境。

3. 逆变器选型在逆变器方面,我们采用了集中式逆变器,对光伏组件发出的直流电进行转换,输出交流电入电网。

逆变器具有高效率和稳定的性能,能够有效提高光伏发电系统的整体效益。

4. 并网工程设计根据电网的容量和运行条件,我们设计了合适的并网方案。

通过变压器和电网进行光伏电站的并网,确保发电系统的安全性和可靠性。

5. 电站布局设计根据实际的场地情况,我们设计了合理的电站布局方案,保证了光伏组件的布设密度和光照条件,实现了电站的最大发电量。

6. 高压配电系统设计在变电站方面,我们设计了高压配电系统,确保光伏电站所发出的电能能够顺利地输送到电网中,同时通过高压配电系统实现对电站内部的多路并网。

三、管理与维护1. 系统监控与管理我们将安装并配置系统监控设备,包括光伏电站监控中心和远程监控系统。

通过这些监控装置,可以实时地监测光伏电站的发电情况、运行状态和设备运行情况。

2. 定期维护与检修光伏电站需要定期的维护和检修工作,以确保设备的正常运行和安全性能。

我们将建立健全的维护与检修计划,包括设备的保养、清洗和技术检修。

3. 安全防护措施为了确保工程的安全性和稳定性,我们将针对光伏电站的安全风险制定相应的安全防护措施,包括防雷、防汛、防火等。

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解100kW光伏并网发电系统典型案例解析1、项目地点分析本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。

项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。

地处北纬24°29′-30°04′,东经113°34′—118°28′之间。

项目所在地坐标为北纬25°8′,东经114°9′。

根据查询到的经纬度在NASA上查询当地的峰值日照时间如下:(以下数据来源于美国太空总署<NASA〉数据库)从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244。

65 kWh/m2。

2、光伏组件2。

1光伏组件的选择本项目选用晶硅太阳能电池板,单块功率为260Wp。

下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。

2。

2光伏组件安装角度根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示:2.3组件阵列间距及项目安装面积采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板,总功率104kWp。

根据下表公式可以计算出组件的前后排阵列间距为2。

4m,单块组件及其间距所占用面积为2.39㎡.104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。

3、光伏支架本项目为水平地面安装,采用自重式支架安装方式.自重式解决方案适用于平屋顶及地面系统。

利用水泥块压住支架底部的铝制托盘,起到固定系统的作用.4、光伏逆变器选型本光伏发电工程是并网型光伏发电系统,逆变器采用组串式并网型光伏逆变器。

100w模拟光伏并网逆变器装置采样电路设计

100w模拟光伏并网逆变器装置采样电路设计

100w模拟光伏并网逆变器装置采样电路设计
100w模拟光伏并网逆变器装置采样电路的设计考虑到多个因素,
这里介绍一种基于MCU的模拟采样电路方案,以及如何正确配置和使用。

该方案基于MCU,首先,MCU芯片作为核心部件负责实时数据采集
和转换,它将逆变器的输出电压信号转换为数字量,以便储存和处理。

不同的MCU可以使用不同的采样方式,如ADC采样、现场可编程门阵
列(FPGA)采样或其他MCU内部特殊芯片采样。

配合采样芯片,实现
了以前由模拟芯片执行的复杂功能,如高精度的模数转换和回波滤波
器的设计,由于它拥有更好的处理能力,可以更快更经济地完成逆变
器转换过程。

其次,还需要使用电容,电感和滤波器等部件来稳定电压,将复
杂的模拟信号转换为简单的数字量,并减少杂散信号对系统的影响。

由于电力系统中的噪声比较大,所以在采样电路中必须使用专业的滤
波器,如LC滤波器和带通滤波器等,来降低噪声的电平,从而使采样
信号更接近实际运行情况。

最后,正确配置并使用采样电路也很重要,这包括调整采样处理
的频率、采样精度、采样数量等参数。

此外,还需对采样器的性能、
可靠性和精度进行实际检测,以确保采样结果的准确性。

总之,100w模拟光伏并网逆变器装置采样电路的设计要考虑多方
面因素,包括MCU核心部件、电容电感和滤波器等,并需正确配置和
使用采样电路,以确保采样结果的准确性。

光伏并网逆变器设计方案讲解

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。

3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。

百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。

百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。

在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。

该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。

2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。

100kW太阳能并网型设计方案

100kW太阳能并网型设计方案

100kW太阳能光伏并网型发电系统设计方案北京日佳电源有限公司2008-04-02目录第1章太阳能光伏发电系统概述1.1 利用新型能源(太阳能)作为供电电源的意义1.2 天津地理位置及日照、气温等气象数据分析1.3 太阳能光伏发电系统的应用领域1.4 太阳能光伏独立发电系统介绍1.5 太阳能光伏并网发电系统介绍第2章100kW太阳能光伏应急并网型发电系统运行数据分析2.1 太阳能光伏并网型发电系统的年发电量统计2.2 太阳能光伏并网型发电系统的环保效果统计第3章100kW太阳能光伏并网型发电系统实施设计方案3.1 太阳电池方阵施工设计3.2 功率调节器柜及隔离变压器柜施工设计3.3 太阳能光伏发电系统显示展板及计算机通信施工设计3.4 变压器施工设计3.5 系统各单元间电缆施工设计3.6 系统防雷接地等安全措施设计3.7 系统调试、运行及维护等设计第4章太阳能光伏发电系统实际工程图片第5章100kW太阳能光伏应急并网型发电系统设备一览表第1章太阳能光伏发电系统概述1.1 利用新型能源(太阳能)作为供电电源的意义随着我国科技与经济的高速发展,能源的消费量在不断地提高,但是我国矿产资源人均占有量不到世界的一半,而单位产值能耗为世界平均水平的2倍,主要产品的能耗比发达国家高40%,70%靠火力发电。

矿产资源的储量是有限的(即不可再生),据统计按照目前我国的经济发展速度,从2000年开始我国能源的使用年限分别为,石油15年、天然气30年、煤105年、铀50年。

由于能源问题是关系到一个国家生存与发展的一件大事,因此需要迫切寻找新类型的可再生能源,以补充矿产资源不可再生的局限性。

太阳能作为与其它新型可再生能源(风、水力、生物质能等)相比具有分布范围广(世界各地只要能有太阳光照到的地方都可以使用太阳能)、使用安全(不产生爆炸或可燃性气体等危险气体,采光板在静止状态下即可发电)、对周围环境不产生有害影响(不产生有毒气体、不破坏自然环境的平衡)等诸多优点,太阳能可再生能源作为许多世界发达国家首选并大力发展的能源,例如日本的“阳光计划”、德国的“百万屋顶计划”等都是针对太阳能光伏发电讲的。

100KW分布式光伏电站设计方案

100KW分布式光伏电站设计方案

lOOKWp光伏并网发电系统技术方案一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KW|光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG100K3100KVV并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPP■工作电压范围(450V〜820V),每个电池串列按照16块电池组件串联进行设计,100KW勺并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KW的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3 逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

100KW分布式光伏电站设计方案

100KW分布式光伏电站设计方案

100KWp光伏并网发电系统技术方案目录一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KWp光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG1OOK3(100KW)并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V)单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPPT工作电压范围(450V~820V),每个电池串列按照16块电池组件串联进行设计,100KW的并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp。

为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KWp的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

并网光伏电站设计—逆变器

并网光伏电站设计—逆变器

并网光伏电站设计—逆变器
首先,逆变器的功率应与光伏电站的装机容量匹配,通常可以通过串
联多个逆变器实现。

例如,一个100KW的光伏电站可以选择10个10KW的
逆变器。

此外,逆变器还需要考虑电压等级等因素,以确保与并网电网的
匹配。

其次,逆变器的效率也是设计中的关键考量因素之一、逆变器的效率
指的是光伏电流有效转化为交流电能的比例。

高效率的逆变器能够提高电
站的发电效率,减少光伏组件的损耗,并使电站的经济效益更高。

另外,逆变器的可靠性也是设计中需要考虑的重要因素。

逆变器的故
障会导致电站的发电中断,影响发电收益。

因此,在选择逆变器时,应该
考虑其质量、可靠性以及维修保养的便利性。

一些优质的逆变器品牌能够
提供长期的质保和维护服务,减少电站运营风险。

此外,还有一些其他的因素也需要在逆变器设计中考虑。

例如,逆变
器的工作温度应该在允许范围内,过高的温度会降低逆变器的效率和寿命。

逆变器的外观尺寸也需要与电站的空间布局相匹配。

同时,逆变器的通信
接口功能也需要根据需要选择,以便进行监控和调试等操作。

总之,逆变器在并网光伏电站中扮演着至关重要的角色,它将光伏组
件产生的直流电能转换为交流电能,并与电网同步。

在设计电站时,逆变
器的选择应考虑功率、效率、可靠性等因素,并与光伏组件和电站的规模
相匹配。

合理的逆变器选择有助于提高电站的发电效率和经济效益。

100KW分布式光伏电站方案与对策

100KW分布式光伏电站方案与对策

.100KWp光伏并网发电系统技术方案目录一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KWp光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG1OOK3(100KW)并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V)单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPPT工作电压范围(450V~820V),每个电池串列按照16块电池组件串联进行设计,100KW的并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp。

为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KWp的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

100mw光伏并网方案

100mw光伏并网方案

100mw光伏并网方案随着可再生能源的发展与利用,光伏发电成为一种广泛应用的清洁能源。

为了更好地发挥光伏系统的作用,合理布局并增强光伏电站的运行效率,本文将就100MW光伏并网方案进行探讨。

一、光伏电站规划为了确保光伏电站的正常运行,需要进行详细的规划和设计。

首先,要根据实际情况选择合适的用地,并考虑光照条件和地理位置,以最大程度地利用太阳能资源。

然后,进行光伏电站的布置,确保光电板的最佳倾斜角度和朝向,以充分吸收阳光能量。

此外,还需要考虑成本、安全等因素。

二、光伏组件选择在光伏电站的建设过程中,光伏组件的选择是至关重要的。

需要选择高效、稳定、耐候性好的光伏组件,以提高光伏发电效率和延长光伏系统的使用寿命。

同时,根据电站的需求和预算,选择合适的光伏组件品牌和型号,确保光伏发电系统的正常运行和长期稳定性。

三、逆变器系统设计光伏发电系统中的逆变器起到将直流电转换成交流电的作用。

在100MW光伏并网方案中,逆变器系统的设计十分重要。

首先,要根据光伏组件的连接方式选择合适的逆变器,以确保系统的互连性和稳定性。

其次,逆变器的功率和效率也需要考虑,以满足光伏电站的实际输出需求。

最后,需要对逆变器进行合理布置和保护,确保逆变器系统的可靠性和安全性。

四、并网连接方案光伏电站的并网连接是将光伏发电系统与电网相连接,实现电能的互补和共享。

在100MW光伏并网方案中,需要采用合适的并网连接方案。

首先,要选择适当的电压等级和连接方式,以确保光伏电站能够与电网稳定连接。

其次,还需要考虑电网容量和负荷需求,确保光伏电站的发电功率能够有效融入电网,不影响电网的正常运行。

最后,还需遵守当地电网运营商的相关规定和要求,确保电站的并网连接符合法规标准。

五、电站运维管理为了确保光伏电站的长期稳定运行,需要进行规范的运维管理。

首先,要建立完善的监测系统,及时获取光伏电站的发电数据和运行状态,以便进行及时调整和维护。

其次,要制定详细的维护计划,包括逆变器的定期检查、光伏组件的清洁和维修等工作,以保证光伏系统的高效运行。

某100KW并网光伏发电系统设计方案

某100KW并网光伏发电系统设计方案

某IOOKW并网光伏发电系统设计方案1 .系统的主要构成IOOKW并网光伏发电系统的主要由电池组件方阵、电池方阵支架及基础、直流汇流箱及直流防雷配电箱、光伏并网逆变器、交流防雷配电系统(配电柜、配电室)、监控测量和计量系统、整个系统的连接线以及防雷接地装置等构成。

2 .系统的主要配置说明⑴电池组件系统选用功率为180W的电池组件,其峰值输出电压为34.5V z 开路电压为42V,共配置576块。

采用16块电池组件组串联为一个光伏方阵,共配置36个光伏方阵(要求方阵朝向一致),电池组件总功率为103.68kW0(2)光伏并网逆变器系统设计分成2个50kW并网发电单元,总设计功率IOW 选用合肥阳光电源有限公司SG50K3并网逆变器两台。

(3)直流汇流箱及直流防雷配电箱为了减少电池组件与逆变器之间连接线,以及日后的维护方便,在直流侧配直流汇流箱,该汇流箱为6进1出,即将6路光伏阵列汇流成1路直流输出,每个50kW逆变器需要配置汇流箱3台。

光伏阵列经过汇流箱汇流输出后通过电缆接至配电室,经直流防雷配电柜分别输入到SG50k3逆变器中,系统需要配置两台直流防雷配电柜,每个配电柜按照1个50kW直流配电系统进行设计,直流输出分别接至SG5OK3逆变器。

两台逆变器的交流输出再经交流开关配电柜接至电网,实现并网发电功能。

(4)监控测量和计量系统。

此外,该系统配置1套通信监控测量装置,通过RS485或Ethernet(以太网)通信接口可实时监测并网发电系统的工作状态和运行数据,内部保存的数据记录可供给专业技术人员进行系统的分析。

(5)防雷接地装置根据整个系统情况合理设计接地装置及防雷措施3 .系统设计说明Q)电池组件的串并联设计根据并网逆变器的MPPT电压范围,经过计算,逆变器的串并联数量设计如表所示。

逆变器每个电池串按照16块电池组件串联设计而成,如图所示。

(2)光伏并网系统电气设计框图光伏并网系统电气设计框图,如图8-13所示。

100KW并网发电系统方案

100KW并网发电系统方案
-20~+50 -25~+55 0~95%(不结露)
≤5000
D 组件阵列方案
峰值功率 250W
峰值电压 31.1V
开路电压
工作电流
37.4V
7.89
光伏组件参数
短路电流 8.65
每路 20 块,共 20 路,共计 400 块。峰值功率为 100000W。
三、其他部件介绍 1、并网监测单元
为用户提供一个远程监管供用电设备的在线系统,提供实时数据显示与处理、系统功能 分析,系统事故追忆、各种文档备份、用户级别选择、远程特定功能控制实现、新用户电源使 用学习,在线帮助等功能强大、界面友好、人机对话简单的管理软件
额定容量(KW)
50
允许最大电池阵列功率(KW)
56
最大开路电压(VDC) 可接入阵列串联数(推荐)
1000 20 串(推荐 35V 左右/块)
串联范围
15 串~20 串
MPPT范围(VDC) 额定交流输出功率(KW)
440~850 60
电网电压范围(VAC)
330~460
电网频率范围(Hz)
50±4.5 或者 60±4.5
8、建筑物(计算机机房和办公室区域)
建筑物的设计施工规范严格按照国家标准实施,计算机机房的防雷设计施工规范严格执行 国家标准《GB50174-1993》,办公室区域的防雷设计施工规范严格执行国家标准《GB50057-94》.
9、防雷及接地保护
9.1 光伏并网电站所有建筑物(计算机机房和办公室区域)的防雷措施应严格执行国家标准: 建筑物防雷设计规范:《GB50057-94》 计算机房设计规范:《GB50174-1993》
五、直 流 屏
直流屏采用母线并联方式,将所有的汇流箱的汇流输出统一接入直流屏,由直流屏进行集 中监控管理,使用操作维护方便。每台逆变器的直流输入均从直流屏母线上进行直流配电和直 流汇集。

100kW并网光伏电站设计方案

100kW并网光伏电站设计方案

100kW光伏电站设计方案一、系统原理太阳能电池发电系统是利用光生伏打效应原理制成的,它是将太阳辐射能量直接转换成电能的发电系统。

它主要由太阳能电池方阵、逆变器等部分组成。

并网发电原理图二、系统设计100KW的并网型光伏系统采用威海蓝星玻璃公司生产的非晶硅薄膜型电池组件和全球第二大光伏逆变器生产商德国KACO公司研发的Powador4501xi 并网逆变器等知名配件。

采用结合型安装方式。

100KW共计2506块电池组件分成20个子方阵,计划分别安装在屋顶上。

综合考虑客户屋顶类型特点和系统最大出力的要求,电池组件安装在镀锌防锈的钢支架上,倾斜角度初步安排在25度左右。

(一)总体规划:光伏系统分为20个5.04KW子系统,汇流接入交流汇线箱后,并入总配电箱。

系统为三相输出(400V/50Hz)。

预计总占用面积:4000平方米,总重量32吨以上。

(二)安装方式:光伏与建筑的结合有两种方式:建筑与光伏系统相结合;建筑与光伏器件相结合。

本方案综合考虑客户自身建筑要求特点,将采用直接在屋顶上安装光伏组件。

示意图:(三)材料及报价三、主要配件简介:1 、非晶硅薄膜型太阳能电池板,其主要参数如下:非晶硅电池特点 (1)更低的成本组件成本在光伏系统中占有很高的比例,组件价格直接影响系统造价,进而影响到光伏发电的成本。

按目前的组件售价计算,同样的资金,购买非晶硅产品,可以多获得接近20%的组件功率。

(2)更多的电力对于同样功率的太阳电池阵列,非晶硅太阳电池比单晶硅、多晶硅电池发电要多约10%。

已经得到美国的Uni-Solar System LLC 、Energy Photovoltaic Corp.、日本的Kaneka Corp.、荷兰能源研究所等权威机构证实。

产品描述:1.电性能参数是在STC ( AM1.5,1000W/平方米,电池温度为25摄氏度)标准测试条件下测试。

2.在最初几个月的使用中,组件输出电性能高于额定值,输出功率可能高出15%,输出电压可能高出6%,输出电流可能高出9% 。

光伏并网逆变器设计方案讲解

光伏并网逆变器设计方案讲解

光伏并网逆变器设计方案讲解光伏并网逆变器是将光伏发电系统中产生的直流电转换为交流电,并与电网进行并联供电的装置。

光伏并网逆变器设计方案包括逆变器的工作原理、逆变器的拓扑结构、逆变器的控制策略、逆变器的保护措施等内容。

下面将对这些方面进行逐一讲解。

首先,光伏并网逆变器的工作原理是将光伏电池组件吸收到的太阳能转换为直流电,然后通过逆变器将直流电转换为交流电,并将其注入电网中。

其主要作用是确保光伏电池组件输出功率的最大化,并保证与电网的安全连接。

其次,光伏并网逆变器的拓扑结构有多种选择,如单桥、双桥、全桥等。

其中,全桥结构是应用最广泛的一种拓扑结构,其具有输入电压范围广、功率因数调节范围宽、输出电压波形精度高等特点。

光伏并网逆变器还使用了多种控制策略,如MPPT(最大功率点跟踪)、PWM(脉宽调制)和ZVS(零电压开关)。

MPPT控制策略可以通过对光伏电池组件的电流和电压进行监测,找到输出功率的最大点,从而实现最大功率的提取;PWM控制策略可以通过对逆变器的开关器件的控制,获得所需的输出电压和频率;而ZVS则可以降低逆变器的开关损耗,提高逆变器的效率。

最后,光伏并网逆变器还需要采取一些保护措施,以提高光伏系统的可靠性和安全性。

其中,最常见的保护措施有电压保护、过流保护和过温保护。

电压保护可以通过对逆变器输出电压的监测,当电压过高或过低时,自动切断逆变器与电网的连接,以避免损坏设备;过流保护可通过对逆变器输出电流的监测,当电流超过额定值时,及时限制输出功率,以确保设备安全运行;过温保护可通过对逆变器内部温度的监测,当温度过高时,自动降低工作频率或停机。

综上所述,光伏并网逆变器设计方案包括逆变器的工作原理、拓扑结构、控制策略和保护措施等多个方面。

只有在合理选择光伏并网逆变器的拓扑结构、制定适当的控制策略和采取有效的保护措施,才能使光伏发电系统稳定高效地向电网输出电能。

100KW光伏并网方案

100KW光伏并网方案

家庭用户型太阳能光伏发电系统技术方案奔亚科技集团有限公司2017.3.10设计员:曹健一、公司简介奔亚科技集团有限公司成立于2010年10月,主要从事高性能太阳能产品和太阳能屋顶电站的设计、开发、生产和销售。

奔亚科技立足于专业化、规模化、国际化发展之路,引进具有国际先进水平的太阳能电池生产设备,聘请世界各地行业内的资深科学家和工程师实现我们战略性的目标。

一批拥有丰富经验的国际专业人才组成了奔亚管理团队,他们正积极推动公司进入全球平台,着力于在国际太阳能产业的长远发展,使奔亚产品广泛应用于世界范围。

奔亚科技在拥有两条专业高性能电池片生产线;产能超过50兆瓦,公司内部设有组件生产基地,组件产能超过200兆瓦,公司内部的光伏伏电池研究中心致力于开发新一代高效太阳能电池。

通过不懈的努力,目前已经研发出转换效率超过19%的电池片。

二、项目概述本项目的光伏电站系统为分布式并网光伏发电组合的光伏建筑一体化系统,其主要目的是发挥太阳能发电节能环保的特点,利用太阳能发电为该住宅提供部分电力,并提升该地区形象,为节能减排起到表率作用。

三、光伏建筑一体化的概念光伏建筑一体化就是将光伏发电系统和建筑幕墙、屋顶等围护结构系统有机的结合成一个整体结构,不但具有围护结构的功能,同时又产生电能,供建筑使用,光伏建筑一体化具有以下一些优势(1)建筑物能为光伏系统提供足够的面积,不需要另占土地,还能省去光伏系统的支撑结构;太阳电池是固态半导体器件,发电时无转动部件、无噪音,对环境不造成污染;(2)可就地发电、就地使用,减少电力输送过程的费用和能耗、省去输电费用;自发自用,有消峰的作用,带储能可以作为备用电源。

分散发电,避免传输和分电损失(5%-10%),降低输电和分电投资和维修成本;并使建筑物外观更有魅力;(3)因日照强时恰好是用电高峰期,光伏建筑一体化系统除可以保证自身建筑用电外,在一定条件下还能向电网供电,缓舒了高峰电力的需求,解决了电网的峰谷供需矛盾,具有极大的社会效益;(4)杜绝了由一般化石燃料发电带来的严重污染,这对于环保要求更高的今天和未来极为重要。

100kW光伏并网逆变器设计方案.

100kW光伏并网逆变器设计方案.

100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计........................................................................... 错误!未定义书签。

3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。

百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。

百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。

在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。

该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。

2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。

100KW光伏逆变器硬件选型方案介绍

100KW光伏逆变器硬件选型方案介绍

100KW光伏逆变器硬件选型方案介绍建议选择1200V IGBT双管,构成100KW的总功率输出。

单台100KW逆变器设计IGBT:选择FF600R12IE4 (3支)驱动器:2SP0320T2A0-FF600R12IE4 (3支) 与IGBT行程一对一连接母线电容根据贵司的设计需求,推荐EPCOS金膜电容产品:金膜电容B25620-B0158-K882 880V/1500uF, 85度/100,000H, 116*173建议使用4并联进行,无需均压处理按照贵司给定的开关频率5000Hz,输出电流150A、调制比0.85、功率因数0.98,母线电压650Vdc,输出电压380Vac,最高使用环境温度50度进行仿真计算,结果如下:图一IGBT模块内部温度分布图假定选定的散热器Rch=0.044k/w的前提下,当输出电流150A时,IGBT的最大结温为70.6度,IGBT的壳温为62.3度,散热器的温度为60.2度。

图二IGBT结温温度纹波图图二表明,在给定工作条件下,IGBT结温的最大结温,最小结温分别是70.6度和67.9度,温度纹波为2.8度。

图三IGBT损耗结果图三,表示IGBT模块在给定工作条件下,最终的损耗为:230.3W。

其中IGBT的通态损耗为66.1W,开关损耗为86.6W,反并联二极管的通态损耗为14.2W,开关损耗为59.3W,IGBT 内部焊线的损耗为4.22W。

因此,三相逆变器总的损耗P=6*230.3=1381.8W.在输出150A电流时,IGBT的最大结温小于150度,满足使用要求。

说明:实际上许多厂家的并网逆变器采用有并网变压器和无并网变压器并网两种模式,因为无变压器对的输出电压小,对逆变器输出电流的能力较强,因此,仅以无并网变压器为列,逆变器输出电压270V,经过三角转星型变压器转换成380V然后并网。

国家标准考虑的电网波动范围为(-10%~7%),最小持续时间10s,因此并网时候,需要考虑10%的过载情况。

100KW分布式光伏电站设计方案

100KW分布式光伏电站设计方案

100KWp光伏并网发电系统技术方案目录一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KWp光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG1OOK3(100KW)并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V)单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPPT工作电压范围(450V~820V),每个电池串列按照16块电池组件串联进行设计,100KW的并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp。

为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KWp的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。

3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。

百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。

百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。

在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。

该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。

2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。

由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。

在技术指标上,主要考虑:1)主电路工艺结构设计2)散热工艺结构设计3)驱动方式设计2 光伏并网逆变器原理光伏并网发电系统将光伏阵列的直流电能转换为与电网同频同相的交流电能馈送给电网,并保证具有较高的并网功率因数。

光伏系统并网的三相逆变器的开发有多种思路。

设计决策的关键在于实现一个良好的系统并且使其满足客户的需要。

在5kW到1MW容量之间的较大规模光伏系统已日趋普及,随之而来的是光伏系统工业中三相并网逆变器重要性的提升。

2.1 光伏系统组成一个所谓的光伏系统包括一个光伏阵列及许多称作系统平衡(BOS)的部件,这些部件对使太阳能加以利用懂得准备工作是必需的。

一般来说一个光伏装置如图2-1所示。

图2-1 一个光伏系统的基本组成光伏阵列发出夹有变化的电压及电流的直流电,它可以直接向直流负载供电。

如果要向交流负载供电,就需要通过一个逆变器将光伏阵列发出来的直流电转化成规定电压和频率的交流电。

如果光伏阵列不是直接向负载供电的话就需要有一个存储装置。

大多数情况下这个装置是电池但还有其它技术诸如利用水泵存储器、飞轮、超导线圈及氢气等目前处于试验阶段,有的也已经投入运行了。

这种系统是独立于电网的。

增加这种小存储设备供电可靠性的一种方法是将光伏装置与其它类似的发电装置如柴油机发电装置或风能转换器相结合。

这些系统称为混合型系统。

本方案重点介绍并网的光伏系统。

这种系统相对便宜、易于控制,而且它们不需任何存储设备。

2.2 太阳能电池光伏系统内最小的组成部件是太阳能电池。

它是一种半导体装置、十分特殊的一种二极管。

在入射光的照耀下有自由电子产生,他们在电势差的作用下从P—N结处分离出来。

这样就会有电压产生,接有负载时就可产生电流(如图2-2所示)。

图2-2 太阳能结晶电池向电阻负载供电示意图目前,每年生产的太阳能电池中超过80%的是由硅制成的。

但是,也有其它的半导体材料在应用而且许多技术在研究中[1][2]。

薄膜技术可以节省很大开销。

目前它们主要用于消费产品及一些微型的独立应用。

到2010年它们有望成为除硅晶片外有价值的可供选择材料。

但是,它们仍然不可能完全取代硅晶片。

2.3 光伏组件为了使光伏发电在实际应用中易于控制,太阳能电池被安装于光伏系统组件内部。

在组件内部,电池通过串并联连接来达到要求的电压、电流。

特殊的组件是根据物理结构决定的机械和光学特性来选择的。

玻璃/tedlar典型组件是大批量生产的标准型组件。

为易于安装它们通常有一个铝制框架。

但是,也有无框的玻璃/tedlar组件。

玻璃/tedlar组件主要应用于建筑中集成的光伏系统。

I sc和U oc分别是短路电流和开路电压。

MPP代表“最大能量点”,在U/I曲线上指所发出的功率达到它的最大值的点。

在MPP点处通常给出电流、电压比及功率的大小。

光伏系统组件的典型电压/电流曲线如图2-3所示图2-3 光伏系统组件的U/I曲线硅晶片元件的开路电压U MPP随温度的上升以大约0.4%的速度降低。

短路电流随温度的上升增加的极其缓慢,但它与太阳辐照度成比例增长。

2.4 光伏逆变器拓扑实际中的DC/AC转换通常是用脉冲宽度调制(PWM)的逆变器来实现的。

PWM转换器是设计来与电网连接的通常以电流源形式工作的。

当电压和频率由电网决定时,它们向电网注入最大电流,功率因数通常接近1。

如果电网断开,逆变器绝不可以继续工作。

逆变器设计的第一个重要决策是对主电路拓扑进行选择。

太阳能板极电压和并网应用电压都将决定拓扑的选择。

功率、温度和建模方式的综合作用将使直流输入电压变化范围扩大。

首要的拓扑思路是决定是否使用DC/DC变换器来对直流母线电压进行预调节,DC/DC变换器工作在一个较宽的直流输入范围内,但其价格较高且在工作点处的变换效率较低。

如果不使用DC/DC变换器,考虑太阳能电池板的耐压,光伏逆变器需要配置一50Hz的隔离变压器,隔离变压器则提供了网络结点电压应用的灵活性,但它却降低了系统的总效率。

本方案设计三相光伏并网拓扑结构如图2-4所示。

图2-4 三相光伏并网拓扑太阳能电池板输出的正负极接到三相全桥逆变电路的直流母线上,逆变桥输出经电抗器连接到工频隔离变压器一次侧,变压器二次侧通过一个交流接触器接到市电网。

考虑直流母线电压过低时,在同等功率条件下,母线电流增大,长线传输损耗会增大,而直流母线电压过高时,功率开关管的耐压受到限制,且太阳能阵列组允许承受的电压幅值(最大1000v)。

3 光伏并网逆变器硬件设计3.1主电路图1为采用工频变压器隔离的三相光伏并网逆变器的主电路。

文件夹:100kW 技术转让资料\电路图\100kw主电路.DDB\100kW主电路P1.SCH。

料单见电路图文件夹下的“100KW并网主电路料单.doc”。

图3-1工频变压器隔离的主电路太阳电池阵列输出直流电压,经防反二极管连接到逆变桥的直流母线,二极管主要防止夜间电网向太阳电池阵列反灌电能。

逆变桥使用SPWM技术进行DC/AC的输出转换,其交流侧经电抗器L与工频变压器连接,再由工频变压器隔离、升压并入电网。

逆变电路中的功率开关器件选用具有开关损耗低、工作频率高、安全工作区宽等优良特性的绝缘门极双极型晶体管IGBT,其额定电压由直流侧电压决定,并适当考虑安全裕量;变压器起隔离逆变器和电网的作用,逆变器功率器件开关导致电位浮动所产生的漏电流,以及逆变器在控制中产生的微小直流电流均被有效隔离和抑制,不会对电网产生不良影响。

3.2 主电路参数3.2.1 电压矢量分析为分析方便,将图3-1中变压器及其后级(电网侧)等效为电网,忽略主电路内阻,则主电路等效电路如图11所示。

其中,U n为逆变桥输出电压,U L为电感压降,U eb为等效电网电压,i为并网电流。

Un+-U L图3-2 主电路等效电路图3-2中,电压矢量满足等式:eb L n U U U += (1)根据图11中电压与电流参考方向,并网时,系统控制电感上的电流与电网电压同频同相,可得电压矢量如图3-3。

L图3-3 并网时电压矢量电压幅值满足下式:22eb L n U U U += (2)太阳电池板的耐压受一定限制,直流侧电压不能太高,设计直流电压最高不超过800V 。

3.2.2 变压器设计三相桥式PWM 逆变电路U 相和V 相输出端相对于直流电源中点电压的基波分量u UN1和u VN1分别为:[])sin(21Φ+=t a U u r d UN ω (3) ⎥⎦⎤⎢⎣⎡-Φ+=)32sin(21πωt a U u r dVN (4)则输出线电压u UV 的基波分量为:)61sin(23)32sin()sin(21πωπωω+Φ+=⎥⎦⎤⎢⎣⎡-Φ+-Φ+=t a U t a t a U u r d r r dUV (5) 当调制度a 为最大值1时,u UV1的幅值为d U 23。

考虑死区电压损失7%,则逆变桥输出线电压有效值为:d d n U U U 6.0%932321≈= (6) 按额定功率下电抗器压降U L 为U eb 的0.2倍考虑,同时考虑U L 有3倍的调节余量,由式(2)可得:eb eb eb eb L n U U U U U U 17.136.02222=+=+= (7)联立式(6)和式(7),有:d eb U U 513.0= (8)假设太阳电池阵列工作电压范围400V ~800V ,变压器一次侧的电压有效值为:V V U U d eb 205400513.0513.0=⨯==因此,变压器可选择为一次侧200V ,二次侧380V 的Δ/Y 的工频变压器。

3.2.3 电抗器设计系统中并网滤波电抗的作用是连接电网和平滑并网电流,其参数的选择关系到并网电流波形的误差脉动幅度和跟踪电流的有效范围。

若电抗器L 值选择过大,则在同样开关频率下,输出电流纹波会较小;但电流跟踪幅值有效范围减少,太阳电池并网功率会受到限制;反之,若L 值选择过小,虽然电流跟踪有效范围增大,但输出电流纹波会较大,并产生与装置容量不符的较大的电磁噪声和干扰。

故电感值的设计选择应以满足并网功率要求和最小电流脉动幅度为设计约束条件。

当变压器一次侧为150V 时,根据系统额定功率P e (100kW )可定出电抗器的额定电流:)(38415031000003A U P I eb e=⨯==工程上一般设计额定功率下电抗器压降U L 为U eb 的0.2倍考虑,即变压器一次侧150V 时,电抗器压降U L 为30V ,因此电抗器设计为380A/40V 。

相关文档
最新文档