中考备考数学文化与核心素养
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考备考数学文化与核心素养
无理数
公元前500年左右,古希腊数学家毕达哥拉斯和他的学徒创立了毕达哥拉斯学派。在"不可公度量的比"尚未出现之前,毕氏学派认为利用"比"的概念,就可以理解整个宇宙了,认为宇宙的一切事物都可以用自然数或两自然数的比来理解。可是,他们并不把"比"当作"数"来看待,毕氏学派的所谓"数"就是自然数。因此,当被发现时,毕氏学派便陷入了危机。
无理数的发现是古希腊人对数学的巨大贡献,其发现历程有两种传说:
其一,毕达哥拉斯的一个得意门生希帕苏斯在研究一个边长为1的正方形的对角线的长度时,发现正方形的对角线与其一边的长度之比是不可公度量的。
其二,希帕苏斯在利用辗转丈量法时,发现正五边形的对角线与其一边之比是不可公度量的.
希帕苏斯的这一发现与毕氏学派"万物皆为数"(只有理数)的哲理
大相径庭,使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。他把这种不能用两个整数的比来表达的比称为"不可公度量的比"。据传,希帕苏斯因此被同门抛入大海,史称"第一次数学危机"。
笛卡儿与坐标系
勒奈·笛卡儿(Rene Descartes),1596年3月31日生于法国都兰城,是欧洲近代哲学的奠基人之一,同时他也是一位勇于探索的科学家,在物理学、生物学等领域都有值得称道的创见,被誉为"近代科学的始祖"。他对数学最重要的贡献是创立了解析几何。1637年,笛卡儿发表了《几何学》,他从天文和地理的经纬度出发,用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点,从而创立了坐标系,进而创立了解析几何学。
负数刘徽——(约225年-约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。
正负数乘法法则
朱世杰——(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有"中世纪世界最伟大的数学家"之誉。朱世杰在当时天元术的基础上发展出"四元术",也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出"垛积法",即高阶等差数列的求和方法,与"招差术",即高次内插法。
主要著作是《算学启蒙》与《四元玉鉴》。朱世杰在《算学启蒙》中作出了规定:"同名相乘为正,异名相乘为负"、"同名相除所得为正,异名相除所得为负"。因此,最迟于13世纪末,我国对有理数四则运算法则已全面作了总结。
数学符号
弗朗索瓦·韦达——(François Viète,1540~1603),法国杰出数学家。年轻时当过律师,后来致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数理论研究的重大进步。
他讨论了方程根的多种有理变换,发现了方程根与系数的关系(所以人们把叙述一元二次方程根与系数关系的结论称为"韦达定理"),在欧洲被尊称为"代数学之父"。
方程的由来
我国古代数学专著《九章算术》中,第八章的章名就叫"方程"。在我国古代还没有x,y,z这些符号,也没有阿拉伯数字,不能用笔在纸上作运算。我们的祖先是如何列方程解决问题的呢?
他们创造了用算筹(竹子做的条形棒子)来表示数目的方法,《九章算术》称这种方法为"方程"。这也是方程一词最早的来源。以后就把含未知数的等式(不论是含一个或是多个未知数)统称为方程了。
"几何"的由来
在早期对几何图形的认识和研究,是由于生产和生活的需要。几何的起源,在国外可追溯到公元前3000年的古埃及。埃及文化传入希腊后,公元前300年左右希腊数学家欧几里得在泰勒斯、毕达哥拉斯等前人工作基础上,结合自己的发现,把当时已有的数学内容,归纳整理写出了一本包括13卷的巨著——《原本》,是历史上第一个数学公理体系。1607年,我国明代科学家徐光启和意大利传教士利玛窦合作,把该书的前六卷翻译成中文,取名《几何原本》。
我国古代的许多著作如《墨经》、《周髀算经》、《九章算术》中记
载了大量的图形知识和处理几何问题的方法。1952年我国考古学家在陕西省西安市半坡村发现一处距今约六七千年的氏族部落的遗址,表明当时已经会建造圆锥形或长方形的房屋。1953年在安徽灵璧和浙江嘉兴发现的新石器时代的遗址,挖掘出不少碎陶片,上面就有方格、米字、回形等几何图案。在考古中还发现,公元前2世纪时的浮雕中就有伏羲执矩(曲尺)、女娲执规(圆规)的画像,说明我国古代很早就会使用规和矩,并在实际中运用几何知识了。
几何定理的机器证明——出入相补原理
田亩丈量和天文观测是我国古代几何学的主要起源,两者引出了面积问题和勾股测量问题,依据这些方面的经验成果,总结提升为一个简单明白的基本原理——出入相补原理,并将其应用于形形色色的实际问题中,这成为我国古代几何学的特色之一。所谓出入相补原理,就是指:"和平面图形从一处移至他处,面积不变。那如果把图形分割成若干块,那么各部分面积的和等与原来图形的面积,因而图形移置前后诸面积之间的和、差有简单的相等关系。立体的情形也是这样"。我国科学院院士、著名的数学家吴文俊在机器证明方面做出了很大的贡献。
20世纪70年代后期,在计算机技术广泛应用的背景下,他继承和发展了中国古代数学的算法思想,进行几何定理的机器证明研究,
取得了一系列国际领先成果,并应用于国际上当前流行的符号计算软件,这些研究作为国际自动推理界先驱性工作,被称为"吴方法",产生了很大影响。2001年吴文俊荣获首届"国家最高科学技术奖"(2000年度)。
丢番图的墓志铭
古希腊的大数学家丢番图,大约生活于公元246年到公元330年之间,距现在有二千年左右了。他对代数学的发展做出过巨大贡献。
丢番图著有《算术》一书,共十三卷。这些书收集了许多有趣的问题,每道题都有出人意料的巧妙解法,这些解法开动人的脑筋,启迪人的智慧,以致后人把这类题目叫做丢番图问题。
但是,对于丢番图的生平知道得非常少。他唯一的简历是从《希腊诗文集》中找到的。这是由麦特罗尔写的丢番图的"墓志铭"。"墓志铭"是用诗歌形式写成的:"过路的人!这儿埋葬着丢番图。请计算下列数目,便可知他一生经过了多少寒暑。他一生的六分之一是幸福的童年,十二分之一是无忧无虑的少年。再过去七分之一的年程,他建立了幸福的家庭。五年后儿子出生,不料儿子竟先其父四年而终,只活到父亲岁数的一半。晚年丧子老人真可怜,悲痛之中度过了风烛残年。请你算一算,丢番图活到多大,才和死神见面?"请你算一算,丢