第04课 matlab心电信号R波检测

第04课 matlab心电信号R波检测
第04课 matlab心电信号R波检测

《生物医学信号处理》实习报告

图1-1标准的心电波形图

不同导联所记录的心电图,在波形表现上会有所不同,但一个正常的心电波形周期图基本上都是由一个P波,一个QRS披群,一个T波以及过渡期所组成"有时在T波后,还会出现一个小的U波"心电信号的这些特征波形和过渡期均代表着一定的生理学意义,现以MLH导联的正常心电图波形为例,如图(1一l)所示,对心电波形的主要组成及其特点进行简要介绍"。

(1)P波:也叫心房去极波,反映的是左右两心房去极化过程的电位变化"波形一般圆钝光滑,历时0.08一0.11:,波幅不超过0.25mV"两心房复极化过程所产生的电位变化称为T a波,它通常与P一R段!QRS波群或S一T段重叠在一起,且波幅很低,在心电图上不易辨认"。

(2)P一R间期(或称P一Q间期):是P波起点到QRS波群起点之间的时间间隔,反映了自心房除极开始至心室除极开始的一段时间"正常成人的P一R间期为0.12一0.20:"若超过0.205,一般表明有房室传导阻滞的发生"P一R间期的长短与年龄及心率有关。

(3)QRS波群:反映两心室去极化过程的电位变化"典型的QRS 波群包括三个紧密相连的电位波动:第一个向下的波称为Q波;紧接着是向上!高而尖峭的R波;最后是向下的S波"在不同导联中,这三个波不一定都出现,各波的幅度变化也较大"历时约0.06一0.105"。

(4)S一T段:指Q RS波群终点与T波起点之间的线段,一般与零电位基线平齐"在这段时期内,因心室各部分都已全部进入除极化状态,但尚未开始复极,故心室各部分之间没有电位差存在,心电曲线恢复到基线水平"但若有冠状动脉供血不足或心肌梗死等情况发生时,S一T段常会偏离基线,并超过一定的幅度范围"。

(5)T波:反映两心室复极化过程的电位变化"波形圆钝,升降支并不完全对称,波形的前支较长而后支较短,占时约0.05一0.255"T波方向应与QR S波群的主波方向一致"在以R波为主的导联中,其波幅应不低于本导联R波的1/10。

(6)Q一T间期:指从Q R S波群起点到T波终点之间的时间,它代表心室开始去极化到全部复极化完毕所需的时间"这一间期的长短与心率密切相关"心率越快,Q一T间期越短:反之,则Q一T 间期越长"正常的Q一T间期依心率!年龄及性别不同而有所不同.当心率为75次/分时,Q一T间期为0.30一0.405"分析Q一T间期的变化,对疾病的早期诊断和分析抗心律失常药物对心脏的影响,可起到一定的辅助作用"由于Q一T间期受心率的影响比较大,临床上经常采用修正的Q一T间期,即采用Bazett公式计算:

(7)U波:T波后0.02一0.04:可能会出现一个与T波方向一致的低宽U波,其成因和生理意义目前尚不十分清楚"。

本文注重于QRS波的检测,而在查阅一些文献资料以后,发现QRS波的检测主要分为基于小波变换的心电信号OR S波检测与基于EMO与Marr小波变换的心电信号ORS波检测两种。

基于小波变换的心电信号O R S波检测

小波变换可以分为连续小波变换(C WT)、离散栅格小波变换(DWT)和离散序列的小波变换(DSwT)。信号x(t)的小波变换定义

式是:其中是基本小波又

称母小波函数是母小波经过移位和伸缩所

生的一组函数,称之为小波基函数,a是尺度因子,它实现对母小波函数的伸缩变换,b是时移变量,它实现对母小波函数的移位变换,以确定对信号分析的时间中心"在连续小波变换中,a、b、t均是连续变量,而在离散小波变换中,需对它们进行离散化,常取

当时就称之为二进离散小波变换,然而取

时,在实际信号分析中有时显得尺度跳跃跨度太大,当希望尺度a 在a>O的范围内取任意值进行分析时就需要进行连续小波变换"下面将根据心电信号的连续小波变换模极大值线检测和定位R波峰。

心电信号的R波峰是奇异点,而且它具有较大的幅度和较高的斜率等典型特征,根据基于小波变换的信号奇异性检测理论可知,每个R波的位置都对应于小波变换的模极大值的汇聚点,所以本

波变换对相应低阶IMF分量叠加得到的重构信号进行奇异性分析,从而实现对原始心电信号QRS波的准确检测和定位。

EM D分解:

EMD分解的低阶本征模态分量中包含原信号的骤变部分,而高阶本征模态分量中包含缓变部分。在心电信号中,对于高瞬时幅频的QRS波群自然就被分配到低阶高频模态分量中,而且R波的局部特征在第一、二本征模函数分量中得到了明显体现。但EMD算法中包含局部求极值!样条插值!边界效应处理等步骤,其计算量相当可观,使得处理速度非常缓慢,而且目前没有快速算法,因此无法满足实时动态检测的要求"而且每分解出一个本征模函数分量,计算量将增大一倍,所以本文根据心电信号的时频特性和检测的实时性要求,提出只对心电信号作三层经验模式分解处理,然后将分解得到的第一、二、三本征模函数分量直接相加重构得到一个新信号,通过对此新信号进行奇异性分析来实现QRS波的检测和定位,这样不仅可以有效抑制基线漂移,高幅P波!T波以及伪差信号等低频干扰以及边界效应,而且还能将处理速度提高几倍。但是由第一、二、三模函数分量相加所构成的信号中往往还会包含QRS 波带宽以外的频率分量,所以直接对它进行阂值判决的R波检测算法的正确检测率必然不高,而且容易受到高频噪声的干扰,抗干扰能力较差,但是把它作为定位R波的预处理信号是不错的选择"另外EMD分解中筛选过程的中止准则常用方差,但也可根据信号特点手动设定筛选次数"研究发现,筛选次数小,QRS波在本征模函数域对应的分量越不明显;而筛选次数越多,中心频率越大,特别是运算量成倍增长"通过反复实验尝试,本研究通过对心电数据进行8次筛选,以极小的分解损失换取高的计算速度,而且丝毫不影响QRS波的提取效果。

小波基的选取

由前面的讨论可知,在基于离散小波变换的QRS检测中,定位算法及检测效果与小波基函数的选择密切相关,Marr小波(又称Mexicanhat小波)具有良好的连续性、对称性以及指数衰减性,并且还具有一阶消失矩等性质,非常适合对信号进行奇异性检测。Marr小波的母函数是高斯函数的二阶导数与常数的乘积,表达式为:

因为它像墨西哥帽的截面,所以也常称之为墨西哥帽小波。Marr 小波函数属于二次微分小波,在时域和频域都有很好的局部化,并

且满。由于Marr小波函数具有无限光滑性以

及无穷次可微,并且不对单独的噪声点敏感,再加上其独特的时域性质,能使包含信息的特征点特别突出,因此本文选用Ma rr小波基进行R波峰值奇异点检测,应具有良好的定位特性和分析精度"

根据Marr小波基函数,计算得到相应的小波分解低通和高通滤波器的系数l和h,如下图2-1所示:根据人和气就可以利用Mallat 算法递归计算出信号的小波变换。

图2-1

基于Ma rr小波变换的R波峰值奇异点定位

由前面的讨论可知,信号x(t)的所有奇异点在尺度一时间平面的模极大值线上,且其小波变换在

充分接近于零时,其模极大值点就是信号的突变点。由于Marr小波是二次微分小波,而且图形是以原点左右对称的,因此原始信号的奇异点在其小波变换的各层细节信号上仍然保持为极大值,这就使得对原始心电信号R波峰值奇异点的检测可以转化为对特征尺度上细节信号的极大值点的检测"相比之下,Marr小波能克服采用一次微分小波检测信号奇异点时存在的以下缺陷:(l)一次微分小波检测算法需通过检测小波模极大值对的过零点来定位信号奇异点,而过零点易受到噪声干扰,使得定位精度的稳定性难以保证。(2)一次微分小波变换算法中需借助于一对相邻的模极值点位置及两者之间的斜率间接确定R波位置,并且还要根据特征尺度进行时移修正,其计算过程相对比较复杂和繁琐。

而我们以软件为主的方法实现Q R S波的检测滤波之后的信号一般经过一些变换以提高Q R S波的份量,进而采用一系列阈值进行判别,这些阈值有固定阈值法,也有可变阈值法。前者由于可能的干扰或高P、高T波的存在,若其滤波后超过其阈值便会产生假阳性(F P,f a l s e p o s i t i v e)结果;另外,当心律失常或Q R S波幅度变小,阈值设置过高,会导致漏检产生假阴性(F N,f a l s en eg a t i v e)结果。由于固定阈值的这些缺点,有研究者提出了用可变阈值检测,以提高检测的精确率,

t i t l e('N O I S Y E C G纠正及校准前的R波信号');

s u b p l o t(2,1,2),p l o t(1:l e n s i g,s i g,r v a l u e,s i g(r v a l u e),' r.');

t i t l e('N O I S Y E C G纠正及校准后的R波信号');

结论(画出要求的图形):

ECG-R波检测所获得的结果如下图3-1与图4-1所示:

图3-1

图4-1

而NOISYECG-R波检测所获得的结果如下图5-1与图6-1所示:

图5-1

图6-1 总结:

实习报告分数:

指导教师:

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

心电数据处理与去噪

燕山大学 课程设计说明书题目心电数据处理与去噪 学院(系):电气工程学院 年级专业: 11级仪表一班 学号: 110103020036 学生姓名:张钊 指导教师:谢平杜义浩 教师职称:教授讲师

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年7月 5 日

摘要 (2) 第1章设计目的、意义 (3) 1.1 设计目的 (3) 1.2设计内容 (3) 第2章心电信号的频域处理方法及其分析方法 (4) 2.1小波分析分析 (4) 2.2 50hz工频滤波分析 (10) 第3章 GUI界面可视化 (14) 学习心得 (15) 参考文献 (15)

信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电 它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 关键字:信号处理心电信号Matlab

第一章设计目的、意义 1 设计目的 进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 (2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。 (3)培养学生综合分析问题、发现问题和解决问题的能力。 (4)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出心电数据处理的处理与分析程序。 (1) 处理对象:心电数据; (2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据); (3) 结果:得到处理结果。 2.2 设计内容: (1)心电数据仿真; (2)心电数据处理; (3)分析处理结果。 (4)可视化界面设计 2.3 实验原理 2.3.1心电产生原理 我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。正常人体的每一个心动周期中,各部分兴奋过程中

心电信号采集电路实验报告.doc

心电放大电路实验报告 一概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 普通心电图有一下几点用途 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。 6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。 二系统设计 心电信号十分微弱,频率一般在0.5HZ-100HZ之间,能量主要集中在17Hz附近,幅度大约在10uV-5mV之间,所需放大倍数大约为500-1000倍。而50hz工频信号,极化电压,高频电子仪器信号等等干扰要求心电信号在放大的过程中始终要做好噪声滤除的工作。下图为整体化框图。 三具体实现 电路图如下: 1 导联输入: 导联线又称输入电缆线。其作用是将电极板上获得的心电信号送到放大器的输入端。心脏

心电信号检测电路的设计

毕业论文(设计) 题目:心电信号检测电路的设计

目录 摘要 (1) Abstract (1) 1 引言 (2) 2 心电信号的特征、检测电路的要求以及心电图导联 (3) 2.1 人体心电信号的特征 (3) 2.1.1抑制干扰的措施 (3) 2.1.2 降低噪声的措施 (4) 2.2 心电信号检测电路设计要求 (4) 2.3 ECG导联方式 (4) 3 心电信号检测电路的整体制作 (6) 3.1 ECG前置放大器 (6) 3.1.1 AD620AN实际放大倍数以及共模抑制比的测量 (8) 3.1.2 有源低通滤波电路 (9) 3.2陷波电路 (10) 3.3 安全隔离 (13) 3.4 补偿跟随 (15) 4 总结 (15) 致谢 (16) 参考文献 (16)

心电信号检测电路的设计 摘要:心电信号检测电路是各种心电监护仪中的核心组成部分,其性能的好坏直接影响心脏疾病的准确诊断和治疗,因此心电信号检测电路的精确性和可靠性是至关重要的。针对心电信号具有的特殊性、微弱性和易受干扰等特点,本心电信号检测电路由高性能单片集成的仪器放大器AD620组成的前置放大电路、50HZ双T 陷波电路以及以6N136为核心的光电隔离电路构成 ,从而使该电路具有高输入阻抗、高共模抑制比、低噪声、低温漂和高信噪比等特点,很好地满足心电采集设备的要求,电路简单可靠,可行性强。 关键词:心电信号检测;前置放大;陷波;光电隔离 The Manufacture of ECG circuit design Abstract: The Manufacture of ECG circuit is the core component of the ECG monitor, the quality of the system directly impacts on the accuracy of diagnosis and treatments about heart diseases, therefore the accuracy and reliability of ECG detection system is very important.Due to the particularity and weak and easily distracted of ecg signals, we use high-performance single-chip AD620 formed the ECG preamplifier circuit, double T-notch filter circuit and high speed data transmission photoelectric isolation circuit to design the Manufacture of ECG circuit,which make this circuit has high input impedance, high common mode rejection ratio, low noise, low temperature drift and high signal-to-noise ratio characteristics, such as well meet the requirements of ecg acquisition device, with the advantages of simple and feasibility. Key words: ECG detection; preamplifier; filter;Photoelectric isolation

心电信号放大电路

浅谈滤波器在心电信号放大电路中的应用 1 实验目的与意义 心电信号十分微弱,一般在0.05-100Hz之间,幅度小于5mv。在检测心电信号的同时存在着极大的干扰。心电波仪器通过传感系统把心脏跳动信号转化为电压信号波形,一般为微伏到毫伏数量级。这是需经过信号放大才能驱动测量仪表把波形绘制出来。本实验通过应用运算放大器设计心电放大电路,目的是可以实现有效滤除与心电信号无关的高频信号,通过系统,可以得到放大,无干扰的心电信号。 本实验将就心电放大电路中的滤波器部分进行重点研究,采用multisim10.1进行仿真,分析其实现的功能以及所起的作用。心电信号放大电路的其余部分将做简要介绍。

2 心电放大电路工作原理 心电信号放大电路原理流程图 2.1前置放大电路 放大微弱的心电信号。具有高输入阻抗、高共模抑制比、低噪声、低漂移、具有一定的电压放大能力的特点。 2.2高通滤波电路 通过频率大于 0.05Hz 的信号,排除低频信号干扰。 2.3低通滤波电路 通过频率低于100Hz 的信号,排除高频信号干扰。 2.4带阻滤波电路 有效阻断工频为50Hz 的信号干扰。 2.5电压放大电路 对处理过的心电信号进行放大,以便能够观察出微弱的心电信号。 3 技术指标 信号放大倍数:1000倍 输入阻抗:≥10M Ω 共模抑制比:K cmr ≥60dB 频率响应:0.05-100Hz 信噪比:≥40dB 4心电放大电路介绍与分析 4.1前置放大电路 可应用AD620来设计放大电路,设计图如下 输入心电信号 前置放大 高通滤波 电压放大 带阻滤波 低通滤波

根据心电信号特点,前置放大电路具有以下特点: 1)高输入阻抗:被提取的心电信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,应提高放大电路的输入阻抗。 2)高共模抑制比:人体所携带的工频干扰以及所测量的参数以外的生理作用的干扰,一般为共模干扰,前置级须采用共模抑制比高的差动放大电路,以减少共模干扰。 3)低噪声,低漂移:使其对信号源影响小,输出稳定。 此放大电路可实现增益1-1000倍的调节。 4.2滤波电路 正常心电信号的频率范围为0.05-100Hz。噪声信号来源主要有工频干扰、电极接触噪声、人为运动肌电干扰、基线漂移等,其中50Hz的工频干扰最为严重。为了消除这些干扰信号,在心电信号放大器电路中,应加入高通滤波器、低通滤波器和50Hz工频信号陷波器。 4.2.1 高通滤波电路 本实验采用二阶有源滤波器,参数设置以及电路图如下。 f min=错误!未找到引用源。=0.05Hz 令C1=C2=100μF R1=R2≈32kΩ 输入1Vpk,0.05Hz的正弦交流信号

心电信号的预处理及瞬时心率的测量

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2011 年 4 月 28 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

心电信号的预处理及瞬时心率的测量 摘要 心电信号作为心脏活动在人体体表的表现,具有信号微弱,而体表检测心电信号中常带有工频干扰、基线漂移、肌电干扰等各种噪声, 给临床对心血管疾病的诊断带来了障碍,也无法准确测得其心率,进而无法进行心率变异分析。因此本文设计出基于FIR的陷波器滤除工频干扰信号,设计出低通滤波器消除肌电干扰信号,以及设计的高通滤波器来消除基线漂移的干扰,利用这三种滤波器对题目中所给的实测数据进行了预处理。对处理后的数据利用连续小波变化的原理给出了测量瞬时心率的算法,在Matlab软件上进行了仿真,利用试题中所给不正常心电信号对该算法进行了验证,并对该算法优缺点进行分析。第三问中我们在第二问的基础上通过对瞬时心率信号的几个参数进行分析,从而判断是否存在心率变异,给出了一个比较简单可行的算法,并利用了试题中所给心电信号对该算法进行了验证。最后我们辩证的分析题目中所建立模型和算法的优缺点,提出了模型的改进方向,并分析了该模型的实用性与可行性。 关键词:凯赛窗滤波器 FIR 小波变换 HRV信号

信号与系统MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: 姓名:学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数 的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。 实验程序: (1) )()(t t f δ= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (2) )()(t t f ε= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (3) at e t f =)( a=1时: t=-5:0.01:5 %设定时间变量t 的范围及步长 f=exp(t) %调用指数函数exp ()

(完整word版)信号与系统matlab实验

习题三 绘制典型信号及其频谱图 1.更改参数,调试程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形 及其频谱的影响。 程序代码: close all; E=1;a=1; t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';

E=1,a=1,波形图频谱图更改参数E=2,a=1;

更改参数a,对信号波形及其频谱的影响。(保持E=2)上图为a=1图像 a=2时

a=4时 随着a的增大,f(t)曲线变得越来越陡,更快的逼近0,而对于频谱图,随着a增大,图像渐渐向两边张开,峰值减小,陡度减小,图像整体变得更加平缓。 2.矩形脉冲信号 程序代码: close all; E=1;tao=1; t=-4:0.1:4; w=-30:0.1:30;

f=E*(t>-tao/2&tao/2)+0*(t<=-tao/2&t>=tao/2); F=(2*E./w).*sin(w*tao/2); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|') ; figure; plot(w,20*log10(abs(F))); xlabel('\omega');ylabel('|F(\omega)| in dB'); figure; plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega )');

人体心电测试电路设计

中北大学 课程设计说明书 2011/2012 学年第二学期 学生姓名:陈杰学号:1005084122 学院:信息与通信工程学院 专业:生物医学工程 课程设计题目:医学电子电路实践课程设计 人体心电测试电路设计 课程设计地点:201实验室,学院610,学院503室指导教师:侯宏花石海杰 系主任:王浩全 2012 年6 月 20 日

中北大学 课程设计任务书 2011/2012 学年第二学期 学院:信息与通信工程学院_ 专业:生物医学工程_ 学生姓名:李金金学号:1005084109 学生姓名:李艺学号:1005084113 学生姓名:陈杰学号:1005084122 课程设计题目:医学电子电路实践课程设计_ 人体心电测试电路设计_ 起迄日期:2012年6月 4 日~2012年6月15 日_ 课程设计地点:201实验室,学院610,学院503室 指导教师:侯宏花石海杰__ 系主任:王浩全__ 下达任务书日期: 2012 年6 月 4 日

目录 绪论 (1) 一、设计报告 (1) 1.1设计实验目的及意义 (1) 1.2心电信号产生机理 (2) 1.3人体心电信号的特征分析 (3) 1.4人体心电信号的噪声来源 (4) 二、测试报告 (5) 2.1 硬件电路设计 (5) 2.1.1信号输入及低通滤波电路 (5) 2.1.2一级放大电路 (6) 2.1.3 二级放大电路 (6) 2.1.4 稳压电路 (7) 2.1.5 滤波电路 (7) 2.2 软件仿真及结果 (8) 三、课程设计总结 (12) 四、参考文献 (12)

绪论 人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。本文分析了体表心电信号的特征。心电信号的各种生理参数都是复杂生命体(人体)发出的强噪声条件下的弱信号(除体温等直接测量的参数外),心电信号的幅度在10μV~4mV之间,频率范围为0.01~100Hz,淹没在50Hz的工频干扰和人体其他信号之中,检测过程及方法较复杂。去除信号检测过程的干扰和噪声、进行心电信号的分析是心电仪器的重要功能之一,心电信号的放大质量直接影响着分析仪器的性能和对人体心脏疾病的诊断。本文设计了一个心电信号检测放大电路,充分考虑了人体心电信号的特点,采用输入电路---放大电路---稳压电路---滤波电路组成的模式,并且利用软件对相应的电路进行仿真,实验结果表明,电路能够很好地完成人体心电信号的检测放大。心脏是人体血液循环的动力泵,心脏搏动是生命存在的重要标志,心脏搏动节律也是人体生理状态的重要标志之一。心电信号是心脏电活动的一种客观表示方式,是一种典型的生物电信号,具有频率、振幅、相位、时间差等特征要素,比其他生物电信号更易于检测,并具有一定的规律性。由于心电信号从不同方面和层次上反映了心脏的工作状态,因此在心脏疾病的临床诊断和治疗过程中具有非常重要的参考价值。对心电信号的采集和分析一直是生物医学工程领域研究的一个热点,是一项复杂的工程,涉及到降低噪声和抗干扰技术,信号分析和处理技术等不同领域,也依赖于生命科学和临床医学的研究进展。 一、设计报告 1.1设计实验目的及意义 本实验的目的即利用设计的仪器从人体采集心电信号,并进行放大滤波最终呈现在示波器上进行观察。 心肌是由无数个心肌细胞组成,由窦房结发出的兴奋,按一定的途径和时程,依次向心房和心室扩布,引起整个心脏的循环兴奋。心脏各部分兴奋过程中出现的电位变化的方向、途径、次序、和时间均有一定的规律。由于人体为一个容积导体,这种电变化也必须扩布到身体表面。鉴于心脏在同一时间内产生大量的电信号,因此,可以通过安放在身体表面的胸电极或四肢电极,将心脏产生的电位变化以时间为函数记录下来,这种记录曲线称为心电图,如下图所示。心电图反

心电信号采集及系统设计(荟萃内容)

微弱信号检测课题报告 心电信号采集 —噪声分析及抑制 指导老师:宋俊磊 院系:机电学院测控系 班级: 学号: 姓名:

【目录】 【摘要】 (3) 第一章 (4) 1.1人体生物信息的基本特点[1} (4) 1.2 体表心电图及心电信号的特征分析[4] (5) 1.3心电信号的噪声来源[7] (6) 1.4 心电电极和导联体系分析 (7) 1.4.1系统电极选择[8] (7) 第二章硬件电路设计 (8) 2.1 心电信号采集电路的设计要求 (8) 2.2 心电采集电路总体框架 (9) 2.3采集电路模块 (11) 2.4 AD620引入的误差 (11) 2.4.1 电子元件内部噪声 (11) 2.4.2集成运放的噪声模型: (13) 2.4.3 AD620的噪声计算 (14) 2.4.4 前置放大电路改进措施 (15) 2.5 滤波电路设计 (18) 2.6电平抬升电路[14] (21) 2.7心电信号的50Hz带阻滤波器(50Hz陷波)设计[15] (21) 结论 (23) 附录:参考文献 (24)

【摘要】 心脏是人体循环系统的核心,心脏的活动是由生物电信号引发的机械收缩。在人体这个三维空间导体当中,这种生物电信号可以波及人体各个部分,在人体体表产生规律性的电位变化。在人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。 针对心电信号的特点进行心电信号的采集、数据转换模块的设计与开发。设计一种用于心电信号采集的电路,然后进行A/D转换,使得心电信号的频率达到采样要求。人体的心电信号是一种低频率的微弱信号,由于心电信号直接取自人体,所以在心电采集的过程中不可避免会混入各种干扰信号。为获得含有较小噪声的心电信号,需要对采集到的心电信号做降噪处理。运用一个心电信号检测放大电路,充分考虑了人体心电信号的特点,采用前置差动放大+带通滤波器+50Hz陷波器(带阻滤波器)组成的模式,对心电信号进行测量。 关键词:心电信号采集,降噪,A/D转换放大,噪声分析

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

心电信号采集模块的设计200501

医学仪器与设备课程设计题目:心电信号采集模块的设计 院系:电气工程学院 专业:生物医学工程 姓名: 学号: 指导老师:戴启军 时间:2008年12月29日——2009年1月6日

心电信号采集电路的设计 一、系统概述 心电信号采集模块组成:心电电极;导联线;缓冲放大器;威尔逊电阻网络;差动放大;低通滤波器;高通滤波器;50Hz陷波器;光电隔离器;增益可调电路;调零电路 (1)心电电极 生物电引导电极实际完成人体和测量系统之间的界面作用。为了把生物电信号引入信号处理模块中,引导电极必须具备电流的传导能力。在人体内,电流靠离子导电,而在测试系统内是电子导电。通过引导电极,把离子电流变为电子电流,所以电极实际上起了一个换能器的作用。提取心电信号,采用的是皮肤表面电极(体表电极)。 (2)导联线 此设计中心电采集模块由4个电极组成导联线,包括三个肢体电极和一个右腿接地(右腿驱动)电极。电极获取的心电信号仅为毫伏级,所以导联线均用屏蔽线。 导联线的芯线和屏蔽线之间有分布电容存在(约100pF/m),为了减少电磁感应引起的干扰,屏蔽线可直接接地,但这样会降低输入阻抗。也可以采用屏蔽驱动,这样可减少共模误差和不降低输入阻抗。 (3)缓冲放大器 缓冲放大器保证心电放大器的高输入阻抗要求,起到阻抗变换作用。生物信号源本身是高内阻的微弱信号源,通过电极提取又呈现出不稳定的高内阻源性质。不稳定性将使放大器电压增益不稳定。放大器的输入阻抗应至少大于1MΩ。 (4)威尔逊电阻网络 威尔逊电阻网络是按照标准十二导联心电图定义组成的电阻网络。 (5)差动放大 差动放大是心电前置放大的主要部分,和缓冲放大器一起组成心电图前置放大。差动放大的作用是将幅度仅为毫伏级的微弱心电信号进行放大。同时必须有高抗干扰能力,即具有高共模抑制比。 (6)低通滤波器 心电信号的高频响应界限为100Hz,由100Hz低通滤波器完成。 (7)高通滤波器 心电信号的低频响应界限为0.05Hz,由0.05Hz高通滤波器完成。 (8)50Hz陷波器 50Hz陷波器用于加强滤除50Hz干扰。有的心电图机还设有40Hz低通滤波器用于滤除肌电干扰。

心电信号

昆明理工大学信息工程与自动化学院学生实验报告 ( 2016 —2017 学年第二学期) 课程名称:生物医学信号处理开课实验室:信自445 设备编号: 实验日期:2017.6.13 一、实验目的 1、对心电信号的记录、处理,心电信号的特点、心电信号的噪声抑制,工频干扰的抑制与基线纠漂有总体了解。 2、能利用MATLAB GUI设计简单GUI程序。 二、实验原理 1、心电信号属生物医学信号,具有如下特点: 信号具有近场检测的特点,离开人体表微小的距离,就基本上检测不到信号;心电信号通常比较微弱,至多为mV量级;属低频信号,且能量主要在几百赫兹以下;干扰特别强。干扰既来自生物体内,如肌电干扰、呼吸干扰等;也来自生物体外,如工频干扰、信号拾取时因不良接地等引入的其他外来串扰等;干扰信号与心电信号本身频带重叠(如工频干扰等)。 2、工频干扰抑制:现在使用较多的方法是使用滤波器对工频干扰进行抑制。 3、基线漂移:基线漂移是因为呼吸,肢体活动或运动心电图测试所引起的,故这样使得ECG信号的基准线呈现上下漂移的情况。 三、实验内容及步骤 1、查询心电信号处理相关资料。了解心电信号的记录、处理,心电信号的特点、心电信号的噪声抑制,工频干扰的抑制与基线纠漂。 (1)心电信号相关资料

人体心电信号是非常微弱的生理低频电信号,通常最大的幅值不超过5mV,信号频率在0.05~100Hz之间。心电信号是通过安装在人体皮肤表面的电极来拾取的。由于电极和皮肤组织之间会发生极化现象,会对心电信号产生严重的干扰。加之人体是一个复杂的生命系统,存在各种各样的其他生理电信号对心电信号产生干扰。同时由于我们处在一个电磁包围的环境中,人体就像一根会移动的天线,从而会对心电信号产生50Hz左右的干扰信号。心电信号具有微弱、低频、高阻抗等特性,极容易受到干扰,所以分析干扰的来源,针对不同干扰采取相应的滤除措施,是数据采集重点考虑的一个问题。 (2)心电信号具有以下几个特点: 信号极其微弱,一般只有0.05~4mV,典型值为1mV;频率范围较低,频率范围为0.1~35Hz,主要集中在5~20Hz;存在不稳定性。人体内部各器官问的相互影响以及各人的心脏位置、呼吸、年龄、是否经常锻炼等因素,都会使心电信号发生相应变化;干扰噪声很强。对心电信号进行测量时,必然要与外界联系,但由于其自身的信号非常微弱,因此,各种干扰噪声非常容易影响测量。其噪声可能来自工频(50Hz)干扰、电极接触噪点、运动伪迹、肌电噪声、呼吸引起的基线漂移和心电幅度变化以及其他电子设备的机器噪声等诸多方面。 2、编译、理解所提供的程序 程序 clear; %清空工作区 close all; %关闭所有窗口 clc; %清空命令区域 load 100_ECG_0_20 %读取心电信号 %%%Eliminate Baseline Drift %消除基线漂移 s1=ECG_2; s2=smooth(s1,150); ecgsmooth=s1-s2; %%%apply Wavelet Transform %进行小波变换 [C,L]=wavedec(ecgsmooth,8,'db4'); [d1,d2,d3,d4,d5,d6,d7,d8]=detcoef(C,L,[1,2,3,4,5,6,7,8]); %%%Denoise %去噪处理 [thr,sorh,keepapp]=ddencmp('den','wv',ecgsmooth); cleanecg=wdencmp('gbl',C,L,'db4',8,thr,sorh,keepapp); %%%thresholding1 %阈值选择 max_value=max(cleanecg);

心电信号去噪中的小波方法

【摘要】心电信号的降噪处理是获得清晰、有效心电图信息的必要步骤,随着医学的进步,对心电信号的信噪比和分辨率提出了越来越高的要求。小波分析作为一个新兴的数学方法在心电信号去噪中有着巨大的潜力。总结心电信号去噪中的各种小波方法,详细分析它们在心电信号去噪中的特点及应用范围,最后简要叙述了心电信号小波去噪的一些问题和发展趋势。 【关键词】阈值去噪;极大模值;小波变换;心电信号去噪 1 引言 心电信号处理是国内外近年来迅速发展的一个研究热点,是现代生命科学研究的重要组成部分,其目的是为了从获得的信号中提取有用信息。心电信号通过记录体表电位差获得,它反映了心脏的活动状况,对于心脏疾病的诊断提供了主要的依据,但是心电信号的波形复杂(主要由P、Q、R、S、T波组成),而且易受各种噪声影响,因此如何从受噪声污染的心电信号中提取清晰、有效的临床信息成为人们关注的焦点。在去噪过程中,由于心电信号具有非平稳特性且污染噪声分布范围大,限制了传统线性滤波器的使用,所以在过去的几年中小波分析被广泛地应用于心电信号的去噪中。许多学者根据心电信号噪声的特点不断提出新的小波去噪方法,使得它在心电信号的去噪应用中不断得到完善,为心电图的清晰识别奠定了基础。本研究总结小波分析在心电信号去噪中的各种方法,分析其特点及应用范围,最后阐述了心电信号小波去噪的一些问题和发展趋势。 2 心电信号噪声的来源及特点 心电信号在经过采集、数模转换过程中,不可避免的受到各种类型的噪声干扰,这些干扰使得得到的心电信号的信噪比较低,甚至淹没了心电信号。通常心电信号中主要包括以下3种噪声: ①工频干扰 主要包括50HZ 电源线干扰及高次谐波干扰。由于人体分布电容的存在使入体具有天线效应以及较长的导联线暴露在外,50HZ的工频干扰在心电信号中是常见的,依情况不同,其干扰幅度达心电信号峰一峰值的0~50%。 ②肌电干扰 由于病人的紧张或寒冷刺激,以及因某些疾病如甲状腺机能亢进等,都会产生高频肌电噪声,其产生是众多肌纤维分时随机收缩时引起的,频率范围很广(DC-1000V), 谱特性接近白噪声,其频率一般在5HZ~2KHZ之间。 ③基线漂移

心电信号的采集与处理Word版

中北大学信息商务学院课程设计说明书 学生姓名:苏慧敏学号:1305034211 学生姓名:王晓腾学号:1305034217 学生姓名:李康学号:1305034243 学院:中北大学信息商务学院 专业:电子信息工程 题目:心电信号的采集与处理 指导教师:王浩全职称: 教授 2016 年 6 月 9 日

中北大学信息商务学院课程设计任务书 2015-2016 学年第二学期 学院:中北大学信息商务学院 专业:电子信息工程 学生姓名:苏慧敏学号:1305034211 学生姓名:王晓腾学号:1305034217 学生姓名:李康学号:1305034243 课程设计题目:心电信号的采集与处理 起迄日期:2016年6 月13日~2016年7月1 日 课程设计地点:系专业实验室 指导教师:王浩全 系主任:王浩全 下达任务书日期: 2016年6月 9日

课程设计任务书

课程设计任务书

设计说明书应包括以下主要内容: (1)封面:课程设计题目、班级、姓名、指导教师、时间 (2)设计任务书 (3)目录 (4)设计方案简介 (5)设计条件及主要参数表 (6)设计主要参数计算 (7)设计结果 (8)设计评述,设计者对本设计的评述及通过设计的收获体会(9)参考文献

目录 一、基于PCI总线A/D卡的报告 (1) (一)基于PCI总线的基本结构 (1) 1.PCI总线 (1) 2.PCI总线的基本含义 (1) (二)基于PCI的A/D卡的通用结构 (2) (三)基于PCI总线发展趋势 (2) (四)PCI总线的特点: (3) 二、设计方案简介 (3) 三、设计条件及主要参数表 (4) 四、设计结果 (6) 五、设计评述 (7) 六、参考文献 (7)

信号与系统MATLAB实验总汇

实验一、MATLAB 编程基础及典型实例 一、实验目的 (1)熟悉MATLAB 软件平台的使用; (2)熟悉MATLAB 编程方法及常用语句; (3)掌握MATLAB 的可视化绘图技术; (4)结合《信号与系统》的特点,编程实现常用信号及其运算。 示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。编制一个函数型m 文件,实现这个功能。function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2) a=min(min(n1),min(n2)); b=max(max(n1),max(n2)); n=a:b; f1_new=zeros(1,length(n)); f2_new=zeros(1,length(n)); tem1=find((n>=min(n1))&(n<=max(n1))==1); f1_new(tem1)=f1; tem2=find((n>=min(n2))&(n<=max(n2))==1); f2_new(tem2)=f2; 四、实验内容与步骤 (2)绘制信号x(t)=)3 2sin(2t e t ?的曲线,t 的范围在0~30s ,取样时间间隔为0.1s 。t=0:0.1:30; y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);

(3)在n=[-10:10]范围产生离散序列:?? ?≤≤?=Other n n n x ,033,2)(,并绘图。n=-10:1:10; z1=((n+3)>=0); z2=((n-3)>=0); x=2*n.*(z1-z2); stem(n,x);(4)编程实现如下图所示的波形。 t=-2:0.001:3; f1=((t>=-1)&(t<=1)); f2=((t>=-1)&(t<=2)); f=f1+f2; plot(t,f); axis([-2,3,0,3]);

基于某matlab的心电信号预处理

基于matlab的心电信号预处理 一、心电信号 (1)心电信号的特性 人体心电信号是非常微弱的生理低频电信号,通常最大的幅值不超过5mV,信号频率在0.05~100Hz之间。心电信号是通过安装在人体皮肤表面的电极来拾取的。由于电极和皮肤组织之间会发生极化现象,会对心电信号产生严重的干扰。加之人体是一个复杂的生命系统,存在各种各样的其他生理电信号对心电信号产生干扰。同时由于我们处在一个电磁包围的环境中,人体就像一根会移动的天线,从而会对心电信号产生50Hz左右的干扰信号。心电信号具有微弱、低频、高阻抗等特性,极容易受到干扰,所以分析干扰的来源,针对不同干扰采取相应的滤除措施,是数据采集重点考虑的一个问题。常见干扰有如下几种: ①工频干扰②基线漂移③肌电干扰 心电信号具有以下几个特点: ·信号极其微弱,一般只有0.05~4mV,典型值为1mV; ·频率围较低,频率围为0.1~35Hz,主要集中在5~20Hz; ·存在不稳定性。人体部各器官问的相互影响以及各人的心脏位置、呼吸、年龄、是否经常锻炼等因素,都会使心电信号发生相应变化; ·干扰噪声很强。对心电信号进行测量时,必然要与外界联系,但由于其自身的信号非常微弱,因此,各种干扰噪声非常容易影响测量。 其噪声可能来自工频(50Hz)干扰、电极接触噪点、运动伪迹、肌电噪声、呼吸引起的基线漂移和心电幅度变化以及其他电子设备的机器噪声等诸多方面。 (2)心电信号的选择 本次实验所采用的心电信号来自MIT-BIH库,库中有48组失常的心电信号,要在其中找出符合实验要求的心电信号(即含有肌电干扰、工频干扰和基线漂移)。 (3)正常心电信号波形 图1是正常心电信号在一个周期的波形,由P波、QRS波群和T波组成。 P波是由心房的去极化产生的,其波形比较小,形状有些圆,幅度约为0.25mV,持续时间为0.08~0.11s。窦房结去极化发生在心房肌细胞去极化之前,因而在时间上要先于P波,只是窦房结处于心脏部,其电活动在体表难以采集。 P-R间期是指P波起点和QRS波群起点所跨越的时间,是窦房结产生的兴奋,经过右心房、左心房、房室交接区、房室束、左右束支之后,传到到心室所需要的时间。在正常的体表心

基于LabVIEW的心电信号采集系统的设计

?基础研究?基于LabVIEW的心电信号采集系统的设计 于 杰,李川勇,贾林壮 摘 要:目的 设计一套基于LabVIEW的心电信号采集系统。方法 在插入式信号采集板DAQ的硬件支持下,利用LabVIEW编程软件,设计了一套双通道心电信号采集系统,本系统用传统的心电图机采集心电信号,经过调解后,输 入计算机采集并显示,同时,为了能够对心电信号作进一步的研究,利用小波变换对心电信号进行了处理。结果 成 功采集到心电信号,并计算了心率的大小。 关键词:LabVIEW;心电信号;采集系统 中图分类号:R540.41;TP311.52 文献标识码:A文章编号:1009-7090(2001)03-0131-0003 The Design of ECG Aquiring System on LabVIEW Y U Jie,LI Chuan-y ong,J I A Ling-zhuang Department o f Bio2 physics,Nankai Univer sity Abstract:Objective T o design the ECG acquiring system on LabVIEW.Methods With a DAQ board,we design an ECG acquisi2 tion system based on LabVIEW.The electrocardiographic signal is conditioned by a traditional ECG machine and acquired by a DAQ board on a com puter.A wavelet trans formation was used to process the acquired signal.R esults The ECG signals were acquired success fully and the heartbeat rate was calculated. K ey w ords:LabVIEW;ECG;collecting system 1 前言 生物电是生命的特征,心电是生物电的一种。利用心电图等有关心电活动的曲线和图形资料为临床提供诊断信息,是心血管病不可缺少的检查诊断方法。 传统的心电图诊断方法是由三大功能模块组成:心电信号的记录、分析和表述结果,这三者都是由手工完成的,完全依靠医生的临床经验,在结果分析方面存在个体差异,并且在心电图结果的保存方面也有不便。随着计算机技术的发展,计算机在心电图中的应用为人们从事心电学研究和进行临床诊断提供了现代化的手段,如果把传统心电图机的信号分析和处理、结果表达与输出等的功能由计算机完成,可以使传统心电图机在数据处理、表达、传送、存储等方面获得突破。 虚拟仪器是一种新兴的构造仪器的技术,它利用计算机强大的计算能力和丰富的软硬件资源来组 作者单位:南开大学生物物理系,天津 300071 收稿日期:2000-10-11;修回日期:2001-01-12织仪器系统,实现从传统仪器向计算机系统的过渡。LabVIEW是基于虚拟仪器技术的应用开发软件,这种软件开发平台具有编程简单、结果直观的特点,这为开发出符合要求且界面友好的心电信号采集分析系统提供了方便。 我们使用了美国National Instruments公司的相关产品,利用LabVIEW511图形化软件开发平台的超强能力和DAQ数据采集板,采用虚拟仪器的方法,建立了一种新的心电信号采集、显示和分析方法,使传统的心电图机成为一个智能化的心电信号采集和分析系统。 2 系统的构成 心电信号采集和分析系统由软件和硬件两部分组成,硬件部分的任务是由传统的心电图机将心电信号转换为电信号,并进行信号调理,再由数据采集板DAQ通过其A/D转换等的功能,将信号以数字形式采集到计算机;软件部分通过编程将由硬件部分采集到的信号进行显示、分析和处理。系统的结构框图如图1所示。 131 生物医学工程与临床2001年9月第5卷第3期

相关文档
最新文档