高二数学作业(理科排列组合)

合集下载

人教B版高二数学理科1.2.2组合习题

人教B版高二数学理科1.2.2组合习题

1.2.2组合问题1 有红球、黄球、白球各一个,从这三个小球中任意取出两个小球,共有多少种不同的取法?问题2 在北京、上海、广州三个民航站之间的直达航线,有多少种不同的飞机票价?1、组合的概念:一般地,从n 个不同元素中,任取()m m n £个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(没有顺序的要求)2、组合数的概念:从n 个不同元素中,任取()m m n £个元素的所有组合的个数,叫做从n 个不同元素中,任取出m 个元素的的组合数,用符号mn C 表示.从4个不同的元素a,b,c,d 中取出三个元素的排列与组合的关系:3、组合数公式:m m m n n m A C A = (1)(2)(3)(1)!m n n n n n n m C m ---鬃?+=!!()!m n n C m n m =- 01n C = 4、组合数的性质: m n m n n C C -= 11m m m n n nC C C -+=+ 例1 已知a,b,c,d 四个元素,写出每次取出两个元素的所有组合:例2 计算:(1)710C ; (2)26C ; (3)38C ; (4)2637C C -; (5)253823C C -;(6)98100C变式题:(1)xx x C C C 76510711=-,则x=___________ (2)求n n n n C C 321383+-+=___________(3)若211113-+-+++++=n n n n n n n n C C C C ,则n=_________例3 以一个正方体的顶点为顶点的四面体共有_______个例4 甲、乙、丙、丁、戊5名学生进行劳动技术比赛,决出第一名到第五名的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”;对乙说:“你当然不会是最差的”。

从这个回答分析,5人的名次排列可能有多少种不同情况?例5 计算:(1)4838C C +; (2)10010005510C C C -⋅例6 一个小组有10名同学,其中4名女生,6名男生,现从中选出3名代表,其中至少有1名女生的选法有多少种?变式题:假设在200件产品中,有3件次品,现在从中任意抽出5件,其中至少有2件次品的抽法种数有______种例7 某校乒乓球队有男运动员10名,女运动员9名,选出男女运动员各3名参加三场混合双打比赛(每名运动员只限参加一场比赛),共有______种不同参赛方法。

数学-高二-河北省武邑中学高二(理)上学期数学寒假作业8排列组合,二项定理

数学-高二-河北省武邑中学高二(理)上学期数学寒假作业8排列组合,二项定理

1.若(1-2x)2 010=a 0+a 1x +…+a 2 010x 2 010(x ∈R),则a 12+a 222+…+a 2 01022 010的值为( )A .2B .0C .-1D .-22.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A.929B.1029C.1929D. 20293.袋中有40个小球,其中红色球16个,蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( ) A.C 14C 28C 312C 416C 1040B.C 24C 18C 312C 416C 1040C.C 24C 38C 112C 416C 1040D.C 14C 38C 112C 216C 10404.集合A ={(x ,y)|y≥|x-1|,x∈N *},集合B ={(x ,y)|y≤-x +5,x∈N *}.先后掷两颗骰子,设掷第一颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则(a ,b)∈A∩B 的概率等于( )A.14B.29C.736D.5365.一射手射击时其命中率为0.4,则该射手命中的平均次数为2次时,他需射击的次数为________.6.(2010·江西)将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).7. 若随机变量X 的分布列为:P (X=m )=1/3,P(X=n)=a,若EX=2,则DX 的最小值? 8.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列.若E(ξ)=3,则D(ξ)的值是________.9.某车间准备从10名工人中选配4人到某生产线工作,为了安全生产,工厂规定:一条生产线上熟练工人数不得少于3人.已知这10名工人中有熟练工8名,学徒工2名.(1)求工人的配置合理的概率;(2)为了督促其安全生产,工厂安全生产部门每月对工人的配备情况进行两次抽检,求两次检验得到的结果不一致的概率.10. 某食品企业一个月内被消费者投诉的次数用X表示.据统计,随机变量X的概率分布如列下:Array(1)求a的值和X的数学期望;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.1.C 2.D 3.A4. 解析:由于y ≥|x -1|⇔⎩⎪⎨⎪⎧x -y -1≤0x +y -1≥0,根据二元一次不等式表示平面的区域,可知A ∩B 对应如右图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0)(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2),共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3)(1,4),(2,1),(2,2),(2,3),(3,2).所以题后自我反思: 家长评语:家长签字:满足(a ,b )∈A ∩B 的概率为836=29. 答案:B 5.5解析 设射手射击n 次的命中次数为ξ,则ξ~B(n ,p),由题意知E(ξ)=0.4n =2,解之,得n =5. 6.1 080解析 先将6位志愿者分组,共有C 26·C 24A 22种方法;再把各组分到不同场馆,共有A 44种方法.由乘法原理知,不同的分配方案共有C 26·C 24A 22·A 44=1 080(种).7. ∵P (X=m )=1/3,P(X=n)=a,∴根据分布列的性质得,P(X=n)=a =2/3,∵EX=2,∴1/3×m +2/3×n =2,∴m +2n=6,再根据方差的计算公式得,DX=﹙m -2﹚×﹙1/3﹚+﹙n -2﹚×﹙2/3﹚=1/3﹙m +2n -12﹚,把m +2n=6代入化简得,DX=2﹙n -2﹚,∴DX 的最小值是0.8.解析 根据已知条件:⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得:a =16,b =13,c =12,∴D(ξ)=16×⎝⎛⎭⎪⎫-1-132+13×⎝ ⎛⎭⎪⎫0-132+12×⎝ ⎛⎭⎪⎫1-132=59.答案 599.解:(1)一条生产线上熟练工人数不得少于3人有C 48+C 38C 12种选法.工人的配置合理的概率C 48+C 38C 12C 410=1315. (2)两次检验是相互独立的,可视为独立重复试验,因两次检验得出工人的配置合理的概率均为1315,故“两次检验得出的结果不一致”即两次检验中恰有一次是合格的概率为C121315(1-1315)=52225.10.解:(1)由概率分布的性质有0.1+0.3+2a+a=1,解得a=0.2.∴X的概率分布列为∴E(X)=0×0.1+1×0.3+2×0.4+3×0.2=1.7.(2)设事件A表示“两个月内共被投诉2次”;事件A1表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件A2表示“两个月内每个月均被投诉1次”.则由事件的独立性得P(A1)=C12P(X=2)P(X=0)=2×0.4×0.1=0.08,P(A2)=2=0.32=0.09,∴P(A)=P(A1)+P(A2)=0.08+0.09=0.17.故该企业在这两个月内共被消费者投诉2次的概率为0.17.。

高二数学排列组合专题训练(一)

高二数学排列组合专题训练(一)

高二数学“排列组合”专题训练(一)班级 姓名 学号一.选择填空题1.从编号分别为1,2,3,4,5,6,7,8,9,10,11的11个球中,取出5个小球,使这5个小球的编号之和为奇数,其方法总数为 ( C )(A )200 (B )230 (C )236 (D )2062. 从{1、2、3、4、…、20}中任选3个不同的数,使这三个数成等差数列,这样的等差数列最多有( B )(A )90个 (B )180个 (C )200个 (D )120个3兰州某车队有装有A ,B ,C ,D ,E ,F 六种货物的卡车各一辆,把这些货物运到西安,要求装A 种货物,B 种货物与E 种货物的车,到达西安的顺序必须是A ,B ,E (可以不相邻,且先发的车先到),则这六辆车发车的顺序有几种不同的方案 ( B )(A )80 (B )120 (C )240 (D )3604. 用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数的个数是( C )(A )48 (B )36 (C )28 (D )125. 某药品研究所研制了5种消炎药,,,,,54321a a a a a 4种退烧药,,,,4321b b b b 现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知,,21a a 两种药必须同时使用,且43,b a 两种药不能同时使用,则不同的实验方案有 ( D )(A )27种 (B )26种 (C )16种 (D )14种6. 某池塘有A ,B ,C 三只小船,A 船可乘3人,B 船可乘2 人,C 船可乘1 人,今天3个成人和2 个儿童分乘这些船只,为安全起见,儿童必须由成人陪同方能乘船,他们分乘这些船只的方法共有( D )(A )120种 (B )81种 (C )72种 (D )27种7. 将5枚相同的纪念邮票和8张相同的明信片作为礼品送给甲、乙两名学生,全部分完且每人至少有一件礼品,不同的分法是 ( A )(A )52 (B )40 (C )38 (D )118. 用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有( D )A.360个B.180个C.120个D.24个解:因为3+4+5+6=18能被9整除,所以共有44A =24个.9. 4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( A )(A )2880 (B )3080 (C )3200 (D )360010. 在5付不同手套中任取4只,4只手套中至少有2只手套原来是同一付的可能取法有( C )(A) 190 (B) 140 (C )130 (D )3011.将某城市分为四个区(如图),需要绘制一幅城市分区地图,现有5种不同颜色,图中①②③④,每区只涂一色,且相邻两区必涂不同的颜色(不相邻两区所涂颜色不限),则不同的涂色方式有( A )A.240种B.180种C.120种D.60种12.圆周上有16个点,过任何两点连结一弦,这些弦在圆内的交点个数最多有( C )A.A 164B.A 162A 142C.C 164D.C 162C 14213.20个不同的小球平均分装到10个格子中,现从中拿出5个球,要求没有两个球取自同一格子中,则不同的取法一共有 ( B )A.C 510B.C 520 C.C 510C 12 D.A 210A 12 14.从6双不同的手套中任取4只,其中恰好有两只是一双的取法有 ( B )A.120种B.240种C.255种D.300种15.某人练习射击,射击8枪命中4枪,这4枪中恰好有3枪连在一起的不同种数为 ( D )A.72B.48C.24D.2016.某博物馆要在20天内接待8所学校的学生前去参观,其中一所学校因人数较多要连续参观3天,其余学校只需要1天,在这20天内不同的安排方法为 ( C )A.C 320A 717B.A 820C.C 118A 717D.A 1818种二. 填空题17.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有__33_种不同的选法;要买上衣、裤子各一件,共有_270_种不同的选法.18.将1,2,3,4,5,6,7,8,9这九个数排成三横三纵的方阵,要求每一竖列的三个数从前到后都是由从小到大排列,则不同的排法种数是_1680 _19.过正方体的每三个顶点都可确定一个平面,其中能与这个正方体的12条棱所成的角都相等的不同平面的个数为 8 个 20.3名老师带领6名学生平均分成三个小组到三个工厂进行社会调查,每小组有1名老师和2名学生组成,不同的分配方法有 540 种。

高二排列组合专题训练(优秀经典练习及答案详解)

高二排列组合专题训练(优秀经典练习及答案详解)

高二排列组合专题训练(优秀经典练习及答案详解)概述本文档为高二排列组合专题训练提供了一系列优秀的经典练题目及其答案详解。

通过这些练题的研究和复,学生们可以加深对排列组合问题的理解,并提升解题能力。

练题目及答案详解题目一问题:有5名学生A、B、C、D、E,从中选出3名学生组成一支代表队,要求队伍中至少要包含学生C,有多少种不同的选队方式?答案详解:我们可以将问题拆分为两种情况:1. 学生C在队伍中:在剩下的4名学生中选出2名学生,共有C(4, 2) = 6种选队方式。

2. 学生C不在队伍中:在剩下的4名学生中选出3名学生,共有C(4, 3) = 4种选队方式。

因此,总共有6 + 4 = 10种不同的选队方式。

题目二问题:某班级有10名学生,其中4名男生和6名女生。

选出3名学生组成一支代表队,要求队伍中至少要包含1名男生和1名女生,有多少种不同的选队方式?答案详解:我们可以将问题拆分为三种情况:1. 选出1名男生和2名女生:在4名男生中选出1名男生,共有C(4, 1) = 4种选男生方式。

在6名女生中选出2名女生,共有C(6, 2) = 15种选女生方式。

因此,共有4 * 15 = 60种选队方式。

2. 选出2名男生和1名女生:在4名男生中选出2名男生,共有C(4, 2) = 6种选男生方式。

在6名女生中选出1名女生,共有C(6, 1) = 6种选女生方式。

因此,共有6 * 6 = 36种选队方式。

3. 选出3名男生和0名女生:在4名男生中选出3名男生,共有C(4, 3) = 4种选男生方式。

因此,共有4种选队方式。

综上所述,总共有60 + 36 + 4 = 100种不同的选队方式。

结论本文档提供了高二排列组合专题训练的优秀经典练习题目及其答案详解。

通过完成这些题目,学生们可以加深对排列组合问题的理解和掌握,提高解题能力,并为应对考试做好准备。

(完整word版)高二数学排列组合二项式定理单元测试题带答案

(完整word版)高二数学排列组合二项式定理单元测试题带答案

摆列、组合、二项式定理与概率测试题(理)一、选择题 (本大题共 12 小题,每题5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.)1、如 所示的是 2008 年北京奥运会的会徽,此中的 “中国印 ”的外 是由四个色 构成, 能够用 段在不穿越另两个色 的条件下将此中随意两个色 接起来 (好像架 ),假如用三条 段将 四个色 接起来, 不一样的 接方法共有 ()A. 8 种B. 12 种C. 16 种D. 20 种2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不一样的工作,此中甲 乙两名志愿者不可以从事翻译工作,则不一样的选排方法共有( )A . 96 种B .180 种C .240 种D . 280 种3、五种不一样的商品在货架上排成一排,此中a 、b 两种一定排在一同,而c 、d 两种不可以排在一同,则 不一样的选排方法共有( )A . 12 种B . 20 种C . 24 种D . 48 种4、 号 1、 2、 3、4、 5 的五个人分 去坐 号1、 2、 3、 4、 5 的五个座位,此中有且只有两个的 号与座位号一致的坐法是()A . 10 种B. 20 种C. 30 种 D . 60 种 5、 a 、b 、m 整数( m>0),若 a 和 b 被 m 除得的余数同样, 称 a 和 b 模 m 同余 . a ≡b(modm)。

已知 a=1+C 120 +C 202 ·2+C 203 ·22+⋯ +C 2020·219, b ≡a(mod 10) , b 的 能够是()A.2015B.2011C.2008D.20066、在一次足球预选赛中,某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得 1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净胜球数或进球总数 ).赛完后一个队的积分可出现的不一样状况种数为( )A . 22 种B . 23 种C .24 种D . 25 种7、 令 a n 为(1 x)n 1的睁开式中含 xn1的系数, 数列{ 1} 的前 n 和 ()a nn(n 3)n( n 1)n 2nA .B .C .D .22n 1n 18、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5( x 1)5 , a 0 =()A . 32B . 1C . -1D .-32n9、 二项式 3x 22(n N * ) 睁开式中含有常数项,则n 的最小取值是 ()3xA 5B 6C 7D 810、四周体的 点和各棱中点共 10 个点,在此中取 4 个不共面的点, 不一样的取法共有( )A . 150 种B . 147 种C . 144 种D . 141 种11、两位到北京旅行的外国旅客要与2008 奥运会的祥瑞物福娃(5 个)合影纪念,要求排成一排,两位旅客相邻且不排在两头,则不一样的排法共有( )A . 1440B . 960C . 720D .48012、若 x ∈A 则1∈A ,就称 A 是伙伴关系会合,会合M={ - 1, 0, 1 , 1, 1, 2, 3,4}x32的全部非空子集中,拥有伙伴关系的会合的个数为()A . 15B . 16C . 28D . 25号 123456789101112答案二、填空 (每小 4 分,共 16 分,把答案填在 中横 上)13.四封信投入 3 个不一样的信箱,其不一样的投信方法有 _________种.14、在 ( x 21)( x 2) 7 的睁开式中 x 3 的系数是.15、已知数列 { a n } 的通项公式为 a n2 n 1 1,则 a 1C n 0 + a 2C n 1 + a 3C n3 + a n 1C n n =16、 于随意正整数,定 “n 的双 乘 n!! ”以下: 于 n 是偶数 ,n!!=n ·(n - 2) ·(n - 4) ⋯⋯ 6× 4×2; 于 n 是奇数 , n!!=n ·(n -2) ·(n - 4) ⋯⋯ 5× 3×1.有以下四个命 : ① (2005!!) (2006!!)=2006!· ;②2006!!=2 1003·1003! ;③ 2006!!的个位数是0;④ 2005!!的个位数是 5.正确的命 是 ________.三、解答 (本大 共 6 小 ,前 5 小 每小12 分,最后 1 小 14 分,共 74 分.解答写出必需的文字 明、 明 程或演算步 .)17、某学习小组有8 个同学,从男生中选 2 人,女生中选 1 人参加数学、物理、化学三种比赛,要求每科均有 1 人参加,共有 180 种不一样的选法.那么该小组中男、女同学各有多少人?18、设 m,n∈ Z+,m、n≥1, f(x)=(1 + x) m+ (1+x) n的睁开式中, x 的系数为 19.(1)求 f(x) 睁开式中 x2的系数的最值;(2)关于使 f(x) 中 x2的系数取最小值时的 m、n 的值,求 x7的系数.19、7 位同学站成一排.问:(1) 甲、乙两同学一定相邻的排法共有多少种?(2) 甲、乙和丙三个同学都相邻的排法共有多少种?(3) 甲、乙两同学一定相邻,并且丙不可以站在排头和排尾的排法有多少种?(4) 甲、乙、丙三个同学一定站在一同,此外四个人也一定站在一同的排法有多少种?20、已知(x1)n的睁开式中前三项的系数成等差数列.2 x(Ⅰ)求n 的值;(Ⅱ)求睁开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

高中理科数学排列组合历年高考模拟练习试题荟萃+答案

高中理科数学排列组合历年高考模拟练习试题荟萃+答案

排列组合历年高考试题荟萃排列组合(一)一、选择题( 本大题共60 题, 共计298 分)1、从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有A.8种B.12种C.16种D.20种2、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有………………………………()(A)(B)3 种(C)(D)种3、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有………………………()(A)280种B)240种C)180种D)96种4、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为……………………………………………………()A.6B.12C.15D.305、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为…()A.42B.30C.20D.126、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种值.不同的种植方法共有…………()A.24种B.18种C.12种D.6种7、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有……………………………………………………()A.210种B.420种C.630种D.840种8、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有…………………………………………………()A.56个B.57个C.58个D.60个9、直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有 ( )A.25个B.36个C.100个D.225个10、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为…………………()A.56B.52C.48D.4011直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有……………………………( )A.25个B.36个C.100个D.225个12、某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为………………… ()(A)A C (B) A C (C)A A (D)2A13、将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有………………………………………………………………()A.12种B.24种C.36种D.48种14、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有…………………………………………………()A.56个B.57个C.58个D.60个15、将标号1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,恰好有3个球的标号与其所在盒子的标号不一致的放入方法种数为……………………………………………………()(A)120 (B)240 (C)360 (D)72016、有两排座位,前排11个座位,后排12个座位.现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是A.234B.346C.350D.36317、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为A.56B.52C.48D.4018、在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是…………………………………………………()A.C CB.C CC.C -CD.P -P19、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有………………………………………………………………()A.210种B.420种C.630种D.840种20、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有……………………………………()A.140种B.120种C.35种D.34种21、从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A.300种 B.240种 C.144种 D.96种22、把一同排6张座位编号为1,2,3,4,5,6的电影票全每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是()A.168B.96C.72D.14423、(5分)将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为()A.70B.140C.280D.84024、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A)种(B)种(C)种(D)种+扣1-0-4-9-9-3-1-4-3-5 此文档面飞送需要更多资料+学习方法的也可以+25、用n个不同的实数a1,a2,…,an可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i行ai1,ai2,…,ain,记bi= -ai1+2ai2 -3ai3+…+(-1)n nain,i=1,2,3,…,n!。

【高二数学】排列组合经典例题(共14页)

【高二数学】排列组合经典例题(共14页)

【高二数学】排列组合经典例题(共14页)除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。

直接法特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=240 2(特殊位置法(2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书, 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。

故共可组成不同的三位数-=432(个) 插空法当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法,分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。

捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。

4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种,分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排法,又乘法原理满足条件的排法有:×=576练习1(四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种()某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有其余的就是19所学校选28天进行排列) 阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。

高二数学23—排列、组合、二项式定理及概率练习题

高二数学23—排列、组合、二项式定理及概率练习题

高二数学23—排列、组合、二项式定理及概率练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高二数学23—排列、组合、二项式定理及概率练习题1.若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( )A .32个B .27个C .81个D .64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两 个节目插入原节目单中,则不同的插法总数为( )A .42B .36C .30D .123.全班48名学生坐成6排,每排8人,排法总数为P ,排成前后两排,每排24人,排法 总数为Q,则有( )A .P>QB .P=QC .P<QD .不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有( )种A .8B .12C .16D .205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配 方案共有( )A .4448412C C C B .44484123C C C C .334448412A C C C D .334448412A C C C 6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼 的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有( )种A .350B .300C .65D .507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有( )种 重新站位的方法A .1680B .256C .360D .2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法A .7200B .3600C .2400D .1200 9.在(311xx +)n 的展开式中,所有奇数项二项式系数之和等于1024,则中间项 的二项式系数是 ( )A. 462B. 330C.682D.79210.在(1+a x )7的展开式中,x 3项的系数是x 2项系数与x 5项系数的等比中项,则a 的值为( ) A.510 B.35 C.925 D.32511.袋内放有2个5分硬币,3个2分硬币,5个1分硬币,任意抓取其中5个,则总币值超过1角的概率是( )A. 0.4B. 0.5C. 0.6D. 0.712.卖水果的某个个体户,在不下雨的日子可赚100元,在下雨天则要损失10元,该地区每年下雨的日子约有130天,则该个体户每天获利的期望是(1年按365天计算)( )A. 90元B. 45元C. 55元D. 60.82 元13.10颗骰子同时掷出,共掷5次,至少有一次全部出现一个点的概率是( ) A.510)65(1⎥⎦⎤⎢⎣⎡- B. 106)65(1⎥⎦⎤⎢⎣⎡- C. 105)61(11⎥⎦⎤⎢⎣⎡-- D.510)61(11⎥⎦⎤⎢⎣⎡-- 14.甲口袋内装有大小相等的8个红球和4个白球,乙口袋内装有大小相等的9个红球和3个白球,从两个口袋内各摸1个球,那么125等于( ) A .2个球都是白球的概率 B .2个球中恰好有1个是白球的概率C .2个球都不是白球的概率D .2个球不都是白球的概率15.设每门高射炮命中飞机的概率为0.6 ,今有一飞机来犯,问需要( )门高射炮射击,才能以至少0.99的概率命中它。

高二数学排列组合训练题(含答案)

高二数学排列组合训练题(含答案)

伊川县实验高中2013—2014学年第二学期限时训练高二年级数学试卷(理科)一.选择题:(12×5=60分)1.两个实习生每人加工一个零件,加工为一等品的概率分别为32和43,两个零件是否加工为一等品相互独立,则这两个零件中恰好有一个一等品的概率为( ) A.21 B.125 C.41 D.51 2.某单位邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )A .84种B .98种C .112种D .140种 3. nx x ⎪⎪⎭⎫ ⎝⎛1-3的展开式中各项系数之和为64,则展开式的常数项为( ) A.-540 B.-162 C.162 D.5404.抛掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,则(|)P A B 为( ) A.12 B.536 C.112 D.165.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,不同的选派方法共有( )A .60种B .96种C .120种D .48种6.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码, 则P (ξ=2)=( )A .103B . 53C .101D .51 7.随机变量X 的概率分布规律为)()(1+==n n a n X P ,),,,4321=n (其中a 是常数,则)(25<<21X P 的值为( )A.32B.43C.54D.65 8.三张卡片的正反面上分别写有数字0与2,3与4,5与6,把这三张卡片拼在一起表示一个三位数,则三位数的个数为 ( )A . 36B .40C .44D .489. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有 ( )A .4种B .10种C .18种D .20种10.一排七个座位,甲、乙两人就座,要求甲与乙之间至少有一个空位,则不同的坐法种数是 ( )A .30B .28C .42D .1611.有4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( )A 、2880B 、3080C 、3200D 、360012.某省举行的一次民歌大赛中,全省六个地区各选送两名歌手参赛,现从这12名歌手中选出4名优胜者,则选出的4名优胜者中恰有两人是同一地区送来的歌手的概率是()A.838 B.16564 C. 3316 D.116 二.填空题(4×5=20分)13.210(1)(1)x x x ++-展开式中4x 的系数为________14.将4名志愿者分配到A 、B 、C 三个亚运场馆服务,每个场馆至少1人,不同的分配方案有________种(用数字作答)。

人教版数学高二理科选修2-1第一章排列(二)课时作业

人教版数学高二理科选修2-1第一章排列(二)课时作业

第一章§1.2.1 排列(二)班级:姓名:编号:171. 5人站成一排,甲、乙两人必须站在一起的不同站法有( )A.12种B.24种C.48种D.60种2.一间谍飞机侵入某国领空,三角战机奉命拦截,要求三架战机分别位于敌机左、右两翼和后方成三角之势,则三架战机的不同排列方式有( )A.3种B.6种C.9种D.12种3.4名运动员参加4×100接力赛,根据平时队员训练的成绩,甲不能跑第一棒,乙不能跑第四棒,则不同的出场顺序有( )A.12种B.14种C.16种D.24种4.书架上原来摆放着6本书,现要插入3本书,则不同的插法总数为( )A.A73B.A44C.9×8×7D.2A335.(2014 重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.166.在数字1,2,3与符号⨂,λ这五个元素的所有排列中,任意两个数字都不相邻的全排列个数是 .7.某工厂将4名新聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲乙两名员工必须分配在同一车间,则不同的分配方法总数为 .8.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有1人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎,则不同的选择方案有种.9.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax2+bx+c= 0?其中有实根的一元二次方程有多少个?其中有实根的方程有多少个?数学是无穷的科学!- 1 -10.7人站成一排,其中甲在乙前(不一定相邻),乙在丙前,则共有种不同的站法.11.一条连椅有7个座位,4人就坐,3个空座位中恰有两个连在一起的坐法有种.12.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,不同的放法有多少种?13.5个人站成一排(1)共有多少种排法?(2)其中甲必须站在中间,有多少种不同的排法?数学是无穷的科学!- 2 -(3)其中甲、乙必须相邻,有多少种不同的排法?(4)其中甲、乙不相邻,有多少种不同的排法?(5)其中甲、乙两人不占排头和排尾,有多少种不同的排法?(6)其中甲不占排头、乙不占排尾,有多少种不同的排法?数学是无穷的科学!- 3 -。

排列组合高二练习题及答案

排列组合高二练习题及答案

排列组合高二练习题及答案一、排列组合的基本概念和计算方法排列组合是数学中的一个重要概念,在高二数学课程中经常会出现相关的练习题。

下面是一些排列组合的基本概念和计算方法。

1.1 排列的概念排列是从一组元素中选取若干个元素按照一定的次序排列成一列,其中每个元素只能使用一次。

若有n个元素,要从中选取k个元素进行排列,那么排列的数目为P(n,k),公式为P(n,k) = n! / (n - k)!1.2 组合的概念组合是从一组元素中选取若干个元素无序地组成一组,其中每个元素只能使用一次。

若有n个元素,要从中选取k个元素进行组合,那么组合的数目为C(n,k),公式为C(n,k) = n! / (k! * (n - k)!)1.3 阶乘的概念阶乘是指从1乘到该数的连续自然数的乘积。

例如,5的阶乘表示为5!,其计算方法为5! = 5 * 4 * 3 * 2 * 1 = 120。

1.4 排列组合的计算方法在计算排列组合的过程中,需要用到阶乘的概念。

对于较大的数值,可以使用计算器或数学软件进行计算。

二、排列组合高二练习题现在,我们来看一些高二排列组合的练习题,帮助你巩固所学的知识。

2.1 题目一某班有10个学生,要从中选择3个学生组成一个小组,问有多少种不同的选择方法?答案:根据组合的计算方法,可得到C(10,3) = 10! / (3! * (10 - 3)!) = 120 种不同的选择方法。

2.2 题目二10个人依次排队,他们要按照以下条件进行排队:- 男生必须站在女生的前面- 同性别中按字母顺序排队问有多少种不同的排队方法?答案:根据条件,首先将10个人分成男生和女生两组,分别为5个男生和5个女生。

对于同性别中的排队,可以计算出男生的排队方式为P(5,5) = 5! = 120种,女生的排队方式也是一样。

因此,根据乘法原理,男女生排队的不同方法数为P(5,5) * P(5,5) = 120 * 120 = 14400种。

人教版数学高二理科选修2-1第一章排列组合(二)课时作业

人教版数学高二理科选修2-1第一章排列组合(二)课时作业

数学是无穷的科学!- 1 -第一章 §1.2.3 排列组合(二)班级: 姓名: 编号:211.6个人站成前后两排,每排三人,其中甲不站前排,乙不站在后排的站法种数为( )A .72B .216C .360D .1082.将4名同学录取到3所大学,每所大学至少要录取一名,则不同的录取方法共有( )A .12B .24C .36D .723.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有A .35种B .16种C .20种D .25种4.将5名学生分到,,A B C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有( )A .18种B .36种C .48种D .60种5.从不同号码的双鞋中任取只,其中恰好有双的取法种数为( )A .B .C .D .6.8个人坐成一排,现要调换其中3个人中每一个人的位置,其余5个人的位置不变,则不同的调换方式有( )A .C 38 B.C 38A 22 C. C 38A 38 D.3C 387.我班制定了数学学习方案: 星期一和星期日分别解决4个数学问题, 且从星期二开始, 每天所解决问题的个数与前一天相比, 要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有( )A.50种B.51种C.140种D.141种8.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则54112024028060不同的涂色方案有_____种(用数字作答).9.1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x= .10.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺丝,第一阶段,首先随意拧一个螺丝,接着拧它对角线上(距离它最远的,下同)螺丝,再随意拧第三个螺丝,第四个也拧它对角线上螺丝,第五个和第六个以此类推,但每个螺丝都不要拧死;第二阶段,将每个螺丝拧死,但不能连续拧相邻的2个螺丝。

高二数学排列组合练习题

高二数学排列组合练习题

高二数学排列组合练习题1. 某班共有6个男生和5个女生,现从中选出3名男生和2名女生组成一个团队。

问有多少种不同的组队方式?解析:根据排列组合的知识,我们可以使用组合的方式求解。

选取3名男生可以有C(6,3)种选择,选取2名女生可以有C(5,2)种选择。

根据乘法原理,两者的选择方式相互独立,所以总的组队方式数量为C(6,3) * C(5,2) = 20 * 10 = 200种。

2. 某电影院有8个座位,现有8名观众前往观看电影。

其中3对观众是夫妻关系,要求夫妻不能坐在相邻的座位上。

问有多少种不同的座位安排方式?解析:对于夫妻关系的观众,他们不能坐在相邻的座位上,相邻的座位可以看作是一对座位。

首先,我们把3对夫妻的座位看作是3个座位,这样就有6个单独的座位。

对于这6个单独的座位,可以有6!种不同的座位安排方式。

而夫妻关系的座位本身可以有3!种不同安排方式。

根据乘法原理,总的座位安排方式为6! * 3! = 720 * 6 = 4320种。

3. 某商店有8本不同的书和4个不同的笔记本,现要从中选取3本书和2个笔记本作为一份礼品赠送给顾客。

问有多少种不同的礼品组合方式?解析:选取3本书可以有C(8,3)种选择,选取2个笔记本可以有C(4,2)种选择。

根据乘法原理,总的礼品组合方式为C(8,3) * C(4,2) =56 * 6 = 336种。

4. 某个数字锁的密码是由4位数字组成,每位数字可以使用0-9之间的任意数字且可重复。

问共有多少种不同的密码组合方式?解析:对于每一位数字,有10种选择(0-9)。

因此,对于4位数字组成的密码,一共有10^4种不同的组合方式,即10000种。

5. 某班级里有10个学生,其中5个人喜欢足球,2个人喜欢篮球,3个人喜欢乒乓球。

现从中选取4个学生组成一支球队,要求至少有1名喜欢足球、至少有1名喜欢篮球、至少有1名喜欢乒乓球。

问有多少种不同的球队组合方式?解析:可以分为几种情况讨论:情况一:选取1名足球爱好者、1名篮球爱好者和2名乒乓球爱好者。

高中数学-排列组合100题(附解答)

高中数学-排列组合100题(附解答)

高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒ﻫ(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)822x x ⎛⎫- ⎪⎝⎭展开式中10x 项的系数为____________﹒(2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ﻫ(3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒ 4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒ 6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒ 7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒)9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:1(ﻫ)男女间隔而坐且夫妇相邻____________﹒ﻫ(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒ﻫ14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒ 15. 1012⎛⎫⎪ ⎪⎝⎭展开式中﹐各实数项和为____________﹒ 16. 有一数列n a 满足11a =且1213nn a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列)19. 从1到1000的自然数中﹐ﻫ(1)是5的倍数或7的倍数者共有____________个﹒ﻫ(2)不是5的倍数也不是7的倍数者共有____________个﹒ﻫ(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒ﻫ21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则ﻫ(1)50元硬币至少要1个的换法有____________种﹒ﻫ(2)不含1元硬币的换法有____________种﹒ 23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒ 26.若{}|,,110000S x x x =≤≤為正整數正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒ (4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒ 29. ()10222x x -+除以()31x -所得的余式为____________﹒30.ﻫ如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)31. 如图﹐则(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒33.()101kk x =-∑展开式中5x 的系数为____________﹒____种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒ 38. 许多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒ 39.如圖,有三組平行線,每組各有三條直線,則 (1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今天小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐如果考虑上下的次序﹐则可作成____________种不同的讯号﹒43.ﻫ如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.ﻫ圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒ (2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒46. 2颗苹果﹐3颗番石榴﹐4颗菠萝﹐将9颗水果任意装入4个不同的箱子﹐水果全装完每个箱子至少装一颗水果有____________种方法﹒(同种水果视为同物)47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒5. 从SENSE 的5个字母中任取3个排成一列﹐问有几个排法?6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖(1)(2)(3)ﻫ7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()nx y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则ﻫ(1)四球恰为红﹑白二色的情形有几种?ﻫ(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖1(ﻫ) (2)15. 如图﹐由A 至B 走快捷方式﹐不能穿越斜线区﹐有多少种走法﹖ﻫ16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ﻫ(2)设n 为自然数﹐且满足1231,2311n nn nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖ﻫ(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D )0A ⊂ (E){}1,2A ∈ (F ){}1,2A ⊂ (G){}∅⊂A ﹒23. ﻫ設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖(1)(2) ﻫ31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ﻫ(1)(2)33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转)(1)(2)(3)ﻫ34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:ﻫ(1)休旅车及跑车相间排列﹒(2)休旅车及跑车各自排在一起﹒35.从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36.将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒ﻫ(2)分装入3个相同的袋子﹐每袋装3本﹒ﻫ(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37.学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒40. 求240的正因子个数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A ﹐B ﹐C 三题﹒结果答对A 题者有15人﹐答对B 题者有19人﹐答对C 题者有20人﹐其中A ﹐B 两题都答对者有10人﹐B ﹐C 两题都答对者有12人﹐C ﹐A 两题都答对者有8人﹐三题都答对者有3人﹒试问A ﹐B ﹐C 三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44. ﻫ用黑白兩種顏色的正方形地磚依照如右的規律拼圖形: 設n a 是第n 圖需用到的白色地磚塊數﹒ (1)寫下數列n a 的遞迴關係式﹒ (2)求一般項n a ﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒ﻫ(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n nn n C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲安排呢﹖ ﻬ一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)2 2. (1)112;(2)0;(3)40 3. (1)4480;(2)90- 4. 48 5. 3 6. 468 7.56 8. 60 9. 9903 10. 44 11. (1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17.{}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30.780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 21 39. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)111735(1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =-18. (1)见解析;(2)4 19. (1)28;(2)14;(3)57 20. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =; (2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 18000 36. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44. (1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒ 2. (1)设第1r +项为10x 项﹐则()()882816222rrr r r rr Cx C xx x ---⎛⎫-=- ⎪⎝⎭ﻫ 163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C-=﹒ﻫ(2)设第1r +项为3x 项﹐则()55255102112233r rrr r r rr Cx C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rrr r rrr Cx C xx x ----⎛⎫= ⎪⎝⎭15503r r ⇒-=⇒=﹐∴常数项为523240C =﹒3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ﻫ(2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒ 6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐∴所求为33420167468+-=﹒7. 83563!P =﹒8. ()542160⨯⨯+=﹒ 9. ∵12n n a a n +=+﹐ ∴2121a a =+⨯ 3222a a =+⨯()1)21n n a a n -+=+⨯-ﻫ()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐ﻫ∴210010010039903a =-+=﹒10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ﻫ(2)A a B b C c D d E e 1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()()333223114514524511H H C H H C H H ⨯-⨯---⨯ﻫ()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒ 14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=ﻫ﹒15. 展开后各实数项和为246810864210101010100246811111222222222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ﻫ101010122C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ﻫ[另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒12=-+﹐ﻫ∴实数项和为12-﹒ 16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅ﻫ∴1213n n a a -=+⋅⋅⋅⋅⋅⋅-()1123n n n n a a a a +-⇒-=- 252表示数列1n n a a +-为首项23﹐公比23的等比数列﹐()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-ﻫ 111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐ﻫ∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐ ∴()(){}4,4A B A B ⋃-⋂=-﹒18. 1234 3214ﻫ2134 3241ﻫ2314 3421ﻫ2341 4321ﻫ共8种﹒ 19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒ﻫ(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒ﻫ(3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20.7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐ﻫ故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦ﻫ﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ﻫ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂(个)﹒ﻫ22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐共119753136+++++=种﹒ﻫ②二个50⇒1种﹒∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++=ﻫ 10220x y z ⇒++=﹐ﻫ共116118++=种﹒ 23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒ﻫ(2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=ﻫ﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=正整數S x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐令()222212232336x k k ==⨯⨯=⨯⨯=﹐ﻫ则()()(){}22261,62,,616,⋂=⨯⨯⨯S T∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ﻫ(2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒ﻫ(3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦ﻫ 5558332771111=+-=﹒ﻫ(4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦ﻫ()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂ 5558332771111=+-=﹒ 28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29.()()1010222211x x x ⎡⎤-+=-+⎣⎦()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦ﻫ故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒30.ﻫ①B ﹑D 同﹐54143240,A B D C E ⨯⨯⨯⨯=②B ﹑D 異﹐ 54333540,A B D C E ⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒31. ﻫ(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒ﻫ(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ﻫ所求即分子()2131x +展开式中15x 项系数ﻫ∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒33.()()()()10121111k k x x x x =-=-+-+-+∑……()101x +-()()()11111111111x x x x⎡⎤----⎣⎦==--﹐展开式中5x 系数即为()1111x --展开式中6x 系数﹐ ∴所求为()61161462C --=-﹒()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐6!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ﻫ+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.ﻫ()1142!4!192.⨯⨯⨯⨯=選位A a Bb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐⇒ﻫ6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐②选二面4312⇒⨯=﹐ﻫ③选三面43224⇒⨯⨯=﹐④选四面⇒432124⨯⨯⨯=﹐ﻫ由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦ﻫ 3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭ﻫ ()5630241820=-+-=﹒不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下ﻫ631081263691836297=+++----=ﻫ ∴所求为72297369.+=ﻫ(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=ﻫ 左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換ﻫ③用三色:红+白+黄=7ﻫ 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒ﻫ ↑ﻫ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ﻫ 再安排4个l :p a m a △△△△△方法有545C =种﹒ﻫ由①②可知﹐排法有646554⨯+⨯=种﹒[另解]llll ﻫ不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)表示n a 为首项4﹐公差32的等差数列﹐ﻫ(1)2133114222a a =+=+=﹐ﻫ 3231137222a a =+=+=﹐ﻫ4333177222a a =+=+=﹐ﻫ 54317310222a a =+=+=﹒ﻫ(2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒(2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐ﻫ 因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ﻫ因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+ 4.()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SEN SE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:ﻫ(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐因此排法有333!6C ⨯=种﹒ﻫ(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒ﻫ(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂ﻫ253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯ﻫ909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅ﻫ77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅-7286xn y ⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐ﻫ∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白ﻫ 1322313.⇒共種(2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒ﻫ故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ﻫ ②先往左42232⨯=﹐ﻫ 共有323264+=﹒15. ﻫﻫ如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯ﻫ10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦ﻫ()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-ﻫ()10111c =-=-﹐ﻫ∵()1011x +展开式中才有x 项﹐∴1011101,a C ==ﻫ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ﻫ(2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ﻫ ↓6﹑7﹑8﹑9ﻫ(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ﻫ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.ﻫ 上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x x x x +-=++-()()()()()()21011011009910121012101212101111x Cx x C x x Cx =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐ﻫ∴x 项的系数1011101,a C ==ﻫ2x 项的系数10121014949,b C =-=ﻫ 3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒24. (1)∵()123n n a a n +=+-且15a =﹐ﻫ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐()43233538a a =+⨯-=+=﹐ﻫ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ﻫ ∴()21213a a =+⨯- ()32223a a =+⨯-ﻫ()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦ﻫ()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒ﻫ(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1→有363⨯⨯个→有123⨯⨯个→有113⨯⨯个ﻫ ∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒ (2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ﻫ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有ﻫ ()331312⨯+⨯=个﹐ 故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐ﻫ 故百位数字和为()()1834592234⨯++⨯⨯=﹒ﻫ 由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111nn n m m m C C C ---=+﹐得ﻫ原式()66781920234516175C C C C C C =++++++- 778192034516175C C C C C =+++++-8819204516175C CC C =++++-21175C =-ﻫ 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ﻫ根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕ﻫ(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ﻫ 因此有339⨯=种选法﹒ 但是ﻫ①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ﻫ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ﻫ因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒30. ﻫ(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ﻫ 5433180⨯⨯⨯=﹐ﻫ B ﹑D 异色﹐A B D C E →→→→54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ﻫ 54333540⨯⨯⨯⨯=﹐ﻫ B ﹑D ﹑F 异色﹐A B D F C EG →→→→→→5432222960⨯⨯⨯⨯⨯⨯=﹐ﻫ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ﻫ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a =24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ﻫ(3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯ﻫ ()1222n n a a n --=+⨯-ﻫ ()1)21n n a a n -+=+⨯-ﻫ()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒33. (1) ﻫ ①A ﹑C 同色﹐541480,A B C D⨯⨯⨯=ﻫ②A ﹑C 异色﹐5433180,A B C D⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ﻫ(3)[]354143343940⨯⨯⨯+⨯=﹒ 34.(1)休旅車及跑車相間排列的情形﹐可分為兩 種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐ﻫ将此5本书作直线排列﹐有5!种排法﹐ﻫ故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐ 丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积展开﹐得()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒ﻫ由于上式中A 部分的各项次数均超过2次﹐因此全部展开式中2x 的系数﹐就是B 部分的展开式中的2x 系数﹒ﻫ又B 部分的展开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐ 故全部展开式中2x 的系数为6﹒ 39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积展开得()()()()()()()()()()332112323232323212322222A B xx C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+展开式中B 部分各项次数低于4次﹐因此要计算展开式中4x 的系数只要计算A 部分各项展开式即可﹐又A 部分展开式为ﻫ()()()()32132320122C x x C x x -+-()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+ﻫ故4x 的系数为9﹒ 40. 将240作质因子分解﹐得411240235=⨯⨯﹒ﻫ因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐ﻫ所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒41. 依题意图示如下:ﻫ ﻫ其中实线表电车路线﹐虚线表公交车路线﹒ﻫ因为电车与公交车路线各选一次﹐所以路线安排可分成以下二类:ﻫ(1)先电车再公交车:利用乘法原理﹐得有122⨯=种路线﹒ﻫ(2)先公交车再电车:利用乘法原理﹐得有326⨯=种路线﹒ 由加法原理得知﹐共有268+=种路线安排﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒ﻫ利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂ﻫ()n A B C +⋂⋂151920101283=++---+27=﹒ﻫ故三题中至少答对一题者有27人﹒43.ﻫ設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂ ()n A B C +⋂⋂﹐得()15012010030205010280n A B C ⋃⋃=++---+=﹒ 故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发现图形每次均增ﻫ 加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒ﻫ(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等ﻫ 差数列﹐故()81553n a n n =+-⨯=+﹒ﻫ(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒ 45. (1)先将这8位转学生分成四堆﹐每堆2人﹐ﻫ 再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐ﻫ 故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒ﻫ(2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐ﻫ 故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒46. 因为01232n n n nn n n C C C C C +++++=﹐ﻫ所以1230221n n nn n n nn C C C C C ++++=-=-﹒ﻫ即原式可改写为2000213000n <-<﹐ﻫ即200123001n <<﹐得11n =﹒47.(1)3119911!55 9!2!H C===组﹒ﻫ(2)338936628H H C-===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种安排法﹒49. 10310!1098720 7!P==⨯⨯=种选法﹒50.由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲安排﹒。

高二数学同步练习 排列组合及答案

高二数学同步练习   排列组合及答案

高二数学同步练习排列组合及答案高二数学同步练习-排列组合及答案高二数学试题(8)-排列与组合ycy本试卷分为第一卷和第二卷,共150分第ⅰ卷(选择题,共50分)一、多项选择题(本主题共有10个子题,每个子题得5分,总计50分。

在为每个子题提供的四个选项中,只有有一项是符合题目要求的.)1.有a、b、c、d、e共5人并排站在一起,如果a、b 必须相邻,并在b在a的右边,那有60种排列,48种排列,36种排列和24种排列2.从1、2、3、4、5这五个数字中任取3个组成无重复数字的三位数,当三个数字有2和3当,2需要在3前面(不一定相邻),所以有()A.9,b.15,c.45和d.51三个数字3.ab和cd为平面内两条相交直线,ab上有m个点,cd上有n个点,且两直线上各有如果其中一个与交点重合,则顶点为m+n-1点的三角形数为()12121212a.cmb.cncn?cncm?1cm?cmcn12121212c.cmd.cm?1cn?cn?1cm?1?1cn?cmcn4.如图,用5种不同颜色给图中标有1、2、3、4各部分涂色,每部分只涂一种颜色,且相相邻的两部分被涂上不同的颜色。

共有()a.160种、b.240种、c.260种和d.360种不同的绘画方法5.从5个中国人、4个美国人、3个日本人从每组中选择一个人的方法是()a.12种b、 24种c.48种d、 60种6.用1、2、3、4四个数字组成含有重复数字的四位数,其个数是()a、 265b.232个c、 128d.24个7.4学生报名参加语言、数学和英语兴趣小组。

每个学生选择一个,不同的方法是()8.从单词“ctbenjin”中选取5个不同字母排成一排,含有“en”(其中“en”相连且顺序不同排列的共同点a.43种b.34种3c。

a4,3d。

补体第四成份()a、公元前120年480年720-1-d、 8409.6个人排成一排,其中甲、乙两人中间至少有一人的排法有a、 480种b.720种c、 240种d.360种()10.5个身高不等的学生站成一排合影,从中间到两边一个比一个矮的排法有()a、 6种b.8种c、 10种d.12种第二卷(非多项选择题,共100分)二、填空题(本大题满分24分,每小题6分,各题只要求直接写出结果.)11.从10件产品(其中含2件次品)中任取5件,其中含有次品的抽法有种.12.从10个学生中挑选若干人组成一组,如果必含其中某人的组合数等于必不含某人的组组合数,那么这样的组合数有13.以正三棱柱的顶点为顶点的四面体共有____________个.14.3人坐在一排8个座位上。

高二数学排列组合(全面--好题)

高二数学排列组合(全面--好题)

1,从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A,70 种 B,80种 C,100 种 D,140 种2,2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A, 48 种 B,12种 C,18种 D36种3,从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A,48 B, 12 C,180 D,1624,甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有5,A,150种 B,180种 C,300种 D,345种5,甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A,6 B,12 C 30 D366,用0 到9 这10 个数字,可以组成没有重复数字的三位偶数的个数为A.324 B,328 C,360 D,6487,从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的总数为()A,85 B,56 C,49 D,288,将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为 ( )A ,18B ,24C ,30D ,309,3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( )A ,360B ,288C ,216D ,9611 从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?⑴ A 、B 必须当选 ⑵ A 、B 都不当选;⑶ A 、B 不全当选; ⑷ 至少有2名女生当选;⑸ 选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.12 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )A .120种B .96种C .78种D .72种13 、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A ) 280种 (B )240种 (C )180种 (D )96种14 、7人站成一排照相, 若要求甲、乙、丙不相邻,则有多少种不同的排法?15、计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )(A ) (B ) (C ) (D )16.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )A .8B .24C .48D .1205544A A 554433A A A 554413A A A 554422A A A17.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)6种(B)12种(C)24种(D)30种18.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 3619.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70种(B) 80种(C) 100种(D)140种20.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有A.120种B.96种C.60种D.48种21.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【】A.14 B.16 C.20 D.4822.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为(A)432 (B)288 (C) 216 (D)10823.12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为()24.7名志愿者中安排6人在周六、周日两天参加社区公益活动。

高二排列组合练习及答案

高二排列组合练习及答案

高二理科数学排列组合练习题一.选择题1.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同分配方法共有 ( ) (A )90种 (B )180种 (C )270种 (D )540种2.从8盒不同的鲜花中选出4盆摆成一排,其中甲、乙两盆不同时展出的摆法种数为( )A .1320B .960C .600D .3603.20个不加区别的小球放入编号为1号,2号,3号三个盒子中,要求每个盒子内的球数不小于盒子的编号数,则不同的放法总数是 ( )(A )760 (B )764 (C )120 (D )914.从10名女学生中选2名,40名男生中选3名,担任五种不同的职务,规定女生不担任其中某种职务,不同的分配方案有 ( )A .231040A A B .2323104043C C A A C .23510405C C A D .231040C C5.编号1,2,3,4,5,6的六个球分别放入编号为1,2,3,4,5,6的六个盒子中,其中有且只有三个球的编号与盒子的编号一致的放法种数有 ( )A .20B .40C .120D .4806.如果一个三位正整数形如“123a a a ”满足1232a a a a <<且,则称这样的三位数为凸数(如120、363、374等),那么所有凸数个数为 ( )A .240B .204C .729D .9207.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是( ) A .234 B .346 C .350 D .3638.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数( )A .2426C A B .242621C A C .2426A A D .262A 9.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种10.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有A .210种B .420种C .630种D .840种11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有 ( )A .24种B .18种C .12种D .6种12.用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是( )A .48B .36C .28D .1213.已知集合A={1,2,3,4},B={5,6},设映射B A f →:,使集合B 中的元素在A 中都有原象,这样的映射个数共有( ) A .16 B .14 C .15D .12 14.ABCD —A 1B 1C 1D 1是单位正方体,黑白两个蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA 1→A 1D 1→……,黑蚂蚁爬行的路是AB →BB 1→……,它们都遵循如下规则:所爬行的第i i 与第2+段所在直线必须是异面直线(其中i 是自然数).设白、黑蚂蚁都走完2005段后各停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A .1B .2C .3D .015. 5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( )A.480B.240C.120D.9616.从1,2,3,4,5,6中任取3个数字组成无重复数字的三位数,其中若有1和3时,3必须排在1的前面,若只有1和3其中一个时,也应排在其它数字的前面,这样的不同三位数个数有( )A 321144432A A C C ++ B.311443A A C + C.3612A +24A D.36A 17.有7名同学站成一排照毕业照,其中甲必须站在中间,并且乙、丙两位同学要站在一起,则不同的站法有 ( )(A )240 (B )192 (C )96 (D )48二.填空题1.五个不同的球放入四个不同的盒子,每盒不空,共有____ 种放法。

福建省莆田市2020学年高二数学下学期 排列 组合校本作业 理

福建省莆田市2020学年高二数学下学期 排列 组合校本作业 理

排列组合排列(一)姓名:班级:座号:一、选择题1.将4个不同的五角星放入3个盒子中,则不同放法种数有()A.81B.64C.12D.142.某同学逛书店,发现三本喜欢的书,决定至少买其中一本,则购买方案有()A.3种B.6种C.7种D.9种3.在夏季,一个女生有红、绿、黄3件上衣,红、绿、黄、白、黑5条裙子,这个女生夏季某一天去学校上学,不同的穿法有().A.8种B.15种C.53种D.35种4.已知椭圆22221x ya b+=的焦点在y轴上,若{1,2,3,4,5},a∈{1,2,3,4,5,6,7}b∈,则这样的椭圆共有().A.20个B.21个C.25个D.35个二、填空题5.某班有男生28,女生20,现从中选1人上台领奖,则不同的选法有种.6.某单位会议室有四个出入门,若从一个门进,另一个门出,不同的走法有种.三、解答题7若,,x y∈N且5x y+≤,试求有序自然数对(,)x y的个数.8.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?排列(二)姓名:班级:座号:一、选择题1.把10个桃子分成3份,要求每份至少1个,至多5个,则不同的分法种数为()A.6B.5C.4D.32.用0到9这10个数字,可以组成没有重复数字的三位偶数()A.256B.280C.306D.3283.若()B=的函数,则这A x x x=≤≤∈N,值域为{0,1} y f x=是定义域为{|17,*}样的函数共有()A.128个B.126个C.14D.12个4.小红把英语单词“babby”中字母的拼写顺序写错了,则她可能出现的错误种数是( )A.20B.10C.19D.95.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,甲工厂必须有班级要去,去何工厂自由选择,则不同的分配方案有( ) A.16种 B.18种 C.37种 D.48种 二、填空题6.用五种不同的颜色,给图6中的(1)(2)(3)(4)的各部分涂色, 每部分涂一色,相邻部分涂不同色,则涂色的方法共有 种.7. 一排共9个座位,甲、乙、丙三个人按如下方式入座:每人左右两旁都有空座位,且甲必须在乙、丙两人之间,则不同的坐法共有______种.(用数字作答) 三、解答题8. 已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b ∈M),求: (1)P 可表示多少个平面上不同的点?(2)P 可表示平面上多少个位于第二象限的点? (3)P 可表示多少个不在直线y=x 上的点?(1)(2)(3)(4)图6排列(三)一、选择题1.现准备将6台型号相同的电脑分配给5所小学,其中A ,B 两所希望小学每个学校至少两台,其它小学允许1台没有,则不同的分配方案共有( ) A.12种 B.15种 C.20种 D.30种2.甲、乙、丙三人传球,由甲开始发球,并作为第1次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有( ) A.6 B.8 C.10 D.123.已知集合{}3,2,1-=M ,{}7,6,5,4--=N .从两个集合中各取一个元素 作为点的坐标,可得直角坐标系中第一、二象限内不同点的个数是( ). A. 8 B. 6 C.14 D.104.用0,1,2,3,4,5这6个数字组成无重复数字的四位数,其中比3410大的四位数共有( )个. A. 120 B. 140 C. 132 D.138 二、填空题.5.已知三角形的三边长均为整数,其中一边长是5,但它不是最短边.这样的三角形的个数是_________.6.形如45132这样的数叫做“五位波浪数”,即十位数、千位数字均比它们各自相邻的数字大,则由1,2,3,4,5可组成不重复的“五位波浪数”有 个. 三、解答题.7.从集合{}3,2,1,0,1,2,3,4---中任选3个不同的元素作为二次函数2y ax bx c =++的系数,问能组成多少条经过原点且顶点在第一象限或第三象限的抛物线?组合(一)一、选择题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A.40 B.50 C.60 D.702.从甲、乙等5名志愿者中选出4名,分别从事A,B,C,D四项不同的工作,每人承担一项.若甲、乙二人均不能从事A工作,则不同的工作分配方案共有( )A.60种 B.72种 C.84种 D.96种3.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( )A.16B.13C.12D.384.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种二、填空题6.用1、2、3、4、5组成不含重复数字的五位数,数字2不出现在首位和末位,数字1、3、5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是________(注:用数字作答).7.高三某学生计划报名参加某7所高校中的4所学校的自主招生考试,其中仅甲、乙两所学校的考试时间相同,因此该学生不能同时报考这两所学校,那么该学生不同的报考方法有________种.8.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).三、解答题9.(1)计算C98100+C199200;(2)求20C5n+5=4(n+4)C n-1n+3+15A2n+3中n的值.组合(二)一、选择题1.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.362、如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有( )A.50种B.51种 C.140种D.141种3.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种 B.60种 C.120种 D.210种4、某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为( )A.360 B.520 C.600 D.720二、填空题5.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).6.在空间直角坐标系O-xyz中有8个点:P1(1,1,1)、P2(-1,1,1)、…、P 7(-1,-1,-1)、P8(1,-1,-1)(每个点的横、纵、竖坐标都是1或-1),以其中4个点为顶点的三棱锥一共有________个(用数字作答).三、解答题7.有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?8.6男4女站成一排,求满足下列条件的排法共有多少种?(列出算式即可)(1)任何2名女生都不相邻,有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?排列(一)一、选择题1.A. 提示:4个不同的五角星放入3个盒子中,每个五角星都有3种放法,则不同放法种数有4381=种,故选A.2.C.提示:分三类,第一类,买一本有3种方案;第二类,买二本也有3种方案;第三类,买三本有1种方案,共有7种方案,故选C.3.B.提示:分步完成,上衣有3种选法,下衣有5种选法,共有15种,故选B.4.A.提示:依题意a b <,分五类,第一类:2b =,a 只能取1;第二类:3,b =1,2a =共2种;第三类:4b =,1,2,3a =共3种;第四类5b =,1,2,3,4a =共4种;第五类,6b =或7,a 有5种,综上共有12345220++++⨯=,故选A. 二、填空题5.48.提示:选出上台领奖的这位同学可能是男生,也可能是女生,由分类加法计数原理可得不同的选法共有48种.6.12.提示:分两步,第一步从一个门进,有4种方法,第二步从余下的3个门出有3种方法,共有4312⨯=种走法.三、解答题7.解:因为,,x y N ∈且5x y +≤,当0x =时,0,1,2,3,4,5y =,有6对;当1x =时,0,1,2,3,4y =,有5对;当2x =时,0,1,2,3y =,有4对;当3x =时,0,1,2y =有3对;当4x =时,0,1y =;当5x =时,0y =有1对. 所以共有65432121+++++=对.8.解:由题意可得只会英语的有6人,只会日语的有2人,既会日语又会英语的有1人.分三类,每类分两步,第一类从只会英语的6人中选1人,只会日语的选1人,共有62⨯种方法;第二类从只会英语的6人中选1人,既会日语又会英语的选1人共有61⨯种方法;第三类从只会日语的2人中选1人,既会日语又会英语的选1人,有21⨯种方法;综上共有62216120⨯+⨯+⨯=种.排列(二)一、选择题1.C.提示:分两类,第一类:一份为5,另两份是1,4或2,3,有两种;第二类,一份为4,另两份为4,1或2,3,也有两种,综上共有4种,故选C.2.D.提示:分两类,第一类,个位数是0,共有9872⨯=种;第二类,个位数不是0,分三小步,第一步排个位,从2,4,6,8中,取一个有4种;第二步,排百位,从余下的三个偶数和1,3,5,7,9中取一个,有8种;第三步,排十位,从余下的10个数中选一个,也有8种,共有488256⨯⨯=种,由分类计数原理共有+=种.722563283.B.提示:从集合A到集合B可建立72128=个不同的映射,其中以A为定义域,B为值域的函数,需要去掉A中的1,2,3,4,5,6,7都对应B中0或1的,因此这样的函数共有722126-=(个),故选B.4.C.提示:单词“babby”中的5个字母相当于5个位置,分三步,第一步,排a有5种方法,第二步排y,有4种方法,第三步把剩下的三个位置排三个b,有1种方法,因为3个b相同,共有54120⨯⨯=种,其中正确的仅有babby 一种排列方式,∴可能出现错误的情况有20-1=19种,故选C.5.C.提示:三个班去不同的工厂不同的分配方案共有34种,甲工厂没有班级去的分配方案有33,因此满足条件的不同分配方案共有33-=种,故选C.4337二、填空题6.240.提示:分4步,涂色的方法共有5434240⨯⨯⨯=.7.20.提示:因为从左到右9个位子中,甲只能坐4、5、6三个位子,当甲位于第5个位子时,乙、丙只能在2、3或7、8中的一个位子上;当甲位于第4个位子时,乙、丙肯定有一个位于2,另一个位于6、7、8其中的一个位子上;甲位于第6个位子时,乙、丙肯定有一个位于8,另一个位于2、3、4其中的一个位子上,故共有4×2+3×2+3×2=20(种).三、解答题8. 解:(1)确定平面上的点P(a,b)可分两步完成:第一步确定a 的值,共有6种方法;第二步确定b的值,也有6种方法.根据分步乘法计数原理,得到平面上的不同点数是6×6=36.[来源:](2)确定位于第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限内点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M 中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30(个).排列(三)一、选择题1.B. 提示:分类,方案是“42000”的共两种,方案为“33000”的有1种,方案是“32100”的共有6种,方案是“22200”的共有3种,方案“22110”型共有3B.2.C.提示:如图,,第一个空与第四个空不能是甲,因此分三类,第一类:第二次传给甲,第一次甲传乙或丙有2种方法,第三次甲传给乙丙有2种,第四次乙丙之间传球有1种方法,共有2214⨯⨯=种方法;第二类:若三次传给甲,同上,也有4种;第三类:若第二次、第三次都不传给甲,则仅有如下两种传球方法,甲→乙→丙→乙→丙→甲;甲→丙→乙→丙→乙→甲,综上共有44210++=种,故选C.3. C.提示:分两类:第一类,M中取横坐标,N中取纵坐标,共有3×2=6(个)第一、二象限内的不同点;第二类,M中取纵坐标,N中取横坐标,共有2×4=8(个)第一、二象限内的不同点. 故共有6+8=14(个)不同的点.4. B.提示:本题可以从高位到低位进行分类.(1)千位数字比3大:有2×5×4×3=120(个);(2)千位数字为3:①百位数字比4大:有1×4×3=12(个);②百位数字为4: 1°十位数字比1大:有2×3=6(个);2°十位数字为1,个位数字比0大:有2个.所以满足条件的四位数共有120+12+6+2=140(个).二、填空题5. 14个.提示:设最短边为a,则a 可取1,2,3,4这4个值,当a=1时,则第三边只能取5;当a=2时,则第三边可取4,5,6; 当a=3时,则第三边可取3,4,5,6,7; 当a=4时,则第三边可取4,5,6,7,8.所以满足题意的三角形共有1+3+5+5=14(个).6.16.提示:当5在千位,3在十位时,4只能在万位,有2种,5与3互换位置也有两种;当5、4在千位、十位时,有2612⨯=种,共有221216⨯+=. 三、解答题7. 解: 抛物线经过原点,得0c =,当顶点在第一象限时,00,0,02a b a b a<⎧<->⎨>⎩即,则有34=12⨯(种);当顶点在第三象限时,00,0,02a ba b a >⎧>-<⎨>⎩即,则有43=12⨯(种); 故共有12+12=24(条)满足条件的抛物线.组合(一)1、[解析] 先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法,所以乘车方法数为(15+10)×2=50,故选B .2、[解析] 解法1:根据题意,分两种情形讨论:①甲、乙中只有1人被选中,需要从甲、乙中选出1人,担任后三项工作中的1种,由其他三人担任剩余的三项工作,有C 12C 33C 13A 33=36种选派方案.②甲、乙两人都被选中,则在后三项工作中选出2项,由甲、乙担任,从其他三人中选出2人,担任剩余的两项工作,有C 23·A 23·A 22=36种选派方案,综上可得,共有36+36=72种不同的选派方案,故选B .解法2:从甲、乙以外的三人中选一人从事A 工作,再从剩余四人中选三人从事其余三项工作共有C 13A 34=72种选法.3、 [解析] 由这两张卡片排成的两位数共有6个,其中奇数有3个,∴P=36=12. 4、[解析] 设男生有n 人,则女生有(8-n)人,由题意可得C 2n C 18-n =30,解得n =5或n =6,代入验证,可知女生为2人或3人.5、[解析] 因为10级台阶走8步,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么只需从8步中选取2步,这两步中每一步上两个台阶即可,共有C 28=28种选法.6、[解析] 按2的位置分三类:①当2出现在第2位时,即02000,则第1位必为1、3、5中的一个数字,所以满足条件的五位数有C 13A 22A 22=12个;②当2出现在第3位时,即00200,则第1位、第2位为1、3、5中的两个数字或第4位、第5位为1、3、5中的两个数字,所以满足条件的五位数有2A 23A 22=24个;③当2出现在第4位时,即00020,则第5位必为1、3、5中的一个数字,所以满足条件的五位数有C 13A 22A 22=12个.综上,共有12+24+12=48个.7、[分析] 按该学生报考的学校中是否含有甲、乙两所学校进行分类. [解析] 报考学校甲的方法有C 35,报考学校乙的方法有C 35,甲、乙都不报的方法有C 45,∴共有2C 35+C 45=25种.8、[解析] 先将6名志愿者分为4组,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 9、[解析] (1)C 98100+C 199200=C 2100+C 1200=100×992+200=4950+200=5150. (2)20×n +5!5!n !=4(n +4)×n +3!n -1!4!+15(n +3)(n +2),即n +5n +4n +3n +2n +16=n +4n +3n +2n +1n6+15(n +3)(n +2),所以(n +5)(n +4)(n +1)-(n +4)(n +1)n =90,即5(n +4)(n +1)=90.所以n 2+5n -14=0,即n =2或n =-7.注意到n≥1且n ∈Z ,所以n =2. 组合(二)1、[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C 12·A 33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C 12·A 33+A 33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C 13=3个. 故共有符合条件的点的个数为12+18+3=33个,故选A .2、[解析] 按第二天到第七天选择持平次数分类得C 66+C 46A 22+C 26C 24C 22+C 06C 36C 33=141种.3、[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A 25种,按照分步乘法计数原理可知共有不同的安排方法C 16·A 25=120种,故选C .4、[解析] 当甲、乙两人中只有一人参加时,有C 12·C 35·A 44=480种方法;当甲、乙两人都参加时,有C 22·C 25(A 44-A 22A 23)=120种方法.由分类加法计数原理知,不同的发言顺序共有480+120=600种,故选C . 5、[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.6、[解析] 这8个点构成正方体的8个顶点,此题即转化成以正方体的8个顶点中的4个点为顶点的三棱锥一共有多少个,则共有三棱锥C 14C 34+(C 24C 24-2×4-2)+C 34C 14=58个.7、[解析] 因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C 36种亮灯办法. 然后分步确定每个二极管发光颜色有2×2×2=8(种)方法,所以这排二极管能表示的信息种数共有8C 36=160(种).8、[解析] (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A 99种排法,若甲不在末位,则甲有A 18种排法,乙有A 18种排法,其余有A 88种排法,综上共有(A 99+A 18A 18·A 88)种排法.方法二:甲在首位的共有A 99种,乙在末位的共有A 99种,甲在首位且乙在末位的有A 88种,因此共有(A 1010-2A 99+A 88)种排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,其中只有一种符合题设要求,所以甲、乙、丙顺序一定的排法有A1010A33种.(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有12A1010种排法.。

天津市武清区大良中学高二数学《排列与组合》作业

天津市武清区大良中学高二数学《排列与组合》作业

天津市武清区大良中学高二数学《排列与组合》作业1.6个人站成一排:(1)其中甲、乙两人必须相邻有多少种不同的排法?_______(2)其中甲、乙两人不相邻有多少种不同的排法?________(3)其中甲、乙两人不站排头和排尾有多少种不同的排法?______(4)其中甲不站排头,且乙不站排尾有多少种不同的排法?_______2.所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数有 _____个3.安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答).4.若把组成下列单词中的每个字母作各种排列,恰好有420种排法的单词是( )A.trousersB.successC.streetD.friend5.5名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有( )A.A 55·A 24种 B.A 55·A 25种 C.A 55·A 26种 D.A 77-4A 66种6.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答).7.在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.8.112233()()()a b a b a b +++展开式中每一项是怎样构成的?展开式有几项?排列与组合作业2012年4月27日星期五1.6个人站成一排:(1)其中甲、乙两人必须相邻有多少种不同的排法?_______(2)其中甲、乙两人不相邻有多少种不同的排法?________(3)其中甲、乙两人不站排头和排尾有多少种不同的排法?______(4)其中甲不站排头,且乙不站排尾有多少种不同的排法?_______2.所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数有 _____个3.安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答).4.若把组成下列单词中的每个字母作各种排列,恰好有420种排法的单词是( )A.trousersB.successC.streetD.friend5.5名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有( )A.A 55·A 24种 B.A 55·A 25种 C.A 55·A 26种 D.A 77-4A 66种 6.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答).7.在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.8.112233()()()a b a b a b +++展开式中每一项是怎样构成的?展开式有几项?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知复数121cos sin ,1sin cos z i z i θθθθ=++=-+,且2
2
12
2z z +≥,则
θ∈ ;
2. 用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ;
3.甲、乙两人从4门课程中各选2门,则甲、乙所选的课程中恰有1门相同的选法有 。

4.若将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.如果每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 .
5:如图,在正四棱柱1111ABCD ABC D -中,12,1AA
AB ==,点N 是BC 的中点,点M 在1CC 上,设二面角1A DN M --的大小为θ。

(1)当0
90θ=时,求AM 的长;
(2)当cos 6
θ=时,求CM 的长。

6.如图,在三棱柱111C B A ABC -中,AC AB ⊥,顶点1A 在底面ABC 上的射影恰为B ,且21===B A AC AB
(1)求棱1AA 与BC 所成的角的大小;
(2)在棱11C B 上确定一点P ,使14=AP ,并求出二面角1A AB P --的平面角的余弦值。

7.是否存在常数a b c ,,,使得等式222222421(1)2(2)()n n n n n an bn c -+-++-=++对
一切正整数n 都成立?若存在,求出a b c ,,的值;若不存在,说明理由.
C。

相关文档
最新文档