药物化学 化学结构与生物活性的关系
药物化学构效关系
苯乙醇胺类和芳氧丙醇胺类
可以是苯,萘,杂环,稠环和脂肪性的不饱和杂环.可以有甲基,氯,硝基,甲氧基等取代基,在2,4和2,3,6位取代时活性最佳.
用S,-CH2,-NCH3取代时,活性降低.
S-构型异构体活性增加,R-构型异构体活性降低或消失.
R-构型异构体活性增加,S-构型异构体活性降低或消失
B-碳上通常连有羟基.其绝对构型以R-构型为活性体.
局麻药的构效关系.(图自己想)
邻对位给电子基取代,有利于两性离子的形成,活性增强.若有吸电子存在则活性下降.
可以为芳环,芳杂环,此部分的修饰对活性的影响较大,活性顺序为苯环>吡咯>噻吩>呋喃
通常以2-3个碳原子为最好
有仲胺,叔胺或吡咯烷,哌啶.吗啉等,以叔胺最为常见.
青霉烷酸分子中三个手性碳的构型对其活性至关重要.但青霉素的噻唑环上的两个甲基不是活性的必要因素.
半合成头孢菌素的构效关系
在7位侧链引入亲脂性的基团,如苯基,环稀基,噻吩和含氮的杂环.可增强抗菌活性,扩大其抗菌谱.同时改变3位取代基,引入杂环,可改进口服吸收分布也可扩大其抗菌谱.
在7位酰胺的a位引入亲水性的-SO3H,-NH2,-COOH,等极性基团.可扩大抗菌谱同时改变3位取代基,引入-Cl,CH3,和含氮的杂环,可增强口服吸收扩大抗菌谱.
油水分配系数:药物既可以在体液中转运,又可以透过血脑屏障到达作用部位.
该类药物5位上有两个取代基才有活性,当两个取代基的碳原子总数在4到8之间时,分配系数适中,活性最好.当碳原子总数超过8时,产生作用过强,易产生惊厥作用.结构中酰亚胺上的N原子上有甲基取代时可降低酸性和增加脂溶性,起效快.将C-2位的O用S替代时.脂溶性增加,易透过血脑屏障,起效快.
药物化学结构性质总结归纳
药物化学结构性质总结归纳药物化学是研究药物的化学性质、化学结构和相关规律的学科,它通过对药物分子的化学结构和性质进行研究,为药物设计、合成和改良提供了基础。
在这篇文章中,我将对药物化学结构的性质进行总结和归纳。
一、药物化学结构的基本特点药物化学结构是药物分子中各个原子及它们之间的连接方式和空间构型的表达,它决定了药物的物理化学性质和药效学特点。
1.1 原子组成药物分子由不同的原子组成,包括碳、氢、氧、氮、硫等多种元素,不同原子的数量和排列方式影响了药物的化学性质。
1.2 原子间连接方式药物分子中的原子通过共价键或离子键连接在一起,连接方式的不同决定了药物的稳定性、溶解性和反应性等性质。
例如,共价键连接较强,药物较稳定;离子键连接较弱,药物较易溶解。
1.3 立体构型药物分子的立体构型也对其性质产生影响。
若药物分子存在手性中心,存在两种对映异构体,其药理活性可能差异很大。
二、药物化学结构与药物活性的关系药物化学结构决定了药物的生物活性和药效学特征。
药物分子与靶点结合,通过特定的相互作用来发挥药理效应。
2.1 结构与活性的关系药物分子的不同部分对其药理活性具有差异影响。
例如,有机分子中的取代基、环结构等对药物活性产生显著影响。
2.2 功能基团的作用药物分子中的各种功能基团可以通过与靶点结合或者参与生物代谢过程来发挥药理效应。
例如,羟基、胺基、羰基等功能基团在药物分子中的存在可以增加分子的亲水性或与蛋白质发生氢键和离子键相互作用。
三、药物化学结构的优化与合成药物化学结构不仅在药物设计和发现中起着重要作用,也对药物的合成工艺提供了指导。
3.1 结构活性关系的优化通过对药物化学结构的修改和优化,可以增强药物的活性、选择性和药物代谢的稳定性。
可以调整取代基的位置、数量和化学性质,改变环结构的大小和构型。
3.2 药物合成的策略药物的合成过程中,需要考虑药物分子的结构和物理化学性质,选择合适的合成方法和反应条件。
药物化学结构和药效的关系
例:
资料仅供参考,不当之处,请联系改正。
2.6 药物的电子云密度分布对药效的影响
如果药物分子中的电荷分布正好和其特定 受体相适应,药物与受体通过形成离子键、偶 极-偶极相互作用、范德华力、氢键等分子间引 力相互吸引,就容易形成复合物,而具有较高 活性。
资料仅供参考,不当之处,请联系改正。
下例为苯甲酸酯类局麻药分子与受体通过形成 离子键,偶极-偶极相互作用,范德华力相互作 用形成复合物的模型。
资料仅供参考,不当之处,请联系改正。
(2)增加药物分子的位阻:
抵抗青霉素酶得水解
资料仅供参考,不当之处,请联系改正。
(3)电性的影响:
资料仅供参考,不当之处,请联系改正。
2.卤素对药物生物活性的影响
强吸电子基,影响电荷分布
3.羟基、醚键对药物生物活性的影响
-OH增强与受体的结合力(氢键),增加水溶性,改变生物活性 -O-有利于定向排布,易于通过生物膜
资料仅供参考,不当之处,请联系改正。
药物的化学结构与生物活性(药效)间 的关系,通常称为构效关系(Structureactivity relationships, SAR),是药物化 学研究的主要内容之一。
资料仅供参考,不当之处,请联系改正。
本章内容
药物作用机制 受体学说 影响药物产生作用的主要因素 药物结构的官能团对药效的影响 药物的理化性质对药效的影响 药物的电子云密度分布对药效的影响 药物的立体结构对药效的影响
4.磺酸基、羧基与酯对药物生物活性的影响
-SO3H、-COOH使水溶性、解离度增大,不易通过生物膜, 生物活性减弱;
-COOR使脂溶性增大,生物活性增大
5.酰胺基与胺基对药物生物活性的影响
药物的结构与生物活性
药物的解离度对药效的影响
药物的解离常数可以决定药物在胃和肠道中的 吸收。 弱酸性药物在酸性的胃中几乎不解离,呈分子 型,易在胃吸收(如巴比妥类和水杨酸类)。 弱碱性药物易在肠道中吸收(如奎宁、氨苯砜、 地西泮和麻黄碱) 碱性极弱的药物(如咖啡因和茶碱)在胃中也 易吸收。 强碱性药物胍乙啶及完全离子化的季铵盐类和 磺酸类药物消化道吸收差。
构效关系
(1)反映药物作用的特异 性 (2)有助于解析,认识药物的
作用机理 (mechanism of action)和作用方式(mode of action)
structure-activity relationship(SAR)
化学结构与生物活性 (药理,毒理)之间的关 系
(3)由于靶点及药物-靶点 三维结构难于确证,所以 通过构效关系可间接阐 明,解析药效和毒性. (4)助于新药设计及合成
苯巴比妥酸 3.75 0.02 苯巴比妥 7.40 50 戊巴比妥 8.0 79.92
巴比妥类催眠药
巴比妥酸 pKa 4.12 未解离百分率 0.05
O C2H5 O N
H O N H
R1和R2基团碳总数为4~8, 具有很好脂水分配系数 N上引入甲基,酸性下降,脂溶性增加
苯巴比妥
以S代替O,脂溶性增加,起效快 R1,R2不易代谢,作用时间长
二、 药物的结合反应
药物分子中或第Ⅰ相的药物代谢产物中 的极性基团,如羟基、氨基(仲胺或伯 胺)、羧基等,可在酶的催化下与内源 性的极性小分子,如葡萄糖醛酸、硫酸、 氨基酸、谷胱甘肽等结合,形成水溶性 的代谢物。这一过程称为结合反应,又 称第Ⅱ相生物结合。
结合反应的形式
一、与葡萄糖醛酸的结合反应(最普遍,有O、 N、S和C的葡萄糖醛苷化四种类型,特例:新 生儿使用氯霉素会引起“灰婴综三、与氨基酸的结合反应 四、与谷胱甘肽的结合反应(清除由于代谢产 生的有害的亲电性物质,如和白消安的结合, 与酰卤反应是体内解毒的反应)
高等药物化学
高等药物化学1. 简介高等药物化学是药物化学领域的一个重要分支,研究药物的合成、结构与活性关系,以及药物的性质、转化和药代动力学等方面的内容。
药物化学的发展对于药物研发、药物设计和药物治疗方案的制定都具有重要的意义。
2. 药物化学的基本原理2.1 药物分子的结构与活性关系药物分子的结构与其生物活性之间存在密切的关系。
通过对药物分子的结构进行修改和优化,可以改变药物的活性、选择性和药物代谢等性质。
药物化学家通过合理设计和合成具有特定结构的分子,以达到更好的药物疗效。
2.2 药物合成方法药物合成是药物化学的核心内容之一。
药物化学家通过有机合成化学的方法,合成出具有特定药理活性的化合物。
常用的合成方法包括:取代反应、缩合反应、环化反应等。
合成过程中需要考虑合成路径的选择、原料的选择和反应条件的控制,以获得高纯度的目标化合物。
2.3 药物性质与药代动力学药物的性质与其在生物体内的吸收、分布、代谢和排泄等过程密切相关。
药物的溶解性、稳定性、脂溶性等性质对药物的生物利用度和药效有重要影响。
药代动力学研究了药物在体内的动力学过程,包括吸收、分布、代谢和排泄等。
药代动力学的研究可以为药物治疗方案的制定提供重要依据。
3. 药物设计与合成3.1 药物设计的原则药物设计是指根据药物的作用机制和分子靶点,通过合理设计和合成化合物,以达到治疗疾病的目的。
药物设计的原则包括:结构活性关系的研究、药物分子的构效关系、药物分子的选择性和药物分子的药代动力学等。
3.2 药物合成的策略药物合成的策略是指在药物设计的基础上,通过合理选择合成路径和反应条件,以高产率、高选择性地合成目标化合物。
药物合成的策略包括:合成路径的选择、原料的选择、反应条件的优化等。
3.3 药物合成的案例药物合成的案例是指通过药物化学的方法,合成出具有特定药理活性的化合物。
例如,阿司匹林是一种常用的非处方药,用于缓解疼痛和退热。
阿司匹林的合成是药物化学的经典案例之一,通过苯酚的酯化反应和水解反应,合成出阿司匹林。
第3章 药物的结构与生物活性
14
1、药物与受体的相互键合作用对药 效的影响
• 药物与受体的结合方式主要分为可逆和不可逆 两种。药物与受体以共价键结合时,形成不可 逆复合物,往往产生很强的活性。如青霉素的 作用机制是与黏肽转肽酶酰化反应。
• 但在大多数情况下,药物与受体的结合是可逆 的,药物与受体可逆的结合方式主要是:离子 键、氢键、离子偶极、偶极-偶极、范德华力、 电荷转移复合物和疏水作用等。
9
• 当药物结构中含有氢键的接受体官能团, 以及氢键的给予体官能团时,可增加药物 的亲水性。这种官能团的数目越多,药物 的亲水性越强,这种官能团主要有羟基、 氨基和羧基,通过这些基团的数目,可以 判断药物的溶解度趋势。 • 分子中如含有亲脂性的烷基、卤素和芳环 等,一般会增加药物的脂溶性。
10
• 中枢神经系统的药物,需要穿过血脑屏障, 适当增强药物亲脂性,有利吸收,可增强 活性。而一般降低亲脂性,不利吸收,活 性下降。如巴比妥类药物是作用于中枢神 经系统,活性好的药物的分配系数logp在 2.0左右。
第三章 药物的结构与生物活性 (构效关系)
Structure - Activity Relationships of Drugs
1
• • • •
药物从给药到产生药效的过程分为三个阶段: 药剂相(Pharmaceutical phase) 药物动力相(Pharmacokinetic phase) 药效相(Pharmacodynemic phase)
15
• 药物与受体往往是以多种键合方式结合, 一般作用部位越多,作用力越强而药物活 性较好。
16
药物与受体作用常见的键合方式示 意图
偶极-偶极键
疏水键
O N H OO 酶 S HN O CH3 CH3 O离子键
药物化学生物学
药物化学生物学
药物化学生物学是一门研究药物在生物体内作用机制及其化学
结构与生物活性之间关系的学科。
它涉及到多个领域,如有机化学、生物化学、分子生物学、药理学等,是药物研究的重要分支之一。
药物化学生物学的研究对象是药物分子,它们在生物体内通过与生物大分子(如蛋白质、核酸等)相互作用发挥药理学效应。
药物分子的化学结构对其生物活性有着至关重要的影响,因此药物化学生物学研究的重点是如何通过合理的结构设计来提高药物的疗效和安全性。
药物化学生物学的研究方法包括分子模拟、结构活性关系研究、药物代谢及毒性研究等。
其中,分子模拟是一种计算化学方法,通过模拟药物分子与生物大分子之间的相互作用,预测药物的生物活性和药效。
结构活性关系研究是通过对药物分子结构的改变来探索其与生物活性之间的关系,从而指导药物的结构设计。
药物代谢及毒性研究则是通过研究药物在体内的代谢途径和毒性机制,为药物的临床应用提供指导。
药物化学生物学的研究成果不仅对药物研究开发有着重要的指
导作用,同时也为药物临床应用提供了理论基础。
例如,近年来开发的多种靶向药物,都是在药物化学生物学的指导下,通过精确设计药物分子结构来实现对特定疾病靶点的选择性作用。
此外,药物化学生物学也为药物的个体化治疗提供了理论支持,通过研究不同人群对药物的代谢差异,指导药物的剂量和用药方案,提高药物治疗的效果和
安全性。
总之,药物化学生物学是药物研究的重要分支之一,它通过研究药物分子的结构与生物活性之间的关系,为药物的设计、开发和临床应用提供了理论基础和指导。
随着技术的不断发展,药物化学生物学的研究将会更加深入,为人类健康事业做出更大的贡献。
构效关系指药物的化学结构与生物活性之间的关系
构效关系指药物的化学结构与生物活性之间的关系新药研发是创新药物研发的基础,关键在于理解药物的构效关系,揭示药物的化学结构与生物活性之间的关系。
构效关系是生物活性化学和医药物理学领域最重要的研究内容之一,研究其实质是研究药物的“结构定义活性”问题,即探索化学结构对活性的影响,寻找有效的药物研发策略。
构效关系是以药物的化学结构与生物活性之间的关系为基础的研究,也可以称为构效学或构物活性关系学。
它是研究药物结构与活性之间关系的学科,是药物开发、药效学研究和药代动力学研究的基础。
其中,药效学研究是以“活性定义结构”为基础,研究药物含量,主要追求药物的药效。
药物开发是以“无形定义活性”为基础,研究药物的结晶度,追求药物的质量控制。
药代动力学研究是以药物的“动力学定义活性”为基础,追求药物的药代动力学性质。
构效关系的研究包括对药物的有效性和毒性的研究,以及对药物的毒副作用的研究。
在药物的有效性和毒性方面,主要是研究药物的化学结构与药物的活性之间的关系,以探索和开发药物的有效结构和活性。
在药物的毒副作用方面,则是研究药物的化学结构与其副作用之间的关系,以探索和开发药物的低毒、高活性结构。
构效关系开发的重要性是不言而喻的。
通过对药物的结构和性质进行深入研究,有助于开发新型药物,提高药物的疗效,并降低药物毒副作用的发生率,从而丰富药物资源,为临床治疗提供有效的技术支持,满足人们的医疗需求。
构效关系的研究主要包括药物结构分析、体外实验、药效学模型建立和药物活性预测等内容。
首先是在不同实验条件下研究药物的性质,以揭示药物的活性和毒副作用;其次是建立药效学模型,以揭示药物结构与功能之间的关系;最后,利用计算机模拟药物的结构,以预测它的活性及其作用机制。
综上所述,构效关系可以说是药物学的基础理论之一,它的研究包括药物的有效性和毒性的研究,以及药物的毒副作用的研究。
该领域的研究主要侧重于研究药物的“结构定义活性”问题,以及药物化学结构与生物活性之间的关系,旨在开发有效的药物研发策略,丰富药物资源,为临床治疗提供有效的技术支持。
第二章 化学结构和药效关系
构效关系: 构效关系: 化学结构与生物活性 间的关系, 生物活性间的关系 化学结构与 生物活性 间的关系 , 通常称为构效关系 (Structure-activity relationships, SAR),是药物化学研究 , 的主要内容之一。 的主要内容之一。 药物在体内与特定的受体部位发生相互作用,引发生 药物在体内与特定的受体部位发生相互作用, 物活性, 物活性, 药物的化学结构必须与受体大分子的结构相互匹 药物化学结构改变会引起药理活性发生变化;药物的化 配。药物化学结构改变会引起药理活性发生变化 药物的化 学结构还决定其理化性质,影响药物在体内的吸收、 学结构还决定其理化性质,影响药物在体内的吸收、分布 和代谢。因此药物的生物活性与药物的理化性质有关, 生物活性与药物的理化性质有关 和代谢。 因此药物的生物活性与药物的理化性质有关,即 与药物结构中电子云密度有关(电子因素) 与药物结构中电子云密度有关(电子因素),与药物的立 体化学结构有关(空间因素) 体化学结构有关(空间因素)。
(一)药物吸收
P=C生物相/C水相(Partitiong confficient) P=C有机相/C水相(Partitiong confficient) 是药物对油相和水相溶解度的量度, 是药物对油相和水相溶解度的量度 , 也是药物对水相 和器官组织的相对亲和力的度量。 和器官组织的相对亲和力的度量。 C生物相测量困难,用C正辛醇代替。 代替。 量困难, P=C正辛醇/C水相(Partitiong confficient) 由于药物为有机化合物, 值较大 通常用lgP表示 值较大, 表示。 由于药物为有机化合物 , P值较大 , 通常用 表示 。 药物亲脂性时为正值,亲水性药物为负值。 药物亲脂性时为正值,亲水性药物为负值。
药物化学第三章-药物的结构与生物活性
分 子 间 引 力
静 电 作 用
离子键
(ionic bond, ion-ion bond)
(electrostatic interaction)
指药物带正电荷的正离子与受体带负电的负离 子之间,因静电引力而产生的电性作用
偶极-偶极作用
(dipole-dipole interaction) (electrostatic interaction)
0.72nm H H O H Z-己烯雌酚 H E-己烯雌酚 O 1.45nm H O 1.45nm O H
O
O 雌二醇
(2)几何异构对药效的影响
产生:由双键或环等刚性或半刚性系统导致 分子内旋转受到限制 几何异构体的理化性质和生理活性都有较大 的差异
顺式异构体抗精神病作用比反式强5-10倍
解离度对药物活性的影响
5
三、药物和受体间的相互作用对药效的影响
受体学说
药物 + 受体 药物受体复合物
受体构象改变
药理效应
受体:位于细胞膜或细胞内能识别相应化学信使 并与之结合,产生某些生物学效应的一类物质。 影响药物与受体相互作用的因素有很多 药物受体的结合方式 药物结构中的各官能团 药物分子的电荷分布 药物分子的构型、构象等立体因素
结构非特异性药物:
活性取决于药物分子的各种理化性质 药物作用与化学结构关系不密切 药物结构有所改变,活性并无大的变化
结构特异性药物:
靶点是不同的受体(蛋白、酶),所以生物活性主要 与药物结构与受体间的相互作用有关 活性与化学结构的关系密切 药物化学结构稍加变化,药物分子与受体的相互作 用和相互匹配也发生变化,从而影响药效学性质。
F N O C N C2 H5 诺氟沙星 COOH
药物的化学结构与治疗效果
药物的化学结构与治疗效果药物是指用于预防、诊断、治疗、缓解或控制疾病的物质。
药物的化学结构与治疗效果密切相关,不同的化学结构决定了药物的性质和作用机制,进而影响其治疗效果。
本文将从药物的化学结构与治疗效果的关系、药物分类以及药物研发等方面进行探讨。
一、药物的化学结构与治疗效果的关系药物的化学结构是指药物分子中各个原子的排列方式和连接方式。
药物的化学结构直接决定了药物的性质和作用机制,从而影响其治疗效果。
1. 结构与活性关系药物的活性通常与其分子结构密切相关。
药物分子中的不同基团、官能团以及它们之间的连接方式会影响药物与生物体内靶点的相互作用。
例如,药物分子中的特定官能团可以与靶点结合形成稳定的药物-靶点复合物,从而发挥治疗效果。
因此,通过调整药物的化学结构,可以改变药物与靶点的相互作用,进而调节药物的治疗效果。
2. 结构与药代动力学关系药物的化学结构还会影响药物在体内的吸收、分布、代谢和排泄等药代动力学过程。
药物分子的化学结构特征决定了药物在生物体内的溶解度、脂溶性、离子化程度等性质,进而影响药物的吸收和分布。
此外,药物的化学结构还会影响药物在体内的代谢和排泄速率,从而影响药物的药效持续时间和剂量调整。
二、药物的分类根据药物的化学结构和作用机制,药物可以分为多个不同的类别。
常见的药物分类包括以下几种:1. 化学药物化学药物是指通过化学合成得到的药物,其化学结构和活性成分是已知的。
化学药物通常具有明确的作用机制和治疗效果,如抗生素、抗癌药物等。
2. 生物制剂生物制剂是指通过生物技术手段制备的药物,如基因工程药物、蛋白质药物等。
生物制剂的化学结构复杂多样,其治疗效果通常与生物分子的相互作用有关。
3. 中药中药是指以天然药材为原料,通过炮制、提取等工艺制备的药物。
中药的化学结构复杂多样,其中的有效成分通常是多种多样的化合物混合物。
中药的治疗效果与其中的活性成分和药物组分的相互作用密切相关。
4. 药物类别根据药物的作用机制和治疗效果,药物还可以分为多个类别,如抗生素、抗炎药、抗癌药、心血管药等。
第四章 构效关系-1
沙利度胺 S-异构体 R-异构体
强致畸 无
心脏毒性:毒性基团或分子本身,抑制hERG受体—引起心 律失常,导致心脏猝死。
F N N N OCH3 阿司咪唑,1999年停止使用 H N
第五节
基团变化对活性的影响
基团变换的总原则: 改变药效团特征,直接影响活性
N-氧化 物、N- 羟胺、 胺类及 在体内 可以转 化成胺 的化合 物
烷基硫 酸酯或 磺酸酯 及β-卤 代硫醚 类
β-内酯 及醌类
可生成 阳碳离 子或自 由基的 某些含 卤素的 烷烃及 含卤素 的芳烃 和硝基 芳烃
2. 经代谢诱导生成的毒性基团
HO O Michael reaction HO HO H3C HO OH O O R1 N N R2 N O O R O 自由基反应 O O O Michael reaction H2C O Michael reaction O
1. 药效团与优势结构
药效团是不连续的散在性的基团或片断, 分子骨架 具有连续的结构特征,没有适合的骨架支撑,药效 团无法准确具现。 优势结构(privileged structure): 反复出现在 作用于多种受体的配体结构中的片断或骨架。
优势结构与药效团的恰当配臵,是研制创新药物特 别是模拟创新药物(follow-on drug)的策略基 础。
7. 醚基和硫醚基
醚基的键角与C-C-C相似
氧原子上有未偶电子对和较强电负性,可以形成 氢键,使分子增加极性 氧原子的亲水性和碳原子的亲脂性,使醚类化合 物在脂-水界面处定向排布。
H3CO
H3C N N H 奥美拉唑 H2 S C O
OCH3 CH 3 N
药物化学结构与药效的关系
化学结构相似的药物,能与同一受体结合,引起相似 作用(激动药,拟似药)或相反的作用(拮抗药,阻断药).
例:
乙酰胆碱
(神经递质)
氨甲酰胆碱
(拟胆碱药)
D=药物;R=受体;DR=药物-受体复合物 E=药理效应;
药物-受体复合物的键合方式包括:共价键、 氢键、离子键、离子-偶极和偶极-偶极作用、 范德华力等。
5. 受体激动药与受体拮抗药
根据药物与受体结合后所产生效应的不同,将药 物分为受体激动药与受体拮抗药
激动药(agonist):对受体既有亲和力又有内在 活性的药物,它们与受体结合并激活受体产生效 应。
2.2 受体学说
1. 受体的概念
受体(Receptor,R)是指对生物活性物质具有 识别能力,并选择性与之结合,传递信息,引起 特定效应的生物大分子。
受体存在于细胞内,具有一定坚固性的三维结 构. 各种药物的受体是不相同的, 但是它们可能 都具有:
(1) 一个高度折叠的近似球状的肽链; (2) 有一个空穴,此空穴至少部分被多肽区域 所 包围.
2.1 药物的作用机制:
药物的作用机制(mechanism of drug action)是研究药物如何与机体不 同靶细胞结合,又如何发挥作用的。
一.药物的作用机制简介:
1、理化作用 2、参与或干扰细胞代谢 3、影响酶的活性 4、影响生理物质的合成、释放与转运 5、影响离子通道 6、影响核酸代谢 7、影响免疫机制 8、作用于受体
2.7 药物的立体结构对药效的影响
1.官能团间的距离对药效的影响
药物分子结构与活性的关系
根据药物的化学结构对生物活性的影响程度,或根据药物在分子水平上的作用方式,可把药物分成两种类型, 即非特异性结构药物(StrUCtUraHyNonspecificDrug)和特异性结构药物(StrUeIUralIySpecificDrug)0前者的药理作用 与化学结构类型的关系较少,主要受药物理化性质的影响。如较典型的全身吸入麻醉药,这类药物的化学结构可有 很大的差异,但其麻醉强度与分配系数(PartitionCoefficient)成正比。后者的作用依赖于药物分子特异的化学结构及 其按某种特异的空间相互排列。其活性与化学结构的关系密切,其作用与体内特定的受体的相互作用有关。受体 (ReCePtorS)是一种具有弹性三维结构的生物大分子(大部分为蛋白质,部分为糖蛋白或脂蛋白,也有将酶 (Enzymes)、核酸(Nucleicacids)和膜聚合体包括在内,统称受体。受体存在于细胞膜上和细胞膜内,具识别配体 (Ligand)的能力,该类药物与受体的结构互补,可选择性地与之结合成复合物。药物与受体结合可使受体兴奋,传 递信息,产生特定的生理生化和药理效应。受体对药物识别主要表现在结构互补和立体化学
药物分子结构与活性的关系
药物分子结构与活性的关系
摘要
药物的化学结构与活性的关系是药物化学研究的重要任务之一。药物在体内能否产生活性,主要取决于药物作 用的动力学时相和药效学时相。药物动力相的构效关系,简要介绍药物的转运、影响药物到达作用部位的因素等。 能否药物到达作用部位,主要受三个因素的影响,即药物的吸收、分布和与蛋白的结合等。而药物的分配系数、溶 解度及解离度与上述三个因素密切相关。药效相的构效关系,详细介绍药物-受体的相互作用和立体因素对药效的影 响。药物-受体如何相互作用,如何产生药效?主要取决于药物的结构、电子云密度分布、药物-受体的亲和力(即氢 键、离子键、共价键、疏水作用及范德华力等)和药物分子的立体因素。
药学综合考研之药物化学构效关系总结
药学综合考研之药物化学构效关系总结一、概述药物化学构效关系,即药物化学结构与生物活性之间的关系,是药学领域的重要研究方向之一。
在药学综合考研中,药物化学构效关系的学习和理解对于理解药物作用机制、药物设计与优化、新药研发等方面具有至关重要的意义。
药物化学构效关系研究主要关注药物分子结构与其生物活性之间的相互影响和关联。
通过系统研究药物化学结构的变化如何影响其生物活性,我们可以更好地理解药物作用的本质,为新药的设计和研发提供理论基础和实践指导。
药物化学构效关系不仅涉及到化学结构的知识,还需要深入理解生物学、生理学、病理学等领域的知识,是一个多学科交叉的领域。
随着现代科学技术的发展,尤其是计算机技术和生物技术的不断进步,药物化学构效关系的研究方法也在不断发展和完善。
从传统的合成、提取、筛选等实验方法,到现代的计算机模拟、大数据分析等高科技手段,药物化学构效关系的研究正在逐步深入。
对药物化学构效关系的考研复习者来说,不仅需要掌握基础的理论知识,还需要具备跨学科的综合能力,以适应这个领域的研究和发展。
药物化学构效关系是药学研究的重要基础,对于指导新药设计、优化药物作用机制等方面具有重要意义。
本文旨在对药学综合考研中的药物化学构效关系进行总结,以期为考研学生提供系统的学习资料和复习指导。
1. 简述药物化学构效关系的重要性。
药物化学构效关系,作为药物设计与研发领域中的核心原理,具有极其重要的地位。
其重要性主要体现在以下几个方面:药物化学构效关系是药物研发的基础。
药物的疗效与其化学结构之间有着密切的联系,通过对药物分子结构的深入研究,可以预测和优化药物的生物活性,从而有针对性地设计合成新药物。
构效关系研究有助于提高药物研发的效率。
随着现代医药产业的飞速发展,药物研发已经进入了一个竞争激烈的时代,如何快速、高效地发现和优化具有优良药效的药物成为了一个重要的挑战。
而药物化学构效关系的研究,可以指导科研人员快速筛选出具有潜力的药物分子,从而大大提高药物研发的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H H O N H O NH
如巴比妥类药物结构变化
• 巴比妥类药物,在5位有两个烃基取代时,显示出 镇静安眠作用
O NH O N H O OHO N H O N O-
苯巴比妥的生物活性
• 5位双取代后不能转变成芳环结构
– pKa通常在7.0-8.5间,
• 在生理pH下,苯巴比妥约有50%左右以分 子型存在,可进入中枢而起作用
如全身麻醉药,从其化学结构上看,有气体、 低分子量的卤烃、醇、醚、烯烃等,其作用 主要受药物的脂水(气)分配系数的影响。
特异性结构药物
Structurally Specific Drug 作用依赖于药物分子的特异的化学结构,及其按某种 特异的空间相互关系排列 作用与体内特定的受体的相互作用有关
设计新药时必须考虑到化合物的理化性质
药物口服给药后,经胃肠道吸收进入血液 药物在转运过程中,必须通过各种生物膜,才能 到达作用部位或受体部位 药物分布到作用部位并且在作用部位达到有效浓 度,是药物与受体结合的基本条件 能和受体良好结合的药物并不一定具有适合转运 过程的最适宜理化性质参数
药物产生药效的两个主要决定因素
药物的理化性质 及药物和受体的相互作用
物理性质
药物的性质 药物结构 药物的空间 立体化学
NH3 NH3 C NH O CH2 NH C O CH2 CH2 O CH2 CH2 CH2 C O O CH2 O CH2 O CH2 O CH2 H H H H H H H H N N N N N N N N H H H H H H H H CH2 O CH2 O CH2 O CH2 O S N NH N H O
RCOOH
Ka
RCOO- + H+
解离常数(dissociation Constant)
化合物的可离子化能力称解离常数,用pKa表示 解离常数是水溶液中具有一定离解度的溶质的 极性参数
RCOOH
Ka
RCOO- + H+
解离常数计算公式推导
RCOOH
Ka =
Ka
RCOO-
RCOO- + H+
带有电荷的蛋白多肽链
NH3 NH3 C NH O CH2 NH C O CH2 CH2 O CH2 CH2 CH2 C O O CH2 O CH2 O CH2 O CH2 H H H H H H H H N N N N N N N N H H H H H H H H CH2 O CH2 O CH2 O CH2 O S N NH N H O
弱酸性药物在胃中的吸收
• 在酸性的胃液中几乎不解离,呈分子型,易在胃中 吸收 – 苯巴比妥(pKa 7.4 )、阿司匹林(pKa 3.5 ) • 弱碱性的咖啡因和茶碱,在酸性介质中解离也很少, 在胃内易吸收
HO O O O
O H N O O N H
弱碱性药物在肠道中的吸收
• 在胃液中几乎全部呈离子型,很难吸收 • 在pH值较高的肠内呈分子型才被吸收
乳汁
鼻分泌物 精液 汗
[RCOOH] lg pKa pH [RCOO ]
绝经前阴道分泌物 绝经后阴道分泌物
公式应用
如果知道分子中官能团是酸性还是碱性,便可预 测该分子在给定pH下是否可以被离子化 如果知道该分子中官能团的pKa和分子周围环境 的pH,可定量预测分子的离子化程度
[RCOOH] lg pKa pH [RCOO ]
O NH O NH O
结构变化对脂水分配系数的影响
增加水溶性的基团
药物结构中增加氢键的给予体官能团或氢键的接受体官 能团时,可增加药物的整体水溶性 这类官能团越多,药物的亲水性越强 通过对这些官能团的数目,可以判断药物的溶解度趋势 该类官能团 -O -OH O O H H O -NH2 N N -COOH N O N -SO3H -CN
组氨酸 谷氨酸 酪氨酸 赖氨酸 色氨酸 精氨酸 半 胱氨酸 天门东氨酸
药物解离形式和未解离形式的变化
由于体内不同部位pH的情况不同,会影响药物的 解离程度,使解离形式和未解离形式药物的比例发 生变化 离子型与分子型的比率变化由酸(或碱的共轭酸) 的解离常数(pKa值)和体液介质的pH值决定
结构变化对脂水分配系数的影响 增加水溶性的基团
当药物结构中引入羟基 药物的水溶性加大,脂水分配系数下降 5~150倍 以羟基替换甲基 脂水分配系数下降2~170倍
结构变化对脂水分配系数的影响
增加脂溶性的基团
分子中如含有亲脂性的基团,一般会增加药 物的脂溶性 如烷基、卤原子、硫醚键和芳环等
[RCOOH] lg pKa pH [RCOO ]
[ RCOOH] [ RCOO ] [ RNH 3 ] 弱碱类: pKa pH lg [ RNH 2 ] 弱酸类:pKa pH lg
房水 静脉血 脑脊液 动脉血 脐带血 十二指肠 回肠末端
粪便 泪液
骨骼肌 前列腺液 唾液 胃液 尿
• 为了模拟脂质的两亲性
• 其性能近似于生物膜 – 与构成脂质膜的脂肪酸相似 – 有一个极性基团(伯醇) – 一个长的碳链 – 可与药物形成氢键 – 化学性质稳定 – 无紫外吸收,便于测定药物的浓度
OH
logP值
是构成整个分子的所有官能团的亲水性和疏水 性的总和 分子中的每一个取代基对分子整体的亲水性 和疏水性都有影响 logP=∑ π(fragments)
lg(分子型/离子型)= 4.12 – 7.4 = -3.28
O NH O N H O OHO N H O N O-
结构非特异性药物
Structurally Nonspecific Drug
结构特异性药物
Structurally Specific Drug
非特异性结构药物
Structurally Nonspecific Drug 药物的药理作用与化学结构类型的关系较少 主要受药物的理化性质的影响
药物主要靶点是不同的受体(酶、蛋白质)
活性与化学结构的关系密切
其活性除与药物分子的理化性质相关外,主要还与药 物分子与受体的相互作用和相互匹配有关
化学结构稍加变化,会直接影响其药效学性质
药物产生作用的两个重要因素
药物分布到作用部位并在作用部位达到有效的浓度 转运过程与药物的理化性质有关 药物在作用部位与受体的相互作用
化学性质
组氨酸
谷氨酸
酪氨酸
赖氨酸 色氨酸
精氨酸 半 胱氨酸 天门东氨酸
药物的化学结构
决定了它的理化性质(physicochemical properties)
是指一个分子所包含的官能团对其酸碱性、水 溶性、分配系数、晶体结构和立体化学等的影 响
并直接影响药物分子在体内的ADME
吸收(absorption)、分布(distribution)、 代谢(metabolism)和排泄(excretion) 药物的药代动力学性质(吸收、转运、分布、 代谢、排泄)会对药物在受体部位的浓度产生 直接的影响, 而药代动力学性质是由药物的理化性质决定的
(一)脂水分配系数与生物活性
药物需有适当的脂溶性和水溶性
药物要有一定的水溶性 水是生物系统的基本溶剂,体液、血液和细 胞浆液的实质都是水溶液。 药物要转运扩散至血液或体液,需要溶解在 水中 即要求有一定的水溶性(又称亲水性)
药物要有一定的脂溶性
而药物要通过脂质的生物膜(包括各种 细胞膜、线粒体和细胞核的外膜等), 需要有一定的脂溶性(又称亲脂性)
[ RCOOH] [ RCOO ] [ RNH 3 ] 弱碱类: pKa pH lg [ RNH 2 ] 弱酸类:pKa pH lg
苯巴比妥在不同pH时的解离百分数
pH 解离 2.0 0 4.0 99.96 0.04 6.0 3.83 7.0 28.47 8.0 9.0
非解离型 100
第一节 药物的化学结构 与生物活性的关系
Structure-Activity Relationships of Drugs(SAR)
概述
药物从给药到产生药效的过程
药剂相 药代动力相
可被吸收的药物 药物利用度
给药剂量
剂型崩解 药物溶出
吸收、分布 代谢、排泄
药效相
可产生作用的药物 生物利用度
在靶组织中药物 与受体相互作用
引入卤素原子,亲脂性增高,脂水分配系数增 加2~20倍
O
O
药物作用与脂溶性的关系
药物因其作用不同,对脂溶性有不 同的要求 药物脂水分配系数应有一个适当的 范围,才能显示最好的药效
作用于中枢神经系统的药物
需通过血脑屏障,适当增加药物亲脂 性可增强活性,降低亲脂性可使活性 降低 易于穿血脑屏障的适宜的脂水分配系 数logP 在2左右
效应
药物结构对每一相都产生重大影响
理想的药物应该具有安全性、有效性和可控 性,而这些性质与药物的化学结构是密切相 关的 构效关系(SAR)
Structure-Activity Relationships
药物的结构与活性的关系
药物分类
根据药物药物化学结构对生物活性的影响程 度(或药物在体内的作用方式)
脂水分配系数 (lipid-water partition coefficient)
是药物在有机相(脂相)中和水中分 配达到平衡时浓度之比 脂水分配系数用P表示 常用logP表示脂水分配系数的大小 P或logP值越大,则表示药物的亲脂性 越高
lgP
用正辛醇(5位双取代基的总碳数
总碳数以4~8为最好
使脂水分配系数保持一定比值 具有良好的镇静催眠作用