二次方程试题练习题
二元二次方程练习题及解析
二元二次方程练习题及解析一、练习题1. 解方程组:{(x + y)² = 25(x - y)² = 92. 解方程组:{(x + y)² = 144(x - y)² = 163. 解方程组:{(2x + y)² = 25(4x - y)² = 814. 解方程组:{(3x + 2y)² = 16(2x - y)² = 95. 解方程组:{(2x + y)² = 36(3x - y)² = 49二、解析1. 解方程组:{(x + y)² = 25(x - y)² = 9解:将两个方程展开得到:(x² + 2xy + y²) = 25 (1)(x² - 2xy + y²) = 9 (2)将(2)式两边同时乘以4,并与(1)式相加得到: 5x² = 61解得:x = ±√(61/5)将x的值代入(1)或(2)式中,解得相应的y值。
2. 解方程组:{(x + y)² = 144(x - y)² = 16解:将两个方程展开得到:(x² + 2xy + y²) = 144 (1)(x² - 2xy + y²) = 16 (2)将(2)式两边同时乘以9,并与(1)式相加得到: 10x² = 208解得:x = ±√(208/10)将x的值代入(1)或(2)式中,解得相应的y值。
3. 解方程组:{(2x + y)² = 25(4x - y)² = 81解:将两个方程展开得到:(4x² + 4xy + y²) = 25 (1)(16x² - 8xy + y²) = 81 (2)将(2)式两边同时乘以1/9,并与(1)式相加得到: 5x² = 74/9解得:x = ±√(74/45)将x的值代入(1)或(2)式中,解得相应的y值。
完整版)一元二次方程100道计算题练习(附答案)
完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
一元二次方程练习题经典题目140道带答案
一元二次方程练习题经典题目140道带答案一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号得分一二三总分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x-2)=3x的解为()A。
x=5 B。
x1=0,x2=5 C。
x1=2,x2=0 D。
x1=0,x2=-52.下列方程是一元二次方程的是()A。
ax2+bx+c=0 B。
3x2-2x=3(x2-2) C。
x3-2x-4=0 D。
(x-1)2+1=03.关于x的一元二次方程x2+a2-1=0的一个根是,则a的值为()A。
-1 B。
1 C。
1或-1 D。
34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A。
12(1+x)=17 B。
17(1-x)=12 C。
12(1+x)2=17 D。
12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A。
2秒钟 B。
3秒钟 C。
4秒钟 D。
5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A。
x(x+12)=210 B。
x(x-12)=210 C。
2x+2(x+12)=210 D。
2x+2(x-12)=2107.一元二次方程x2+bx-2=0中,若b<0,则这个方程根的情况是()A。
有两个正根B。
有一正根一负根且正根的绝对值大C。
有两个负根 D。
有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A。
公式法解一元二次方程练习题及答案
公式法解一元二次方程练习题一.选择题(共11小题)1.一元二次方程x2+x﹣1=0的根为()A .B .C .D .2.如果一元二次方程x2+px+q=0能用公式法求解,那么必须满足的条件是()A.p2﹣4q≥0B.p2﹣4q≤0C.p2﹣4q>0D.p2﹣4q<03.当﹣1<k<0时,关于x的一元二次方程x2+4x﹣k =0根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.有一个实数根D.没有实数根4.关于x的一元二次方程x2﹣(2m﹣1)x﹣2m=0(其中m)的根的情况是()A.没有实数根B.有实数根C.有两个相等的实数根D.有两个不等的实数根5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m B.m C.mD.m6.在平面直角坐标系中,若直线y=﹣2x+a不经过第一象限,则关于x的方程ax2+x+2=0的实根的个数是()A.0B.1C.2D.1或27.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k且k≠1C.k D.k8.关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.49.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.k B.kC.k且k≠0D.k且k≠010.如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0B.b2﹣4ac≤0C.b2﹣4ac>0D.b2﹣4ac<011.下列各项中,以x为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0二.填空题(共2小题)12.关于x的一元二次方程(m﹣2)x2+3x﹣1=0有两个不等实数根,则实数m的取值范围是.13.如图,点A在数轴的负半轴,点B在数轴的正半轴,且点A对应的数是2x﹣1,点B对应的数是x2+x,已知AB=5,则x的值为.三.解答题(共5小题)14.已知关于x的方程x2﹣(k+3)x+3k=0.(1)求证:无论k取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a,b,c,其中a =1,并且b,c恰好是此方程的两个实数根,求此三角形的周长.15.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?16.已知关于x的方程kx2﹣(k+2)x+2=0.(1)证明:不论k为何值,方程总有实数根;(2)k为何整数时,方程的根为正整数.17.(1)解方程(x﹣3)2=2x(3﹣x);(2)已知关于x的一元二次方程(a+c)x2+2bx+(a ﹣c)=0,其中a,b,c分别为△ABC三边的长.①如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;③如果△ABC是等边三角形,试求这个一元二次方程的根.18.已知关于x 的方程.(1)求证:无论k取何值,此方程总有实数根;(2)若x=1是这个方程的一个根,求k的值和它的另一个根;(3)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求这个等腰三角形的周长是多少?公式法解一元二次方程练习题参考答案与试题解析一.选择题(共11小题)1.一元二次方程x2+x﹣1=0的根为()A .B .C .D .【解答】解:x2+x﹣1=0由题意可得,a=1,b=1,c=﹣1,∵,∴,即,故选:B.2.如果一元二次方程x2+px+q=0能用公式法求解,那么必须满足的条件是()A.p2﹣4q≥0B.p2﹣4q≤0C.p2﹣4q>0D.p2﹣4q<0【解答】解:∵a=1,b=p,c=q,∴Δ=b2﹣4ac=p2﹣4q≥0时,一元二次方程x2+px+q=0能用公式法求解,故选:A.3.当﹣1<k<0时,关于x的一元二次方程x2+4x﹣k =0根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.有一个实数根D.没有实数根【解答】解:x2+4x﹣k=0,Δ=42+4k=4(4+k),∵﹣1<k<0,∴4+k>0,∴Δ>0,∴该方程有两个不等的实数根.故选:B.4.关于x的一元二次方程x2﹣(2m﹣1)x﹣2m=0(其中m)的根的情况是()A.没有实数根B.有实数根C.有两个相等的实数根D.有两个不等的实数根【解答】解:由题意,Δ=b2﹣4ac=[﹣(2m﹣1)]2﹣4×1×(﹣2m)=4m2﹣4m+1+8m=4m2+4m+1=(2m+1)2.∵m,∴(2m+1)2>0,∴方程有两个不相等的实数根.故选:D.5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m B.mC.m D.m 【解答】解:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴Δ=32﹣4×2m=9﹣8m=0,解得:m.故选:C.6.在平面直角坐标系中,若直线y=﹣2x+a不经过第一象限,则关于x的方程ax2+x+2=0的实根的个数是()A.0B.1C.2D.1或2【解答】解:∵直线y=﹣2x+a不经过第一象限,∴a≤0,∵ax2+x+2=0,当a=0,方程ax2+x+2=0为一元一次方程,即x+2=0,解得x=﹣2;方程有一个实数根,当a<0时,方程ax2+x+2=0为一元二次方程,∵Δ=1﹣8a>0,∴方程有2个实数根.故选:D.7.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k且k≠1C.k D.k【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴Δ=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k,故选:D.8.关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.4【解答】解:∵关于x的一元二次方程x2+bx+c=0有两个相等的实数根,∴Δ=b2﹣4c=0,∴b2=4c,∴b2﹣2(1+2c)=b2﹣4c﹣2=0﹣2=﹣2.故选:A.9.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.k B.kC.k且k≠0D.k且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x+3=0,∴k≠0,∵方程有两个实数根,∴Δ=(﹣2)2﹣4k×3≥0,解得k,∴k的取值范围是k且k≠0,故选:D.10.如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0B.b2﹣4ac≤0C.b2﹣4ac>0D.b2﹣4ac<0【解答】解:若一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,则b2﹣4ac≥0;故选:A.11.下列各项中,以x为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0【解答】解:利用公式法可知:A.x,故不符合题意.B.x,故不符合题意.C.x,故不符合题意.D.x,故符合题意.故选:D.二.填空题(共2小题)12.关于x的一元二次方程(m﹣2)x2+3x﹣1=0有两个不等实数根,则实数m 的取值范围是m且m≠2.【解答】解:∵关于x的一元二次方程(m﹣2)x2+3x ﹣1=0总有两个不相等的实数根,∴Δ>0且m﹣2≠0,∴9﹣4(m﹣2)×(﹣1)>0且m﹣2≠0,∴m 且m≠2.故答案为:m且m≠2.13.如图,点A在数轴的负半轴,点B在数轴的正半轴,且点A对应的数是2x﹣1,点B对应的数是x2+x,已知AB=5,则x的值为.【解答】解:根据题意,得:x2+x﹣(2x﹣1)=5,整理,得:x2﹣x﹣4=0,∵a=1,b=﹣1,c=﹣4,∴Δ=(﹣1)2﹣4×1×(﹣4)=17>0,则x,∴x1,x2,∵点A在数轴的负半轴,∴2x﹣1<0,即x,∴x,故答案为:.三.解答题(共5小题)14.已知关于x的方程x2﹣(k+3)x+3k=0.(1)求证:无论k取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a,b,c,其中a =1,并且b,c恰好是此方程的两个实数根,求此三角形的周长.【解答】(1)证明:∵关于x的方程x2﹣(k+3)x+3k =0,∴Δ=[﹣(k+3)]2﹣12k=k2+6k+9﹣12k=k2﹣6k+9=(k﹣3)2≥0,则无论k取何实数值,方程总有实数根;(2)解:当b=c时,k=3,方程为x2﹣6x+9=0,解得:x1=x2=3,此时三边长为1,3,3,周长为1+3+3=7;当a=b=1或a=c=1时,把x=1代入方程得:1﹣(k+3)+3k=0,解得:k=1,此时方程为:x2﹣4x+3=0,解得:x1=3,x2=1,当x'=1时,此时三边长为1,1,3,不能组成三角形,当x=3时,此时三边长为1,3,3,周长为3+3+1=7,综上所述,△ABC的周长为7.15.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?【解答】解:(1)[(m﹣1)x﹣(m+1)](x﹣1)=0,(m﹣1)x﹣(m+1)=0或x﹣1=0,所以x 1,x2=1;(2)x 1,由于m为整数,所以当m﹣1=1或2时,x为正整数,此时m=2或m=3,所以m为2或3时,此方程的两个根都为正整数.16.已知关于x的方程kx2﹣(k+2)x+2=0.(1)证明:不论k为何值,方程总有实数根;(2)k为何整数时,方程的根为正整数.【解答】解:(1)当k=0时,方程有根x=1;当k≠0时,Δ=(k+2)2﹣8k=(k﹣2)2≥0,综上,无论k为何值时,这个方程总有两个实数根;(2)当k=0时,方程有根x=1,符合题意;当k≠0时,∵kx2﹣(k+2)x+2=0,∴(kx﹣2)(x﹣1)=0,∴x 1,x2=1,∵方程的两个实数根都是正整数,∴k=1或2.综上,k的整数值为0、1、2.17.(1)解方程(x﹣3)2=2x(3﹣x);(2)已知关于x的一元二次方程(a+c)x2+2bx+(a ﹣c)=0,其中a,b,c分别为△ABC三边的长.①如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;③如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)(x﹣3)2=2x(3﹣x);移项得,(x ﹣3)2+2x(x﹣3)=0,∴(x﹣3)(x﹣3+2x)=0,∴(x﹣3)(3x﹣3)=0,∴x1=3,x2=1;(2)①△ABC为等腰三角形;理由如下:把x=﹣1代入方程得a+c﹣2b+a﹣c=0,则a=b,∴△ABC为等腰三角形;②△ABC为直角三角形;理由如下:∵方程有两个相等的实数根,∴Δ=(2b)2﹣4(a+c)(a﹣c)=0,即b2+c2=a2,∴△ABC为直角三角形;③∵△ABC为等边三角形,∴a=b=c,∴方程化为x2+x=0,解得x1=0,x2=﹣1.18.已知关于x 的方程.(1)求证:无论k取何值,此方程总有实数根;(2)若x=1是这个方程的一个根,求k的值和它的另一个根;(3)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求这个等腰三角形的周长是多少?【解答】解:(1)Δ=(2k+1)2﹣4×1×4(k)=4(k)2≥0,此时方程有两个实数根.综上所述,无论k取何值,此方程总有实数根.(2)若x=1是这个方程的一个根,则1﹣(2k+1)+4(k)=0,解得k=1,∴关于x的方程x2﹣3x+2=0,解方程得x1=1,x2=2,∴方程的另一根是2;(3)当a=4为底边,则b,c为腰长,则b=c,则Δ=0.∴4(k)2=0,解得:k.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为4,2,2,构不成三角形,当a=4为腰,则b=4为腰长,c为底,则16﹣4(2k+1)+4(k)=0,求得k,∴关于x的方程为x2﹣6x+8=0.解得x=2或4,∴c=2,∴周长为4+4+2=10.故这个等腰三角形的周长是10.。
一元二次方程试题及实际应用题总括
一元二次方程练习题一、填空1. 一元二次方程 化为一般形式为: , 二次项系数为: , 一次项系数为: , 常数项为: 。
2. 关于x 的方程 ,当 时为一元一次方程;当时为一元二次方程。
3. 已知直角三角形三边长为连续整数, 则它的三边长是 。
4. ; 。
5. 直角三角形的两直角边是3︰4, 而斜边的长是15㎝, 那么这个三角形的面积是 。
6. 若方程 的两个根是 和3, 则 的值分别为 。
7. 若代数式 与 的值互为相反数, 则 的值是 。
8. 方程 与 的解相同, 则 = 。
9. 当 时, 关于 的方程 可用公式法求解。
二、10. 若实数 满足 , 则 = 。
三、11.若 , 则 = 。
四、12.已知 的值是10, 则代数式 的值是 。
五、选择1. 下列方程中, 无论取何值, 总是关于x 的一元二次方程的是( )(A )02=++c bx ax (B )x x ax -=+221(C )0)1()1(222=--+x a x a (D )0312=-+=a x x 2. 若 与 互为倒数, 则实数 为( )(A )±21(B )±1 (C )±22 (D )±2 3. 若 是关于 的一元二次方程 的根, 且 ≠0, 则 的值为( )(A )1- (B )1 (C )21- (D )21 4. 关于 的一元二次方程 的两根中只有一个等于0, 则下列条件正确的是( )(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m5. 关于 的一元二次方程 有实数根, 则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤06. 已知 、 是实数, 若 , 则下列说法正确的是( )(A )x 一定是0 (B )y 一定是0 (C )0=x 或0=y (D )0=x 且0=y7. 若方程 中, 满足 和 , 则方程的根是( )(A )1, 0 (B )-1, 0 (C )1, -1 (D )无法确定六、解方程1. 选用合适的方法解下列方程(1))4(5)4(2+=+x x (2)x x 4)1(2=+(3)22)21()3(x x -=+ (4)31022=-x x四、解答题已知等腰三角形底边长为8, 腰长是方程 的一个根, 求这个三角形的腰。
初中数学解一元二次方程经典练习题(含答案)
初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。
一元二次方程试题
以下是一些一元二次方程的试题:
1.若方程x^2 - 4x + k = 0 有两个不相等的实数根,则k 的取值范围是
_______.
2.已知方程x^2 - 2x - 1 = 0 的两个根分别为x₁,x₂,则(x₁ - 1)^2 + (x₂ -
1)^2 = _______.
3.已知关于x 的一元二次方程x^2 - 2(m + 1)x + m^2 = 0.
(1) 若方程有两个不相等的实数根,求m 的取值范围;
(2) 在(1) 的条件下,若方程的两个根分别为x₁,x₂ (其中x₁ < x₂),且1/x₁ +
1/x₂ = -2,求m 的值.
4.已知关于x 的一元二次方程x^2 - 2(m - 1)x + m^2 = 0.
(1) 若方程有两个不相等的实数根,求m 的取值范围;
(2) 在(1) 的条件下,若方程的两个根分别为x₁,x₂ (其中x₁ < x₂),且(x₁ + 1)(x₂ + 1) = -8,求m 的值.
5.已知关于x 的一元二次方程x^2 - 2(m + 1)x + m^2 + 5 = 0.
(1) 若方程有两个不相等的实数根,求m 的取值范围;
(2) 在(1) 的条件下,若方程的两个根为x₁,x₂,且(x₁ - 1)^2 + (x₂ - 1)^2 = 10,求m 的值.
这些试题涵盖了一元二次方程的不同方面,包括判别式的应用、根与系数的关系、以及方程的求解等。
您可以根据自己的需要选择其中的一部分或全部进行练习。
一元二次方程100道计算题练习(附答案)
一元二次方程100 道计算题练习1、(x 4)2 5(x 4)2、(x 1)2 4x3、(x 3)2 (1 2x)24、2x2 10x 35、(x+5)2=166、2(2x-1)-x(1-2x)=07、x2 =64 8、5x2 - 25=0 9、8(3 -x)2 –72=010、3x(x+2)=5(x+2) 11、(1-3y)2+2(3y-1)=0 12、x 2 + 2x + 3=0 13、x 2 + 6x-5=0 14、x 2 -4x+ 3=0 15、x 2 -2x-1 =0 16、2x 2 +3x+1=0 17、3x 2 +2x-1 =0 18、5x 2 -3x+2 =0 19、7x 2 -4x-3 =0 20、-x 2 -x+12 =0 21、x 2 -6x+9 =0122、(3x2)2( 2x3) 223、x 2-3=4x2-2x-4=0 24、x25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-1228、2(x-3) 2=x 2-9 29、-3x 2+22x-24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x+8=0 32、3(x-5)2=x(5-x) 33、(x+2) 2=8x34、(x-2) 2=(2x+3)2 35、7x 2 2x 0 36、4t 2 4t 1 04 x 3 x x 3 0 38、6x 2 31x 35 0 39、2x3121 0 37、 2240、2x 2 23x 65 02补充练习:一、利用因式分解法解下列方程(x-2) 2=(2x-3)2 x 2 4x 0 3x(x 1) 3x 3x2-2 3 x+3=0 58516 0x2 x二、利用开平方法解下列方程1 y 2(2 1) 2 154(x-3)2=25 (3x 2)224三、利用配方法解下列方程x x 3 2 6x 12 02 5 2 2 0 x x 2 7x 10 0四、利用公式法解下列方程-3x 2+22x-24=0 2x(x-3)=x-3.3x2+5(2x+1)=0五、选用适当的方法解下列方程3(x+1) 2-3 (x +1)+2=0 (2x 1)2 9(x 3)2 x 2 2x 302 3 1 0 x x2 x1) ( 1)((x xx13 42)(3x 11)(x 2) 2 x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售 2 件,若商场平均每天盈利 1250 元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的 2 倍少 32 平方厘米,求大小两个正方形的边长.43、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少?4、如右图,某小在长 32 米,区规划宽 20 米的矩形场地ABCD 上修建三条同样宽的 3 条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为 566 米2,问小路应为多宽?5、某商店经销一种销售成本为每千克 40 元的水产品,据市场分析,若按每千克 50 元销售一个月能售出 500 千克;销售单价每涨 1 元,月销售量就减少 10 千克,商店想在月销售成本不超过 1 万元的情况下,使得月销售利润达到 8000 元,销售单价应定为多少?6.某工厂1998 年初投资100 万元生产某种新产品,1998 年底将获得的利润与年初的投资的和作为1999 年初的投资,到 1999 年底,两年共获利润 56 万元,已知 1999 年的年获利率比 1998 年的年获利率多 10 个百分点,求 1998 年和 1999 年的年获利率各是多少?5思考:1、关于x的一元二次方程2 4 0a 的一个根为0,则a的值为。
一元二次方程100道计算题练习(含答案)
一元二次方程100道计算题练习(含答案)214、x — 4x+ 3=02 15、x 2— 2x — 1 =0213、x + 6x — 5=01、(x 4)2 5(x 4)2、(x 1)2 4x3、(x 3)2 (1 2x)22 4、2x 10x 35、 (x+5) 2=166、2 (2x — 1)- x (1 — 2x ) =07、x 2 =64 8 5x 2 - 2=059、8 (3 -x ) 2 勺2=010、3x(x+2)=5(x+2)11、(1 — 3y ) 2+2 (3y — 1) =0212、x + 2x + 3=016、2x2+3x+1=0 17、3x2+2x—1 =0 18、5x2—3x+2 =0219、7x -4x-3 =0220、-x2 -x+12 =0221、x2-6x+9 =022、(3x 2)2(2x 3)223、x2-2x-4=0 24、x2-3=4x 25、3x 2+ 8 x—3= 0 (配方法) 26、(3x + 2)(x+ 3)= x+ 14 27、(x+1)(x+8)=-1228、2(x—3) 2= x 2—9 29、—3x 2+22x—24=30、(2x-1) 2 +3(2x-1) +2=031、2x 2—9x+8=32、3( x-5) 2=x(5-x) 33、(x+2) 2=8x34、(x—2) 2= (2x+3)2235、7x22x 0236、4t 24t 1 0237、4 x 3 x x 3 0238、6x231x 35 0239 、2x 3 121 0240、2x 23x 65 0补充练习: (x — 2) 2 = (2x-3)2 2x 4x 0X 2-2 -73 x+3=0 2x 5二、利用开平方法解下列方程 2(2y 1)2 5 4( x-3)、利用因式分解法解下列方程 3x( x 1) 3x 38x5 16 02=25(3x 2)2 24、利用配方法解下列方程3x26x 12 0X25 2x 2 0x27x 10 0四、利用公式法解下列方程3X2+5(2X+1)=0 —3x 2+ 22x —24= 0 2x (x—3) =x—3.五、选用适当的方法解下列方程(x+ 1) 2—3 (x + 1)+ 2 = 0 (2x 1)29(x 3)2x22x 3 0x(x 1)1 (x 1)( x 2)34x (x + 1)— 5x = 0. 3x(x — 3) = 2(x — 1) (x + 1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多 售2件,若商场平均每天盈利 1250元,每件衬衫应降价多少元2、两个正方形,小正方形的边长比大正方形的边长的一半多 面积的2倍少32平方厘米,求大小两个正方形的边长3、如图,有一块梯形铁板 ABCD, AB // CD,/ A=90°, AB=6 m , CD=4 m , AD=2 m ,现在梯形中裁 出一x 2 3x -2(3x 11)(x 2)2 4 cm ,大正方形的面积比小正方形的内接矩形铁板AEFG使E在AB上, F在BC上, G在AD上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽D5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少6•某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少思考:1、关于x的一元二次方程 a 2 x2x a2 4 0的一个根为0,贝U a的值为_______________2、若关于x的一元二次方程x2 2x k0没有实数根,则k的取值范围是___________________2 3 23、如果x x 1 0,那么代数式x 2x 7的值4、五羊足球队举行庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席5、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人6、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习(附答案)(1)x^2+17x+72=0答案:x1=-8x2=-9(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(21)x^2+13x-140=0答案:x1=7x2=-20(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(43)x^2+28x+180=0答案:x1=-10x2=-18(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(87)x^2+13x+12=0答案:x1=-1x2=-12(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6。
(完整版)一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1). 3(=11)2)(2答案第二章 一元二次方程备注:每题2.5分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。
第一节 一元二次方程的定义 练习题
第一节一元二次方程的定义练习题一.选择题(共12小题)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.1x2+4x=6C.x2﹣3x=x2﹣2D.(x+1)(x﹣1)=2x2.下列方程中一定是关于x的一元二次方程是()A.ax2+bx+c=0B.1x2+1x−2=0C.3(x+1)2=2(x+1)D.x2﹣x(x+7)=0 3.将一元二次方程3x2=5x﹣1化成一般式后,二次项系数和一次项系数分别为()A.3,5B.3,1 C.3x2,﹣5x D.3,﹣5 4.把方程x(x+1)=3(x﹣2)化成一般式ax2+bx+c=0(a>0)的形式,则a、b、c的值分别是()A.a=1,b=﹣2,c=﹣3B.a=1,b=﹣2,c=﹣6 C.a=1,b=﹣2,c=3D.a=1,b=﹣2,c=6 5.若方程kx2﹣2x+1=0是关于x的一元二次方程,则k的取值范围是()A.k>0B.k≠0C.k<0D.k为实数6.若(m﹣3)x m2−7−x+3=0是关于x的一元二次方程,则m的值为()A.±3B.﹣3 C.3D.±√7 7.若x=3是关于x的方程ax2﹣bx=6的解,则2023﹣6a+2b的值为()A.2019B.2020 C.2021D.20228.若关于x的一元二次方程x2+bx﹣2=0的一个根为x =﹣1,则b的值为()A.﹣1B.1C.﹣2D.29.已知x=2是一元二次方程x2+ax+b=0的解,则4a+2b+1的值是()A.﹣6B.﹣8C.﹣5D.﹣710.已知x=1是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.﹣1或2B.﹣1C.2D.011.若方程ax2+bx+c=0(a≠0)中,a,b,c满足4a+2b+c =0和4a﹣2b+c=0,则方程的根是()A.1,0B.﹣1,0C.1,﹣1D.2,﹣2 12.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2024,则一元二次方程a(x﹣1)2+b(x﹣1)+2=0必有一根为()A.2024B.2025C.2026D.2027二.填空题(共4小题)13.填空:在﹣4,﹣3,﹣2,﹣1,0,1,2,3,4这些数中,是一元二次方程x2﹣x﹣6=0的根的是.14.若关于x的一元二次方程(3a﹣6)x2+(a2﹣4)x+a+9=0没有一次项,则a=.15.若x=3是关于x的方程ax2﹣bx=6的解,则2024﹣6a+2b的值为.16.若m是方程x2﹣2x﹣1=0的根,则m2+1m2=.三.解答题(共3小题)17.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项:(1)4x2+3=5x;(2)3x2=5;(3)2x(x+5)=7;(4)(3x+2)(x﹣3)=2x﹣6.18.已知m是方程x2+x﹣1=0的一个根,求代数式m3+m2﹣m﹣1的值.19.请阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x所以x=y 2.把x=y2代入已知方程,得(y2)2+y2−1=0化简,得y2+2y﹣4=0故所求方程为y2+2y﹣4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别为已知方程根的相反数,则所求方程为:;(2)已知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.第一节一元二次方程的定义 练习题参考答案与试题解析一.选择题(共12小题)1.【解答】解:A 、当a ≠0时,是关于x 的一元二次方程,故此选项错误;B 、不是一元二次方程,故此选项错误;C 、不是一元二次方程,故此选项错误;D 、是一元二次方程,故此选项正确; 故选:D .2.【解答】解:A 、a =0时是一元一次方程,故A 不符合题意;B 、是分式方程,故B 不符合题意;C 、是一元二次方程,故C 符合题意;D 、是一元一次方程,故D 不符合题意; 故选:C .3.【解答】解:一元二次方程3x 2=5x ﹣1化成一般式为:3x 2﹣5x +1=0,故二次项系数是3,一次项系数是﹣5. 故选:D .4.【解答】解:去括号得,x 2+x =3x ﹣6, 移项得,x 2﹣2x +6=0,所以a 、b 、c 的值可以分别是1,﹣2,6. 故选:D .5. 【解答】解:根据题意得:k ≠0. 故选:B .6.【解答】解:∵(m ﹣3)x m 2−7−x +3=0是关于x 的一元二次方程, ∴{m −3≠0m 2−7=2, 解得m =﹣3. 故选:B .7.【解答】解:把x =3代入方程,得:9a ﹣3b =6,即:3a ﹣b =2,∴2023﹣6a +2b =2023﹣2(3a ﹣b )=2023﹣2×2=2019; 故选:A .8.【解答】解:因为关于x 的一元二次方程x 2+bx ﹣2=0的一个根为x =﹣1,所以将x =﹣1代入方程可得1﹣b ﹣2=0, 解得b =﹣1, 故选:A .9.【解答】解:∵x =2是一元二次方程x 2+ax +b =0的解,∴4+2a +b =0, ∴2a +b =﹣4,∴4a +2b +1=2(2a +b )+1=2×(﹣4)+1=﹣7, 故选:D .10.【解答】解:把x =1代入(m ﹣2)x 2+4x ﹣m 2=0得:m ﹣2+4﹣m 2=0, ﹣m 2+m +2=0,解得:m 1=2,m 2=﹣1,∵(m ﹣2)x 2+4x ﹣m 2=0是一元二次方程, ∴m ﹣2≠0, ∴m ≠2, ∴m =﹣1, 故选:B .11.【解答】解:∵ax 2+bx +c =0(a ≠0), 把x =2代入得:4a +2b +c =0,即方程的一个解是x =2, 把x =﹣2代入得:4a ﹣2b +c =0, 即方程的一个解是x =﹣2, 故选:D .12.【解答】解:把方程a (x ﹣1)2+b (x ﹣1)+2=0看作关于(x ﹣1)的一元二次方程,∵关于x 的一元二次方程ax 2+bx +2=0(a ≠0)有一根为x =2024,∴关于x﹣1的一元二次方程a(x﹣1)2+b(x﹣1)+2=0有一根为x﹣1=2024,解得x=2025,∴一元二次方程a(x﹣1)2+b(x﹣1)+2=0必有一根为x=2025.故选:B.二.填空题(共4小题)13.填空:在﹣4,﹣3,﹣2,﹣1,0,1,2,3,4这些数中,是一元二次方程x2﹣x﹣6=0的根的是3,﹣2.【解答】解:x2﹣x﹣6=0,(x﹣3)(x+2)=0∴x1=3,x2=﹣2.故本题的答案是3,﹣2.14.若关于x的一元二次方程(3a﹣6)x2+(a2﹣4)x+a+9=0没有一次项,则a=﹣2.【解答】解:由题意得:a2﹣4=0,且3a﹣6≠0,解得:a=﹣2,故答案为:﹣2.15.若x=3是关于x的方程ax2﹣bx=6的解,则2024﹣6a+2b的值为2020.【解答】解:∵x=3是关于x的方程ax2﹣bx=6的解,∴a×32﹣3b=6,化简,得:3a﹣b=2,∴2024﹣6a+2b=2024﹣2(3a﹣b)=2024﹣2×2=2024﹣4=2020,故答案为:2020.16.若m是方程x2﹣2x﹣1=0的根,则m2+1m2=6.【解答】解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,即m2﹣1=2m,∴m2+1m2=(m−1m)2+2=(m2−1m)2+2=22+2=6.故答案为:6.三.解答题(共3小题)17.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项:(1)4x2+3=5x;(2)3x2=5;(3)2x(x+5)=7;(4)(3x+2)(x﹣3)=2x﹣6.【解答】解:(1)移项,得4x2﹣5x+3=0,∴其二次项系数是4,一次项系数是﹣5,常数项是3;(2)移项,得3x2﹣5=0,∴其二次项系数是3,一次项系数是0,常数项是﹣5;(3)去括号,得2x2+10x=7,移项,得2x2+10x﹣7=0,∴其二次项系数是2,一次项系数是10,常数项是﹣7;(4)去括号,得3x2﹣7x﹣6=2x﹣6,移项并合并,得3x2﹣9x=0,两边都除以3,得x2﹣3x=0,∴其二次项系数是1,一次项系数是﹣3,常数项是0.18.已知m是方程x2+x﹣1=0的一个根,求代数式m3+m2﹣m﹣1的值.【解答】解:把x=m代入方程得:m2+m﹣1=0,即m2+m=1,∴m3+m2﹣m﹣1=m(m2+m)﹣m﹣1=m﹣m﹣1=﹣1.即m3+m2﹣m﹣1=﹣1.19.请阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x所以x=y 2.把x=y2代入已知方程,得(y2)2+y2−1=0化简,得y2+2y﹣4=0故所求方程为y2+2y﹣4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别为已知方程根的相反数,则所求方程为:y2﹣y﹣2=0;(2)已知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【解答】解:(1)设所求方程的根为y,则y=﹣x所以x=﹣y.把x=﹣y代入已知方程,得y2﹣y﹣2=0,故所求方程为y2﹣y﹣2=0;(2)设所求方程的根为y,则y=1x(x≠0),于是x=1y(y≠0)把x=1y代入方程ax2+bx+c=0,(a≠0),得a(1y)2+b•1y+c=0去分母,得a+by+cy2=0.若c=0,有ax2+bx=0,即x(ax+b)=0,可得有一个解为x=0,不符合题意,因为题意要求方程ax2+bx+c=0有两个不为0的根.故c≠0,故所求方程为cy2+by+a=0(c≠0),(a≠0).。
(完整版)一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习1、(x 4)25(x 4) 2、(x 1)24x 3、(x 3)2(1 2x)24、2x210x 35、〔x+5〕2=166、2〔2x-1〕-x〔1-2x〕=07、x2=648、5x229、8〔3-x〕2–72=0-=0510、3x(x+2)=5(x+2) 11、〔1-3y〕2+2〔3y-1〕=0 12、x2+2x+3=013、x2+6x-5=0 14、x2-4x+3=0 15、x2-2x-1=016、2x2+3x+1=0 17、3x2+2x-1=0 18、5x2-3x+2=019、7x2-4x-3=0 20、-x2-x+12=0 21、x2-6x+9=022、(3x 2)2(2x 3)223、x2-2x-4=0 24 、x2-3=4x25、3x2+8x-3=0〔配方法〕26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-1228、2(x-3)2=x2-9 29、-3x2+22x-24=0 30、〔2x-1〕2+3〔2x-1〕+2=031、2x2-9x+8=0 32、3〔x-5〕2=x(5-x) 33 、(x+2)2=8x34、(x-2)2=(2x+3)235、7x22x036、4t24t12xx3038、6x231x350237、4x339、2x31210 40、2x223x 65 0一、用因式分解法解以下方程(x-2)2=(2x-3)2x24x03x(x1)3x3x2-2 3x+3=0 x 528x 5 16 0二、利用开平方法解以下方程(2y1)214〔x-3〕2=25(3x2)2245三、利用配方法解以下方程x252x203x26x120x27x100四、利用公式法解以下方程-3x2+22x-24=02x〔x-3〕=x-3.3x2+5(2x+1 )=0五、选用适当的方法解以下方程(x+1)2-3(x+1)+2=0(2x1)29(x3)2x22x302x(x 1)(x1)(x2 )314(3x 11)(x 2) 2 x〔x+1〕-5x=0. 3x(x-3)=2(x-1)(x+1).答案第二章一元二次方程备注:每题分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。
二次方程求解方法经典练习题(6套)附带详细答案
二次方程求解方法经典练习题(6套)附带详细答案以下是六套经典的二次方程求解练题,每题附有详细的答案解析。
希望对你的研究和练有所帮助!第一套练题1. 求解方程 $2x^2 + 5x - 3 = 0$ 的根。
解答:首先使用因式分解法将方程进行因式分解得到 $(2x - 1)(x + 3) = 0$,然后令每个因式为零,解得 $x = \frac{1}{2}$ 和 $x = -3$。
2. 求解方程 $3x^2 - 4x + 1 = 0$ 的根。
解答:可以使用求根公式 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 求解该方程。
代入方程的系数得到 $x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$,计算得到 $x = \frac{1}{3}$ 和 $x = 1$。
...第二套练题1. 求解方程 $x^2 - 7x + 12 = 0$ 的根。
解答:使用因式分解法将方程进行因式分解得到 $(x - 3)(x - 4) = 0$,然后令每个因式为零,解得 $x = 3$ 和 $x = 4$。
2. 求解方程 $2x^2 + 7x - 3 = 0$ 的根。
解答:可以使用求根公式 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 求解该方程。
代入方程的系数得到 $x = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}$,计算得到 $x = -3$ 和 $x = \frac{1}{2}$。
...第三套练题...第四套练题...第五套练题...第六套练题...以上是附带详细答案的二次方程求解经典练习题,希望能够帮助你巩固和提高二次方程的解题能力!。
二次方程习题
一元二次方程练习题1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且2.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2B .2-C .12D .923.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定5.实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______ 7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程2x qx p ++=的两实根,则p = _____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ . 11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.二次函数练习题1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ . 3.求下列二次函数的最值: (1) 2245y x x =-+; (2) (1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数x x y 232+--=的最大值和最小值.7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?8.已知关于x 的函数222y x ax =++在55x -≤≤上.(1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.9.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值和最小值(t 为常数).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九数试题1
一、选择题:
一定是一元二次方程的有 . A. 1个 B. 2个 C. 3个 D. 4个
2.方程2x 2=1的一次项系数为 .A. 2 B. 1 C. -1 D. 0
3、方程5x 2-125=0的根是( )A.5 B .-5 C.±5 D.无实根
4.方程3x 2-1=0的解是( ) A.x =±31B.x =±3 C.x =±3
3D.x =±3 5.关于x 的方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )
A. m ≠0
B. m =2
C. m =-2
D. m ≠±2
6.已知一元二次方程(2 x+1)(4 x —1)=3x 2+2化成一般形式后a,b,c 的值( ) A.
8,2,1 B.5,-2,-1 C.5,2,-3 D.4,6,-3
7.下列函数不属于二次函数的是( )A ,y = 2
1x (x -1)2 B, y=(x-1)(x+2) C,y=1-3 x 2 D,y=2(x+3)2-2x
8.关于x 的一元二次方程(m-1)x 2+x +m 2+2m-3=0有一根为0,则m 的值是( )
A. 1
B. -3
C. 1或-3
D. 2 或-4
二、填空题:
9、一元二次方程5 x 2=75的解是_________
10、方程-5x 2+1=6x 根的情况是_________ .
11、将方程(x +1)2=2x 化成一般形式为__________ .
12、方程2x 2=-8化成一般形式后,一次项系数为_________,常数项为__________
13.写出一个以-4和3为根的一元二次方程是 .
14.若方程(a-1)x 2+x -2=0是关于x 的一元二次方程,则a 的取值范围是 .
15.若x 2+6 x+m 是完全平方式,则m 的值是 .
16.关于x 的一元二次方程kx 2-12x +9=0有两个不相等的实数根,则k 的取值范围是 .
三、解答题:(本大题共56分)
17.用适当的方法解下列方程:
⑴. x 2=12 ⑵.x 2-4x -12=0
⑶. 5(x-3) = 2x (3- x ) ⑷.(x +1)2-144=0
18.若关于x 的一元二次方程(a-1)x 2+x -2=0有实数根,求a 的取值范围
19、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?
20、李大爷家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125㎏降至2000㎏(全球人均目标碳排放量),则李大爷家未来两年人均碳排放量平均每年须降低的百分率是多少。