上海市高考数学真题卷

合集下载

上海市(新版)2024高考数学人教版真题(综合卷)完整试卷

上海市(新版)2024高考数学人教版真题(综合卷)完整试卷

上海市(新版)2024高考数学人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在中,,且交于点,,则()A.B.C.D.第(2)题有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A.B.C.D.第(3)题已知向量,,则()A.B.C.D.第(4)题将个和个随机排成一行,则个不相邻的概率为()A.0.3B.0.5C.0.6D.0.8第(5)题执行如图所示的程序框图,则输出s的值为()A.B.C.D.第(6)题已知直三棱柱A.B.C.D.第(7)题已知复数,则在复平面内对应的点的坐标为()A.B.C.D.第(8)题已知函数是定义在上的奇函数且在上可导,若恒成立,则()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列说法正确的是()A.命题“,”的否定是“,”B.用二分法求函数在内的零点近似解时,在运算过程中得到,,,则可以将看成零点的近似值,且此时误差小于C.甲、乙、丙、丁四人围在圆桌旁,有种不同的坐法D.已知为平面直角坐标系中一点,将向量绕原点逆时针方向旋转角到的位置,则点坐标为第(2)题《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵ABC−A1B1C1中,AC⊥BC,且AA1═AB═2.下列说法正确的是()A.四棱锥为“阳马”、四面体为“鳖臑”.B.若平面与平面的交线为,且与的中点分别为M、N,则直线、、相交于一点.C.四棱锥体积的最大值为.D.若是线段上一动点,则与所成角的最大值为.第(3)题下列函数中最小值为2的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设,若,则的最大值为____________第(2)题若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小正值是_____________.第(3)题若函数的导函数为,且满足,则_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线C:,圆,其中.圆与双曲线有且仅有两个交点,线段的中点为.(1)记直线的斜率为,直线的斜率为,求.(2)当直线的斜率为3时,求点坐标.第(2)题某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)第(3)题已知函数.(1)讨论函数在上的单调性;(2)求证:.第(4)题已知函数.(1)若轴为曲线的切线,试求实数的值;(2)已知,若对任意实数,均有,求的取值范围.第(5)题将正奇数数列1,3,5,7,9…的各项按照上小下大、左小右大的原则写成如图的三角形数表.(1)设数表中每行的最后一个数依次构成数列,求数列的通项公式;(2)设,求数列的前n项和.。

2024年高考数学上海卷 (含答案)

2024年高考数学上海卷 (含答案)

2024年普通高等学校招生全国统一考试数学(上海卷)一、 填空题本题共12小题,满分54分。

1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得0分。

1、 设全集{}U 1,2,3,4,5=,集合{}A 24=,,求A =_________________。

2、 已知()01, 0x f x x >=≤ ,()f x =______________。

3、 不等式2230x x −−<的解集为_________________。

4、 已知()3f x x a =+,且()f x 是奇函数,则a =___________________。

5、 已知()2,5a =,()6b k =,,//a b ,则k 的值为________________。

6、 在()1nx +的展开式中,若各项系数和为32,则展开式中2x 的系数为__________。

7、 已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为_______。

8、 某校举办科学竞技比赛,有A,B,C,3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题,小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是______。

9、 已知虚数z ,其实部为1,且()2z m m R z+=∈,则实数m 为____________。

10、设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,则集合中元素个数的最大值为____________。

11、海上有灯塔O,A,B,货船T,如图,已知A 在O 的正东方向,B 在O 的正北方向,O 到A,B的距离相等,165BTO ∠=°,37ATO ∠=°,则BOT ∠=____________。

高考数学试题上海题及答案

高考数学试题上海题及答案

高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。

由于值域为[0, +∞),所以函数的零点个数为2。

2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。

又因为z的实部与虚部的和为0,即a + b = 0。

解得a = 1, b = -1。

3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。

4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。

5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。

6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。

上海市(新版)2024高考数学统编版测试(综合卷)完整试卷

上海市(新版)2024高考数学统编版测试(综合卷)完整试卷

上海市(新版)2024高考数学统编版测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知拋物线的准线过双曲线的左焦点,点为双曲线的渐近线和拋物线的一个公共点,若到抛物线焦点的距离为5,则双曲线的方程为()A.B.C.D.第(2)题世界大学生运动会(简称大运会)由国际大学生体育联合会主办,每两年举办一届,是规模仅次于奥运会的世界综合性运动会,第31届大运会将于2023年7月28日至8月8日在成都召开.为办好本届大运会,组委会精心招募了一批志愿者,现准备将甲、乙两名志愿者安排进“东安湖体育公园”,“凤凰山体育公园”,“四川省体育馆”工作,每人只能在一个场馆工作.若每位志愿者被分到各个场馆的可能性相同,则甲,乙两人被安排在同一个场馆的概率为()A.B.C.D.第(3)题若,则()A.B.C.D.第(4)题已知函数的最小值是,则实数的取值范围是()A.B.或C.D.或第(5)题已知函数,当时,恒成立,则的取值范围为()A.B.C.D.第(6)题已知复数是方程的一个根,则实数的值是()A.B.C.D.第(7)题已知,则的值为()A.B.C.D.第(8)题,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知复数,,,则()A.B.的实部依次成等比数列C.D.的虚部依次成等差数列第(2)题某工厂生产甲、乙、丙三种不同型号的产品,产量分别为360、240、120,为检验产品的质量,现需从以上所有产品中抽取一个容量为60的样本进行检验,则下列说法正确的是()A.如果采用系统抽样的方法抽取,不需要先剔除个体B.如果采用分层抽样的方法抽取,需要先剔除个体C.如果采用系统抽样的方法抽取,抽取过程不需要运用简单随机抽样的方法D.如果采用分层抽样的方法抽取时,所有产品被抽中的概率相等第(3)题已知函数,下列命题正确的是()A.若是函数的极值点,则B.若是函数的极值点,则在上的最小值为C.若在上单调递减,则D.若在上恒成立,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若,,,则实数的取值范围是__________.第(2)题已知集合,.若,则实数的取值范围是______________________________.第(3)题已知菱形的边长为,,.当时, ___________;当取得最小值时,___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)若曲线与有一条斜率为2的公切线,求实数的值;(2)设函数,讨论的单调性.第(2)题已知函数.(1)当时,讨论函数的单调性,并证明:;(2)若函数与的图象恰有三个不同的交点,求实数的取值范围.第(3)题设函数,.(1)若对任意,恒成立,求的取值集合;(2)设,点,点,直线的斜率为求证: .第(4)题已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,证明:对任意的,.第(5)题11分制乒乓球比赛,每赢一球得1分,当某局打成平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的比赛结果相互独立.在某局比赛双方打成平后,甲先发球.(1)求再打2球该局比赛结束的概率;(2)两人又打了个球该局比赛结束,求的数学期望;(3)若将规则改为“打成平后,每球交换发球权,先连得两分者获胜”,求该局比赛甲获胜的概率.。

2023上海高考数学试题及答案

2023上海高考数学试题及答案

2023上海高考数学试题及答案2023年上海高考数学试题及答案一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x - 3,下列哪个选项是f(2)的值?A. 1B. -1C. 5D. 7答案:A2. 若向量a = (3, 4),向量b = (-1, 2),则向量a与向量b的数量积为?A. 2B. -2C. 10D. -10答案:A3. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第5项a5的值?A. 17B. 14C. 11D. 8答案:A4. 若函数g(x) = x^2 - 4x + 3,求g(0)的值?A. 3B. 1C. -1D. 0答案:A5. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a = 2,b = 1,求双曲线的渐近线方程?A. y = ±x/2B. y = ±2xC. y = ±xD. y = ±1/2x答案:A6. 若复数z = (1 + i) / (1 - i),求z的共轭复数?A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:B7. 已知三角形ABC的内角A,B,C满足A + B = 2C,且sinA = 2sinBcosC,求角C的度数?A. 30°B. 45°C. 60°D. 90°答案:C8. 已知函数h(x) = ln(x),求h'(x)?A. 1/xB. xC. ln(x)D. 1答案:A9. 若直线l:y = 2x + 3与抛物线C:y^2 = 4x相切,求切点的横坐标?A. 1B. 3/2C. 3D. 9/4答案:D10. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)?A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^3 - 3x^2 + 2答案:A二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 1,公比q = 2,求第4项b4的值?答案:1612. 若向量a = (1, -2),向量b = (2, 3),则向量a与向量b的夹角的余弦值为?答案:-1/√1713. 已知函数f(x) = x^2 - 6x + 8,求f(1)的值?答案:314. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心的坐标?答案:(2, 3)15. 已知函数f(x) = sin(x) + cos(x),求f'(x)?答案:cos(x) - sin(x)三、解答题(共40分)16. (10分)已知函数f(x) = x^3 - 3x^2 + 2x - 1,求f(x)的单调区间和极值点。

上海市(新版)2024高考数学统编版真题(强化卷)完整试卷

上海市(新版)2024高考数学统编版真题(强化卷)完整试卷

上海市(新版)2024高考数学统编版真题(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知平面上点,,满足,且,点满足,动点满足,则的最小值为()A.B.C.1D.1或第(2)题已知函数,满足,则实数的值为()A.B.C.1D.2第(3)题已知向量若则与的夹角为()A.B.C.D.第(4)题已知向量,,若,则实数的值是()A.B.C.D.第(5)题第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O1,O2,O3,O4,O5,若双曲线C以O1,O3为焦点、以直线O2O4为一条渐近线,则C的离心率为()A.B.C.D.2第(6)题已知为不共线的两个单位向量,为非零实数,设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第(7)题设为双曲线的左、右焦点,直线过左焦点且垂直于一条渐近线,直线与双曲线的渐近线分别交于点,点在第一象限,且,则双曲线的离心率为()A.B.C.D.第(8)题已知集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,分别是双曲线的左、右焦点,过且倾斜角为的直线交双曲线C 的右支于A ,B 两点,I 为的内心,O 为坐标原点,则下列结论成立的是( )A.若C 的离心率,则的取值范围是B .若且,则C 的离心率C.若C 的离心率,则D .过作,垂足为P ,若I 的横坐标为m ,则第(2)题已知数列的首项,则( )A.为等差数列B .C .为递增数列D .的前20项和为10第(3)题投掷一枚均匀的骰子8次,记录每次骰子出现的点数.根据统计结果,可以判断一定出现点数6的是( )A .第25百分位数为2,极差为4B .平均数为,第75百分位数为C .平均数为3,方差为3D .众数为4,平均数为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题的展开式中,不含字母的项为___________.第(2)题已知实数满足则的取值范围是 .第(3)题已知集合,集合,若,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题一个不透明的袋子中装有大小、质地相同的40个小球,其中10个红球,10个黄球,20个绿球,依次随机抽取小球,每次只取1个小球,完成下列问题:(1)若取出的小球不再放回,①求最后取完的小球是黄球的概率;②求红球比其余两种颜色小球更早取完的概率;③设随机变量为最后一个红球被取出时所需的取球次数,求;(2)若取出的小球又放回袋中,直到取到红球就停止取球,且最多取次球,设随机变量为取球次数,证明:.第(2)题已知、、为的三个内角,且其对边分别为、、,若.(1)求;(2)若,求的面积的最大值.第(3)题如图,在平面直角坐标系中,椭圆过点,且椭圆的离心率为.直线与椭圆相交于两点,线段的中垂线交椭圆于两点.(1)求的标准方程;(2)求线段长的最大值;(3)证明:为定值,并求此定值.第(4)题在中,角的对边分别为(1)求角的大小;(2)若的面积为,求的值.第(5)题已知等差数列的前n项和为,,数列的前n项和,从下面两个条件中任选一个作为已知条件,解答下列问题:(1)求数列和的通项公式;(2)记,求数列的前n项和.条件①:;条件②:.注:如果选择多个条件分别解答,按第一个解答计分.。

上海市(新版)2024高考数学统编版(五四制)测试(综合卷)完整试卷

上海市(新版)2024高考数学统编版(五四制)测试(综合卷)完整试卷

上海市(新版)2024高考数学统编版(五四制)测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题一个四面体的三视图如图所示,则该四面体的表面积是()A.B.C.D.第(2)题已知直线与圆,过直线上的任意一点向圆引切线,设切点为,若线段长度的最小值为,则实数的值是()A.B.C.D.第(3)题已知,则()A.B.C.D.第(4)题设均为正数,且,,.则( )A.B.C.D.第(5)题已知函数的图象如图所示,图象与x轴的交点为,与y轴的交点为N,最高点,且满足.若将的图象向左平移1个单位得到的图象对应的函数为,则()A.B.0C.D.第(6)题对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,下列函数中是准偶函数的是A.B.C.D.第(7)题如图,长方体中为的中点,则异面直线与所成角的大小为()A.30°B.45°C.60°D.90°第(8)题为了得到函数的图象,只需把函数的图象上的所有点()A.向左平移2个单位长度,再向上平移2个单位长度B.向右平移2个单位长度,再向下平移2个单位长度C.向左平移1个单位长度,再向上平移1个单位长度D.向右平移1个单位长度,再向上平移1个单位长度二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若,,则()A.B.C.的最小值为D.第(2)题下列命题中,正确的命题()A.回归直线恒过样本点的中心,且至少过一个样本点B.将一组数据的每个数据都加一个相同的常数后,方差不变C.用相关系数来刻画回归效果,越接近,说明模型的拟合效果越好D.若随机变量,且,则第(3)题已知等差数列的前项和为,若,,则()A.B.C.取得最小值时等于5D.设,为的前项和,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题,则_______.第(2)题已知焦距为4的椭圆:的左、右焦点分别为,,为椭圆上一点,则的角平分线所在直线的方程___________第(3)题若全集,,则集合A的真子集有个_____,分别是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在四棱锥中,平面,,为棱的中点.(1)求证://平面;(2)当时,求直线与平面所成角的正弦值.第(2)题已知:四边形ABCD是矩形,沿对角线BD将△BDC折起,使点C在底面DAB内的射影H恰好落在AB边上(1)求证:平面ABC⊥平面ACD(2)如果,试求二面角C-AD-B的正弦值.第(3)题已知函数.(1)当时,求证:存在唯一的极大值点,且;(2)若存在两个零点,记较小的零点为,t是关于x的方程的根,证明:.第(4)题设为给定的大于2的正整数,集合,已知数列:,,…,满足条件:①当时,;②当时,.如果对于,有,则称为数列的一个逆序对.记数列的所有逆序对的个数为.(1)若,写出所有可能的数列;(2)若,求数列的个数;(3)对于满足条件的一切数列,求所有的算术平均值.第(5)题已知函数(且)的零点是.(1)设曲线在零点处的切线斜率分别为,判断的单调性;(2)设是的极值点,求证:.。

2024年上海市高考数学试卷

2024年上海市高考数学试卷

2024年上海市高考数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(★)(5分)已知集合U={1,2,3,4,5,6,7,8,9},A={2,3,4,5},B={1,2,3,6,7},则B∩(∁U A)=()A.{1,6}B.{6,7}C.{6,7,8}D.{1,6,7}2.(★)(5分)函数f(x)=+的定义域为()A.[0,2)B.(2,+∞)C.[,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)3.(★★)(5分)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R且a>b,则下列不等式恒成立的是()A.<B.a2>b2C.a|c|>b|c|D.>4.(★)(5分)若x<0,M=5x2+x+2,N=4x(x+1),则M与N的大小关系为() A.M>N B.M=N C.M<N D.无法确定5.(★★)(5分)若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则a的取值范围是()A.a≤2B.-2<a≤2C.-2<a<2D.a<26.(★)(5分)函数f(x)=x2+x在区间[-1,1]上的最小值是()A.B.0C.D.27.(★★)(5分)对于非空集合P,Q,定义集合间的一种运算“★”:P★Q={x|x∈P∪Q且x∉P∩Q}.如果P={x|-1≤x-1≤1},Q={x|y=},则P★Q=()A.{x|1≤x≤2}B.{x|0≤x≤1或x≥2}C.{x|0≤x≤1或x>2}D.{x|0≤x<1或x>2}8.(★★)(5分)中国南宋大数学家秦九韶提出了“三斜求积术“,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a、b、c,则三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a=3,b+c=5,则此三角形面积的最大值为()A.B.3C.D.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.(★)(5分)下列四组函数中表示同一个函数的是()A.f(x)=x,g(x)=()2B.f(a)=3a2-2a+3,g(t)=3t2-2t+3C.f(x)=,g(x)=xD.f(x)=0,g(x)=+10.(★★)(5分)下列结论不正确的是()A.“x∈N”是“x∈Q”的充分不必要条件B.“∃x∈N*,x2-3<0”是假命题C.△ABC内角A,B,C的对边分别是a,b,c,则“a2+b2=c2”是“△ABC是直角三角形”的充要条件D.命题“∀x>0,x2-3>0”的否定是“∃x>0,x2-3≤0”11.(★★)(5分)下列说法正确的是()A.若a>b>0,则a>>>bB.当a>0,b>0时,++2≥4C.若a2+b2=2,则a+b的最大值为2D.y=+有最小值212.(★★)(5分)“双11”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给予优惠:(1)如果购物总额不超过50元,则不给予优惠;(2)如果购物总额超过50元但不超过100元,可以使用一张5元优惠券;(3)如果购物总额超过100元但不超过300元,则按标价给予9折优惠;(4)如果购物总额超过300元,其中300元内的按第(3)条给予优惠,超过300元的部分给予8折优惠.某人购买了部分商品,则下列说法正确的是()A.如果购物总额为78元,则应付款为73元B.如果购物总额为228元,则应付款为205.2元C.如果购物总额为368元,则应付款为294.4元D.如果购物时一次性全部付款442.8元,则购物总额为516元三、填空题(本题共4小题,每小题5分,共20分)13.(★)(5分)若集合A={x|-3≤x<a},B={x|x≤b},且A∩B=∅,则实数b取值范围为(-∞,-3).14.(★★)(5分)已知f(+1)=2x+3,则f(x)的解析式为f(x)=2x2-4x+5(x≥1).15.(★)(5分)能够说明“若a,b,c是任意正实数,则”是假命题的一组整数a,b,c的值依次为1,1,1(答案不唯一).16.(★)(5分)一位少年能将圆周率π准确记忆到小数点后面200位,更神奇的是提问小数点后面的位数时,这位少年都能准确地说出该数位上的数字.记圆周率π小数点后第n位上的数字为y,则y是n的函数,设y=f(n),n∈N*.则(1)y=f(n)的值域为{0,1,2,3,4,5,6,7,8,9};(2)函数y=f(n)与函数y=n3的交点有1个.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(★★)(10分)在①A=∅,②A恰有两个子集,③A∩{x|<x<2}≠∅这三个条件中任选一个,补充在下列横线上(要求把你选的条件先写到答题纸上),并求解下列问题.已知集合A={x∈R|mx2-2x+1=0}.(1)若1∈A,求实数m的值;(2)若集合A满足_____,求实数m的取值范围.18.(★★)(12分)已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若“x∈A”是“x∈∁R B”的充分不必要条件,且A≠∅,求实数a的取值范围.19.(★)(12分)已知不等式ax2+5x-2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若,求不等式ax2-5x+a2-1>0的解集.20.(★★)(12分)已知x>0,y>0且+=2,若6x+y≥m2+6m恒成立,求实数m的取值范围.21.(★★)(12分)经调查,某产品在过去两周内的日销售量(单位:千克)与日销售单价(单位:元)均为时间t(天)的函数.其中日销售量为时间t的一次函数,且t=1时,日销售量为34千克,t=10时,日销售量为25千克.日销售单价满足函数.(1)写出该商品日销售额y关于时间t的函数(日销售额=日销售量×销售单价);(2)求过去两周内该商品日销售额的最大值.22.(★★)(12分)已知函数f(x)=ax2-(2a+1)x+c,且f(0)=2.(1)若f(x)<0的解集为{x|2<x<8},求函数的值域;(2)当a>0时,解不等式f(x)<0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年普通高等学校招生全国统一考试上海--数学试卷考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合}{}{1,2,3,4,3,4,5A B ==,则AB = .【解析】本题考查集合的运算,交集,属于基础题 【答案】}{3,42.若排列数6P 654m=⨯⨯,则m = .【解析】本题考查排列的计算,属于基础题 【答案】3 3.不等式11x x->的解集为 . 【解析】本题考查分式不等式的解法,属于基础题 【答案】(),0-∞4.已知球的体积为36π,则该球主视图的面积等于 . 【解析】本题考查球的体积公式和三视图的概念,343633R R ππ=⇒=,所以29S R ππ==,属于基础题【答案】9π5.已知复数z 满足30z z+=,则z = . 【解析】本题考查复数的四则运算和复数的模,2303z z z+=⇒=-设z a bi =+,则22230,a b abi a b -+=-⇒==,z6.设双曲线()222109x y b b -=>的焦点为12F F 、,P 为该双曲线上的一点.若15PF =,则2PF = .【解析】本题考查双曲线的定义和性质,1226PF PF a -==(舍),2122611PF PF a PF -==⇒=【答案】117.如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系.若1DB 的坐标为(4,3,2),则1AC 的坐标是 .【解析】本题考查空间向量,可得11(400)(03,2)(432)A C AC ⇒=-,,,,,,,属于基础题 【答案】(432)-,,8.定义在(0,)+∞上的函数()y f x =的反函数-1()y f x =.若31,0,()(),0x x g x f x x ⎧-≤=⎨>⎩为奇函数,则-1()=2f x 的解为 .【解析】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题 10,0,()31()()13x x x x g x g x g x ->-<-=-=-⇒=-,所以1()13xf x =-,当2x =时,8()9f x =,所以18()29f -= 【答案】89x =9.已知四个函数:①y x =-;②1y x=-;③3y x =;④12y x =.从中任选2个,则事件 “所选2个函数的图像有且仅有一个公共点”的概率为 .【解析】本题考查事件的概率,幂函数的图像画法和特征,属于基础题 总的情况有:42C 6=种,符合题意的就两种:①和③,①和④ 【答案】1310.已知数列}{n a 和}{n b ,其中2,N n a n n *=∈,}{n b 的项是互不相等的正整数.若对于任意}{N n n b *∈,中的第n a 项等于}{n a 中的第n b 项,则()()149161234lg lg b b b b b b b b = .【解析】本题考查数列概念的理解,对数的运算,属于中档题由题意可得:222222114293164(),,,n n a b n n b a b b b b b b b b b b =⇒=⇒====,所以()()()()214916123412341234lg lg =2lg lg b b b b b b b b b b b b b b b b = 【答案】211.设12R αα∈,,且121122sin 2sin(2)αα+=++,则1210παα--的最小值等于 .【解析】考查三角函数的性质和值域,121111,1,12sin 32sin(2)3αα⎡⎤⎡⎤∈∈⎢⎥⎢⎥++⎣⎦⎣⎦,,要使121122sin 2sin(2)αα+=++,则111122221=122sin 2,,1=12sin(2)4k k k Z k παπαπαπα⎧⎧=-+⎪⎪+⎪⎪⇒∈⎨⎨⎪⎪=-+⎪⎪+⎩⎩ 1212min min31010(2)44k k ππααπππ--=+-+=,当122=11k k +时成立【答案】4π12.如图,用35个单位正方形拼成一个矩形,点1234,,,P P P P 以及四个标记为“▲”的点在正方形的顶点处.设集合}{1234=,,,P P P P Ω,点P ∈Ω.过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()=()P P D l D l ,则Ω中所有这样的P 为 .【解析】本题考查有向距离,以左下角的顶点为原点建立直角坐标系。

四个标记为“▲”的点的坐标分别为(0,3),(1,0),(4,4),(7,1),设过P 点的直线为:0ax by c ++=,此时有向距离1234d d d d ====且由1234+++12840320d d d d a b c a b c =++=⇒++=则过1P 的直线满足40b c +=;此时234a bc b ⎧=-⎪⎨⎪=-⎩,直线为:2240(4)033bx by b b x y -+-=⇒-+-=:所以此时满足题意的直线为:24=03x y -+- 则过2P 的直线满足320a b c ++=;此时有无数组解,例如:直线3x =,直线2y =等都满足题意. 则过3P 的直线满足420a b c ++=;此时02a c b =⎧⎨=-⎩,直线为:20(2)0by b b y -=⇒-=,所以此时满足题意的直线为:2=0y -.则过4P 的直线满足660a b c ++=;此时432a bc b⎧=-⎪⎨⎪=⎩,直线为:4420(2)033bx by b b x y -++=⇒-++=: 所以此时满足题意的直线为:4203x y -++= 【答案】134,,P P P二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.关于x y 、的二元一次方程组50234x y x y +=⎧⎨+=⎩,的系数行列式D 为( )A .0543B .1024 C .1523 D .6054【答案】C14.在数列}{n a ,1,N ,2nn a n *⎛⎫=-∈ ⎪⎝⎭则lim n n a →∞( ).A .等于12- B .等于0 C .等于12D .不存在【答案】B15.已知a b c 、、为实常数,数列}{n x 的通项2*,N n x an bn c n =++∈,则“存在*N k ∈,使得100200300,,k k k x x x +++成等差数列”的一个必要条件是( )A .0a ≥B .0b ≤C .0c =D .20a b c -+=【答案】A16.在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:+19y C x =.P 为1C 上的动点,Q 为2C 上的动点,ω是OP OQ ⋅的最大值.记(){=,|P Q ΩP 在1C 上,Q 在2C 上,且}=OP OQ ω⋅,则Ω中( )A .元素个数为2B .元素个数为4C .元素个数为8D .含有无穷个元素【答案】D17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小。

【答案】(1)1111245202ABC A B C V -⎛⎫=⨯⨯⨯=⎪⎝⎭(2)三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知函数()()221cos sin ,0,2f x x x x π=-+∈. (1)求()f x 的单调递增区间;(2)设ABC 为锐角三角形,角A所对的边a =,角B 所对的边5b =.若()0f A =,求ABC 的面积. 【答案】(1),2ππ⎡⎫⎪⎢⎣⎭(2)ABCS=19.(本题满分14分,第1小题满分6分,第2小题满分8分)根据预测,某地第n ()*N n ∈个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,13,10470,4,n n n a n n ⎧+≤≤=⎨-+≥⎩5n b n =+.第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量()24468800n S n =--+(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935(2)214,1102,2514,311919815,422n n Q n n n n =⎧⎪=⎪⎪=⎨=⎪⎪-+-≥⎪⎩ ,所以当42n = 时Q 取最大值,为8782此时 ()242442468800=87368782S =--+<,所以当Q 取最大值时,停放点不能容纳 20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点.M 为x 正半轴上的动点.(1)若P在第一象限,且OP =P 的坐标;(2)设83,55P ⎛⎫ ⎪⎝⎭.若以A P M 、、为顶点的三角形是直角三角形,求M 的横坐标;(3)若MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.【答案】 (1)P ⎝⎭; (2)29,020M ⎛⎫⎪⎝⎭或3,05M ⎛⎫⎪⎝⎭或()1,0M ; (3)1y x =+ 解析(3)∵点P 是Γ上一动点,设()2cos ,sin P αα,(),0M t ,0t >,(),q q Q x y ,(),c c C x y ,且()0,1A 。

相关文档
最新文档