第三章通信用光器件
光纤通信系统与光器件光器件
![光纤通信系统与光器件光器件](https://img.taocdn.com/s3/m/0599327dcec789eb172ded630b1c59eef8c79aa0.png)
三、多层介质膜滤波器TFF
Multilayer Dielectric Thin-Film Filter 多层介质膜:通过某一波长,阻止其它波长
Thin-Film resonant Multicavity Filter (TFMF) 薄膜多共振腔滤波器
TFMF的传输特性: 腔越多滤波器顶越平
边缘越陡
Output 1 /2+L+ /2= L+ Output 2 /2+L- /2= L
L=2neff L /=k
k为奇数 k为偶数
Output 1 Output 2
五、体光栅滤波器
在Si衬底上沉积环氧树脂后制造成光栅。多波长信号经光纤 输入和普通透镜或棒透镜聚焦在反射光栅上,反射光栅将各 波长分开,然后经透镜将各个波长的光聚焦在各自的光纤。
光衰减器—Attenuator
根据工作原理分类:
横向位移型光衰减器
位移型光衰减器
纵向位移型光衰减器
光衰 减器
直接镀膜型光衰减器 (吸收模或反射模型)
衰减片型光衰减器
液晶型光衰减器
光衰 减器
固定光 衰减器
可变光 衰减器
尾纤式固定光衰减器
转\变换器式 固定光衰减器
SC—FC型、 FC— ST型、 SC—ST型、
对输入信号 进行分路的 3dB耦合器
长度相差L的两根波 导,用来在两臂间产 生与波长有关的相移
在输出端将 信号复合的 3dB耦合器
通过分裂输入光束以及在一条通路上引进一个相移,重组 的信号将在一个输出端产生相加性干涉,而在另一个输出 端产生相消性干涉,信号最后只会在一个输出端口出现。
Input 1
反射中 2neff 光栅
心波长
最新3章通信用光器件EDFA
![最新3章通信用光器件EDFA](https://img.taocdn.com/s3/m/08ce7bd3bed5b9f3f80f1ca2.png)
2π的整数倍时,则向同一方向传播的若干受激辐射光相互加强,
产生谐振。达到一定强度后,就从部分反射镜M2透射出来,形成 一束笔直的激光。
当达到平衡时,受激辐射光在谐振腔中每往返一次由放大所得
的能量,恰好抵消所消耗的能量时,激光器即保持稳定的输出。
11.02.2021
(教材第56页)
13
3.1.1 激光器的工作原理
衡条件下,物质不可能有光的放大作用。 要想物质产生光的放大,就必须使受激辐射大于受激吸收,即
使N2 > N1 (高能级上的电子数多于低能级上的电子数),这种
粒子数的反常态分布称为粒子(电子)数反转分布。 粒子数反转分布状态是使物质产生光放大而发光的首要条件。
11.02.2021
(教材第54页)
9
3.1.1 激光器的工作原理 光纤通信
② 能够在室温下长时间连续工作,并能提供足够的光输出功率。 目前LD的尾纤输出功率可达500μW~2mW;LED的尾纤输出功 率可达10μW左右。
③ 与光纤耦合效率高。 ④ 光源的谱线宽度要窄。较好的LD的谱线宽度可达到0.1nm。 ⑤ 寿命长,工作稳定。
11.02.2021
(教材第57页)
17
3.1.2 半导体激光器
如果反射镜是平面镜,称为平面腔;如果反射镜是球面镜,
则称为球面腔,如图3-2所示。对于两个反射镜,要求其中一个
能全反射,另一个为部分反射。
图3-2 光学谐振腔的结构
11.02.2021
(教材第55页)
12
3.1.1 激光器的工作原理
光纤通信
② 谐振腔产生激光振荡过程
如图3-3所示,当工作物质在泵浦源的作用下,已实现粒子数
Gth21Llnr11r2(3-2)
光纤通信(第二版)课件PPT(刘增基著)
![光纤通信(第二版)课件PPT(刘增基著)](https://img.taocdn.com/s3/m/3c13258028ea81c758f578e8.png)
第1章 概 论
为了克服气候对激光通信的影响,人们自然想到把激光束 限制在特定的空间内传输, 因而提出了透镜波导和反射镜波导的 光波传输系统。透镜波导是在金属管内每隔一定距离安装一个 透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。 反射镜波导和透镜波导相似,是用与光束传输方向成45°角的 两个平行反射镜代替透镜而构成的。这两种波导,从理论上讲 是可行的,但在实际应用中遇到了不可克服的困难。首先,现 场施工中校准和安装十分复杂;其次,为了防止地面活动对波
由于没有找到稳定可靠和低损耗的传输介质,对光通信的 研究曾一度走入了低谷。
第1章 概 论
1.1.2 现代光纤通信 1966 年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆
(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用 光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了 现代光通信——光纤通信的基础。当时石英纤维的损耗高达 1000 dB/km以上,高锟等人指出:这样大的损耗不是石英纤维 本身固有的特性,而是由于材料中的杂质,例如过渡金属(Fe、 Cu等)离子的吸收产生的。材料本身固有的损耗基本上由瑞利 (Rayleigh)散射决定,它随波长的四次方而下降,其损耗很小。 因此有可能通过原材料的提纯制造出适合于长距离通信使用的 低损耗光纤。如果把材料中金属离子含量的比重降低到10-6以 下,就可以使光纤损耗减小到10 dB/km。再通过改进制造工艺 的热处理提高材料的均匀性,可以进一步把损耗减小到几 dB/km。这个思想和预测受到世界各国极大的重视。
十一五 普通高等教育“十一五”国家级规划教材
光 纤 通 信(第二版)
刘增基 周洋溢 胡辽林 编著
任光亮 周绮丽
西 安 电 子西科 技 大 学 出 版 社
光纤通信技术-第三章-光源与光发射系统-电子教案 (3)
![光纤通信技术-第三章-光源与光发射系统-电子教案 (3)](https://img.taocdn.com/s3/m/f6f5a1d76037ee06eff9aef8941ea76e59fa4a5a.png)
10.什么是张弛振荡?简述张弛振荡产生的原因。
11.什么是码型效应?如何消除码型效应。
12.什么是自脉动现象?自脉动现象有哪些特点?
13.光源的间接调制方法有哪些?
14.光纤通信系统对光发射机的基本要求有哪些?
15.光发射机为什么要进行自动温度控制?
16.光纤通信系统对光源器件的基本要求有哪些?
17.简述激光器的结发热效应。
18.何谓激光器的偏置电流?应如何选择偏置电流?
120.构成激光器必须具备的条件有哪些?
21.在光纤通信系统中,光源为什么要加正向电压?
22.简述半导体激光器的特性。
23.简述F-P腔半导体激光器的结构。
24.光发射机主要有哪些部分组成?简述各部分的作用。
4、课后作业:6。
3.4新型半导体激光器
重点介绍分布式反馈激光器的结构特点,引出在此特点基础上的发光原理,并指明它所具有的独特优点;简要介绍耦合腔半导体激光器与量子阱激光器的结构与特点。
3.5光源的调制
重点介绍光源的直接数字调制以及可能产生的效应:电光延迟、张弛振荡、自脉动、码型效应等。简要介绍光源的三种间接调制方式,包括:声光调制、热光调制和磁光调制。
3.6光发射机
首先介绍通信系统对光发射机的基本要求;重点介绍光发射机的组成与功能,包括:输入电路、光源和控制电路。
1:计划学时:2学时
2:讲授要求:
注意区分新型激光器与F-P腔激光器在结构和性能上的不同,使学生能够对前后学习的知识有一个连贯性的认识;详细介绍光发射机的三个组成部分,使学生清楚各部分的主要功能。
课程
光纤通信技术
章节
第三章
学期
2013/2014学年第一学期
第3章练习题(答案)
![第3章练习题(答案)](https://img.taocdn.com/s3/m/cc002137453610661ed9f439.png)
第三章练习题(答案)一、填空题常用光源LD是以受激辐射为基础发相干(激)光,LED以自发辐射为基础发非相干(荧)光。
光与物质的粒子体系的相互作用主要有三个过程是:受激吸收,自发辐射,受激辐射;产生激光的最主要过程是:受激辐射。
激光器由工作物质、激励源(泵浦源)和光学谐振腔三部分组成。
激光振荡器必须包括增益介质、激励源和光学谐振腔。
LD的P-I特性具有阈值特性,其阈值电流随温度升高而升高,当其增大至原来的 1.5 倍时,LD寿命告终。
在半导体激光器P-I曲线中,工作电流小于阈值电流的范围对应于荧光区,工作电流大于阈值电流的范围对应于激光。
光电检测器的作用是进行光/电转换,PIN管本质上是外加反向(或负)偏压的PN结。
常用的导体光电检测器主要有PIN光电二极管(PIN-PD)和雪崩光电二极管(APD)两种,基本原理是通过受激吸收(光电效应)过程实现光电转换。
无源器件主要有光纤连接器、光耦合器、光隔离器、光波分复用器、和光波长转换器、光开关等。
光纤连接器的主要性能指标有插入损耗(介入损耗)、回波损耗、互换性、插拔寿命、重复性、稳定性等。
表示光纤耦合器性能指标的参数有隔离度、插入损耗和分光比等。
二、选择题光纤通信系统中使用的光器件主要有:( D )A 激光器、发光二极管;B 分布反馈激光器、PIN光电二极管;C 半导体激光器、光检测器、分布反馈激光器;D 光源、光检测器、光放大器。
光纤通信系统中常用的光检测器主要有:( B )A. 激光器、发光二极管B. PIN光电二极管、APD雪崩光电二极管C.分布反馈激光器、PIN光电二极管D. PIN光电二极管、半导体激光器LD光源的作用是:( B )A 产生输入光波信号;B 将电信号电流变换为光信号功率,即实现电-光转换;C 产生输入光功率;D 光波对电信号进行调制,使其载荷信息在光纤中传输。
发光二极管LED产生的光:( A )A 是荧光而不是激光;B 是激光而不是荧光;C 是自然光而不是激光;D 是相干光而不是荧光。
光纤通信复习
![光纤通信复习](https://img.taocdn.com/s3/m/b778381042323968011ca300a6c30c225901f0e1.png)
新型的G.
光纤损耗的计算: Loss= P i / P o 谱线宽 20-50nm
调制是用数字或模拟信号改变载波的幅度、频率或相位的过程。
P i — 为输入功率 即:L(km)= (Pout-Prec-Ac-Pm)/Af
发散角大,与光纤的耦合效率低 (5-10%)
P o —为输出功率
常以分贝dB来表示 Ltot 所有损耗
DWDM技术 DWDM当前水平:
目前1.6Tbit/s WDM系统已经大量商用。
100km 10.9Tbit/s(273x40Gbit/s) 50GHz S、C和L波段
100km 10.2Tbit/s(256x40Gbit/s)交替75和 50GHz ,C和L波段
CWDM技术 技术参数:
波长组合:三种,即4、8和16个 波长通路间隔:20nm 允许波长漂移±6.5nm
LD特点 : 受激辐射、相干光、谱线窄、功率高 发光面小、发散较小,与光纤耦合效率高 寿命和可靠性比LED稍低
Table - Comparison of LEDs and Lasers
Characteristic
LEDs
Lasers
Output Power
Pr=10 μW=10log(10μ W/1mW)
<0.1
光检测器和光接收机
PIN光电二极管是在掺杂浓度很高的P型、N型半导 体之间,加一层轻掺杂的N型材料,称为I(本征 层)。由于是轻掺杂,电子浓度很低,经扩散后形 成一个很宽的耗尽层。这样可以提高其响应速度和 转换效率。
PIN光电二极管的优点
提高了响应速度
提高了长波的量子效率
噪声小
APD光电二极管 雪崩光电二极管,又称APD(Avalanche
《光纤通信》的复习要点
![《光纤通信》的复习要点](https://img.taocdn.com/s3/m/a6fcc6d55ebfc77da26925c52cc58bd631869374.png)
《光纤通信》的复习要点《光纤通信》课程复习要点和重点浙江传媒学院陈柏年(2014年6⽉)第⼀章概述1、光纤通信:以光波作为信号载体,以光纤作为传输媒介的通信⽅式。
2、光纤通信发展历程:(1)光纤模式:从多模发展到单模;(2)⼯作波长:从短波长到长波长;(3)传输速率:从低速到⾼速;(4)光纤价格:不断下降;(5)应⽤范围:不断扩⼤。
3、光纤通信系统基本组成:(1)光纤,(2)光发送器,(3)光接收器,(4)光中继器,(5)适当的接⼝设备。
第⼆章光纤光缆⼀、光纤(Fibel)1、光纤三层结构:(1)纤芯(core),(2)包层(coating),(3)涂覆层(jacket)。
2、各类光纤的缩写和概念:SIF(突变型折射率光纤),GIF(渐变折射率光纤);DFF(⾊散平坦光纤)、DSF(⾊散移位光纤);MMF(多模光纤),SMF(单模光纤);松套光纤,紧套光纤。
⼆、光的两种传输理论(⼀)光的射线传输理论1、光纤的⼏何导光原理:光纤是利⽤光的全反射特性导光;纤芯折射率必须⼤于包层折射率,但相差不⼤。
2、突变型折射率多模光纤主要参数:★(1)光纤的临界⾓θc:只有在半锥⾓为θ≤θc的圆锥内的光束才能在光纤中传播。
★(2)数值孔径NA:⼊射媒质折射率与最⼤⼊射⾓(临界⾓)的正弦值之积。
与纤芯与包层直径⽆关,只与两者的相对折射率差有关。
它表⽰光纤接收和传输光的能⼒。
(3)光纤的时延差Δτ:时延差⼤,则造成脉冲展宽和信号畸变,影响光纤的容量,模间⾊散增⼤。
3、渐变型折射率多模光纤主要参数:(1)⾃聚焦效应:如果折射率分布恰当,有可能使不同⾓度⼊射的全部光线以同样的轴向速度在光纤中传输,同时达到光纤轴上的某点,即所有光线都有相同的空间周期。
(2)光纤的时延差Δτ:⽐突变型光纤要⼩,减⼩脉冲展宽,增加传输带宽。
(⼆)光纤波动传输理论★1、光纤模式:⼀个满⾜电磁场⽅程和边界条件的电磁场结构。
表⽰光纤中电磁场(传导模)沿光纤横截⾯的场形分布和沿光纤纵向的传播速度。
光纤通信用光器件介绍
![光纤通信用光器件介绍](https://img.taocdn.com/s3/m/a3ffaa49591b6bd97f192279168884868762b807.png)
光纤通信用光器件介绍光纤通信是利用光纤传输光信号进行通信的技术,其核心是通过光器件来发射、接收和调制光信号。
光器件是光纤通信系统中非常重要的组成部分,能够直接影响到通信系统的性能和稳定性。
在这篇文章中,我将介绍几种常见的光器件,并介绍它们的工作原理和应用。
第一种光器件是光纤激光器。
光纤激光器是一种能够发射强聚焦、单一波长、狭谱宽的光信号的器件。
它的工作原理是通过激光材料受到光电势驱动而产生的受激辐射来产生光信号。
光纤激光器具有很高的光输出功率和较窄的光谱特性,使其在长距离传输和高速通信中具有很大的优势。
第二种光器件是光纤调制器。
光纤调制器是一种能够改变光信号的特征以传输信息的器件。
它的工作原理是通过改变光的相位、幅度或频率,来调制光信号传递的信息。
光纤调制器在光纤通信中广泛应用于多种信号调制技术,如振幅调制、频率调制和相移键控等。
第三种光器件是光纤增益器。
光纤增益器是一种能够增强光信号的器件。
它通过将光信号输入到光纤中,通过光放大的原理来增强信号的强度。
光纤增益器在光纤通信系统中被广泛应用于信号放大和信号传输的中继,使得信号能够在长距离的传输中保持高强度和低损耗。
第四种光器件是光纤光栅。
光纤光栅是一种能够选择性反射或散射特定波长的光信号的器件。
它的工作原理是通过将光纤中的折射率周期性改变,产生布拉格衍射,从而实现对特定波长的光信号选择性反射或散射。
光纤光栅在光纤通信中被广泛应用于波长选择多路复用和分光分集等技术中。
第五种光器件是光纤检测器。
光纤检测器是一种能够接收光信号并转换为电信号的器件。
它的工作原理是通过光电效应将光信号转化为电信号。
光纤检测器在光纤通信系统中被广泛应用于光信号的接收和调制等过程中。
除了上述介绍的几种光器件外,还有许多其他类型的光器件,在光纤通信系统中起到了各种不同的作用。
例如,光纤散射器用于分配光信号,光纤滤波器用于调制光信号波长,光纤耦合器用于将多个光纤连接在一起等等。
这些光器件为光纤通信提供了更多的灵活性和多样性,使得通信系统能够更好地适应不同的需求和环境。
光纤通信期末复习题
![光纤通信期末复习题](https://img.taocdn.com/s3/m/84d34ea8e43a580216fc700abb68a98271feaca9.png)
光纤通信期末复习题第一章绪论简答:光纤通信的发展方向第二章光纤和光缆填空1.目前光纤通信的长波波长低损耗工作窗口是1.31μm 和。
2.光纤中的传输信号由于受到光纤的和色散的影响,使得信号的幅度受到衰减,波形出现失真。
3.阶跃型单模光纤的截止波长λc=___________。
4.目前光纤通信三个实用的低损耗工作窗口是0.85 μm,1.55 μm 和___________。
5.在阶跃型光纤中,归一化频率V的定义式为。
6.按照折射率分布规律,光纤可以分为、和单模光纤等。
7.光纤的色散主要有材料色散、、。
8.单模光纤只传输一种模式,纤芯直径较,通常在4μm~10μm 范围内。
多模光纤可传输多种模式,纤芯直径较,典型尺寸为50μm 左右。
9.光纤特性包括它的结构特性、光学特性及传输特性。
结构特性主要指光纤的几何尺寸;光学特性包括、数值孔径等;传输特性主要是及特性。
10.按射线理论,阶跃型光纤中光射线主要有_________和___________两类。
判断1.光纤中要求纤芯的折射率应该小于包层的折射率。
2.当光纤参数确定后,只有工作波长小于截止波长时,光纤才能实现单模传输3.光纤的数值孔径与入射光波长有关。
4.弱导光纤中纤芯折射率n1和包层折射率n2的关系是n1>>n2。
5.目前通信用光纤主要是用高纯度的玻璃材料制成的。
6.光纤中光能量主要在纤芯内传输,包层为光的传输提供反射面和光隔离。
7.光纤单模传输时,应该保证归一化频率V大于归一化截止频率V c。
8.光纤中传输的模式数由归一化频率决定,当归一化频率确定后,光纤中所传输的模式数和模式分布也就确定了。
()9..单模光纤中存在模间色散,多模光纤中不存在模间色散。
()10..在单模光纤传输中,实际传输信号的频谱宽度取决于两个因素,一是半导体激光器发射的光的固有频谱宽度,二是电信号调制造成的频谱展宽。
()11.改变光纤的折射率分布和剖面结构参数,可以改变波导色散的值,从而在所希望的波长上实现零色散。
第3章 光纤通信器件32ppt课件
![第3章 光纤通信器件32ppt课件](https://img.taocdn.com/s3/m/1e6f6f159e31433238689307.png)
耦合器反射到其他端的光功率Pr的比值,用分贝表
示
DIR=10 lg Pic
Pr
46
• 一致性U 者不同输出端耦合比的等同性。
47
3.3.3 光隔离器与光环行器
1.光隔离器的基本原理和结构 2.光环行器 3.光隔离器与光环行器的主要性能参数
48
• 互易器件 耦合器和其他大多数光无源器件的输 入端和输出端是可以互换的,称之为互易器件 。
• 星形耦合器 这是一种n×m耦合器,其功能是把n根 光纤输入的光功率组合在一起,均匀地分配给m根光 纤,m和n不一定相等。这种耦合器通常用作多端功率
37
定向耦合器 这是一种2×2的3端或4端耦 合器,其功能是分别取出光纤中向不同方 向传输的光信号。光信号从端1传输到端2, 一部分由端3输出,端4无输出;光信号从 端2传输到端1,一部分由端4输出,端3无 输出。定向耦合器可用作分路器,不能用
34
3.3.2 光耦合器
光耦合器 作用:把一个输入的光信号分配给多个输出, 或把多个输入的光信号组合成一个输出。
1.光耦合器的类型 2 2.光纤式耦合器的参数 (主要特性)
35
1.光耦合器的类型
• 光耦合器按其功能及形状不同可分为T形、星形、 定向、波分复用器/解复用器。
36
• T形耦合器 这是一种2×2的3端耦合器,其功能是把 一根光纤输入的光信号按一定比例分配给两根光纤, 或把两根光纤输入的光信号组合在一起,输入一根光 纤。这种耦合器主要用作不同分路比的功率分配器或 功率组合器。
波分复用器/解复用器 这是一种与波长有38
• 光耦合器按其结构不同可分为棱镜式和光纤式 两类。
棱镜 棱镜型
P1 输入端口
P2
光纤通信复习重点
![光纤通信复习重点](https://img.taocdn.com/s3/m/37d8991d66ec102de2bd960590c69ec3d5bbdbfc.png)
光纤通信复习重点题型:填空、选择、判断30’、问答40’、计算30’第一章概论光纤通信的优点☆☆1)容许频带很宽,传输容量很大2)损耗很小,中继距离很长,且误码率很小3)重量轻,体积小4)抗电磁干扰性能好5)泄露小,保密性能好6)节约金属材料,有利于资源合理使用光纤通信系统的基本组成作用:1)信息源:把用户信息转换为原始电信号,这种信号称为基带信号2)电发射机:把信息源传递过来的模拟信号转换成数字信号PCM3)光发射机:把输入电信号转换为光信号,并用耦合技术吧光信号最大限度地注入光纤线路;4)光纤线路:把来自光发射机的光信号,以尽可能小的失真和衰减传输到光接收机; 5)光接收机:把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经其后的电接收机放大和处理后恢复成基带电信号;光接收机由光检测器、放大器和相关电路组成,光检测器是光接收机的核心;光接收机最重要的特性参数数灵敏度;6)电接收机:把接收的电信号转换为基带信号,最后由信息宿恢复用户信息;说明:光发射机之前和光接收机之后的电信号段,光纤通信所用的技术和设备和电缆通信相同,不同的只是由光发射机、光纤线路和光接收机所组成的基本光纤传输系统代替了电缆传输;注:计算题3个,全来自第二第三章的课后习题第二章光纤和光缆光纤结构光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝;相对折射率差典型值△=n1-n2/n1,△越大,把光能量束缚在纤芯的能力越强,但信息传输容量确越小光纤类型三种基本类型图突变型多模光纤:纤芯折射率为n1保持不变,到包层突然变为n2;这种光纤一般纤芯直径2a=50~80 μm,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大;渐变型多模光纤:纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2;这种光纤一般纤芯直径2a为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小;单模光纤:折射率分布和突变型光纤相似,纤芯直径只有8~10 μm,光线以直线形状沿纤芯中心轴线方向传播;因为这种光纤只能传输一个模式两个偏振态简并,所以称为单模光纤,其信号畸变很小;光纤传输原理 展宽 衰减的原因 1)突变型多模光纤2)数值孔径:定义临界角θc 的正弦为数值孔径NANA 表示光纤接收和传输光的能力,NA 或θc 越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高;对于无损耗光纤,在θc 内的入射光都能在光纤中传输;NA 越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好;但NA 越大经光纤传输后产生的信号畸变越大,因而限制了信息传输容量; 时间延迟:这种时间延迟差在时域产生脉冲展宽,或称为信号畸变;由此可见,突变型多模光纤的信号畸变是由于不同入射角的光线经光纤传输后,其时间延迟不同而产生的; 3)渐变型多模光纤 渐变型多模光纤具有能减小脉冲展宽、增加带宽的优点; 自聚焦效应:不同入射角相应的光线,虽然经历的路程不同,但是最终都会聚在同一点上;渐变型多模光纤具有自聚焦效应,不仅不同入射角相应的光线会聚在同一点上,而且这些光线的时间延迟也近似相等; 光纤传输的波动理论 单模光纤的模式特性 1单模条件和截止波长传输模式数目随V 值的增加而增多;当V 值减小时,不断发生模式截止,模式数目逐渐减少;特别值得注意的是当V<时,只有HE11LP01一个模式存在,其余模式全部截止;HE11称为基模,由两个偏振态简并而成;由此得到单模传输条件为可以看到,对于给定的光纤n1、n2和a 确定,存在一个临界波长λc,当λ<λc 时,是多模传输,当λ>λc 时,是单模传输,这个临界波长λc 称为截止波长; 2)光强分布和模场半径通常认为单模光纤基模 HE11的电磁场分布近似为高斯分布 Ψr=Aexp式中,A 为场的幅度,r 为径向坐标,w0为高斯分布1/e 点的半宽度,称为模场半径; 3)双折射把两个偏振模传输常数的差βx-βy 定义为双折射Δβ, 通常用归一化双折射β来表示∆≈-=212212n n n NA ∆≈==∆cL n NA c n L c n L c 12121)(22θτ405.222221≤-n n a λπ])([2w r -ββββββ)(y x -=∆=式中, =βx+βy/2为两个传输常数的平均值;把两个正交偏振模的相位差达到2π的光纤长度定义为拍长Lb= 光纤传输特性损耗和色散是光纤最重要的传输特性;损耗限制系统的传输距离,色散则限制系统的传输容量;☆☆☆☆☆三种色散模式色散是由于不同模式的传播时间不同而产生的,它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关;材料色散是由于光纤的折射率随波长而改变,以及模式内部不同波长成分的光实际光源不是纯单色光,其传播时间不同而产生的;这种色散取决于光纤材料折射率的波长特性和光源的谱线宽度;波导色散是由于波导结构参数与波长有关而产生的,它取决于波导尺寸和纤芯与包层的相对折射率差;说明:色散对光纤传输系统的影响,在时域和频域的表示方法不同;从频域上看,色散限制了传输信号的带宽;从时域上看,色散引起信号脉冲的展宽; 理想的单模光纤没有模式色散,只有材料色散和波导色散;材料色散和波导色散总称为色度色散,常简称为色散,它是传播时间随波长变化的产生的;光纤损耗光纤的损耗在很大程度上决定了系统的传输距离;在最一般的条件下,在光纤内传输的光功率P 随距离z 的变化,可以用 表示;α是损耗系数;吸收损耗:由SiO 2材料引起的固有吸收和由杂质引起的吸收产生的;散射损耗:主要由材料微观密度不均匀引起的瑞利散射和由光纤结构缺陷引起; 光纤总损耗α与波长λ的关系可以表示为: α= +B+CW λ+IR λ+UV λA 为瑞利散射系数,B 为结构缺陷散射产生的损耗,CW λ、IR λ和UV λ分别为杂质吸收、红外吸收和紫外吸收产生的损耗; 第三章 通信用光器件 光源光源是光发射机的关键器件,其功能是把电信号转换为光信号;半导体激光器是向半ββ∆2apdz dp -=4λA导体PN 节注入电流,实现粒子数反转分布,产生受激辐射,在利用谐振腔的正反馈,实现光放大而产恒激光震荡的;工作原理:半导体激光器是向半导体PN 结注入电流实现粒子数翻转分布,产生受激辐射,实现光放大,在利用谐振腔的正反馈而产生激光振荡的;基本结构:结构中间有一层厚~ μm 的窄带隙P 型半导体,称为有源层;两侧分别为宽带隙的P 型和N 型半导体, 称为限制层;三层半导体置于基片衬底上,前后两个晶体解理面作为反射镜构成法布里 - 珀罗FP 谐振腔; 三种跃迁:受激吸收:处于低能级E1的电子,在入射光作用下,它会吸收光子的能量跃迁到高能级E2上;自发辐射:在高能级E2的电子是不稳定的,即使没有外界的作用,也会自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子辐射出去;受激辐射:在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级E1上与空穴复合,释放的能量产生光辐射; 能级跃迁:电子在E1和E2两个能级之间跃迁,吸收的光子能量或辐射的光子能量都要满足波尔条件,即 E2-E1=hf 12,其中 h=×10-34J ·s,为普朗克常数,f 12为吸收或辐射的光子频率; 受激辐射和自发辐射光的区别:它们的特点很不相同;受激辐射光的频率、相位、偏振态和传播方向与入射光相同,这种光称为相干光;自发辐射光是由大量不同激发态的电子自发跃迁产生的,其频率和方向分布在一定范围内,相位和偏振态是混乱的,这种光称为非相干光; 粒子数分布:低能级E1和处于高能级E2E2>E1的原子数分别为N1和N2;当系统处于热平衡状态时,存在下面的分布)12(exp 12kTE E N N --=k=10-23为玻尔兹曼常数,T 为热力学温度 N1>N2,即受激吸收大于受激辐射;当光通过这种物质时,光强按指数衰减, 这种物质称为吸收物质;正常状态N2>N1,即受激辐射大于受激吸收,当光通过这种物质时,会产生放大作用,这种物质称为激活物质;粒子数反转分布 如何实现粒子数反转分布:半导体激光器是向半导体PN 结注入电流,实现粒子数反转分布;发射波长:半导体激光器的发射波长取决于倒带的电子跃迁到价带时所释放的能量;这个能量近似等于禁带宽度;EgEg24.1hc ==λ不同半导体材料有不同的禁带宽度Eg,所以有不同的发射波长光谱特性:随着驱动电流的增加,纵模模数逐渐减少,谱线宽度变窄; 随着调制电流增大,纵模模数增多,光谱密度变宽; 弛张频率:弛张频率f r 是调制频率的上限,在接近f r 处,数字调制要产生弛张震荡,模拟调制要产生非线性失真;温度特性:激光器输出光功率随温度而变化有两个原因:一是激光器的阈值电流I th 随温度升高而增大,二是外微分量子效率ηd 随温度升高而减小;温度升高时,I th 增大,ηd 减小,输出光功率明显下降,达到一定温度时,激光器就不激射了;当以直流电流驱动激光器时,阈值电流随温度的变化更加严重;当对激光器进行脉冲调制时,阈值电流随温度呈指数变化,在一定温度范围内,可以表示为)ex p(00th T T I I =I 0为常数,T 为结区的热力学温度,T 0为激光器材料的特征温度 发光二极管 对应的看看就可以发光二极管LED 的工作原理与激光器LD 有所不同, LD 发射的是受激辐射光,LED 发射的是自发辐射光;发光二极管的优点:和激光器相比,发光二极管输出光功率较小,谱线宽度较宽,调制频率较低;但发光二极管性能稳定,寿命长,输出光功率线性范围宽, 而且制造工艺简单,价格低廉; 光检测器光电二极管工作原理光电效应光电效应:在PN 结界面上,由于电子和空穴的扩散运动,形成内部电场;内部电场使电子和空穴产生与扩散运动方向相反的漂移运动,最终使能带发生倾斜, 在PN 结界面附近形成耗尽层;在耗尽层,会形成光生漂移电流;在中性区会形成光生扩散电流;当与P 层和N 层连接的电路断开时,便会在两端产生电动势;说明:光生漂移电流分量和光生扩散电流分量的总和即为光生电流; 光无源器件小知识点 考小题 无计算 连接器:实现光纤与光纤之间可拆卸连接 接头:实现光纤与光纤之间的永久性连接光耦合器:把一个输入的光信号分配给多个输出,或者把多个输入的光信号复合成一个输出;分为:T 型耦合器.星型耦合器.定向耦合器.波分复用器/解复用器光隔离器:非互易器件,只允许光波向一个方向上传输,阻止光波往其他方向特别是反方向传播;环形器:有多个接口的光隔离器;外调制器:为了解决直接调制激光器会产生线性调频的问题;光开关:转换电路,实现光交换;光发射机光发射机基本组成相应的模块对光源有什么要求、电路的作用☆☆对光源的要求:简单题1号嫌疑犯1发射的光波长应和光纤低损耗“窗口”一致,即中心波长应在μm、μm和μm附近;光谱单色性要好,即谱线宽度要窄,以减小光纤色散对带宽的限制;2电/光转换效率要高,即要求在足够低的驱动电流下,有足够大而稳定的输出光功率,且线性良好;发射光束的方向性要好,即远场的辐射角要小,以利于提高光源与光纤之间的耦合效率;3允许的调制速率要高或响应速度要快,以满足系统的大传输容量的要求;4器件应能在常温下以连续波方式工作,要求温度稳定性好,可靠性高,寿命长;5此外,要求器件体积小,重量轻,安装使用方便,价格便宜;发射机的电路部分:作用:电路的设计应该以光源为依据,使输出光信号准确反映输入电信号;对调制电路和控制电路的要求:1)输出光脉冲的通断比应大于10,以保证足够的光接收信噪比;2)输出光脉冲的宽度应远大于电光延迟时间,光脉冲的上升时间、下降时间和开通延迟时间应足够短,以便在高速率调制下,输出的光脉冲能准确再现输入电脉冲的波形.3)对激光器应施加足够的偏置电流,以便抑制在较高速率调制下可能出现的张弛振荡,保证发射机正常工作;4)应采用自动功率控制APC和自动温度控制ATC,以保证输出光功率有足够的稳定性; 线路编码电路必要的原因:因为电端机输出的数字信号是适合电缆传输的双极性码,而光源不能发射负脉冲;调制特性效应小知识码型效应:当电光延迟时间td与数字调制的码元持续时间T/2为相同数量级时,会使“0”码过后的第一个“1码的脉冲宽度变窄,幅度减小,严重时可能使单个“1”码丢失,这种现象称为“码型效应”;码型效应的特点:在脉冲序列中较长的连“0”码后出现的“1”码,其脉冲明显变小,而且连“0”码数目越多,调制速率越高,这种效应越明显;可以采用“过调制”补偿方法,消除码型效应;弛张震荡:当电流脉冲注入激光器后,输出光脉冲会出现幅度逐渐衰减的震荡; 自脉动现象:某些激光器在脉冲调制甚至直流驱动下,当注入电流达到某个范围时,输出光脉冲出现持续等幅的高频振荡,这种现象叫做自脉动现象;温度对激光器输出光功率的影响主要通过阈值电流I th 和外微分量子效率ηd 产生温度升高,阈值电流增加,外微分量子效率减小,输出光脉冲幅度下降; 光接收机 ☆☆☆☆☆☆器流对光检测器的要求:1)波长相应要和光纤低损耗窗口μm,μm 和μm 兼容;2)响应度要高,在一定的接收光功率下,能产生尽可能大的光电流; 3)噪声要尽可能低,能接收微弱光信号,; 4)性能稳定,可靠性高,寿命长,功耗和体积小; 均衡的目的是:对经光纤传输、光/电转换和放大后已产生畸变的电信号进行补偿,使输出信号的波形适合于判决,以消除码间干扰减小误码率;灵敏度的定义:在保证通信质量的条件下,光接收机所需的最小平均接收光功率P min ,并以dBm 为单位;计算公式:定义公式:Pr=10lg 理想光接收机灵敏度:Pr=10lg)](10)min([3dBm w P -><λη2bnhcf基本概念:因为量子噪声是伴随光信号的随机噪声,只要有光信号输入,就有量子噪声存在; 光接收机的噪声包括光检测器的噪声量子噪声、暗电流噪声、APD 附加噪声、电阻热噪声和前置放大器的噪声; 线路编码有什么要求数字光纤通信系统对线路骂醒的主要要求是保证传输的透明性,具体要求是: 1)能限制信号带宽,减小功率谱中的高低频分量; 2)能给光接收机提供足够的定时信息;3)能提供一定的冗余度,用于平衡码流、误码监测和公务通信;但对高速光纤通信系统,应尽量减小冗余度,以免占用过大的带宽;常用的线路码型为:扰码、mBnB 码和插入码; 第四章 数字光纤通信同步数字系列SDH 帧结构 作用因素 图 简答题2号嫌疑犯字节发送顺序:由上往下发 每行先左后右1)段开销SOH 又可分为再生段开销SOH 和复接段开销LOH 2)信息载荷Payload 3)管理指针单元AU-PTRSDH 环形网的一个突出优点是“自愈”能力; 系统的性能指标 小知识点 掌握为进行系统性能研究,ITU-T 建议中提出了一个数字传输参考模型,称为假设参考连接HRX ;假设参考数字链路HRDL数字光纤通信系统的主要性能指标有:传输速率,误码率,抖动和可靠性 系统的设计往年有计算,今年没有,但有小知识点12345…9顺序数字光纤通信系统设计的主要任务是确定中继距离,一般采用最坏情况设计法来确定中继距离;在光纤传输中,中继距离不但受到光纤损耗限制,而且还受到光纤色散的限制;第七、八章讲过的一些小知识点,你大爷,哪些讲过,臣妾不知道哇1参饵光纤放大器工作波长正好与光纤的最佳波长一致,增益高、噪声系数小、频带宽,在光纤通信系统中可以作为中继放大器,前置放大器和后置放大器;2光波分复用增加了光纤的传输容量,降低了成本;3光交换目前主要有两种方式:空分交换和波分交换4目前光通信系统采用光强调制——直接检测的方式;5相干光通信在接收端采用零差检测或外差检测;6SDH技术的最大优势在于组网上,它的传送网通常采用线形、星形、树形、环形和网孔形拓扑结构;7SDH的特色之一是能利用ADM构成环形自愈网,自愈网结构分为两类:通道倒换环和复用段倒换环;8建议将光传送网分为光通道层OCH、光复用段层OMS和光传输层OTS;9WDM光网络的结点主要有两种功能,即光波长信道的分插复用功能和交叉连接功能,实现这两种功能的网络元件是:OADM和OXC;。
CH32通信用光器件副本
![CH32通信用光器件副本](https://img.taocdn.com/s3/m/4c4e4602240c844769eaeef8.png)
大,但是整个光栅有成百上千个波纹,反馈光的总量足以产生激
光振荡。
m B
2ne
(3.10)
数。
ne 为材料有效折射率,λB为布喇格波长,m为衍射级
在普通光栅的DFB激光器中,发生激光振荡的有两个阈
值最低、增益相同的纵模,其波长为
1,2
B
(1 2
2B )
2ne L
(3.11)
DFB激光器的优点
• 单纵模激光器:
DFB激光器的优点
• 谱线窄,波长稳定性好
• 由于DFB激光器的每一个光栅周期相当于一个FP腔, 所以光栅形成的布拉格反射可以看作多级调谐,使得 谐振波长的选择性大大提高,谱线明显变窄。此外, 由于光栅的作用有助于使发射波长锁定在谐振波长上, 使得波长稳定性极好。
DFB激光器的优点
• 动态谱线好
第三章 通信用光器件
第二讲
内容提要
• 分布反馈式激光器(DFB) • 光电二极管 • 主要内容回顾
1.分布反馈式激光器(DFB)
• 产生的背景 • 工作原理
DFB产生的背景
• 随着技术的进步,高速率的光纤通信系统不断投入使用,对光源提出了更高 的要求:
(1)光源的谱线更窄; (2)高速调制下,能保持动态单纵模特性; (3)发射波长更稳定,且能够实现调谐; (4)阈值电流更低,输出功率更大。 满足上述特性的激光器就是分布反馈式(Distributed Feedback)激光器
• 由于DFB激光器能够在高速调制时也能保持单模特性, 因此,高速调制时的动态谱线特性比FP激光器能够改 善一个数量级。
DFB激光器的优点
• 线性好
• DFB的线性非常好,广泛用于模拟调制的有线电视光 纤传输系统。
第三章-光无源器件
![第三章-光无源器件](https://img.taocdn.com/s3/m/9653151032687e21af45b307e87101f69e31fb25.png)
裸光纤转接器(Bare Fiber Adaptor ):将裸光纤与光 源、探测器以及各类光仪表进行连接的器件。
光纤(缆)活动连接器:习惯上是指两个连接器插头加 一个转换器。
活动连接器是实现光纤与光纤之间可拆卸连 接的器件,活动连接器件是光纤通信领域 最基本、应用最广泛的无源器件,用于:
研磨抛光法
熔融拉锥法:将两根(或两根以上)除去涂覆层
的光纤以一定的方式靠拢,在高温加热下熔融, 同时向两侧拉伸,最终在加热区形成双锥体形式 的特殊波导结构。
输入臂 背向散射臂
熔融拉锥法
4直通臂 3耦合臂
下图可用来定性地表示熔融拉锥型光纤耦合器的 工作原理。入射光功率在双锥体结构的耦合区发 生功率再分配,一部分光功率从“直通臂”继续 传输,另一部分则由“耦合臂”传到另一光路。
ST型插头:由AT&T公司开发,采用带键的卡 口式锁紧结构,确保连接时准确对准。
•“Jumper cables” to connect devices and instruments
•“Adapter cables” to connect interfaces using different connector styles
光路 旋转轴
光路 旋转轴
为了减小反射光,衰减片与光轴可以倾 斜放置。
光纤
自 聚 焦 透镜
衰减 器
光衰减器的主要技术要求是: 高的衰减精度
好的衰减重复性
低的原始插损
一.光纤定向耦合器 ——简称光纤耦合器
光纤光耦合器的功能:
把一个输入的光信号功率分配给多个输 出,或把多个输入的光信号功率组合成 一个输出。这种光耦合器与波长无关。
第3章练习题(答案)
![第3章练习题(答案)](https://img.taocdn.com/s3/m/da1fb61ebb1aa8114431b90d6c85ec3a87c28b8c.png)
第3章练习题(答案)第三章练习题(答案)⼀、填空题1.常⽤光源LD是以受激辐射为基础发相⼲(激)光,LED以⾃发辐射为基础发⾮相⼲(荧)光。
2.光与物质的粒⼦体系的相互作⽤主要有三个过程是:受激吸收,⾃发辐射,受激辐射;产⽣激光的最主要过程是:受激辐射。
3.激光器由⼯作物质、激励源(泵浦源)和光学谐振腔三部分组成。
4.激光振荡器必须包括增益介质、激励源和光学谐振腔。
5.LD的P-I特性具有阈值特性,其阈值电流随温度升⾼⽽升⾼,当其增⼤⾄原来的 1.5 倍时,LD寿命告终。
6.在半导体激光器P-I曲线中,⼯作电流⼩于阈值电流的范围对应于荧光区,⼯作电流⼤于阈值电流的范围对应于激光。
7.光电检测器的作⽤是进⾏光/电转换,PIN管本质上是外加反向(或负)偏压的PN结。
8.常⽤的导体光电检测器主要有 PIN光电⼆极管(PIN-PD)和雪崩光电⼆极管(APD)两种,基本原理是通过受激吸收(光电效应)过程实现光电转换。
9.⽆源器件主要有光纤连接器、光耦合器、光隔离器、光波分复⽤器、和光波长转换器、光开关等。
10.光纤连接器的主要性能指标有插⼊损耗(介⼊损耗)、回波损耗、互换性、插拔寿命、重复性、稳定性等。
11.表⽰光纤耦合器性能指标的参数有隔离度、插⼊损耗和分光⽐等。
⼆、选择题1.光纤通信系统中使⽤的光器件主要有:(D )A 激光器、发光⼆极管;B 分布反馈激光器、PIN光电⼆极管;C 半导体激光器、光检测器、分布反馈激光器;D 光源、光检测器、光放⼤器。
2.光纤通信系统中常⽤的光检测器主要有:(B )A. 激光器、发光⼆极管B. PIN光电⼆极管、APD雪崩光电⼆极管C.分布反馈激光器、PIN光电⼆极管D. PIN光电⼆极管、半导体激光器LD3.光源的作⽤是:(B )A 产⽣输⼊光波信号;B 将电信号电流变换为光信号功率,即实现电-光转换;C 产⽣输⼊光功率;D 光波对电信号进⾏调制,使其载荷信息在光纤中传输。
光纤通信系统的基本构成
![光纤通信系统的基本构成](https://img.taocdn.com/s3/m/042bc19655270722192ef7b5.png)
⊥
∥ (b)
典型半导体激光器的远场辐射特性和远场图样 (a) 光强的角分布; (b) 辐射光束
3.1 光纤通信用光源
3.1.1.3 转换效率和输出光功率特性
激光器的电/光转换效率用外微分量子效率
表示,其定义是在阈值电流以上,每对复 合载流子产生的光子数。 当I<Ith时激光器发出的是自发辐射光; 当I>Ith时,发出的是受激辐射光,光功率随 驱动电流的增加而增加。
大时,由于PN结发热产生饱和现象,使P-I 曲线的斜率减小。
3.1 光纤通信用光源
3.1.2.3 频率特性
10
e£½1.1 ns
Æ µÂÊÏìÓ¦ H( f )
0.1 10
e£½2.1 ns £½6.4
e
ns
100 µ÷ÖÆ Æ µÂÊf / MHz
发光二极管(LED)的频率响应
1000
位条件的波长存在。这些波长取决于激光器纵向 长度L,并称为激光器的纵模。 驱动电流变大,纵模模数变小,谱线宽度变窄。这 种变化是由于谐振腔对光波频率和方向的选择, 使边模消失、主模增益增加而产生的。 当驱动电流足够大时,多纵模变为单纵模,这种激 光器称为静态单纵模激光器。
830 828
I=100mA Po=10mW
Êä³ö¹¦ÂÊ P / mW µ¥ÃæÊä³ö¹¦ÂÊ P / mW
3.5
10
3.0
9
2.5
8
7 2.0
6
1.5
5
4
1.0
3
0.5
2
1
0
0
0
50 Ith100
150
0 20 40 60 80
¹¤×÷µçÁ÷I / mA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节首先介绍半导体激光器(LD)的工作原理、基本结
构和主要特性,然后进一步介绍性能更优良的分布反馈激
光器(DFB - LD),最后介绍可靠性高、寿命长和价格便宜的
发光管(LED)。
第三章通信用光器件
光纤通信系统对光源的要求
• 1、合适的发光波长 • 2、足够的输出功率 • 3、可靠性高,寿命长 • 4、输出效率高 • 5、光谱宽度窄 • 6、聚光性好 • 7、调制方便 • 8、价格低廉
当系统处于热平衡状态时,
N2 exp(E2E1)
(3.2)
N1
kT
式中, k=1.381×10-23J/K,为波尔兹曼常数,T为热力学温度。 由于(E2-E1)>0,T>0,所以在这种状态下,总是N1>N2。 这是 因为电子总是首先占据低能量的轨道。
第三章通信用光器件
受激吸收和受激辐射的速率分别比例于N1和N2,且比例 系数(吸收和辐射的概率)相等。
(2)自发辐射
在高能级E2的电子是不稳定的,即使没有外界的作用, 也 会自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子 辐射出去,这种跃迁称为自发辐射,见图3.1(b)。
(3)受激辐射
在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级
E1上与空穴复合,释放的能量产生光辐射,这种跃迁称为受激辐
第三章通信用光器件
3.1.1 半导体激光器工作原理和基本结构
半导体激光器是向半导体PN结注入电流, 实现粒子数反 转分布,产生受激辐射,再利用谐振腔的正反馈,实现光放大 而产生激光振荡的。
第三章通信用光器件
1. 受激辐射和粒子数反转分布 有源器件的物理基础是光和物质相互作用的效应。 在物质的原子中,存在许
3.3.1 和接头 3.3.2 光耦合器 3.3.3 光隔离器与光环行器 3.3.4 光调制器 3.3.5 光开关第三章通信用光器件
返回主目录
第 3 章 通信用光器件
通信用光器件可以分为有源器件和无源器件两种类型。 有源器件包括光源、光检测器和光放大器。 光无源器件主要有连接器、耦合器、波分复用器、调制 器、光开关和隔离器等。
第三章通信用光器件
3.1 光源
3.1.1 半导体激光器工作原理和基本结构
一、半导体激光器的工作原理 受激辐射和粒子数反转分布 PN结的能带和电子分布 激光振荡和光学谐振腔
二、半导体激光器基本结构
3.1.2 半导体激光器的主要特性
一、发射波长和光谱特性 二、激光束的空间分布 三、转换效率和输出光功率特性
第三章通信用光器件
2. PN
在半导体中,由于邻近原子的作用,电子所处的能态扩展成 能级连续分布的能带。能量低的能带称为价带,能量高的能带称 为导带,导带底的能量Ec 和价带顶的能量Ev 之间的能量差EcEv=Eg称为禁带宽度或带隙。电子不可能占据禁带。
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
E1
E2
终态
E1
(b) 自发辐射;
第三章通信用光器件
E2 hf12
E1 E2 E1
初态 终态
(c) 受激辐射
第三章通信用光器件
(1)受激吸收
在正常状态下,电子处于低能级E1,在入射光作用下,它会 吸收光子的能量跃迁到高能级E2上,这种跃迁称为受激吸收。电 子跃迁后,在低能级留下相同数目的空穴,见图3.1(a)。
如果N1>N2,即受激吸收大于受激辐射。当光通过这种 物质时,光强按指数衰减, 这种物质称为吸收物质。
如果N2>N1,即受激辐射大于受激吸收,当光通过这种 物质时,会产生放大作用,这种物质称为激活物质。
N2>N1的分布,和正常状态(N1>N2)的分布相反,所以称 为粒子(电子)数反转分布。
问题:如何得到粒子数反转分布的状态呢? 这个问题将 在下面加以叙述。
射,见图3.1(c)。
第三章通信用光器件
受激辐射和受激吸收的区别与联系
受激辐射是受激吸收的逆过程。电子在E1和E2两个能级之间 跃迁,吸收的光子能量或辐射的光子能量都要满足波尔条件,即
E2-E1=hf12
(3.1)
式中,h=6.628×10-34J·s,为普朗克常数,f12为吸收或辐射的光子 频率。
第 3 章 通信用光器件
3.1 光源
3.1.1 半导体激光器工作原理和基本结构
3.1.2 半导体激光器的主要特性 3.1.3 分布反馈激光器 3.1.4 发光二极管 3.1.5 半导体光源一般性能和应用
3.2 光检测器
3.2.1 光电二极管工作原理 3.2.2 PIN 光电二极管 3.2.3 雪崩光电二极管(APD) 3.2.4 光电二极管一般性能和应用
受激辐射和自发辐射产生的光的特点很不相同。
受激辐射光的频率、相位、偏振态和传播方向与入射光相同, 这种光称为相干光。
自发辐射光是由大量不同激发态的电子自发跃迁产生的,其
频率和方向分布在一定范围内,相位和偏振态是混乱的,这种光
称为非相干光。
第三章通信用光器件
产生受激辐射和产生受激吸收的物质是不同的。 设在单 位物质中,处于低能级E1和处于高能级E2(E2>E1)的原子数分别 为N1和N2。
能量比基态大的能级Ei(i=2, 3, 4 …)称为激发态。 电子在低能级E1的基态和高能级E2的激发态之间的跃迁有
三种基本方式:受激吸收 自发辐射 受激辐射 (见图3.1)
第三章通信用光器件
E2 hf12
E1
E2
E1
初态 终态
(a) 受激吸收; 能级和电子跃迁
第三章通信用光器件
E2
初态
hf12
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型第三半章导通信体用;光器(c件) P型半导体
图3.2示出不同半导体的能带和电子分布图。根据量子统 计理论,在热平衡状态下,能量为E的能级被电子占据的概率 为费米分布
四、 频率特性 五、 温度特性
3.1.3 分布反馈激光器
一、 工作原理 二、DFB激光器的优点
3.1.4 发光二极管
一、工作原理 二、工作特性
3.1.5 半导体光源一般性能和应用
第三章通信用光器件
3.1 光源
光源是光发射机的关键器件,其功能是把电信号转换 为光信号。
目前光纤通信广泛使用的光源主要有半导体激光二极 管或称激光器(LD)和发光二极管或称发光管(LED), 有些 场合也使用固体激光器。