2020年广西防城港市中考数学试题及参考答案(word解析版)
广西防城港市2020版中考数学试卷(II)卷

广西防城港市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共有8小題,每小题3分,共24分。
) (共8题;共24分)1. (3分) (2018七上·如皋期中) 一只蚂蚁从数轴上的点A出发爬了6个单位长度到了原点,则点A所示().A . 6B .C .D .2. (3分)如图所示,该图案是经过()A . 平移得到的B . 旋转或轴对称得到的C . 轴对称得到的D . 旋转得到的3. (3分)下列结论正确的是()A . 3a2b﹣a2b=2B . 单项式﹣x2的系数是﹣1C . 使式子有意义的x的取值范围是x>﹣2D . 若分式的值等于0,则a=±14. (3分) (2020八下·防城港期末) 如图在中,点D点E分别是边的中点,则的值为()A .B .C .D .5. (3分)如果用表示1个立方体,用表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A .B .C .D .6. (3分) (2018八上·梁子湖期末) 下列运算正确的是A .B .C .D .7. (3分) (2019七下·玄武期中) 人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A .B .C .D .8. (3分) (2019八下·秀洲月考) 如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是()A .B .C .D .二、填空题(本大题共有8小题,每小题3分,共24分。
) (共8题;共24分)9. (3分)(2019·无锡模拟) 将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为________.10. (3分) (2020八下·东湖月考) 计算: =________.11. (3分)(2018·苏州模拟) 小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是________.12. (3分)有一组数据:1,3,3,4,4,这组数据的方差为________.13. (3分) (2017九上·镇雄期末) 若x1 , x2是方程x2+2x﹣3=0的两根,则x1+x2=________.14. (3分)(2019·平谷模拟) 如图所示,半圆O的直径AB=10cm,弦AC=6cm,弦AD平分∠BAC,AD的长为________cm.15. (3分) (2020九上·平房期末) 已知中,,,,则的长为________.16. (3分)(2017·深圳模拟) 含45°角的直角三角板如图放置在平面直角坐标系中,其中A(﹣2,0),B (0,1),则直线BC的解析式为________.三、解答题(本大题共有11小题,共102分。
防城港市2020年(春秋版)中考数学试卷(I)卷

防城港市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2016·巴彦) ﹣|﹣2|的倒数是()A . 2B .C . -D . ﹣22. (2分)若的在实数范围内有意义,则()A . x≥1B . x≠1C . x>1D . x≤13. (2分)(2018·安徽模拟) 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A .B .C .D .4. (2分) (2017九上·深圳期中) 在以下数据2,2,-1,3中,中位数和极差分别是()A . 1,4B . 1,3C . 2,4D . 2,35. (2分)已知A(﹣5,m2),B(﹣2,a),C(﹣0.5,b),D(4,c)都在反比例函数y= 的图象上,则下列判断正确的是()A . m2最大B . a最大C . b最大D . c最大6. (2分)平面直角坐标系中,P(﹣2a﹣6,a﹣4)在第三象限,则a的取值范围是()A . a>4B . a≥﹣12C . ﹣3≤a<4D . ﹣3<a<47. (2分) (2016八上·宁阳期中) 已知等腰三角形一边是3,一边是6,则它的周长等于()A . 12B . 12或15C . 15D . 18或158. (2分)如图,正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A . 点PB . 点QC . 点RD . 点M二、填空题 (共10题;共11分)9. (1分) (2015八上·阿拉善左旗期末) 用科学记数法表示 0.0000057=________.10. (1分) (2019九下·鞍山月考) 把多项式8a3﹣2a分解因式的结果是________.11. (1分)(2018·成都) 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为________.12. (2分) (2016九上·独山期中) 点(﹣b,1)关于原点对称的点的坐标为________.若x=2是一元二次方程x2+x﹣a=0的解,则a的值为________13. (1分) (2017九上·江都期末) 用半径为的半圆围成一个圆锥的侧面,则圆锥的底面半径为________.14. (1分)不等式组的解集为________15. (1分)(2016·益阳) 如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P 点,若∠P=40°,则∠D的度数为________.16. (1分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是________.17. (1分)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG..若AB=8,BC=16,则△AEG 的面积为________.18. (1分) (2020九下·下陆月考) 如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C 在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值________.三、解答题 (共10题;共97分)19. (5分)先化简:﹣2a2( ab+b2)﹣5ab(a2﹣ab),再求当a=﹣1,b=1时该式的值.20. (10分)用适当的方法解下列方程组.(1)(2).21. (8分)(2017·淮安) 某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1) a=________,b=________;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为________;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.22. (4分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.23. (5分)农民张大爷家又两个大棚,分别种植草莓和西红柿,有关成本和销售情况如表:种植种类成本(元/千克)销售单价(元/千克)草莓820西红柿48(1)2013年,张大爷共销售草莓和西红柿6000千克,获利4万元,求西红柿和草莓各销售多少千克;(2)张大爷五月上旬和中旬草莓销售额都是5000元,但中旬草莓单价比下旬下降20%,中旬比上旬多销售了100千克,求五月份中旬的销售单价.24. (10分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.25. (15分) (2018九上·濮阳期末) 已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.26. (10分)(2018·姜堰模拟) 经市场调查,发现进价为40元的某童装每月的销售量y(件)与售价x(元)满足一次函数关系,且相关信息如下:售价x(元)60708090……销售量y(件)280260240220……(1)求这个一次函数关系式;(2)售价为多少元时,当月的利润最大?最大利润是多少?27. (15分)(2018·淄博) 如图(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:写出线段GM 与GN的数量关系和位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.28. (15分)(2020·海南模拟) 如图,抛物线y= x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y 轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共97分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
广西省防城港市2019-2020学年中考数学第五次调研试卷含解析

广西省防城港市2019-2020学年中考数学第五次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.162.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90o D.绕原点顺时针旋转90o3.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a ﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤5.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺6.下列运算中正确的是( )A .x 2÷x 8=x −6B .a·a 2=a 2C .(a 2)3=a 5D .(3a )3=9a 37.下面几何的主视图是( )A .B .C .D .8.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )A .B .C .D .9.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-11.函数y =ax+b 与y =bx+a 的图象在同一坐标系内的大致位置是( )A .B .C .D .12.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( ) A .无实数根 B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +. 14.在函数中,自变量x 的取值范围是 .15.如图, AB 是⊙O 的弦,∠OAB=30°.OC ⊥OA ,交AB 于点C ,若OC=6,则AB 的长等于__.16.在ABCD 中,AB=3,BC=4,当ABCD 的面积最大时,下列结论:①AC=5;②∠A+∠C=180o ;③AC ⊥BD ;④AC=BD .其中正确的有_________.(填序号)17.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为_____. 18.如图,数轴上不同三点、、A B C 对应的数分别为a b c 、、,其中4, 3,||||a =AB =b =c -,则点C 表示的数是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A 、B 两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A 、B 两班学生测试成绩在80≤x<90这一组的数据如下: A 班:80 80 82 83 85 85 86 87 87 87 88 89 89B 班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A 、B 两班学生测试成绩的平均数、中位数、方差如下: 平均数 中位数 方差 A 班 80.6 m 96.9 B 班80.8n153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m 、n 的值;请你对比分析A 、B 两班学生的数学学习情况(至少从两个不同的角度分析).20.(6分)如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.21.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米). (参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.7323 1.732≈,2 1.414≈)22.(8分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤10050 0.25根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?23.(8分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24.(10分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA . (1)求证:OC OPPD AP=; (2)若△OCP 与△PDA 的面积比为1:4,求边AB 的长.25.(10分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 26.(12分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF ,(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论. 27.(12分)鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m ,月销量比(1)中最低月销量800盒增加了%m ,结果该月水果店销售该水果礼盒的利润达到了4000元,求m 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2.C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.3.C.【解析】试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4.∵∠A=∠BOC ,∴∠A=∠BOD.∴tanA=tan ∠BOD=.故选D .考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义. 4.C 【解析】 【分析】根据二次函数的性质逐项分析可得解. 【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0, 则①当x=1时,y=a+b+c <0,正确; ②当x=-1时,y=a-b+c >1,正确; ③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误; ⑤对称轴x=-2ba=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤. 故选C 5.B 【解析】【分析】根据同一时刻物高与影长成正比可得出结论. 【详解】设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴1.5150.5x , 解得x=45(尺), 故选B .【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.6.A 【解析】【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】解:A、x2÷x8=x-6,故该选项正确;B、a•a2=a3,故该选项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A.【点睛】此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.7.B【解析】【分析】主视图是从物体正面看所得到的图形.【详解】解:从几何体正面看故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C9.C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.10.D【解析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.11.B【分析】根据a 、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】分四种情况:①当a >0,b >0时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a >0,b <0时,y=ax+b 的图象经过第一、三、四象限;y=bx+a 的图象经过第一、二、四象限,B 选项符合;③当a <0,b >0时,y=ax+b 的图象经过第一、二、四象限;y=bx+a 的图象经过第一、三、四象限,B 选项符合;④当a <0,b <0时,y=ax+b 的图象经过第二、三、四象限;y=bx+a 的图象经过第二、三、四象限,无选项符合.故选B .【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.12.A【解析】【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】解:原式=222()xy x yx yx y++⋅++=xy+2x+2y,方程组:30233x yx y+=⎧⎨+=⎩,解得:31xy=⎧⎨=-⎩,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.14.。
2020年广西省中考数学试卷(含答案)

广西省中考数学试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。
注意:答案一律填写在答题卷上,在试题卷上作答无效.........。
考试结束,将本试卷和答题卷一并交回。
第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)请用2B 铅笔在答题卷上将选定的答案标号涂黑。
1.-5的相反数是A .-5B .5C .51D . ±52.我国南海海域面积为38000002km ,用科学记数法表示正确的是A .3.8×1052km B .3.8×1062km C .3.8×1072km D .3.8×1082km3.如图,AB∥CD ,E 在AC 的延长线上,若︒=∠34A ,︒=∠90DEC ,则D ∠的度数为A .︒17B .︒34C .︒56D .o 66 4.在函数31x y x +=-中,自变量x 的取值范围是 A .x ≥-3且1x ≠ B .x >-3且1x ≠ C .x ≥3 D .x >3 5.如图是由4个大小相同的正方体搭成的几何体,其俯视图是6.下列说法中正确的是A .篮球队员在罚球线上投篮一次,未投中是必然事件B .想了解某种饮料中含色素的情况,宜采用普查C .数据5,1,-2,2,3的中位数是-2D .一组数据的波动越大,方差越大7.下列运算正确的是A. 235a a a +=B. 22a a -=C. 632a a a ÷=D. 236()a a =第5题图AB CDCD 第3题图8.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解的个数有A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,E 是CD 的中点,AD 、BE 的延长线交于点F ,3DF =,2DE =,则平行四边形ABCD 的周长为A .5B .12C .14D .1610.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是 A .200米 B. 2003米 C. 2203米 D. 100(31)+米11.如图,在平面直角坐标系中,抛物线y =23ax +与y 轴交于点A ,过点A 与x轴平行的直线交抛物线y =213x 于B 、C 两点,则BC 的长为A .1B .2C .3D .612.如图,AB 是⊙O 的直径,AD 是⊙O 的切线, BC ∥OD 交⊙O 于点C , 若AB =2, OD =3,则BC 的长为A .32B .23C .3D .2第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分;只要求填写最后结果.) 13.分解因式:24x - = .14.小玲在一次班会中参与知识抢答活动,现有语文题6个,第9题图F ED CBA 第10题图第12题图第11题图B OAC y xO CD45°30°BDC ADA数学题5个,综合题9个,她从中随机抽取1个,抽中 数学题的概率是 .15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为cm 6、cm 8,AE ⊥BC 于点E ,则AE 的长是 cm . 16.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其 对应点C '恰好落在直线AB 上,则点C '的坐标为 .17.如图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 18.如图,第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA OB ⊥,cos 3A =,则k 的值为 .三、解答题(本大题共8题,共66分;解答应写出必要的文字说明、演算步骤或推理过程.)19.(本题6分)计算: ()︒-++⎪⎭⎫⎝⎛-+-30tan 35321160120.(本题6分)先化简,再求值:221()111a a a a a -÷+--,其中12+=a .21. (本题8分) 如图,在△ABC 中,AB AC =,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母.①作CAM ∠的平分线AN ;第18题图BO Ayx第17题图BACBAO O O图1图220﹪纪念奖三等奖二等奖一等奖45﹪纪念奖三等奖二等奖600奖项一等奖人数(人)10020030040050063252567②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.22. (本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ; (3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23. (本题8分)某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这进价(元/千克) 售价(元/千克)甲种 5 8 乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?A B CM24. (本题8分)某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.(本题10分)如图,︒=∠90C ,⊙O 是Rt △ABC 的内切圆,分别切AB AC BC ,,于点G F E ,,,连接OF OE ,.AO 的延长线交BC 于点D ,2,6==CD AC . (1)求证:四边形OECF 为正方形; (2)求⊙O 的半径; (3)求AB 的长.OGFE DC BA乙甲72015963O y (米)x (天)26.(本题12分) 如图,已知直线121+=x y 与y 轴交于点A ,与x 轴交于点D ,抛物线c bx x y ++=221与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,直接写出点P 的坐标; (3)在抛物线的对称轴上找一点M ,使|MC AM -|的值最大,求出点M 的坐标.21OMN DC BA数学答案评分标准一.选择题BBCA DDDC CDDB 二.填空题13. (2)(2)x x +- 14.1415. 16. (﹣1,2) 17. 3π 18. -4三.解答题19.解:原式=4﹣2+1﹣333⨯4分(对一个知识点给1分) =4﹣2+1﹣1 5分 =2 6分20.解:原式=2(1)(1)(1)(1)(1)(1)(1)(1)a a a a a a a a a a ⎡⎤-+-⋅+-⎢⎥+-+-⎣⎦2分(还有其他做法) =2222(1)(1)(1)(1)a a a aa a a a ---⋅+-+- 3分 =23a a - ……4分 当a =21+时,原式=3223232+--=- ……6分 21.解:(1)作图正确 . ……3分(2)四边形ABCD 是平形四边形,理由如下: ∵AB AC =∴1ABC ∠=∠ 4分 ∵121CAM ABC ∠=∠+∠=∠∴112CAM ∠=∠∵AN 平分CAM ∠∴122CAM ∠=∠ 5分∴12∠=∠∴BC ∥AD ……6分 ∵AC 的中点是O ∴AO CO =又∵AOD COB ∠=∠ ∴AOD COB ∆≅∆∴BC =AD ……7分 ∴四边形ABCD 是平形四边形 ……8分22. 解:(1)1260.……(2分) (2)108°. ……4分(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,图略……6分 (4)抽到获得一等奖的学生的概率为:63÷1260=5%. ……8分23. 解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:1分5x +9(140﹣x )=1000, ……3分 解得:x =65,∴140﹣x =75(千克), ……5分 答:购进甲种水果65千克,乙种水果75千克; ……6分 (2)3×65+4×75=495,答:利润为495元. ……8分24解:(1)∵720÷(9-3)=120∴乙工程队每天修公路120米. ……1分(2)设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩== 2分∴y 乙=120x -360 ……3分当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x ……6分 (3)当x =15时,y 甲=900,∴该公路总长为:720+900=1620(米)设需x 天完成,由题意得,(120+60)x =1620 7分 解得x =9 答:需9天完成 ……8分25. (本题满分10分)解:(1)如图,因为⊙O 是Rt △ABC 的内接圆,分别切BC ,AC ,AB 于点E ,F ,G ∴∠CFO=∠OEC=90°∵∠C=90°...........1分 (三个直角少一个,这一分就不得) ∴则四边形OECF 为 矩形,……………………….2分 又∵OE=OF=r ……………………………3分 ∴四边形OECF 为 正方形 (2) 由四边形OECF 为 正方形∴OE//AC ,CE=CF=r∴△OED ∽△ACD ……………………………4分 ∴AC OE DC DE = ∴622r r =- ………………………5分解得:r=23 ……………………………6分(3) ⊙O 是Rt △ABC 的内切圆,由(2)得DE=21,设BD=x,则BE=BG=x+21 ∵AG=AF=29,∴AB=5+x ,由222AB AC BC =+ 得222)5(6)2(+=++x x ………………8分O GFE DCBA(第21解得:x=25 ……………………………9分 ∴AB =215…………………………………10分 (若设BG=x,则方程为222)29(6)23(+=++x x 得x=3) 26. (1)直线121+=x y 与y 轴交于点A 得A (0,1),将A (0,1)、B (1,0)坐标代入y=x 2+bx+c 得,解得,∴抛物线的解折式为y=x 2﹣x+1;……………………3分(2)满足条件的点P 的坐标为(,0)或(1,0)或(3,0)或(,0); (7)分(3)抛物线的对称轴为,……………………8分∵ B 、C 关于x=对称, ∴ MC=MB ,要使|AM ﹣MC|最大,即是使|AM ﹣MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM ﹣MB|的值最大. (9)分易知直线AB 的解折式为y=﹣x+1………………10分∴ 由,得⎪⎪⎩⎪⎪⎨⎧-==2123y x∴M(1.5,-0.5) ………………12分。
防城港市2020版中考数学试卷C卷

防城港市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个数的相反数是|﹣3|,则这个数是()A . ﹣B .C . ﹣3D . 32. (2分)如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()A . 10°B . 15°C . 20°D . 30°3. (2分)珍惜水资源,节约用水是每个民兴学子应具备的优秀品质。
据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升。
如果某个同学在洗手后,没有把水龙头拧紧,当他离开4小时后水龙头滴了()毫升水.(用科学记数法表示)A . 1440B . 1.44x103C . 0.144x104D . 144x1024. (2分)(2016·聊城) 用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A .B .C .D .5. (2分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A . 12个B . 16个C . 20个D . 30个6. (2分)(2019·聊城) 某快递公司每天上午9:00~10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲,乙两仓库的快件数量(件)与时间(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A . 9:15B . 9:20C . 9:25D . 9:307. (2分) (2019九上·婺城期末) 一组数据:,a,a,,若添加一个数据a,下列说法错误的是A . 平均数不变B . 中位数不变C . 众数不变D . 方差不变8. (2分) (2019九上·无锡期中) 如图,平行四边形ABCD对角线AC与BD交于点O,且AD=6,AB=10,在AB延长线上取一点E,使BE= AB,连接OE交BC于F,则BF的长为()A .B .C .D . 19. (2分) (2016九上·北京期中) 如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A . 1B . 2C . 3D . 410. (2分)(2016·连云港) 如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6 .其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A . 86B . 64C . 54D . 48二、填空题 (共5题;共7分)11. (1分) (2019七下·北京期末) 关于的不等式的解集如图所示,则的值是________.12. (1分) (2016九上·黑龙江月考) 一元二次方程x2=2x的根是________.13. (1分)(2019·海门模拟) 如图,将边长为2m的正六边形铁丝框ABCDEF変形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积________.14. (3分)在一个不透明的袋子中装有红、黄两种颜色的球共20个,每个球除颜色外完全相同.某学习兴趣小组做摸球实验,将球搅匀后从中随机摸出1个球,记下颜色后再放回袋中,不断重复.下表是活动进行中的部分统计数据.摸球的次数n1001502005008001000摸到红球的次数m5996118290480601摸到红球的频率0.59________0.58________ 0.600.601(1)完成上表;(2)“摸到红球”的概率的估计值是________(精确到0.1)15. (1分) (2017七下·黔东南期末) 如图所示,将长方形ABCD的纸片沿EF折叠,点D、C分别落在点D′、C′处,若∠AED′=50°,则∠EFB的度数为________.三、解答题 (共10题;共107分)16. (10分) (2016七下·吴中期中) 已知x+y=4,xy=3,求下列代数式的值:(1) x2+y2;(2) x2﹣y2 .17. (15分)(2016·宁夏) 某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.18. (15分) (2016八下·宜昌期中) 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN 交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?19. (7分)(2017·重庆) 重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是________度,并补全条形统计图________;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.20. (5分)(2017·萍乡模拟) 放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).21. (10分) (2019九上·揭阳月考) 某新建火车站站前广场需要绿化的面积为46000米2 ,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2 ,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?22. (10分) (2018九上·潮南期末) 如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB 于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.23. (15分)(2020·乐平模拟) 如图是反比例函数的图象,点,分别在图象的两支上,以为对角线作矩形且轴.(1)当线段过原点时,分别写出与,与的一个等量关系式;(2)当、两点在直线上时,求矩形的周长;(3)当时,探究与的数量关系.24. (10分)如图,CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上.求证:(1) AF=FG;(2)BF∥DG.25. (10分) (2018九上·绍兴月考) 如图,二次函数y=ax2+bx+c的图象经过A、B、C三点(1)观察图象,求出抛物线解析式(2)观察图象,直接写出当x取何值时,y>0?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共7分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共10题;共107分)16-1、16-2、17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。
广西防城港市2020年中考数学试卷(II)卷

广西防城港市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2014·桂林) 2014的倒数是()A .B . ﹣C . |2014|D . ﹣20142. (2分)(2017·青山模拟) 计算2﹣(﹣1)2等于()A . 1B . 0C . ﹣1D . 33. (2分) (2019七上·沈北新期中) 下面几个几何体,从正面看到的形状是圆的是()A .B .C .D .4. (2分)不等式组的解集是()A . x<5B . x<﹣1C . x<2D . ﹣1<x<55. (2分)(2017·江都模拟) 某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人)1341分数(分)80859095那么这9名学生所得分数的众数和中位数分别是()A . 90,90B . 90,85C . 90,87.5D . 85,856. (2分)下列计算正确的是()A . 5a+2a=7a2B . 5a﹣2a=3C . 5a﹣2a=3aD . ﹣ab+2ab2=ab27. (2分) (2020九上·定州期末) 若,则的值是()A . 1B . 2C . 3D . 48. (2分)满足下列条件的各对三角形中相似的两个三角形有().A . ∠A=60°,AB=5cm,AC=10cm;∠A′=60°,A′B′=3cm,A′C′=10cmB . ∠A=45°,AB=4cm,BC=6cm;∠D=45°,DE=2cm,DF=3cmC . ∠C=∠E=30°,AB=8cm,BC=4cm;DF=6cm,FE=3cmD . ∠A=∠A′,且AB•A′C′=AC•A′B′9. (2分) (2017九上·萧山月考) 把抛物线y=x2+4先向左平移1个单位,再向下平移3个单位,所得抛物线的表达式为()A . y=(x+1)2+7B . y=(x-1)2+7C . y=(x-1)2+1D . y=(x+1)2+110. (2分)如图,在△ABC中,AB=5,AC=12,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为()A . 10B . 12C . 13D . 1711. (2分)在四个命题:(1)各边相等的圆内接多边形是正多边形;(2)各边相等的圆外切多边形是正多边形;(3)各角相等的圆内接多边形是正多边形;(4)各角相等的圆外切多边形是正多边形,其中正确的个数为()A . 1B . 2C . 3D . 412. (2分) (2020七下·硚口月考) 如图,平面直角坐标系内有一条折线从原点出发后,在第一象限内曲折前行,已知A1A2⊥OA1 , A1A2=OA1;A2A3⊥A1A2 , A2A3=A1A2;A3A4⊥A2A3 , A3A4=A2A3;……;依照这个规律进行下去,其中A1(1,2),A2(3,1),A3(4,3),……. ,则A2019的坐标是()A . (2019,2020)B . ( 2019,2018)C . (3027,1009)D . (3028,1011)二、填空题 (共5题;共5分)13. (1分) (2017九下·永春期中) 如图,若点的坐标为,则 =________.14. (1分)(2019·槐荫模拟) 计算: ________.15. (1分) (2020八上·江阴月考) 如图,若△OAD≌△OBC,且∠O=75o ,∠C=10o ,则∠OAD=________°.16. (1分)网上购物已经成为人们常用的一种购物方式,售后评价也成为卖家和买家都关注的信息.消费者在网店购物后,将从“好评”、“中评”、“差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的.若甲、乙两名消费者在某网店购买了同一商品,且都给出了评价,那么两人中至少有一个给“好评”的概率为________.17. (1分) (2019八下·博白期末) 如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x >ax+4的解集为________.三、解答题 (共7题;共90分)18. (10分)(2018·巴中) 计算: +(﹣)﹣1+|1﹣ |﹣4sin45°.19. (15分)(2018·洪泽模拟) 我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?20. (10分)某市从今年1月1日起调整水价,每立方米水费上涨了原价的.据了解,某校去年11月份的水费是1800元,而今年1月份的水费是3600元.如果该校今年1月份的用水量比去年11月份的用水量多600m3 .(1)该市原来每立方米水价是多少元?(2)该校开展了“节约每一滴水”的主题活动,采取了有效的节约用水措施,计划今年5月份的用水量较1月份降低20%,那么该校今年5月份应交的水费是多少?21. (10分) (2018九上·沈丘期末) 如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.22. (15分)(2017·苏州模拟) 如图,在平面直角坐标系中,函数y= (x>0,k是常数)的图象经过A (2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证: = ;(3)若AD∥BC,求点B的坐标.23. (10分) (2017九下·盐都开学考) 如图,在Rt△ABC中,∠ACB=90°,以BC为半径作⊙B,交AB于点D,交AB的延长线于点E,连接CD、CE.(1)求证:△ACD∽△AEC;(2)当 = 时,求tanE;(3)若AD=4,AC=4 ,求△ACE的面积.24. (20分) (2017八下·宁德期末) 如下图。
2020年广西北部湾经济区(南宁北海钦州防城港崇左来宾)中考数学试卷

2020年广西北部湾经济区中考数学试卷学校:班级:姓名:得分:一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)(2020•广西)如果温度上升2C︒记作2C︒+,那么温度下降3C︒记作() A.2C︒-C.3C︒+B.2C︒+D.3C︒-2.(3分)(2020•广西)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是( )A.B.C.D.3.(3分)(2020•广西)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180︒C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)(2020•广西)2020年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为() A.4⨯D.67100.710⨯710⨯C.67010⨯B.5∠的度数为( 5.(3分)(2020•广西)将一副三角板按如图所示的位置摆放在直尺上,则1)A .60︒B .65︒C .75︒D .85︒6.(3分)(2020•广西)下列运算正确的是( ) A .3226()ab a b =B .235a b ab +=C .22532a a -=D .22(1)1a a +=+7.(3分)(2020•广西)如图,在ABC ∆中,AC BC =,40A ∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒8.(3分)(2020•广西)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23 C .19D .299.(3分)(2020•广西)若点1(1,)y -,2(2,)y ,3(3,)y 在反比例函数(0)ky k x=<的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y >>B .321y y y >>C .132y y y >>D .231y y y >>10.(3分)(2020•广西)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .3(30)(20)20304x x --=⨯⨯B .1(302)(20)20304x x --=⨯⨯C .13022020304x x +⨯=⨯⨯D .3(302)(20)20304x x --=⨯⨯11.(3分)(2020•广西)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35︒,再往前走3米站在C 处,看路灯顶端O 的仰角为65︒,则路灯顶端O 到地面的距离约为(已知sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,sin650.9︒≈,cos650.4︒≈,tan65 2.1)(︒≈ )A .3.2米B .3.9米C .4.7米D .5.4米12.(3分)(2020•广西)如图,AB 为O 的直径,BC 、CD 是O 的切线,切点分别为点B 、D ,点E 为线段OB 上的一个动点,连接OD ,CE ,DE ,已知25AB =,2BC =,当CE DE +的值最小时,则CEDE的值为( )A .910B .23C .53D .255二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)(2020•广西)若二次根式4x +有意义,则x 的取值范围是 . 14.(3分)(2020•广西)分解因式:2233ax ay -= .15.(3分)(2020•广西)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是 .(填“甲”或“乙” )16.(3分)(2020•广西)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH BC ⊥于点H ,已知4BO =,24ABCD S =菱形,则AH = .17.(3分)(2020•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道1AB =尺(1尺10=寸),则该圆材的直径为 寸.18.(3分)(2020•广西)如图,AB 与CD 相交于点O ,AB CD =,60AOC ∠=︒,210ACD ABD ∠+∠=︒,则线段AB ,AC ,BD 之间的等量关系式为 .三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤) 19.(6分)(2020•广西)计算:22(1)(6)(9)(6)2-+--+-÷.20.(6分)(2020•广西)解不等式组:351342163x x x x -<+⎧⎪--⎨⎪⎩,并利用数轴确定不等式组的解集.21.(8分)(2020•广西)如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -(1)将ABC ∆向上平移4个单位长度得到△111A B C ,请画出△111A B C ; (2)请画出与ABC ∆关于y 轴对称的△222A B C ; (3)请写出1A 、2A 的坐标.22.(8分)(2020•广西)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60108090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)(2020•广西)如图,ABC∆是O的内接三角形,AB为O直径,6AB=,AD 平分BAC∠,交BC于点E,交O于点D,连接BD.(1)求证:BAD CBD∠=∠;(2)若125AEB∠=︒,求BD的长(结果保留)π.24.(10分)(2020•广西)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)(2020•广西)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF CE⊥于点G,交AD于点F.(1)求证:ABF BCE∆≅∆;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC DG=;(3)如图3,在(2)的条件下,过点C作CM DG⊥于点H,分别交AD,BF于点M,N,求MNNH的值.26.(10分)(2020•广西)如果抛物线1C 的顶点在拋物线2C 上,抛物线2C 的顶点也在拋物线1C 上时,那么我们称抛物线1C 与2C “互为关联”的抛物线.如图1,已知抛物线2111:4C y x x =+与222:C y ax x c =++是“互为关联”的拋物线,点A ,B 分别是抛物线1C ,2C 的顶点,抛物线2C 经过点(6,1)D -.(1)直接写出A ,B 的坐标和抛物线2C 的解析式;(2)抛物线2C 上是否存在点E ,使得ABE ∆是直角三角形?如果存在,请求出点E 的坐标;如果不存在,请说明理由;(3)如图2,点(6,3)F -在抛物线1C 上,点M ,N 分别是抛物线1C ,2C 上的动点,且点M ,N 的横坐标相同,记AFM ∆面积为1S (当点M 与点A ,F 重合时10)S =,ABN ∆的面积为2S (当点N 与点A ,B 重合时,20)S =,令12S S S =+,观察图象,当12y y 时,写出x 的取值范围,并求出在此范围内S 的最大值.2020年广西北部湾经济区中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2C ︒记作2C ︒+,那么温度下降3C ︒记作( ) A .2C ︒+ B .2C ︒-C .3C ︒+D .3C ︒-【考点】正数和负数【分析】根据正数与负数的表示方法,可得解; 【解答】解:上升2C ︒记作2C ︒+,下降3C ︒记作3C ︒-; 故选:D .2.(3分)如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D .【考点】点、线、面、体【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形. 故选:D .3.(3分)下列事件为必然事件的是( ) A .打开电视机,正在播放新闻 B .任意画一个三角形,其内角和是180︒ C .买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上 【考点】三角形内角和定理;随机事件【分析】必然事件就是一定发生的事件,即发生的概率是1的事件. 【解答】解:A ,C ,D 选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B ,任意画一个三角形,其内角和是180︒,是必然事件,符合题意.故选:B .4.(3分)2020年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为( ) A .47010⨯B .5710⨯C .6710⨯D .60.710⨯【考点】科学记数法-表示较大的数【分析】根据科学记数法的表示方法10(19)n a a ⨯<,即可求解; 【解答】解:5700000710=⨯; 故选:B .5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .60︒B .65︒C .75︒D .85︒【考点】平行线的性质;三角形的外角性质【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:60BCA ∠=︒,45DCE ∠=︒, 2180604575∴∠=︒-︒-︒=︒, //HF BC ,1275∴∠=∠=︒,故选:C .6.(3分)下列运算正确的是( ) A .3226()ab a b =B .235a b ab +=C .22532a a -=D .22(1)1a a +=+【考点】幂的乘方与积的乘方;合并同类项;完全平方公式【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可; 【解答】解:23a b +不能合并同类项,B 错误; 222532a a a -=,C 错误; 22(1)21a a a +=++,D 错误;故选:A .7.(3分)如图,在ABC ∆中,AC BC =,40A ∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒【考点】等腰三角形的性质;作图-基本作图【分析】利用等腰三角形的性质和基本作图得到CG AB ⊥,则CG 平分ACB ∠,利用A B ∠=∠和三角形内角和计算出ACB ∠,从而得到BCG ∠的度数. 【解答】解:由作法得CG AB ⊥, AB AC =,CG ∴平分ACB ∠,A B ∠=∠, 1804040100ACB ∠=︒-︒-︒=︒, 1502BCG ACB ∴∠=∠=︒.故选:C .8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( )A .13B .23 C .19D .29【考点】列表法与树状图法【分析】画树状图(用A 、B 、C 分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解. 【解答】解:画树状图为:(用A 、B 、C 分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3, 所以两人恰好选择同一场馆的概率3193==. 故选:A .9.(3分)若点1(1,)y -,2(2,)y ,3(3,)y 在反比例函数(0)k y k x=<的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y >>B .321y y y >>C .132y y y >>D .231y y y >>【考点】反比例函数图象上点的坐标特征;反比例函数的性质【分析】0k <,y 随x 值的增大而增大,1(1,)y -在第二象限,2(2,)y ,3(3,)y 在第四象限,即可解题;【解答】解:0k <, y ∴随x 值的增大而增大, ∴当1x =-时,10y >,23<, 231y y y ∴<<故选:C .10.(3分)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A.3(30)(20)20304x x--=⨯⨯B.1(302)(20)20304x x--=⨯⨯C.13022020304x x+⨯=⨯⨯D.3(302)(20)20304x x--=⨯⨯【考点】由实际问题抽象出一元二次方程【分析】根据空白区域的面积34=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为3(302)(20)20304x x--=⨯⨯,故选:D.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35︒,再往前走3米站在C处,看路灯顶端O的仰角为65︒,则路灯顶端O到地面的距离约为(已知sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,sin650.9︒≈,cos650.4︒≈,tan65 2.1)(︒≈)A.3.2米B.3.9米C.4.7米D.5.4米【考点】解直角三角形的应用-仰角俯角问题【分析】过点O作OE AC⊥于点F,延长BD交OE于点F,设DF x=,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE AC⊥于点F,延长BD交OE于点F,设DF x=,tan65OF DF︒=,tan65 OF x∴=︒,3BD x∴=+,tan35OF BF︒=,(3)tan35OF x∴=+︒,2.10.7(3)x x∴=+,1.5x∴=,1.52.13.15OF∴=⨯=,3.15 1.54.65OE∴=+=,故选:C.12.(3分)如图,AB为O的直径,BC、CD是O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知25AB=,2BC=,当CE DE+的值最小时,则CEDE的值为()A.910B.23C5D25【考点】相似三角形的判定与性质;轴对称-最短路线问题;切线的性质【分析】延长CB到F使得BC CF=,则C与F关于OB对称,连接DF与OB相交于点E,此时CE DE DF+=值最小,连接OC,BD,两线相交于点G,过D作DH OB⊥于H,先求得BG,再求BH,进而DH,运用相似三角形得EF BFDE DH=,便可得解.【解答】解:延长CB到F使得BC CF=,则C与F关于OB对称,连接DF与OB相交于点E,此时CE DE DF+=值最小,连接OC,BD,两线相交于点G,过D作DH OB⊥于H,则OC BD ⊥,22543OC OB BC =++, OB BC OC BG =, ∴253BG =, 4253BD BG ∴==, 22222OD OH DH BD BH -==-, ∴22245(5)(5)3BH BH -=-, 859BH ∴=∴22209DH BD BH -=, //DH BF , ∴2920109EF BF ED DH ===, ∴910CE DE =, 故选:A .二、填空题(本大题共6小题,每嗯题3分,共18分)13.(34x +x 的取值范围是 4x - . 【考点】二次根式有意义的条件 【分析】根据被开数40x +即可求解; 【解答】解:40x +,4x ∴-;故答案为4x -;14.(3分)分解因式:2233ax ay -= 3()()a x y x y +- . 【考点】提公因式法与公式法的综合运用【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:2222333()3()()ax ay a x y a x y x y -=-=+-. 故答案为:3()()a x y x y +-15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是 甲 .(填“甲”或“乙” ) 【考点】方差【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数1(9896106)86x =+++++=,所以甲的方差22222217[(98)(88)(98)(68)(108)(68)]63=-+-+-+-+-+-=,因为甲的方差比乙的方差小, 所以甲的成绩比较稳定. 故答案为甲.16.(3分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH BC ⊥于点H ,已知4BO =,24ABCD S =菱形,则AH =245.【考点】菱形的性质【分析】根据菱形面积=对角线积的一半可求AC ,再根据勾股定理求出BC ,然后由菱形的面积即可得出结果.【解答】解:四边形ABCD 是菱形, 4BO DO ∴==,AO CO =,AC BD ⊥, 8BD ∴=, 1242ABCD S AC BD =⨯=菱形, 6AC ∴=,132OC AC ∴==, 225BC OB OC ∴=+=, 24ABCD S BC AH =⨯=菱形, 245AH ∴=; 故答案为:245. 17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道1AB =尺(1尺10=寸),则该圆材的直径为 26 寸.【考点】垂径定理的应用 【分析】设O 的半径为r .在Rt ADO ∆中,5AD =,1OD r =-,OA r =,则有2225(1)r r =+-,解方程即可.【解答】解:设O 的半径为r .在Rt ADO ∆中,5AD =,1OD r =-,OA r =, 则有2225(1)r r =+-, 解得13r =,O ∴的直径为26寸,故答案为:26.18.(3分)如图,AB 与CD 相交于点O ,AB CD =,60AOC ∠=︒,210ACD ABD ∠+∠=︒,则线段AB ,AC ,BD 之间的等量关系式为 222AB AC BD =+ .【考点】勾股定理【分析】过点A 作//AE CD ,截取AE CD =,连接BE 、DE ,则四边形ACDE 是平行四边形,得出DE AC =,ACD AED ∠=∠,证明ABE ∆为等边三角形得出BE AB =,求得360()90BDE AED ABD EAB ∠=︒-∠+∠-∠=︒,由勾股定理得出222BE DE BD =+,即可得出结果.【解答】解:过点A 作//AE CD ,截取AE CD =,连接BE 、DE ,如图所示: 则四边形ACDE 是平行四边形, DE AC ∴=,ACD AED ∠=∠, 60AOC ∠=︒,AB CD =, 60EAB ∴∠=︒,CD AE AB ==,ABE ∴∆为等边三角形,BE AB ∴=,210ACD ABD ∠+∠=︒, 210AED ABD ∴∠+∠=︒,360()3602106090BDE AED ABD EAB ∴∠=︒-∠+∠-∠=︒-︒-︒=︒,222BE DE BD ∴=+,222AB AC BD ∴=+;故答案为:222AB AC BD =+.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤) 19.(6分)计算:22(1)(6)(9)(6)2-+--+-÷. 【考点】实数的运算【分析】分别运算每一项然后再求解即可; 【解答】解:22(1)(6)(9)(6)2-+--+-÷ 1693=++-13=.20.(6分)解不等式组:351342163x x x x -<+⎧⎪--⎨⎪⎩,并利用数轴确定不等式组的解集.【考点】在数轴上表示不等式的解集;解一元一次不等式组【分析】分别解两个不等式得到3x <和2x -,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集. 【解答】解:351342163x x x x -<+⎧⎪⎨--⎪⎩①②解①得3x <, 解②得2x -,所以不等式组的解集为23x -<. 用数轴表示为:21.(8分)如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -(1)将ABC ∆向上平移4个单位长度得到△111A B C ,请画出△111A B C ; (2)请画出与ABC ∆关于y 轴对称的△222A B C ; (3)请写出1A 、2A 的坐标.【考点】作图-平移变换;作图-轴对称变换【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△111A B C,即为所求;(2)如图所示:△222A B C,即为所求;(3)1(2,3)A,2(2,1)A--.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100. 整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a ,b ,c ,d 的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状? 【考点】用样本估计总体;算术平均数;众数;中位数 【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得; (3)利用样本估计总体思想求解可得. 【解答】解:(1)由题意知4a =, 1(9060708080808090100100)8310b =⨯+++++++++=, 2班成绩重新排列为60,70,80,80,80,90,90,90,90,100, 8090852c +∴==,90d =;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85; 从众数上看,1班和3班都是80,2班是90; 综上所述,2班成绩比较好;(3)45707630⨯=(张), 答:估计需要准备76张奖状.23.(8分)如图,ABC ∆是O 的内接三角形,AB 为O 直径,6AB =,AD 平分BAC ∠,交BC 于点E ,交O 于点D ,连接BD . (1)求证:BAD CBD ∠=∠;(2)若125AEB ∠=︒,求BD 的长(结果保留)π.【考点】弧长的计算;三角形的外接圆与外心;圆周角定理 【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD ,根据平角定义得到55AEC ∠=︒,根据圆周角定理得到90ACE ∠=︒,求得35CAE ∠=︒,得到270BOD BAD ∠=∠=︒,根据弧长公式即可得到结论.【解答】(1)证明:AD 平分BAC ∠,CAD BAD ∴∠=∠, CAD CBD ∠=∠, BAD CBD ∴∠=∠;(2)解:连接OD , 125AEB ∠=︒, 55AEC ∴∠=︒,AB 为O 直径,90ACE ∴∠=︒, 35CAE ∴∠=︒,35DAB CAE∴∠=∠=︒,270BOD BAD∴∠=∠=︒,∴BD的长70371806ππ⨯==.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【考点】一次函数的应用;分式方程的应用【分析】(1)设每袋国旗图案贴纸为x元,则有1502005x x=+,解得15x=,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50:202:1a b=,解得54b a =;(3)如果没有折扣,40,2032160,20a aWa a⎧=⎨+>⎩,国旗贴纸需要:120022400⨯=张,小红旗需要:120011200⨯=面,则24004850a==袋,5604b a==袋,总费用32481601696W=⨯+=元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有1502005x x=+,解得15x=,经检验15x=时方程的解,∴每袋小红旗为15520+=元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b 袋小红旗恰好与a 袋贴纸配套,则有50:202:1a b =, 解得54b a =,答:购买小红旗54a 袋恰好配套;(3)如果没有折扣,则51520404W a a a =+⨯=,依题意得40800a , 解得20a ,当20a >时,则8000.8(40800)32160W a a =+-=+, 即40,2032160,20a a W a a ⎧=⎨+>⎩,国旗贴纸需要:120022400⨯=张, 小红旗需要:120011200⨯=面, 则24004850a ==袋,5604b a ==袋, 总费用32481601696W =⨯+=元.25.(10分)如图1,在正方形ABCD 中,点E 是AB 边上的一个动点(点E 与点A ,B 不重合),连接CE ,过点B 作BF CE ⊥于点G ,交AD 于点F . (1)求证:ABF BCE ∆≅∆;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC DG =;(3)如图3,在(2)的条件下,过点C 作CM DG ⊥于点H ,分别交AD ,BF 于点M ,N ,求MNNH的值.【考点】相似形综合题【分析】(1)先判断出90GCB CBG ∠+∠=,再由四边形ABCD 是正方形,得出90CBE A ∠=︒=∠,BC AB =,即可得出结论;(2)设2AB CD BC a ===,先求出12EA EB AB a ===,进而得出CE =,再求出BG ,CG ==,再判断出()CQD BGC AAS ∆≅∆,进而判断出GQ CQ =,即可得出结论;(3)先求出85CH a =,再求出65DH a =,再判断出CHD DHM ∆∆∽,求出910HM a =,再用勾股定理求出45GH a =,最后判断出QGH GCH ∆∆∽,得出225HG HN a CG ==,即可得出结论.【解答】(1)证明:BF CE ⊥, 90CGB ∴∠=︒, 90GCB CBG ∴∠+∠=,四边形ABCD 是正方形, 90CBE A ∴∠=︒=∠,BC AB =, 90FBA CBG ∴∠+∠=, GCB FBA ∴∠=∠,()ABF BCE ASA ∴∆≅∆;(2)证明:如图2,过点D 作DH CE ⊥于H , 设2AB CD BC a ===, 点E 是AB 的中点, 12EA EB AB a ∴===,CE ∴=,在Rt CEB ∆中,根据面积相等,得BG CE CB EB =,BG ∴=,CG ∴==, 90DCE BCE ∠+∠=︒,90CBF BCE ∠+∠=︒, DCE CBF ∴∠=∠,CD BC =,90CQD CGB ∠=∠=︒,()CQD BGC AAS ∴∆≅∆,CQ BG ∴==,GQ CG CQ CQ ∴=-=, DQ DQ =,90CQD GQD ∠=∠=︒, ()DGQ CDQ SAS ∴∆≅∆, CD GD ∴=;(3)解:如图3,过点D 作DH CE ⊥于H , 1122CDG S DQ CH DG ∆==, 85CG DQ CH a DG ∴==, 在Rt CHD ∆中,2CD a =,65DH a ∴==,90MDH HDC ∠+∠=︒,90HCD HDC ∠+∠=︒, MDH HCD ∴∠=∠, CHD DHM ∴∆∆∽, ∴34DH DH CH HM ==, 910HM a ∴=,在Rt CHG ∆中,CG =,85CH a =,45GH a ∴=,90MGH CGH ∠+∠=︒,90HCG CGH ∠+∠=︒,QGH HCG ∴∠=∠, QGH GCH ∴∆∆∽, ∴HN HGHG CH=, 225HG HN a CG ∴==,12MN HM HN a ∴=-=,∴152245aMN NH a ==26.(10分)如果抛物线1C 的顶点在拋物线2C 上,抛物线2C 的顶点也在拋物线1C 上时,那么我们称抛物线1C 与2C “互为关联”的抛物线.如图1,已知抛物线2111:4C y x x =+与222:C y ax x c =++是“互为关联”的拋物线,点A ,B 分别是抛物线1C ,2C 的顶点,抛物线2C 经过点(6,1)D -.(1)直接写出A ,B 的坐标和抛物线2C 的解析式;(2)抛物线2C 上是否存在点E ,使得ABE ∆是直角三角形?如果存在,请求出点E 的坐标;如果不存在,请说明理由;(3)如图2,点(6,3)F -在抛物线1C 上,点M ,N 分别是抛物线1C ,2C 上的动点,且点M ,N 的横坐标相同,记AFM ∆面积为1S (当点M 与点A ,F 重合时10)S =,ABN ∆的面积为2S (当点N 与点A ,B 重合时,20)S =,令12S S S =+,观察图象,当12y y 时,写出x 的取值范围,并求出在此范围内S 的最大值.【考点】二次函数综合题【分析】(1)由抛物线2111:4C y x x =+可得(2,1)A --,将(2,1)A --,(6,1)D -代入22y ax x c =++,求得22124y x x =-++,(2,3)B ;(2)易得直线AB 的解析式:1y x =+,①若B 为直角顶点,BE AB ⊥,(6,1)E -;②若A 为直角顶点,AE AB ⊥,(10,13)E -;③若E 为直角顶点,设21(,2)4E m m m -++不符合题意;(3)由12y y ,得22x -,设21(,)4M t t t +,21(,2)4N t t t -++,且22t -,易求直线AF的解析式:3y x =--,过M 作x 轴的平行线MQ 交AF 于Q ,211462S t t =++,设AB 交MN于点P ,易知(,1)P t t +,22122S t =-,所以1248S S S t =+=+,当2t =时,S 的最大值为16.【解答】解:由抛物线2111:4C y x x =+可得(2,1)A --,将(2,1)A --,(6,1)D -代入22y ax x c =++ 得4213661a c a c -+=-⎧⎨-+=-⎩,解得142a c ⎧=-⎪⎨⎪=⎩,22124y x x ∴=-++,(2,3)B ∴;(2)易得直线AB 的解析式:1y x =+, ①若B 为直角顶点,BE AB ⊥,1BE AB k k =-, 1BE k ∴=-,直线BE 解析式为5y x =-+ 联立25124y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得2x =,3y =或6x =,1y =-, (6,1)E ∴-;②若A 为直角顶点,AE AB ⊥, 同理得AE 解析式:3y x =--, 联立23124y x y x x =--⎧⎪⎨=-++⎪⎩, 解得2x =-,1y =-或10x =,13y =-, (10,13)E ∴-;③若E 为直角顶点,设21(,2)4E m m m -++由AE BE ⊥得1BE AE k k =-, 即22111344122m m m m m m -+--++=--+,解得2m =或2-(不符合题意舍去), ∴点E 的坐标(6,1)E ∴-或(10,13)E -;(3)12y y ,22x ∴-,设21(,)4M t t t +,21(,2)4N t t t -++,且22t -,易求直线AF 的解析式:3y x =--, 过M 作x 轴的平行线MQ 交AF 于Q ,则2211(3,)44Q t t t t --+,11||2F A S QM y y =-21462t t =++ 设AB 交MN 于点P ,易知(,1)P t t +, 21||2A B S PN x x =- 2122t =-1248S S S t =+=+,当2t =时,S 的最大值为16.。
防城港市2020年中考数学试卷(II)卷

防城港市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共24分.下列各题的备选答案中,只有一个 (共8题;共16分)1. (2分)(2020·河北模拟) 下列各式,其中错误的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2017·广州模拟) 下列运算中,正确的是()A . (x+y)2=x2+y2B . x6÷x3=x2C . ﹣2(x﹣1)=﹣2x+2D . 2﹣1=﹣23. (2分)(2020·萧山模拟) 如图是某几何体的三视图,该几何体是()A . 长方体B . 三棱锥C . 三棱柱D . 正方体4. (2分)如图,P为△ABC的边AB、AC的中垂线的交点,∠A=50°,则∠BPC的度数为()A . 100°B . 80°C . 60°D . 75°5. (2分)(2019·凤山模拟) 小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是()A .B .C .D .6. (2分)(2019·河池模拟) 圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A .B .C .D .7. (2分)已知函数y=8x-11,要使y>0,那么x应取()A . x>B . x<C . x>0D . x<08. (2分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A . 18B .C .D .二、填空题(每小题3分,共24分) (共8题;共9分)9. (1分)因式分解:ax2﹣ a=________.10. (1分)(2012·来宾) 数据组:26,28,25,24,28,26,28的众数是________.11. (1分)(2017·埇桥模拟) 方程 = 的解是________.12. (1分)(2017·道里模拟) 一种病毒的长度约为0.000072mm,用科学记数法表示0.000072为________.13. (1分)(2018·南京模拟) 如图,在△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠CBD=16°,则∠BAC=________°.14. (1分)(2020·枣阳模拟) 两圆的直径分别为4和6,若两圆有唯一公共点,这两圆的圆心距是________.15. (1分) (2017八上·双台子期末) 如图,∠MON=30°,点A1 , A2 , A3 ,…在射线ON上,点B1 ,B2 , B3 ,…在射线OM上,△A1B1A2 ,△A2B2A3 ,△A3B3A4…均为等边三角形.若OA1=1,则△AnBnAn+1的边长为________.16. (2分)如图,根据图中提供的信息,可以写出正比例函数的关系式是________;反比例函数关系式是________.三、解答题(每题8分,共16分) (共2题;共15分)17. (5分)先化简,再求值:(+)÷,其中a满足a2﹣4a﹣1=0.18. (10分) (2018七上·阜宁期末) 在如图所示的方格中,每个小正方形的边长为1,点、、在方格纸中小正方形的顶点上。
广西防城港市2020版中考数学试卷(I)卷

广西防城港市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分)下列各数中最小的是()A . ﹣5B . ﹣4C . 3D . 42. (2分) (2017七下·泗阳期末) 如图:有一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()A . 30°B . 25°C . 20°D . 15°3. (2分)如图中的几何体是由一个正方体切去一个小正方体后形成的,它的俯视图是()A .B .C .D .4. (2分) 2008年某市有23000名初中毕业生参加了升学考试,为了解23000 名考生的升学成绩,从中抽取了200名考生的试卷进行统计分析,以下说法不正确的是()A . 23000名考生的成绩是总体B . 每名考生是个体C . 200名考生的成绩是总体的一个样本D . 每名考生的成绩是个体5. (2分) (2020九下·沈阳月考) 不等式组:的解集在数轴上表示正确的是()A .B .C .D .6. (2分) (2019八下·天台期末) 如图,△ABC中,D , E分别是AB , AC的中点,点F在DE上,且∠AFB =90°,若AB=5,BC=8,则EF的长为()A . 2.5B . 2C . 1.5D . 17. (2分)(2020·银川模拟) 下列运算正确的是()A .B .C .D .8. (2分) (2019九上·诸暨月考) 如图,点P为正△ABC内一点,∠APC=150°,AP=3,CP=1,则BP长为()A .B .C .D .9. (2分)如图,△ABC中,∠ABC为直角,BD⊥AC,则下列结论正确的是()A .B .C .D .10. (2分)如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A . 28°B . 31°C . 38°D . 62°11. (2分)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A . 12分钟B . 15分钟C . 25分钟D . 27分钟12. (2分) (2016九上·相城期末) 抛物线的图象过原点,则为()A . 0B .C .D .二、填空题 (共6题;共6分)13. (1分) (2017八下·扬州期中) 当x________时,分式有意义.14. (1分)(2017·绵阳模拟) 因式分解:16x4﹣4y2=________.15. (1分) (2020九上·石城期末) 已知袋中有若干个球,它们除颜色外其它都相同.其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是________。
广西防城港市2020版中考数学试卷(I)卷(新版)

广西防城港市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分)(2020·常德模拟) 的相反数是()A . -2B . 2C .D .2. (3分)(2018·来宾模拟) 下列计算正确的是()A . a2•a3=a5B . (a3)2=a5C . (3a)2=6a2D .3. (3分) (2017七下·农安期末) 在下列长度的四组线段中,能组成三角形的是()A . 3,4,4B . 5,5,10C . 2,4,7D . 4,6,124. (3分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,33.对这组数据,下列说法不正确的是()A . 平均数为30B . 众数为29C . 中位数为31D . 极差为55. (3分) (2019九上·长兴期末) 一个不透明的布袋里装有7个球,其中3个红球,4个白球,它们除颜色外都相同,从布袋中随机摸出一个球,摸出的球是红球的概率是()A .B .C .D .6. (3分)生态园位于县城东北方向5公里处,如图表示准确的是()A .B .C .D .7. (3分) (2016九上·新泰期中) 用配方法解一元二次方程2x2﹣x﹣l=0时,配方正确的是()A . (x﹣)2=B . (x+ )2=C . (x﹣)2=D . (x+ )2=8. (3分)在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是()A .B .C .D .9. (3分)一根圆锥的主视图是等边三角形,边长为2,则这个圆锥的表面积为()A . 2πB . 3πC . πD . )π10. (3分) (2017七下·晋中期末) 如图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()A .B .C .D .二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分)求不等式组解集的过程,叫做________.解一元一次不等式组通常采用“分开解,集中判”的方法.分开解就是分别求出不等式组中各个________,并在同一数轴上表示出来;集中判是取各个不等式的解集的________,即可求得不等式组的解集.12. (4分) (2019八下·厦门期末) 有一组数据:a,b,c,d,e,f(a<b<c<d<e<f),设这组数据的中位数为m1 ,将这组数据改变为a﹣2,b,c,d,e,f+1,设改变后的这组数据的中位数为m2 ,则m1________m2 .(填“>”,“=”或“<”)13. (4分)(2018·成都模拟) 若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2 ,则x1(x1+x2)+x22的最小值为________14. (4分) (2019八上·呼兰期中) 在中,,点在直线上,若,则的度数是________.15. (4分)(2020·黄冈模拟) 如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.16. (4分)(2019·金华) 元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________ .三、解答题(本题有8小题,共66分) (共8题;共66分)17. (6分)(2017·磴口模拟) 计算()﹣1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |18. (6分)解方程组:19. (6分)(2019·淄博模拟) 文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:组别年龄段频数(人数)第1组5第2组第3组35第4组20第5组15(1)请直接写出 ________, ________,第3组人数在扇形统计图中所对应的圆心角是________度.(2)请补全上面的频数分布直方图;(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?20. (8分)(2020·盐城) 如图,点O是正方形,的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得(保留作图痕迹,不写作法)(2)连接求证: .21. (8分) (2016·沈阳) 如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).22. (10.0分)(2016·雅安) 已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2 ,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.23. (10.0分)(2019·金华) 如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横,纵坐标均为整数的点称为好点,点P为抛物线y=-(x-m)2+m+2的顶点。
【2020年】广西中考数学试卷及答案

2020年广西中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106 5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab 3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax 2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a 2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BF=BC,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB?BC=OC?BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE =360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE =90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG?CE=CB?EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=?DQ?CH=CH?DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE?k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE?k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM?|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN?|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键。
广西防城港市2020年中考数学试卷(I)卷

广西防城港市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018七上·镇江月考) 下列说法正确的是()A . |-2|=-2B . 0的倒数是0C . 4的平方根是2D . -3的相反数是32. (2分)如果是二次根式,那么a、b应满足条件()A . a>0,b>0B . a、b同号C . a>0,b≥0D . ≥03. (2分) (2018七上·普陀期末) 如果多项式是完全平方式,那么M不可能是()A .B .C . 1D . 44. (2分)如图,直线 l1∥l2 ,∠α=∠β,∠1=50°,则∠2的度数为()A . 130°B . 120°C . 115°D . 100°5. (2分)用换元法解方程+=时,如果设x=,那么原方程可化为()A . 2x2﹣5x+2=0B . x2﹣5x+1=0C . 2x2+5x+2=0D . 2x2﹣5x+1=06. (2分)(2018·来宾模拟) 有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A . 2B . 3C . 4D . 57. (2分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A . 2cmB . 3cmC . 4cmD . 5cm8. (2分)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是().A . 小强从家到公共汽车在步行了2公里B . 小强在公共汽车站等小明用了10分钟C . 公共汽车的平均速度是30公里/小时D . 小强乘公共汽车用了20分钟二、填空题 (共8题;共8分)9. (1分)已知x=y+95,则代数式x2﹣2xy+y2﹣25=________.10. (1分)(2018·温州) 一组数据1,3,2,7,,2,3的平均数是3,则该组数据的众数为________.11. (1分)(2013·苏州) 如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为________.(结果保留π)12. (1分)一元二次方程x2﹣3x﹣4=0与x2+4x-5=0的所有实数根之和等于________13. (1分)(2016·广东) 如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是________cm(计算结果保留π).14. (1分)(2018·正阳模拟) 如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC 的面积为________.15. (1分) (2017八下·嵊州期中) 某种服装原售价为200元,由于换季,连续两次降价处理,现按72元的售价销售.已知两次降价的百分率相同,则每次降价的百分率为________。
2020年广西防城港市中考数学试卷-解析版

2020年广西防城港市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.下列实数是无理数的是()A. √2B. 1C. 0D. −52.下列图形是中心对称图形的是()A. B. C. D.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A. 88.9×103B. 88.9×104C. 8.89×105D. 8.89×1064.下列运算正确的是()A. 2x2+x2=2x4B. x3⋅x3=2x3C. (x5)2=x7D. 2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A. 检测长征运载火箭的零部件质量情况B. 了解全国中小学生课外阅读情况C. 调查某批次汽车的抗撞击能力D. 检测某城市的空气质量6.一元二次方程x2−2x+1=0的根的情况是()A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A. 60°B. 65°C. 70°D. 75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A. 16B. 14C. 13D. 129.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A. 15B. 20C. 25D. 3010.甲、乙两地相距600km,提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A. 600v −13=6001.2vB. 600v=6001.2v−13C. 600v −20=6001.2vD. 600v=6001.2v−2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A. 50.5寸B. 52寸C. 101寸D. 104寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=1x(x>0)于点C,D.若AC=√3BD,则3OD2−OC2的值为()A. 5B. 3√2C. 4D. 2√3二、填空题(本大题共6小题,共18.0分)13.如图,在数轴上表示的x的取值范围是______.14.计算:√12−√3=______.15.射击次数20401002004001000“射中9环以上”的次数153378158231801“射中9环以上”的频率(结果保留小数点后两位)0.750.830.780.790.800.80根据频率的稳定性,估计这名运动员射击一次时“射中环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.17.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.18.如图,在边长为2√3的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.三、解答题(本大题共8小题,共66.0分)19.计算:−(−1)+32÷(1−4)×2.20.先化简,再求值:x+1x ÷(x−1x),其中x=3.21.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90829986989690100898387888190931001009692100整理数据:80≤x<8585≤x<9090≤x<9595≤x<10034a8平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40n mile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20√6n mile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w 万元,问如何购买使得总费用w 最少?请说明理由.25. 如图,在△ACE 中,以AC 为直径的⊙O 交CE 于点D ,连接AD ,且∠DAE =∠ACE ,连接OD 并延长交AE 的延长线于点P ,PB 与⊙O 相切于点B . (1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F ,求证:△FAD∽△DAE ;(3)若tan∠OAF =12,求AEAP 的值.26. 如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =−2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC.设点A 的纵坐标为t ,△ABC 的面积为s . (1)当t =2时,请直接写出点B 的坐标;(2)s 关于t 的函数解析式为s ={14t 2+bt −54,t <−1或t >5a(t +1)(t −5),−1<t <5,其图象如图2所示,结合图1、2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:无理数是无限不循环小数,而1,0,−5是有理数,因此√2是无理数,故选:A.无限不循环小数是无理数,而1,0,−5是整数,也是有理数,因此√2是无理数.本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.2.【答案】D【解析】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【解析】解:889000=8.89×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6−1=5.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【答案】D【解析】解:A、2x2+x2=3x2,故此选项错误;B、x3⋅x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.【答案】A【解析】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.6.【答案】B【解析】解:∵a=1,b=−2,c=1,∴△=(−2)2−4×1×1=4−4=0,∴有两个相等的实数根,故选:B.先根据方程的一般式得出a、b、c的值,再计算出△=b2−4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.7.【答案】B【解析】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=12(180°−80°)=50°,∴∠ACD=180°−∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=12∠ACD=65°,∴∠DCE的度数为65°故选:B.根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE的度数.本题考查了作图−基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.8.【答案】C【解析】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是26=13,故选:C.由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF//BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴ANAD =EFBC(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60−x,∴60−x60=x120,解得:x=40,∴AN=60−x=60−40=20.故选:B.设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF//BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.10.【答案】A【解析】解:因为提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/ℎ,根据题意可得:600v −13=6001.2v.故选:A.直接利用总时间的差值进而得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.11.【答案】C【解析】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,则AB=2r,DE=10,OE=12CD=1,AE=r−1,在Rt△ADE中,AE2+DE2=AD2,即(r−1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.画出直角三角形,根据勾股定理即可得到结论.本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.12.【答案】C【解析】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=1x (x>0)上,则CE=1a,DF=1b.∴BD=BF−DF=b−1b ,AC=1a−a.又∵AC=√3BD,∴1a −a=√3(b−1b),两边平方得:a2+1a2−2=3(b2+1b2−2),即a2+1a2=3(b2+1b2)−4,在直角△ODF中,OD2=OF2+DF2=b2+1b2,同理OC2=a2+1a2,∴3OD2−OC2=3(b2+1b2)−(a2+1a2)=4.故选:C.延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=√3BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC=√3BD 得到a,b的关系是解题的关键.13.【答案】x<1【解析】解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.根据“小于向左,大于向右及边界点含于解集为实心点,不含于解集即为空心点”求解可得.本题主要考查在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.14.【答案】√3【解析】解:√12−√3=2√3−√3=√3.故答案为:√3.先化简√12=2√3,再合并同类二次根式即可.本题主要考查了二次根式的加减,属于基础题型.15.【答案】0.8【解析】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.本题考查了利用频率估计概率,解决本题的关键是理解当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.【答案】556个【解析】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.根据题意可得前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+ 34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.【答案】(−4,3)【解析】解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(−4,3).故答案为:(−4,3).如图,根据点M(3,4)逆时针旋转90°得到点N,则可得点N的坐标为(−4,3).本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质.π18.【答案】43【解析】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE +∠BDE =60°,∴∠DBF +∠BDP =60°,∴∠BDP =120°,∵∠C =60°,∴∠C +∠DPB =180°,∴B ,C ,D ,P 四点共圆,由BC =CD =BD =2√3,可得OB =OD =2,∵∠BOD =2∠C =120°,∴点P 的运动的路径的长=120⋅π⋅2180=43π. 故答案为43π.如图,作△CBD 的外接圆⊙O ,连接OB ,OD.利用全等三角形的性质证明∠DPB =120°,推出B ,C ,D ,P 四点共圆,利用弧长公式计算即可.本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.【答案】解:原式=1+9÷(−3)×2=1−3×2=1−6=−5.【解析】直接利用有理数的混合运算法则计算得出答案.此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.【答案】解:原式=x+1x ÷(x 2x −1x ) =x +1x ÷x 2−1x=x +1x ⋅x (x +1)(x −1)=1x−1,当x =3时,原式=13−1=12.【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x 的值代入计算可得答案.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 21.【答案】(1)证明:∵BE =CF ,∴BE +EC =CF +EC ,∴BC =EF ,在△ABC 和△DEF 中,{AB =DEAC =DF BC =EF,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF ,∴∠B =∠DEF ,∴AB//DE ,又∵AB =DE ,∴四边形ABED 是平行四边形.【解析】(1)证出BC =EF ,由SSS 即可得出结论;(2)由全等三角形的性质得出∠B =∠DEF ,证出AB//DE ,由AB =DE ,即可得出结论. 本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.22.【答案】解:(1)将这组数据重新排列为:81,82,83,86,87,88,89,90,90,90,92,93,96,96,98,99,100,100,100,100,∴a =5,b =90+922=91,c =100; (2)估计成绩不低于90分的人数是1600×1320=1040(人);(3)中位数,在被调查的20名学生中,中位数为91分,有一半的人分数都是再91分以上.【解析】(1)将数据从小到大重新排列,再根据中位数和众数的概念求解可得;(2)用总人数乘以样本中不低于90分的人数占被调查人数的比例即可得;(3)从众数和中位数的意义求解可得.考查中位数、众数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.23.【答案】解:(1)过B 作BM ⊥AC 于M ,由题意可知∠BAM =45°,则∠ABM =45°,在Rt △ABM 中,∵∠BAM =45°,AB =40n mile ,∴BM =AM =√22AB =20√2n mile ,∴渔船航行20√2n mile 距离小岛B 最近;(2)∵BM =20√2nmile ,MC =20√6n mile ,∴tan∠MBC =MCBM =√620√2=√3,∴∠MBC =60°,∴∠CBG =180°−60°−45°−30°=45°,在Rt △BCM 中,∵∠CBM =60°,BM =20√2n mile ,∴BC =BMcos60∘=2BM =40√2n mile ,故救援队从B 处出发沿点B 的南偏东45°的方向航行到达事故地点航程最短,最短航程是40√2n mile .【解析】(1)过B 作PM ⊥AB 于C ,解直角三角形即可得到结论;(2)在Rt △BCM 中,解直角三角形求得∠CBM =60°,即可求得∠CBG =45°,BC =40√2n mile ,即可得到结论.此题主要考查了解直角三角形的应用−方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.【答案】解:(1)1台A 型机器人和1台B 型机器人每小时各分拣垃圾x 吨和y 吨,由题意可知:{(2x +5y)×2=3.6(3x +2y)×5=8, 解得:{x =0.4y =0.2, 答:1台A 型机器人和1台B 型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20,∴b=100−2a(10≤a≤45).(3)当10≤a<30时,此时40≤b≤80,∴w=20×a+0.8×12(100−2a)=0.8a+960,当a=10时,此时w有最小值,w=968万元,当30≤a≤35时,此时30≤b≤40,∴w=0.9×20a+0.8×12(100−2a)=−1.2a+960,当a=35时,此时w有最小值,w=918万元,当35<a≤45时,此时10≤b<30,∴w=0.9×20a+12(100−2a)=−6a+1200当a=45时,w有最小值,此时w=930,答:选购A型号机器人35台时,总费用w最少,此时需要918万元.【解析】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,根据题意列出方程即可求出答案.(2)根据题意列出方程即可求出答案.(3)根据a的取值,求出w与a的函数关系,从而求出w的最小值.本题考查一次函数,解题的关键正确找出题中的等量关系,本题属于中等题型.25.【答案】解:(1)∵AC为直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠DAE=∠ACE,∴∠DAC+∠DAE=90°,即∠CAE=90°,∴AP是⊙O的切线;(2)连接DB,如图1,∵PA和PB都是切线,∴PA=PB,∠OPA=∠OPB,PO⊥AB,∵PD=PD,∴△DPA≌△DPB(SAS),∴AD=BD,∴∠ABD=∠BAD,∵∠ACD=∠ABD,又∠DAE=∠ACE,∴∠DAF=∠DAF,∵AC是直径,∴∠ADE=∠ADC=90°,∴∠ADE=∠AFD=90°,∴△FAD∽△DAE;(3)∵∠AFO=∠OAP=90°,∠AOF=∠POA,∴△AOF∽△POA,∴OFOA =AFPA,∴OAPA =OFAF=tan∠OAF=12,∴PA=2AO=AC,∵∠AFD=∠CAE=90°,∠DAF=∠ABD=∠ACE,∴△AFD∽△CAE,∴FDAE =AFCA,∴FDAF =AECA=AEAP,∵tan∠OAF=OFAF =12,不妨设OF=x,则AF=2x,∴OD=OA=√5x,∴FD=OD−OE=(√5−1)x,∴FDAF =(√5−1)x2x=√5−12,∴AEAP =√5−12.【解析】(1)由AC为直径得∠ADC=90°,再由直角三角形两锐角互余和已知条件得∠DAC+∠DAE=90°,进而结出结论;(2)由切线长定理得PA=PB,∠OPA=∠OPB,进而证明△PAD≌△PBD,得AD=BD,得△BAD=△BDA,再由圆周角定理得∠DAF=∠EAD,进而便可得:△FAD∽△DAE;(3)证明△AOF∽△POA,得AP=2OA,再△AFD∽△CAE,求得DFAF 的值使得AEAP的值.本题是圆的一个综合题,主要考查了圆周角定理,切线的性质与判定,切线长定理,相似三角形的性质与判定,勾股定理,解直角三角形的应用,第(3)小题关键在证明相似三角形.难度较大,一般为中考压轴题.26.【答案】解:(1)如图1,连接AG,当t=2时,A(−2,2),设B(x,x+1),在y=x+1中,当x=0时,y=1,∴G(0,1),∵AB⊥l1,∴∠ABG=90°,∴AB2+BG2=AG2,即(x+2) 2+(x+1−2)2+x2+(x+1−1)2=(−2)2+(2−1)2,解得:x1=0(舍),x2=−12,∴B(−12,12 );(2)如图2可知:当t=7时,s=4,把(7,4)代入s=14t2+bt−54中得:494+7b−54=4,解得:b=−1,如图3,过B作BH//y轴,交AC于H,由(1)知:当t=2时,A(−2,2),B(−12,12 ),∵C(0,3),设AC 的解析式为:y =kx +b ,则{−2k +b =2b =3,解得{k =12b =3, ∴AC 的解析式为:y =12x +3,∴H(−12,114), ∴BH =114−12=94, ∴s =12BH ⋅|x C −x A |=12×94×2=94,把(2,94)代入s =a(t +1)(t −5)得:a(2+1)(2−5)=94,解得:a =−14;(3)存在,设B(x,x +1),分两种情况:①当∠CAB =90°时,如图4,∵AB ⊥l 1,∴AC//l 1,∵l 1:y =x +1,C(0,3),∴AC :y =x +3,∴A(−2,1),∵D(−2,−1),在Rt △ABD 中,AB 2+BD 2=AD 2,即(x +2)2+(x +1−1)2+(x +2)2+(x +1+1)2=22,解得:x 1=−1,x 2=−2(舍),∴B(−1,0),即B 在x 轴上,∴AB =√12+12=√2,AC =√22+22=2√2,∴S △ABC =12AB ⋅AC =12⋅√2⋅2√2=2;②当∠ACB =90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(−2,t),D(−2,−1),∴(x+2)2+(x+1−t)2=(x+2)2+(x+1+1)2,(x+1−t)2=(x+2)2,x+1−t=x+2或x+1−t=−x−2,解得:t=−1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(−2)2+(t−3)2+x2+(x+1−3)2=(x+2)2+(x+1−t)2,把t=2x+3代入得:x2−3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(−2,9),B(3,4),∴AC=√22+(9−3)2=2√10,BC=√32+(4−3)2=√10,∴S△ABC=12AC⋅BC=12⋅√10⋅2√10=10;当t=0时,如图6,此时,A(−2,3),AC =2,BC =2,∴S △ABC =12AC ⋅BC =12×2×2=2.【解析】(1)先根据t =2可得点A(−2,2),因为B 在直线l 1上,所以设B(x,x +1),在Rt △ABG 中,利用勾股定理列方程可得点B 的坐标;(2)先把(7,4)代入s =14t 2+bt −54中计算得b 的值,计算在−1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标(2,94),代入s =a(t +1)(t −5)中可得a 的值;(3)存在,设B(x,x +1),分两种情况:①当∠CAB =90°时,如图4,②当∠ACB =90°时,如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题,本题的突破点是运用两点的距离公式计算或表示线段的长,属于中考压轴题.。
2023年广西防城港中考数学真题及答案

2023年广西防城港中考数学真题及答案(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡.......一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.若零下2摄氏度记为2C -︒,则零上2摄氏度记为()A.2C -︒B.0C ︒C.2C +︒D.4C +︒2.下列数学经典图形中,是中心对称图形的是()A. B. C. D.3.若分式11x +有意义,则x 的取值范围是()A.1x ≠-B.0x ≠C.1x ≠D.2x ≠4.如图,点A 、B 、C 在O 上,40C ∠=︒,则AOB ∠的度数是()A.50︒B.60︒C.70︒D.80︒5.2x ≤在数轴上表示正确的是()A . B.C.D.6.甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:2 2.1S =甲,2 3.5S =乙,29S =丙,20.7S =丁,则成绩最稳定的是()A.甲B.乙C.丙D.丁7.如图,一条公路两次转弯后又回到与原来相同的方向,如果130A ∠=︒,那么B ∠的度数是()A.160︒B.150︒C.140︒D.130︒8.下列计算正确的是()A.347a a a += B.347a a a ⋅= C.437a a a ÷= D.()437a a =9.将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.2(3)4y x =-+ B.2(3)4y x =++C.2(3)4y x =+- D.2(3)4y x =--10.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m11.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为()A.23.2(1) 3.7x -= B.23.2(1) 3.7x +=C.23.7(1) 3.2x -= D.23.7(1) 3.2x +=12.如图,过(0)k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=-的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为()A.4B.3C.2D.1二、填空题(本大题共6小题,每小题2分,共12分.)13.=______.14.分解因式:a 2+5a =________________.15.函数3y kx =+的图象经过点()2,5,则k =______.16.某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______.17.如图,焊接一个钢架,包括底角为37︒的等腰三角形外框和3m 高的支柱,则共需钢材约______m(结果取整数).(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)18.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为______.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.计算:2(1)(4)2(75)-⨯-+÷-.20.解分式方程:211x x=-.21.如图,在ABC 中,30A ∠=︒,90B Ð=°.(1)在斜边AC 上求作线段AO ,使AO BC =,连接OB ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若2OB =,求AB 的长.22.4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级八年级平均数7.557.55中位数8c 众数a 7合格率b85%根据以上信息,解答下列问题:(1)写出统计表中a ,b ,c 的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.23.如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.24.如图,ABC 是边长为4的等边三角形,点D ,E ,F 分别在边AB ,BC ,CA 上运动,满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x ,DEF 的面积为y ,求y 关于x 的函数解析式;(3)结合(2)所得的函数,描述DEF 的面积随AD 的增大如何变化.25.【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.26.【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 的对应点分别为B ',E ',展平纸片,连接AB ',BB ',BE '.请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系....;(2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ',P ',展平纸片,连接,P B ''.请完成:∠的一条三等分线.(3)证明BB'是NBC参考答案一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】B【11题答案】【答案】B【12题答案】【答案】C二、填空题(本大题共6小题,每小题2分,共12分.)【13题答案】【答案】3【14题答案】【答案】a (a+5)【15题答案】【答案】1【16题答案】【答案】25##0.4【17题答案】【答案】21【18题答案】【答案】三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)【19题答案】【答案】6【20题答案】【答案】=1x -【21题答案】【答案】(1)图见详解(2)AB =【22题答案】【答案】(1)8a =,80%b =,7.5c =(2)510人(3)用中位数的特征可知七,八年级学生成绩的集中趋势,表示了七,八年级学生成绩数据的中等水平.【23题答案】【答案】(1)见解析(2)12AP =【24题答案】【答案】(1)见详解(2)24y x =-+(3)当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小【25题答案】【答案】(1)5l a=(2)1015250l a -=(3) 2.5,0.5l a ==(4)120y m =(5)相邻刻线间的距离为5厘米【26题答案】【答案】(1)123∠=∠=∠(2)见详解(3)见详解。
2020年广西防城港市中考数学试卷

2020年广西防城港市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)下列实数是无理数的是()A.√2B.1C.0D.﹣52.(3分)下列图形是中心对称图形的是()A.B.C.D.3.(3分)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106 4.(3分)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2 5.(3分)以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6.(3分)一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE 的度数为()A .60°B .65°C .70°D .75°8.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .129.(3分)如图,在△ABC 中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .3010.(3分)甲、乙两地相距600km ,提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( ) A .600v −13=6001.2v B .600v =6001.2v −13C .600v−20=6001.2vD .600v=6001.2v−2011.(3分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读k ǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是( )A .50.5寸B .52寸C .101寸D .104寸12.(3分)如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x (x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√3二、填空题(本大题共6小题,每小题3分,共18分.) 13.(3分)如图,在数轴上表示的x 的取值范围是 .14.(3分)计算:√12−√3= .15.(3分)某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数 15 33 78 158 231 801 “射中9环以上”的频率 (结果保留小数点后两位)0.750.830.780.790.800.80根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是 (结果保留小数点后一位).16.(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是 .17.(3分)以原点为中心,把点M (3,4)逆时针旋转90°得到点N ,则点N 的坐标为 . 18.(3分)如图,在边长为2√3的菱形ABCD 中,∠C =60°,点E ,F 分别是AB ,AD 上的动点,且AE =DF ,DE 与BF 交于点P .当点E 从点A 运动到点B 时,则点P 的运动路径长为 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2. 20.(6分)先化简,再求值:x+1x÷(x −1x),其中x =3.21.(8分)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . (1)求证:△ABC ≌△DEF ;(2)连接AD ,求证:四边形ABED 是平行四边形.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x 表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100 整理数据: 80≤x <8585≤x <9090≤x <9595≤x <10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20√6nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号 原价 购买数量少于30台购买数量不少于30台A 型 20万元/台 原价购买 打九折B 型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w 万元,问如何购买使得总费用w 最少?请说明理由.25.(10分)如图,在△ACE 中,以AC 为直径的⊙O 交CE 于点D ,连接AD ,且∠DAE =∠ACE ,连接OD 并延长交AE 的延长线于点P ,PB 与⊙O 相切于点B . (1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F ,求证:△F AD ∽△DAE ;(3)若tan ∠OAF =12,求AE AP的值.26.(10分)如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =﹣2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,△ABC 的面积为s . (1)当t =2时,请直接写出点B 的坐标;(2)s 关于t 的函数解析式为s ={14t 2+bt −54,t <−1或t >5a(t +1)(t −5),−1<t <5,其图象如图2所示,结合图1、2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.2020年广西防城港市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)下列实数是无理数的是()A.√2B.1C.0D.﹣5【解答】解:无理数是无限不循环小数,而1,0,﹣5是有理数,因此√2是无理数,故选:A.2.(3分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.3.(3分)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106【解答】解:889000=8.89×105.故选:C.4.(3分)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【解答】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.5.(3分)以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量【解答】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.6.(3分)一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【解答】解:∵a=1,b=﹣2,c=1,∴△=(﹣2)2﹣4×1×1=4﹣4=0,∴有两个相等的实数根,故选:B.7.(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE 的度数为()A.60°B.65°C.70°D.75°【解答】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=12(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE =12∠ACD =65°, ∴∠DCE 的度数为65° 故选:B .8.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .12【解答】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径, ∴它有6种路径, ∵获得食物的有2种路径, ∴获得食物的概率是26=13,故选:C .9.(3分)如图,在△ABC 中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .30【解答】解:设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC 的高, ∴∠HDN =90°,。
广西防城港市2020年中考数学试卷A卷

广西防城港市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·秀洲期中) 下列计算结果为负数的是()A .B .C .D .2. (2分)右图是由几个相同的小正方体搭成的一个几何体,从左边看得到的平面图形是()A .B .C .D .3. (2分)(2017·桥西模拟) 下列计算正确的是()A . (a2)3=a5B . a﹣2•a2=a﹣4C . 3 ﹣ =3D . =34. (2分) (2016七上·太原期末) 为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A . 随机抽取该校一个班级的学生B . 随机抽取该校一个年级的学生C . 随机抽取该校一部分男生D . 分别从该校初一、初二、初三年级中各随机抽取10%的学生5. (2分)若=0,则a=()A . 0B . 5C . -5D . 106. (2分)样本数据是3 , 6,10,4,2,则这个样本的方差是()A . 8B . 5C . 3D .7. (2分) (2019七下·长春月考) 如图,把一张长方形纸片ABCD沿EF折叠后,点C , D分别落在C , D 的位置上,EC交AD于点G ,已知∠EFG=58°,则∠BEG等于()A . 58°B . 116°C . 64°D . 74°8. (2分) (2020八下·潮安期末) 能表示一次函数y=mx+n与正比例函数y=mnx(m , n是常数且m≠0)的图象的是()A .B .C .D .9. (2分)(2018·防城港模拟) 如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB,OC,若∠BAC 与∠BOC互补,则弦BC的长为()A .B . 2C . 3D . 1.510. (2分) (2020九上·闵行期末) k为任意实数,抛物线的顶点总在()A . 直线上B . 直线上C . x轴上D . y轴上二、填空题 (共8题;共8分)11. (1分)(2017·呼和浩特模拟) 因式分解a3﹣4a的结果是________.12. (1分) (2016七上·中堂期中) 用科学记数法表示:20140000000应记为________.13. (1分)(2018·阜宁模拟) 如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是________.14. (1分) (2016八上·台安期中) 点P(3,﹣5)关于x轴对称的点的坐标为________.15. (1分)如图,菱形ABCD周长为8cm.∠BAD=60°,则AC=________ cm.16. (1分) (2015八下·深圳期中) 如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为________.17. (1分)(2020·青浦模拟) 小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB =5,DE=4,DF=8,那么AG=________.18. (1分)(2018·威海) 如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y= x于点B1 .过B1点作B1A2∥y轴,交直线y=2x于点A2 ,以O为圆心,以OA2长为半径画弧,交直线y= x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3 ,以点O为圆心,以OA3长为半径画弧,交直线y= x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4 ,以点O为圆心,以OA4长为半径画弧,交直线y= x于点B4 ,…按照如此规律进行下去,点B2018的坐标为________.三、解答题 (共8题;共72分)19. (5分)(2019·开江模拟) 先化简,再求值:,其中的值满足方程:.20. (7分)(2018·金华模拟) 为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为________,补全折线统计图________;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.21. (10分)(2012·鞍山) 某实验学校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资金不超过6000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W 元,求出W与x的函数关系式;求出所有的购买方案.22. (15分) (2019八上·虹口月考) 如图已知正比例函数图像经过点A(2,3)、B(m,6).(1)求正比例函数的解析式.(2)求m的值及A、B两点之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广西防城港市中考数学试题及参考答案与解析(考试时间120分钟,满分120分)第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A.B.1 C.0 D.﹣5【知识考点】算术平方根;无理数.【思路分析】无限不循环小数是无理数,而1,0,﹣5是整数,也是有理数,因此是无理数.【解题过程】解:无理数是无限不循环小数,而1,0,﹣5是有理数,因此是无理数,故选:A.【总结归纳】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.2.下列图形是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解题过程】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【总结归纳】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6﹣1=5.【解题过程】解:889000=8.89×105.故选:C.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【知识考点】整式的混合运算.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解题过程】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.【总结归纳】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量【知识考点】全面调查与抽样调查.【思路分析】利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解题过程】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.【总结归纳】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.6.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【知识考点】根的判别式.【思路分析】先根据方程的一般式得出a、b、c的值,再计算出△=b2﹣4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解题过程】解:∵a=1,b=﹣2,c=1,∴△=(﹣2)2﹣4×1×1=4﹣4=0,∴有两个相等的实数根,故选:B.【总结归纳】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE 的度数.【解题过程】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.【总结归纳】本题考查了作图﹣基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【解题过程】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是=,故选:C.【总结归纳】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.30【知识考点】正方形的性质;相似三角形的判定与性质.【思路分析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解题过程】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.【总结归纳】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.10.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用总时间的差值进而得出等式求出答案.【解题过程】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.11.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【知识考点】勾股定理的应用.【思路分析】画出直角三角形,根据勾股定理即可得到结论.【解题过程】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.【总结归纳】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x >0)于点C,D.若AC=BD,则3OD2﹣OC2的值为()A.5 B.3C.4 D.2【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【思路分析】延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解题过程】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=﹣a.又∵AC=BD,∴﹣a=(b﹣),两边平方得:a2+﹣2=3(b2+﹣2),即a2+=3(b2+)﹣4,在直角△ODF中,OD2=OF2+DF2=b2+,同理OC2=a2+,∴3OD2﹣OC2=3(b2+)﹣(a2+)=4.故选:C.【总结归纳】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC =BD得到a,b的关系是解题的关键.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,在数轴上表示的x的取值范围是.【知识考点】在数轴上表示不等式的解集.【思路分析】根据“小于向左,大于向右及边界点含于解集为实心点,不含于解集即为空心点”求解可得.【解题过程】解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.【总结归纳】本题主要考查在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.14.计算:﹣=.【知识考点】二次根式的加减法.【思路分析】先化简=2,再合并同类二次根式即可.【解题过程】解:=2﹣=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,属于基础题型.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 231 801“射中9环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).【知识考点】利用频率估计概率.【思路分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解题过程】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.【总结归纳】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.【知识考点】规律型:数字的变化类.【思路分析】根据题意可得前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解题过程】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.【总结归纳】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为.【知识考点】坐标与图形变化﹣旋转.【思路分析】如图,根据点M (3,4)逆时针旋转90°得到点N,则可得点N的坐标为(﹣4,3).【解题过程】解:如图,∵点M (3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.18.如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质;轨迹.【思路分析】如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB =120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【解题过程】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长==π.故答案为π.【总结归纳】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2.【知识考点】有理数的混合运算.【思路分析】直接利用有理数的混合运算法则计算得出答案.【解题过程】解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5.【总结归纳】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.(6分)先化简,再求值:÷(x﹣),其中x=3.【知识考点】分式的化简求值.【思路分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x的值代入计算可得答案.【解题过程】解:原式=÷(﹣)=÷=•=,当x=3时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.【知识考点】全等三角形的判定与性质;平行四边形的判定.【思路分析】(1)证出BC=EF,由SSS即可得出结论;(2)由全等三角形的性质得出∠B=∠DEF,证出AB∥DE,由AB=DE,即可得出结论.【解题过程】(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,∴四边形ABED是平行四边形.【总结归纳】本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.【知识考点】用样本估计总体;频数(率)分布表;中位数;众数;统计量的选择.【思路分析】(1)将数据从小到大重新排列,再根据中位数和众数的概念求解可得;(2)用总人数乘以样本中不低于90分的人数占被调查人数的比例即可得;(3)从众数和中位数的意义求解可得.【解题过程】解:(1)将这组数据重新排列为:81,82,83,86,87,88,89,90,90,90,92,93,96,96,98,99,100,100,100,100,∴a=5,b==91,c=100;(2)估计成绩不低于90分的人数是1600×=1040(人);(3)中位数,在被调查的20名学生中,中位数为91分,有一半的人分数都是再91分以上.【总结归纳】考查中位数、众数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)过B作PM⊥AB于C,解直角三角形即可得到结论;(2)在Rt△BCM中,解直角三角形求得∠CBM=60°,即可求得∠CBG=45°,BC=40nmile,即可得到结论.【解题过程】解:(1)过B作BM⊥AC于M,由题意可知∠BAM=45°,则∠ABM=45°,在Rt△ABM中,∵∠BAM=45°,AB=40nmile,∴BM=AM=AB=20nmile,∴渔船航行20nmile距离小岛B最近;(2)∵BM=20nmile,MC=20nmile,∴tan∠MBC===,∴∠MBC=60°,∴∠CBG=180°﹣60°﹣45°﹣30°=45°,在Rt△BCM中,∵∠CBM=60°,BM=20nmile,∴BC==2BM=40nmile,故救援队从B处出发沿点B的南偏东45°的方向航行到达事故地点航程最短,最短航程是40 nmile.【总结归纳】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h 共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.【知识考点】二元一次方程组的应用;一次函数的应用.【思路分析】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,根据题意列出方程即可求出答案.(2)根据题意列出方程即可求出答案.(3)根据a的取值,求出w与a的函数关系,从而求出w的最小值.【解题过程】解:(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,由题意可知:,解得:,答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20,∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时,此时40≤b≤80,∴w=20×a+0.8×12(100﹣2a)=0.8a+960,当a=10时,此时w有最小值,w=968万元,当30≤a≤35时,此时30≤b≤40,∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960,当a=35时,此时w有最小值,w=918万元,当35<a≤45时,此时10≤b<30,∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时,w有最小值,此时w=930,答:选购A型号机器人35台时,总费用w最少,此时需要918万元.【总结归纳】本题考查一次函数,解题的关键正确找出题中的等量关系,本题属于中等题型.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.【知识考点】圆的综合题.【思路分析】(1)由AC为直径得∠ADC=90°,再由直角三角形两锐角互余和已知条件得∠DAC+∠DAE=90°,进而结出结论;(2)由切线长定理得PA=PB,∠OPA=∠OPB,进而证明△PAD≌△PBD,得AD=BD,得△BAD=△BDA,再由圆周角定理得∠DAF=∠EAD,进而便可得:△FAD∽△DAE;(3)证明△AOF∽△POA,得AP=2OA,再△AFD∽△CAE,求得的值使得的值.【解题过程】解:(1)∵AC为直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠DAE=∠ACE,∴∠DAC+∠DAE=90°,即∠CAE=90°,∴AP是⊙O的切线;(2)连接DB,如图1,∵PA和PB都是切线,∴PA=PB,∠OPA=∠OPB,PO⊥AB,∵PD=PD,∴△DPA≌△DPB(SAS),∴AD=BD,∴∠ABD=∠BAD,∵∠ACD=∠ABD,又∠DAE=∠ACE,∴∠DAF=∠DAF,∵AC是直径,∴∠ADE=∠ADC=90°,∴∠ADE=∠AFD=90°,∴△FAD∽△DAE;(3)∵∠AFO=∠OAP=90°,∠AOF=∠POA,∴△AOF∽△POA,∴,∴,∴PA=2AO=AC,∵∠AFD=∠CAE=90°,∠DAF=∠ABD=∠ACE,∴△AFD∽△CAE,∴,∴,∵,不妨设OF=x,则AF=2x,∴,∴,∴,∴.【总结归纳】本题是圆的一个综合题,主要考查了圆周角定理,切线的性质与判定,切线长定理,相似三角形的性质与判定,勾股定理,解直角三角形的应用,第(3)小题关键在证明相似三角形.难度较大,一般为中考压轴题.26.(10分)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A 是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A 的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC 的面积;若不存在,请说明理由.【知识考点】一次函数综合题.【思路分析】(1)先根据t=2可得点A(﹣2,2),因为B在直线l1上,所以设B(x,x+1),在Rt△ABG中,利用勾股定理列方程可得点B的坐标;(2)先把(7,4)代入s=中计算得b的值,计算在﹣1<t<5范围内图象上一个点的坐标值:当t=2时,根据(1)中的数据可计算此时s=,可得坐标(2,),代入s=a(t+1)(t﹣5)中可得a的值;(3)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,②当∠ACB=90°时,如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解题过程】解:(1)如图1,连接AG,当t=2时,A(﹣2,2),设B(x,x+1),在y=x+1中,当x=0时,y=1,∴G(0,1),∵AB⊥l1,∴∠ABG=90°,∴AB2+BG2=AG2,即(x+2)2+(x+1﹣2)2+x2+(x+1﹣1)2=(﹣2)2+(2﹣1)2,解得:x 1=0(舍),x2=﹣,∴B(﹣,);(2)如图2可知:当t=7时,s=4,把(7,4)代入s=中得:+7b﹣=4,解得:b=﹣1,如图3,过B作BH∥y轴,交AC于H,由(1)知:当t=2时,A(﹣2,2),B(﹣,),∵C(0,3),设AC的解析式为:y=kx+b,则,解得,∴AC的解析式为:y=x+3,∴H(﹣,),∴BH=﹣=,把(2,)代入s=a(t+1)(t﹣5)得:a(2+1)(2﹣5)=,解得:a=﹣;(3)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,∵AB⊥l1,∴AC∥l1,∵l1:y=x+1,C(0,3),∴AC:y=x+3,∴A(﹣2,1),∵D(﹣2,﹣1),在Rt△ABD中,AB2+BD2=AD2,即(x+2)2+(x+1﹣1)2+(x+2)2+(x+1+1)2=22,解得:x1=﹣1,x2=﹣2(舍),∴B(﹣1,0),即B在x轴上,∴AB==,AC==2,∴S△ABC===2;②当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(﹣2,t),D(﹣2,﹣1),∴(x+2)2+(x+1﹣t)2=(x+2)2+(x+1+1)2,(x+1﹣t)2=(x+2)2,x+1﹣t=x+2或x+1﹣t=﹣x﹣2,解得:t=﹣1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(﹣2)2+(t﹣3)2+x2+(x+1﹣3)2=(x+2)2+(x+1﹣t)2,把t=2x+3代入得:x2﹣3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(﹣2,9),B(3,4),∴AC==2,BC==,当t=0时,如图6,此时,A(﹣2,3),AC=2,BC=2,∴S△ABC===2.【总结归纳】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题,本题的突破点是运用两点的距离公式计算或表示线段的长,属于中考压轴题.。