第五章电气测量技术

合集下载

《电气测量技术》课件

《电气测量技术》课件
以家庭用电系统为例,通过电流、电压和功率的测量,分析家庭用电负荷和能效,以提供节能和安全建议。
总结与展望
电气测量技术在现代社会中起着重要作用,未来随着科技的发展,它将继续 发展并适应新的应用领域。
功率分析仪
用于测量电力系统中的功率因数、功率质量等参数 的仪器。
夹式电流表
用于测量交流电流的一种便携式测量工具。
电气测量技术的实验方法
1
准备实验
选择合适的实验装置和仪器,并设置正确的实验参数。
2
进行实验
依据实验要求进行电气参数的测量和记录。
3
数据分析
对实验数据进行处理和分析,得出结论和建议。
电气测量技术的实例分析
《电气测量技术》PPT课 件
电气测量技术是研究电气量的测量理论和方法的学科,应用广泛涉及各个领 域,包括工业、能源、通信、交通等。
什么是电气测量技术
电气测量技术是一门研究电气量测量的学科,旨在准确测量电流、电压、功率等电气参数,以获得所需的数据 和信息。
电气测量技术的应用领域
工业
电气测量技术在工业生产中用于监测电气设备 的状态和性能,以确保生产过程的安全和效率。
2 电桥原理
用于测量电阻和其他电气参数的平衡电桥,通过比较电流或电压的大小来确定未知量。
3 传感器技术
利用传感器将非电气量转换为电信号,以实现对温度、湿度、压力等参数的测量。
电气测量技术的常用仪器设备
万用表
用于测量电压、电流和电阻等基本电气参数的便携 式仪器。
示波器
用于显示电压波形和信号频率等的测量仪器。
能源
电气测量技术在能源领域中用于度量电力消耗 和监测电网稳定性,以提供可靠的电力供应。
通信

电气测量技术课程设计

电气测量技术课程设计

电气测量技术课程设计一、教学目标本课程旨在让学生掌握电气测量技术的基本原理、方法和应用,培养他们运用电气测量技术解决实际问题的能力。

具体目标如下:1.知识目标:(1)理解电气测量技术的基本概念、分类和作用;(2)掌握电阻、电容、电感、电压、电流等基本电气量的测量方法;(3)熟悉测量仪器的结构、原理和操作方法;(4)了解电气测量技术在工程中的应用。

2.技能目标:(1)能够正确选择和使用测量仪器;(2)能够进行基本的电气测量实验,并处理实验数据;(3)具备分析、解决实际电气测量问题的能力。

3.情感态度价值观目标:(1)培养学生对电气测量技术的兴趣,树立正确的科学态度;(2)培养学生团结协作、勇于探索的精神;(3)使学生认识到电气测量技术在生活和工业中的重要性,提高他们的社会责任感和使命感。

二、教学内容本课程的教学内容主要包括以下几个部分:1.电气测量技术的基本概念、分类和作用;2.电阻、电容、电感、电压、电流等基本电气量的测量方法;3.测量仪器的结构、原理和操作方法;4.电气测量技术在工程中的应用案例;5.电气测量实验。

三、教学方法为实现教学目标,本课程将采用以下教学方法:1.讲授法:讲解基本概念、原理和方法,引导学生掌握电气测量技术的基本知识;2.讨论法:学生针对实际问题进行讨论,培养他们分析问题和解决问题的能力;3.案例分析法:通过分析典型工程案例,使学生了解电气测量技术在实际工程中的应用;4.实验法:让学生亲自动手进行电气测量实验,提高他们的实践操作能力。

四、教学资源为实现教学目标,本课程将采用以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统、全面的知识体系;2.参考书:提供相关领域的参考书籍,丰富学生的知识视野;3.多媒体资料:制作精美的课件、视频等多媒体资料,提高学生的学习兴趣;4.实验设备:为学生提供充足的实验设备,保证实验教学的顺利进行。

五、教学评估本课程的教学评估将采用多元化、全过程的评价方式,全面、客观地反映学生的学习成果。

检测技术及仪表第5章 电气量测量

检测技术及仪表第5章 电气量测量

检测技术及仪表
一、电流互感器
电流互感器是一种将高电压系统中的电流或低电压系 统中的大电流,变换成低电压标准小电流的电流变换 装置。电力系统中广泛采用的是电磁式电流互感器。
1.工作原理和工作特性 它的工作原理和变压器相似。
电流互感器 的电流比
一次绕组
二次绕组
I1 N 2 KI I 2 N1
式中,I1——一次线圈的额定电流 I2——二次线圈的额定电流
检测技术及仪表
注意
60kV及以下系统,一次侧一般经过隔离开关和熔断器 接入高压电网。 电压互感器一次侧熔断器的作用: 1)保护电压互感器本身,当电压互感器本身故障时, 熔断器迅速熔断,防止事故扩大; 2)防止高压电网受电压互感器本身及其引线的影响。 110kV及以上系统,电压互感器一次侧不装熔断器
检测技术及仪表
工作特性: 1)与测量系统并联 2)一次电压的大小取决于一次侧电力网电压,不受 二次侧影响; 3)正常运行时,二次侧绕组近似于开路工作状态; 4)二次回路不允许短路;
检测技术及仪表
2. 电磁式电压互感器测量误差 1)比差 K U U
fU
U 2 1
2)角误差 U 二次电压相量旋转180°后与一次电压相量之间的 夹角 3)准确度等级 用互感器所容许的比差表示 (表5-1-2) 4)额定容量 指在额定电压和额定负载下运行时,二次侧的输出 容量
检测技术及仪表
注意
电流互感器在接线中应注意以下内容: 1)电流互感器的二次侧在使用时绝对不可开路。 使用过程中拆卸仪表或继电器时,应事先将二次侧短 路。安装时,接线应可靠,不允许二次侧安装熔丝; 2)二次侧必须有一端接地。 防止一、二次侧绝缘损坏,高压窜入二次侧,危及人 身和设备安全; 3 )一次侧串接在线路中,二次侧与继电器或测量仪 表串接。

电子与电气工程中的电气测量与仪器技术

电子与电气工程中的电气测量与仪器技术

电子与电气工程中的电气测量与仪器技术电气测量与仪器技术是电子与电气工程领域中至关重要的一部分。

它涉及到对电力、电流、电压、电阻等电学量的测量和分析,以及设计和使用各种仪器设备来实现这些测量。

这项技术在电力系统、电子设备、通信网络等领域中起着至关重要的作用。

一、电气测量技术电气测量技术是电子与电气工程中不可或缺的重要环节。

它涉及到对电气信号的测量、分析和处理。

电气测量技术的发展使得我们能够更准确地了解电力系统的工作状态,确保电力设备的安全运行。

1.1 电气测量的基本原理电气测量的基本原理是根据欧姆定律和基尔霍夫定律,通过测量电流、电压和电阻等参数,来推导出电路中的其他参数。

例如,通过测量电流和电阻,可以计算出电压;通过测量电流和电压,可以计算出功率。

1.2 电气测量的常用仪器在电气测量中,常用的仪器有万用表、示波器、电能表等。

万用表是一种多功能的测量仪器,可以测量电流、电压、电阻、电容等多种参数。

示波器可以用来观察电信号的波形和频谱,对电路的工作状态进行分析。

电能表用于测量电能的消耗和产生。

二、仪器技术在电气工程中的应用仪器技术在电气工程中有着广泛的应用。

它不仅可以用于电气测量,还可以用于电力系统的监控、控制和保护。

2.1 电力系统监控与控制电力系统是指由发电厂、输电线路和配电网络组成的系统。

仪器技术可以用于监控电力系统的运行状态,例如测量电压、电流、功率因数等参数,以及监测电力设备的温度、振动等情况。

通过对这些参数的测量和分析,可以及时发现和解决电力系统中的问题,确保电力的稳定供应。

2.2 电力系统保护电力系统保护是指在电力系统发生故障时,通过仪器技术对故障进行检测和处理,以保护电力设备的安全运行。

例如,当电力系统发生短路故障时,保护装置可以通过测量电流的变化,及时切断故障电路,以防止电力设备受损。

2.3 电子设备测试与调试在电子设备的设计和制造过程中,仪器技术也起着至关重要的作用。

通过使用各种测试仪器,可以对电子设备的性能进行测试和调试,以确保其正常工作。

[工作]电气测量技术

[工作]电气测量技术

[工作]电气测量技术电气测量技术测量与测量系统的基础知识 1、测量测量经典论述俄国门捷列夫:”没有测量,就没有科学“ 英国库克:“测量是技术生命的神经系统” 测量与测量方法定义:所谓测量就是被测量和同类标准进行比较的一个实验过程。

同类标准的参与方式可以是直接的,也可以是间接的直接参与:天平称重量、电位差计测电压等。

间接参与:电流表测电流、压力表测压力。

电流表在出厂前,已经与标准量(标准电流)进行比较,以获得定标和校准. 1、测量电磁测量是通过直接或者间接的方法,将被测的电磁量与同类的标准单位量进行比较,以确定被测电磁量的大小测量结果的表示测量结果由两部分组成,即测量单位和与此测量单位相适应的数字值。

一般表达式为X={X} ?x0 其中 X为测量结果 {X}为数字值 x0为测量单位 1、测量测量过程准备阶段:在对测量对象的性质、特点、测量条件认真分析的前提下,根据对被测量结果的准确度要求选择恰当的测量方法和测量设备,从而拟定出测量过程及测量步骤。

测量阶段:在了解测量设备的特性、使用方法的前提下,按照已拟定出的测量过程及测量步骤进行测量,科学而严肃地记录数据。

数据处理阶段:按照选定的测量方法及理论计算出被测量的测试结果的估计值;根据误差传递理论,对测量结果估计值的不确定度作出合理的评定。

测量手段量具:体现计量单位的器具。

量具中一小部分可直接参与比较,如尺子、量杯等。

多数量具要用专门设备才能发挥比较的功能,如利用标准电阻器测量电阻时,需要借助于电桥。

仪器:泛指一切参与测量工作的设备。

包括各种直读仪器、非直读仪器、量具、测试信号源、电源设备以及各种辅助设备,如电压表、频率表、示波器等。

电桥图片测量手段测量装置:由几台测量仪器及有关设备所组成的整体,用以完成某种测量任务。

测量系统:由若干不同用途的测量仪器及有关辅助设备所组成,用以多种参量的综合测试。

测量方法按照测量结果的获得方式分直接测量法:从仪表的读数直接获取测量结果的方法。

电气测量技术论文

电气测量技术论文

电气测量技术论文电气测量常见问题的探讨【摘要】电气测量是电学的一个重要门类,在电气测量的应用过程中,由于测量人员的知识局限或者是电气测量仪表本身存在的异常等原因,而导致电气测量出现问题和故障。

本文笔者将就电气测量常见问题展开阐述,并针对性地给出一些可行的建议和对策,希望可以为电气测量的进一步发展提供有效的参考意见。

【关键词】电气测量;测量误差;问题处理引言电气测量往往被广泛应用于电气技术领域中,通过电气测量这一实际测量工作,为技术人员提供较为准确可信的实验数据信息,帮助他们得到更可靠的实验结果。

然而,在实际的测量过程中,常常会由于诸多因素的影响而导致测量误差的出现。

比方说测量人员的素质不同而导致他们所使用的检测方法也有所不同,加上电气测量仪器对检测的环境也有所要求,因此即使在相同的一种测量仪器处于同样的检测环境,采用相同的测量方法,而测得的实验数据也存在一定的差异。

本文将就电气测量过程中常遇到的问题提出相对应的解决措施,希望能够有效减小测量误差。

一、电气测量概述测量作为一种人类生活和发展过程中必不可少的手段,通过测量,人类能够对外界存在的客观事物取得一系列的数据信息,从而直观地获得对事物概念的认知和了解。

人们通过特定的仪器设备,在相应权威理论的支持下,通过测量而采集到定量的数据信息,最后得出实验的结果。

而在实际的测量过程当中,由于受到具体所处的测量环境或者测量人员知识局限等外在方面的原因影响,或者是电气测量仪器本身或者使用的测量方法等原因而使得测量到的结果和被测量的实际数据总值有着较大的误差,从而影响了整个测量实验的准确性。

因此,研究电气测量的常见问题以及相应的解决措施就显得相当有必要。

尤其是对于电气技术领域的可持续发展而言,相关的电气测量人员并不能完全消除测量误差出现的可能性,因为误差的出现是一个客观存在的事实,我们唯一可以做到的就是尽最大可能保证电气测量的客观性以及准确性,让电气测量能够更广泛应用于实际测量工作中。

电气测量技术课程设计

电气测量技术课程设计

电气测量技术课程设计一、课程目标知识目标:1. 学生能理解并掌握电气测量的基本原理,包括电压、电流、电阻的测量方法。

2. 学生能够掌握常见测量仪器的使用方法,如万用表、示波器等。

3. 学生能了解电气测量中的误差来源,并掌握减少误差的基本方法。

技能目标:1. 学生能够正确使用万用表、示波器等测量仪器进行电气测量。

2. 学生能够进行简单的电路搭建,并进行相关电气参数的测量。

3. 学生能够分析测量数据,解决简单的电气测量问题。

情感态度价值观目标:1. 学生能够认识到电气测量技术在工程实践中的重要性,增强对电气工程领域的兴趣。

2. 学生在学习过程中培养严谨、细致的实验态度,提高团队协作能力。

3. 学生能够关注电气测量技术的发展,培养创新意识和探索精神。

分析课程性质、学生特点和教学要求,本课程旨在让学生通过理论学习与实践操作相结合的方式,掌握电气测量的基本知识和技能。

课程目标具体、可衡量,有助于学生和教师在教学过程中明确预期成果,并为后续的教学设计和评估提供依据。

二、教学内容1. 电气测量基本原理:包括电压、电流、电阻的测量原理,以及相关的欧姆定律、基尔霍夫定律等基础知识。

- 教材章节:第一章 电气测量基本概念与原理2. 常见测量仪器的使用方法:详细介绍万用表、示波器、电桥等测量仪器的结构、原理及操作方法。

- 教材章节:第二章 常用测量仪器及其使用方法3. 电气测量误差分析及处理:分析电气测量中误差的来源,介绍减少误差的方法和技巧。

- 教材章节:第三章 电气测量误差分析与处理4. 实践操作:安排学生进行电路搭建,进行电压、电流、电阻等参数的测量,并对测量数据进行处理和分析。

- 教材章节:第四章 电气测量实践操作5. 电气测量技术在工程中的应用:通过案例分析,让学生了解电气测量技术在实际工程中的应用。

- 教材章节:第五章 电气测量技术的应用教学内容按照教学大纲进行安排和进度,确保学生能够系统、科学地掌握电气测量技术的基本知识和技能。

电气与电子测量技术(罗利文)课后习题答案

电气与电子测量技术(罗利文)课后习题答案

第3章常用传感器及其调理电路3-1 从使用材料、测温范围、线性度、响应时间几个方面比较,Pt100、K 型热电偶、热敏电阻有什么不同?3-2在下列几种测温场合,应该选用哪种温度传感器?为什么?(1)电气设备的过载保护或热保护电路;(2)温度范围为-100~800℃,温度变化缓慢;(3)温度范围为-100~800℃,温度波动周期在每秒5~10次; 解:(1)热敏电阻;测量范围满足电力设备过载时温度范围,并且热敏电阻对温度变化响应快,适合电气设备过载保护,以减少经济措施(2)Pt 热电阻;测温范围符合要求,并且对响应速度要求不高(3)用热电偶;测温范围符合要求,并且响应时间适应温度波动周期为100ms 到200ms 的情况3-3 热电偶测温为什么一定做冷端温度补偿?冷端补偿的方法有哪几种?解:热电偶输出的电动势是两结点温度差的函数。

T 为被测端温度,0T 为参考端温度,热电偶特性分度表中只给出了0T 为0℃时热电偶的静态特性,但在实际中做到这一点很困难,于是产生了热电偶冷端补偿问题。

目前常用的冷端温度补偿法包括:0℃恒温法;冷端温度实时测量计算修正法; 补偿导线法; 自动补偿法。

3-4 采用Pt100的测温调理电路如图3-5所示,设Pt100的静态特性为:R t =R 0(1+At ),A =0.0039/℃,三运放构成的仪表放大电路输出送0~3V 的10位ADC ,恒流源电流I 0= 1mA ,如测温电路的测温范围为0~512℃,放大电路的放大倍数应为多少?可分辨的最小温度是多少度?解:V AT R I u R 19968.05120039.0100101300=⨯⨯⨯⨯==∆-024.1519968.03==∆=VVu u k R out ,放大倍数应为15倍。

可分辨的最小温度为C Ak R I u T T out ︒=-⨯⨯⨯⨯=-=-=∆-5.012150039.010010131212103100010max3-5 霍尔电流传感器有直测式和磁平衡式两种,为什么说后者的测量精度更高? 解:霍尔直测式电流传感器按照安培环路定理,只要有电流I C 流过导线,导线周围会产生磁场,磁场的大小与流过的电流I C 成正比,由电流I C 产生的磁场可以通过软磁材料来聚磁产生磁通Φ=BS ,那么加有激励电流的霍尔片会产生霍尔电压U H 。

电气测试技术第五章

电气测试技术第五章

应变片
直流电桥的工作原理 输出 U 0 U ab U ad
R1 R3 R2 R4 UI ( R1 R2 )(R3 R4 )
平衡条件: R R R R 1 3 2 4 工作时,各桥臂阻值变化,则输出电压U0 0 定义电桥的灵敏度为:

U0 SB R0 / R0
实际使用中,为了简化桥路设计,同时也为了得到电 桥的最大灵敏度,通常R1=R2=R3=R4=R0,即为等臂电桥.
半导体应变片:分为体型和扩散型两种。 体型:利用半导体材料的体 电阻制成。 扩散型:在半导体材料的基 片上利用集成电路工艺制成 扩散型电阻。 由于半导体(如单晶硅)是各向异性材料,因此 它的压阻效应不仅与掺杂浓度、温度和材料类型有 关,还与晶向有关(即对晶体的不同方向上施加力时, 其电阻的变化方式不同)。
2)桥路补偿法——电桥的和差特性
全桥自动补偿;半桥邻臂
3)热敏电阻补偿法——热敏电阻适当分压
3、应变片的布置和接桥方式
利用适当的布片和组桥方式消除温度变化和复合载 荷作用的影响,获得最大的输出灵敏度。 1)应变片应布置在弹性元件产生应变最大的位置,并 沿主应力方向贴片;贴片处的应变尽量与外载荷呈线 性关系(避开非线性区),同时应注意使该处不受非 待测载荷的干扰影响。 2)根据电桥的和差特性,选择适当的接桥方式,可以 使输出的灵敏度最大,同时又能排除非待测载荷的影 响并进行温度补偿。
R1 R1 R1 , R2 R2 R2
1 R0 Uo UI 2 R0
全桥接法:
R1 R1 R1 , R2 R2 R2, R3 R3 R3 , R4 R4 R4
R0 Uo UI R0
电桥的工作特性:
1)不同的接桥方式具有不同的电桥灵敏度,尽量采 用半桥双臂或全桥方式。

电气测量技术的应用

电气测量技术的应用

电气测量技术的应用电气测量技术在当今社会中的应用范围很广,它是电子设备中必不可少的一部分。

在生产、医疗、交通等各个领域,都需要电气测量技术来保证设备运行的稳定性和安全性。

一、电气测量技术的介绍电气测量技术是指用各种电气仪器来测量和检测电路中的各种电气参数的技术。

电气测量技术应用于电路调试、故障诊断、电力系统监测、信号采集等方面。

常见的电气测量参数有电压、电流、电阻、电感、电容等。

电气测量技术的基本原理是依靠电气特性来测量电路中各种参数的值。

例如,利用欧姆定律可以测量电阻值;利用电压表可以测量电路中的电压;利用电流表可以测量电路中的电流等。

二、电气测量技术的应用领域1. 电力系统监测电力系统是现代社会中不可或缺的一部分,电气测量技术在电力系统中的应用非常广泛。

例如,通过电压表和电流表可以测量电力系统中的电压和电流值,通过电力质量分析仪可以分析电力系统中的电力质量等等。

2. 工业自动化工业自动化是工业领域中的一种发展趋势,电气测量技术在工业自动化中的应用也越来越广泛。

例如,在机器人控制系统中,需通过电气测量技术来检测各种电气参数的值,以便控制机器人的运行。

3. 交通运输交通运输领域也是电气测量技术的应用领域之一。

例如,在地铁系统中,利用电气测量技术可以检测轨道电路中的各种电气参数,如电流、电压等,以保证地铁系统的稳定运行。

4. 医疗设备医疗行业中也需要电气测量技术来监测各种医疗设备的电气参数。

例如,利用血糖仪可以测量人体血糖值,利用心电图仪可以测量人体心电图等等。

三、电气测量技术的发展趋势随着科技的不断发展,电气测量技术也在不断地更新换代。

未来,电气测量技术将更加智能化、自动化、数字化。

例如,通过引入人工智能技术,可以实现电气参数的自学习和自适应,大大提高电气测量的精度和效率。

同时,数字化技术的发展也将促进电气测量技术的进一步发展。

例如,利用数字化技术可以实现电气参数的数字化采集和处理,大大降低了数字信号采集的成本和复杂度,同时提高了测量系统的可靠性和稳定性。

说课课件——《电气测量技术》

说课课件——《电气测量技术》
提出人工智能的概念,科普基础 人工智能算法,提出仪器仪表智 能化的特征,并给出智能仪表的 基本设计思路
05
数字电压表
课程导入
05
数字电压表
教学过程
A/D转换 原理 基本结构
数字电压 表实例
Байду номын сангаас
数字万用 表实例
数字电压表
结合本科 毕业设计
05
数字电压表的基本结构
基本结构
05
数字电压表的基本结构
A/D转换的基本原理
科普基础人工智能算法,提出仪器仪表智能化的特征,并给出智能仪表的基本设计
思路。结合时下新理念、新技术和新方法,使教学内容始终与电气测量技术同步。
24学时
实验4学时
1. 实验一:电量信号的测量(电压、电流、电阻、功率) 2. 实验二:电子示波器的使用 通过实验增强学生对学习内容的认识和理解,通过实际的动手实践,掌握基
第二篇 数字式电工仪器与测量
第八章 数字电压表 第九章 数字功率表 第十章 数字频率计 第十一章 数字式电路参数测量仪 第十二章 数字示波器
其他参考书:
《电气测量学》王月华 中国电力出版社2007.1 《电气测量》程隆贵 中国电力出版社2006.8
第三篇 智能仪器与虚拟仪器
第十三章 智能仪器 第十四章 虚拟仪器
电气测量技术
Electrical Measurement Technology
说 课 人: 分院/教研室 :
01
02
教学目标 教材及学生分析 教法与手段 教学效果预测 数字电压表
目录
Contents
03 04
05
01
教学目标
本课程的性质和任务
本课程是电气工程及其自动化专业的专业 课,其任务是使学生通过课堂教学和实验 环节,能够掌握电气测量技术的基本理论 和基本分析方法,是自动控制技术的延伸。 本课程注重解决学生对电气仪表的工作原 理、测量技术掌握的问题。

电气测量技术总结和试卷及答案

电气测量技术总结和试卷及答案

电气测量总结一、课程的目的掌握基本电量(电压、电流、功率、电能、频率、相位差、功率因数)和电路参数(直流电阻、交流阻抗,包括电感的品质因数、电容的介质损耗)的测量方法。

了解电工仪表、仪器的基本工作原理,能够正确选择和使用。

掌握误差估算方法,能够在工程测量中估算直接测量和间接测量的系统误差。

为从事电气方面的工作和科研奠定工程测量方面的基础。

二、学习方法掌握原理,理解特点,能够正确使用。

主要资料:教材,课件,习题。

辅助资料:电路,电磁场。

三、主要内容u,i。

直流,交流,大,中,小。

功率。

直流,交流;单相,三相;有功,无功。

f Tϕϕ。

数字测量方法。

,,,cos直流电阻,交流阻抗。

大,中,小。

附件:采样电阻,分流器,分压器。

互感器。

误差分析及传递。

重点:各量的模拟测量方法、数字测量方法、间接测量方法、其它测量方法。

各方法的适用情况、原理、特点、误差分析。

四、具体内容(依据陈立周电气测量(第5版))(一)电工仪表与测量的基本知识1、模拟指示仪表的组成和基本原理测量机构是核心。

一种测量机构和不同的测量线路可以组成不同功能的电工仪表,例如,磁电系测量机构接分流器可构成直流电流表,接分压器可构成直流电压表,接电源可构成欧姆表,接整流电路可构成交流的电压或电流表,接传感器可用于测量非电量。

不同类型的测量机构其具体结构不同,但基本原理是相同的,即必然有三个基本力矩:作用力矩,反作用力矩,阻尼力矩。

这三个力矩是各种测量机构中必不可少的,它们决定了测量机构特性。

当作用力矩和反作用力矩相等时,决定了指针的平衡位置。

阻尼力矩改善可动部分的运动特性,使指针尽快静止在平衡位置。

不同的测量机构产生着三个力矩的方式是不同的。

2、数字仪表的组成和基本原理核心是直流数字电压表,将直流电压进行A/D转换和处理。

不同的测量线路将各种待测量转换为允许输入的直流电压。

数字法测量频率和周期不需要A/D转换。

相位差可转换为时间测量,因而数字法测相位差和功率因数也不用A/D转换。

电气测量技术概述

电气测量技术概述

电气测量技术概述电气测量技术是电工工程领域中十分重要的一部分。

它涉及到电流、电压、功率、电阻等各种电气参数的测量与分析。

电气测量技术的发展为电力系统的正常运行和设备的可靠性提供了必要的技术支持。

本文将对电气测量技术的基本原理、常见的测量仪器及其应用进行概述。

一、电气测量技术的基本原理电气测量技术的基本原理包括电流、电压、功率和电阻的测量方法与公式。

电流测量可通过电流互感器、霍尔传感器等实现。

电压测量通常采用电压互感器、电压变压器等设备。

功率的测量可通过电力仪表、功率因数仪等实现。

而电阻的测量则需要采用万用表、电阻箱等工具。

二、常见的电气测量仪器及其应用1. 万用表万用表是电气测量中最常用的仪器之一。

它能够测量电流、电压和电阻。

万用表的应用领域十分广泛,既可以在实验室中用于科学研究,也可以在生产现场进行设备故障排查和维修。

2. 示波器示波器是一种用于测量电压波形的仪器。

它能够显示电流或电压随时间变化的波形图像。

示波器广泛应用于电子电路设计、通信系统测试、医学诊断等领域。

3. 功率因数仪功率因数仪用于测量交流电路的功率因数,以评估电气设备的效率。

功率因数仪在电力系统中具有重要作用,可用于分析电能质量和提高电网功率因数。

4. 电力质量分析仪电力质量分析仪用于对电力系统中的电力质量进行监测和分析。

它能够检测电压的波动、谐波、闪变等问题,并提供相应的解决方案。

5. 频谱分析仪频谱分析仪用于分析信号的频谱特性。

它能够对信号进行频谱分析,发现并解决电路中的谐波问题。

三、电气测量技术在实际应用中的意义电气测量技术在电力系统的建设和运行中扮演着重要角色。

它能够帮助工程师监测电力系统的运行状态,预测设备的寿命,及时检测并排除故障隐患。

1. 保障电力系统的安全运行电气测量技术可用于实时监测电力系统的参数变化,如电压、电流和功率等。

通过对这些数据的采集与分析,可以及时发现异常情况,并采取相应的措施来保护电力系统的运行安全。

电气检测技术知识点

电气检测技术知识点

第一章 检测技术的基础知识1、传感器的组成功用是一感二传,即感受被测信息,并传送出去。

一般由敏感元件、转换元件、转换电路三部分组成。

敏感元件:直接感受被测量,并且输出与被测量成确定关系的某一物理量的元件。

转换元件:敏感元件的输出就是它的输入,它把输入量转换成电参数。

转换电路:上述电路参数接入转换电路,便可转换成电量输出。

2、误差的基本概念及表达方式(1)绝对误差:是示值与被测量真值之间的差值,通常用实际真值代表真值,并采用高一级标准仪器的示值作为实际真值。

(2)相对误差:绝对误差与真值或实际值之比. 相对误差通常用于衡量测量的准确程度,相对误差越小,准确程度越高。

(3)引用误差:是一种实用方便的相对误差,常在多档和连续刻度的仪器仪表中应用。

选用仪表时,一般使其最好能工作在不小于满刻度值三分之二的区域。

3、误差的分类与来源(1)系统误差:在相同的条件下多次测量同一量时,误差的绝对值和符号保持恒定或在条件改变时,与某一个或几个因素成函数关系的有规律的误差,称为系统误差。

它产生的主要原因是仪表制造、安装或使用方法不正确,也可能是测量人员一些不良的读数习惯等。

(2)随机误差:服从统计规律的误差称随机误差,又称偶然误差。

误差产生的原因很复杂,所以不能用修正或采取某种技术措施的办法来消除。

应该指出,在任何一次测量中,系统误差与随机误差一般都是同时存在的,而且两者之间并不存在绝对的界限。

(3)粗大误差:在相同的条件下,多次重复测量同一量时,明显地歪曲了测量结果的误差,称为粗大误差,简称粗差。

粗差是由于疏忽大意,操作不当,或测量条件的超常变化而引起的。

含有粗大误差的测量值称为坏值,所有的坏值都应去除,但不是主观或随便去除,必须科学地舍弃。

正确的实验结果不应该包含有粗大误差。

4、随机误差的特点(1)绝对值相等,符号相反的误差在多次重复测量中出现的可能性相等;(2)在一定测量条件下,随机误差的绝对值不会超出某一限度;(3)绝对值小的随机误差比绝对值大的随机误差在多次重复测量中出现的机会多;(4)随机误差的算术平均值随测量次数的增加而趋于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20
0.75
45
25~100
100~120
0.50
30
10
2.0
120
1
20
1.5
90
25~100
100~120
1.0
60
3
50~120
3.0
未规定
50~100
25
电磁式电流互感器误差分析
理想电流互感器的一次安匝和二次安匝在数值上相等,在
相位上相差180°


I1 W1 I 2 W2


I1 W1 I 2 W2 0
12
电容式互感器(CVT)
电容式电压互感器简称CVT(Capacitor Voltage Transformers),主要利用电容器的分压作用将高电压按 比例转换为低电压
+
C1
Ui
+
Ui
C1 C2 C2
Uo
C2
UO
V
-
-
电容式电压互感器原理
13
电容式互感器(CVT)
实际应用CVT主要由电容分压器(包括主电容器C1,分压电 容器C2)、中间变压器(T)、补偿电抗器L、保护装置F及 阻尼器D等元件组成
b

E2 •
• j I2 x2

U 2
I2 R2

j I2 xb


I2 Rb
I2
将折算后的二次电流旋转180°后与一次电流相比较两者 不但大小不等,而且相位不相重合,即存在两种误差,
称为比值误差f1和相位误差
27
电磁式电流互感器误差分析
比值误差简称比差,用f1表示,它等于实际的二次电流与折 算到二次侧的一次电流之间的差值,与折算到二次侧的一次 电流的比值,以百分数表示
通常1 很小,sin1 1
1
I0 I1
cos(a
) 3438()
由于EF=BC,角差也可以表示为
1
Ir
cos a I1
Ia
sin a
3438()
上述表示式表明,电流互感器的比差与角差与励磁电流的
两个分量Ia、Ir大小有关,且与角a和 角有关
30
电磁式电流互感器的安装及使用
电流互感器变比相角误差测量图 图(a)用于单相电流的测量。图(b)用于三相电流的测量,图(c)用于不平衡电流的测量
4
电磁式电压互感器(PT)

U1
电磁式电压互感器简称PT(Potential
W1
Transformer)或TV,其工作原理运用
电磁感应原理原副边磁耦合将交流高压
变为低电压
一、二次绕组上分别感应的电动势为:
0
W2
E1 4.44 fW10 108 E2 4.44 fW20 108
KU
E1 E2
W1 W2
实际的电流互感器工作时有励磁电流






I1 W1 I 0 W0 I 2 W2 I1 W1 I 2 W2 I 0 W0

I 0 W0称为励磁安匝,是产生电流互感器误差的根源
26
电磁式电流互感器误差分析

0
B
DC


Ia Ir

I1

I0
90 ( )
A

I2
I
F
O
电流互感器的相量图
K1
I1N I2N
100 5
额定容量是额定二次电流I2N通过二次额定负载Z2N时所消耗
的视在功率S2N
S2N
I
2 2N
Z2
N
额定电压是指一次绕组长期对地能够承受的最大电压(有效 值),它应不低于所接线路的额定相电压
24
电磁式电流互感器主要技术参数
准确度等级:电流互感器变换电流总是存在着一定的误差, 根据额定工作条件下所产生的变比误差规定了准确度等级
220/ 3 kV
C1 C11 C12 C2
N
F
接载波装置 X
L
CVT组成示意图
CVT优点
T
1.造价低(110 kV及以上
1a 产品); 1n 2.可兼顾电压互感器和电
2a 2n
力线路载波耦合装置中的
da 耦合电容器两种设备的功
D
能;
dn
3.能可靠阻尼铁磁谐振;
4.具备优良的瞬变响应特
性等
14
电容式互感器(CVT)
ZN Zb
f0
fN cosb
0.02910
N
sinb %
U
0
ZN Zb
0
N cosb
34.38
f0
fN sinb '
11
电磁式电压互感器的安装及使用
a)
b)
c)
电压互感器主要安装方式
图(a)用于单相电压的测量。图(b)用于三相电压的测量,图(c)用于线电压的测量
电压互感器在使用的时候要注意二次绕组不许短路
电容式电压互感器实物图
15
分压原理测量高电压的其他方式
阻容分压
C1
R1
Vi
R2
C2
放大器
电阻分压
R1
Ui
+
R2
Uo
-
R2
W ( j) Z2
1 jC2R2
Z1 Z2
R1
R2
1 jC1R1 1 jC2R2
Ui
R1 R2 R2
Uo
16
光学电压传感器(OVT)
光学电压互感器(Optical Voltage Transducer:OVT)又称为 无源电子式电压传感器,采用的传感机理是晶体的线性电光 效应(Pockels效应)。Pockels效应是指晶体在电场作用下, 透过晶体的光发生双折射,这一双折射快慢轴之间的相位差 与被测电压呈正比关系,将Pockels元件直接连接到被测电压 的两端,经光电变换及相应的信号处理便可求得被测电压。 OVT实现的技术关键是如何提高OVT的温度稳定性、长期运 行的可靠性以及测量的精度。 影响OVT稳定性与可靠性的主要取决于传感晶体和工作光 源的温度特性以及传感头的加工和传光光纤的振动。
角差

m
fu
U2 U1 KU U1 KU
100
KUU2 U1 U1
100(%)
K U1 U2
fu
KU K
K
100(%)
9
电磁式电压互感器测量误差分析
当电压互感器空载时
f0
IaR1 I r x1 U1
100 %
0
IrR1 I a x1 U1
3438 '
当负载为Zb时
K K
fU
R1
第五章 电气测量技术
本章主要内容
交流电气参量的测量技术: 5.1 交流高电压的测量方法 5.2 交流大电流的测量方法 5.3 频率、周期、相位、有效值(平均值)
及功率的常用测量方法 5.4 电力设备绝缘参数的测量方法
2
5.1 交流高压的测量方法
交流高电压的测量方法
➢电磁式电压互感器(PT) ➢电容式互感器(CVT) ➢光学电压传感器(OVT)
Z 2 K122 Z 2
K12
W1 W2
Z2 R2 jx2 k122 (R2 jx2 )
21
电磁式电流互感器(CT)

1
I1

U1

R1
x1
I2

Z1
I0


Ia
Ir


E1 E2
g0
b0
R2
x2
2
Z2 Rb

U 2
Zb
xb
1
换算到一次侧后的二次电流
和电压分别为:


I2 K21 I2
2
12
R2
cosb
x1
2
12
x2
sin
b
I2 U2
100
%
K K
U
R1
2
R2 sinb
12
x1
2
12
x2Biblioteka cosbI2 U2
3438'
10
电磁式电压互感器测量误差分析
电压互感器在现场实际运行时,只需测量出实际二次负 载Zb及其功率因数角b ,即可计算出比差角差
fU
f0
17
5.2 交流大电流的测量方法
交流大电流的测量方法
➢电磁式电流互感器(CT) ➢罗哥夫斯基(Rogowski)线圈 ➢光学电流传感(OCT)
19
电磁式电流互感器(CT)
电磁式电流互感器简称CT(Current Transformer)或TA, 用于交流大电流变为小电流,扩大交流电流表、功率表和 电能表的量程
U2n的输出范围统一为0-100 (或100/1.732,100/3)V
零序电压绕组的额定电压是指供大电流接地系统用的电压 互感器的零序电压绕组能长期工作的电压,规定为0-l00V
6
电磁式电压互感器技术参数
准确度等级
电压互感器容许误差的极限值
准确度等级
一次绕组电压为一次 额定电压的百分数(%)
误差限值

U1
W1
0
W2
V
20
电磁式电流互感器(CT)

I1
R1

U1
x1
B

I0


Ia
Ir

E1
g0 b0
相关文档
最新文档