电力系统的模型和参数_输电线路
2.2 电力线路的参数及数学模型

2.2电力线路的参数及数学模型电力线路分为架空线路和电缆线路。
由于架空线路比电缆线路建造费用低,施工期短,维护方便,因此架空线路应用更为广泛。
2.2.1 电力线路的基本结构1.架空线路架空线路主要由导线、避雷线(又称架空地线)、杆塔、绝缘子串和金具等部分组成,如图(2-11)所示。
导线用来传导电流,输送电能。
避雷线用来将雷电流引入大地,保护线路免遭直击雷的破坏。
杆塔用来支撑导线和避雷线,并使导线和导线之间、导线与接地体之间保持必要的安全距离。
绝缘子用来使导线与导线、导线与杆塔之间保持绝缘状态,它应能承受最高运行电压和各种过电压而不致被击穿或闪络。
金具是用来固定、悬挂、连接和保护架空各主要元件的金属器件的总称。
图2-11架空线路2.电缆线路电缆是将导电芯线用绝缘层及防护层包裹,敷设于地下、水中、沟槽等处的电力线路。
由于其造价高,故障后检测故障点位置和维修较麻烦等缺点,因而使用范围远不如架空线路。
但电缆线路具有占地面积少,供电可靠,极少受外力破坏,对人身也较安全,可使城市美观等优点。
因此,在大城市空中走廊的地区,在发电厂和变电所的进出线处,在穿过江河湖海地区以及国防或特殊需要的地区,往往都采用电力电缆线路。
2.2.2电力线路的参数对电力系统进行定量分析及计算时,必须知道其各元件的等值电路和电气参数。
本节主要介绍电力线路的参数及其计算。
电力线路的电气参数是指线路的电阻r、电抗x、电导g和电纳b。
下面就架空线路参数进行讨论(架空线一般采用铝线、钢芯铝线和铜线)。
1. 输电线路的电阻有色金属导线(含铝线、钢芯铝线和铜线)每单位长度的电阻可引用电路课程中导体的电阻与长度、导体电阻率成正比,与横截面积成反比的原理计算:(2-26)式中,r为导线单位长度电阻,;为导线材料的电阻率,;S为导线截面积,mm2。
在电力系统计算中,导线材料的电阻率采用下列数值:铜为18.8,铝为31.5。
它们略大于这些材料的直流电阻率,其原因是:①通过导线的三相工频交流电流,而由于集肤效应和邻近效应,使导线内电流分布不均匀,截面积得不到充分利用等原因,交流电阻比直流电阻大;②由于多股绞线的扭绞,导线实际长度比导线长度长2%~3%;③在制造中,导线的实际截面积比标称截面积略小。
电力系统基础第3章

S × U
N 2 N
短路实验测定各绕组阻抗: 2. 短路实验测定各绕组阻抗: 因为变压器短路实验测得的功率损耗和 短路电压百分比分别为: 短路电压百分比分别为:
3.3.2 三绕组变压器(3)
Ps1− 2 = Ps1 + Ps 2 Ps1− 3 = Ps1 + p s 3 P s 2 − 3 = Ps 2 + Ps 3
3.6.1 多电压等级网络中 参数归算(2)
(3)参数归算方法: 参数归算方法: 设某电压等级与基准级之间串联有变比为 台变压器, k1,k2,…,kn的n台变压器,则 ,k
Z ′ = Z × (k 1 k 2 ⋅ ⋅ ⋅ k n )2 Y ′ = Y (k k ⋅ ⋅ ⋅ k )2 n 1 2 U ′ = U × (k 1 k 2 ⋅ ⋅ ⋅ k n ) I ′ = I (k k ⋅ ⋅ ⋅ k ) 1 2 n
电纳-输电线相间及相对地之间有一定电 容存在,因而存在容性电纳,电纳是并联 参数。
3.2.1
输电线路的等效电路
1. II型和T型等效电路
Z = R + jX = r1l + jx1l Y = G + jB = g1l + jb1l
适用范围:长度在 之间的架空线路, 适用范围:长度在100~300km之间的架空线路,或长度 ~ 之间的架空线路 小于100km的电缆线路。 的电缆线路。 小于 的电缆线路
电力系统基础
江西电力职业技术学院 吕铁民
第3章 电力系统元件及其参数
输电线路 电力变压器 同步发电机 负荷 多电压等级网络等值
3.1 概述
电力系统分析计算的一般过程: 电力系统分析计算的一般过程:
电力系统稳态模型(电力线路参数和等值电路)

第二章电力系统稳态模型(Power System Steady State Models)(第三讲)(回顾)问题1、电力系统稳态分析如何建模?2、物理线路的基本结构如何?3、有几个参数可以反映输电线的电磁现象?4、各个参数受哪些因素影响?5、如何用电路表示输电线路?§1 稳态建模总体思路分析物理对象,分析现象元件建模:线路、变压器、负荷、发电机元件等值电路网络建模(电力系统)网络方程各种解法§2 电力线路结构和电磁现象一、架空线(详细自学)架空线:导线、避雷线、杆塔、绝缘子(作用)导线导线构造三种主要形式:单股线(单根实心金属线:铜和铝)(现很少采用)多股绞线(同材料),多单股线扭绞,标号:TJ(铜绞)、LJ(铝绞)、GJ (钢绞)多股绞线(两种材料):主要是钢芯铝绞线,“良好导电性能+ 较高机械强度”,已普遍采用。
标号:LGJ(普通型)、LGJQ(轻型)、LGJJ(加强型)型号:标号+数字(导线主要载流额定截面积mm2)(LGJ-150:铝线额定截面积150mm2)架空线三相循环换位:排列不对称引起参数不平衡分裂导线:减少电晕损耗和线路电抗二、电缆(详细自学)我们会抽象成什么样的数学模型?电路?分布式还是集中式?四、线路的电磁现象和参数线路通电流:发热,消耗有功功率→R交流电流→交变磁场→感应电势(自感、互感)抵抗电流→X电流效应→串联还是并联?线路加电压:绝缘漏电(较小),一定电压下发光、放电(电晕)→R′(G)电场→线/线、线/大地电容→交变电压产生电容电流→X′(B) 电压效应→串联还是并联?五、单位长线路的等值电路和参数分布式参数:用单位长(每公里)参数r、x、g、b表示架空线受气候、地理、架设的影响,r、x、g、b要变。
电缆尺寸标准化,外界影响小,一般不变(不研究)。
§3 架空线路的参数计算§3.1 电阻r计算r = ρ/s (欧/公里)ρ:计算用电阻率,欧⋅毫米2/公里,铜18.8,铝31.5(20℃),温度修正。
电力系统分析第二章

2-2 架空输电线的等值电路
电力线路的数学模型是以电阻、电抗、电纳和电导来表 示线路的等值电路。 分两种情况讨论: 1) 一般线路的等值电路 一般线路:中等及中等以下长度线路,对架空线 为300km;对电缆为100km。 2)长线路的等值电路 长线路:长度超过300km的架空线和超过100km的电 缆。
I
2
T
YI I
y 20
k k k (k 1) k (k 1)YT ZT ZT ZT
2
(1 k)YT
k (k 1)YT
1)
电力网络中应用等值变压器模型的计算步骤:
有名制、线路参数都未经归算,变压器参数则归在低 压侧。
有名制、线路参数和变压器参数都已按选定的变比归 算到高压侧。 标幺制、线路和变压器参数都已按选定的基准电压折 算为标幺值。
三、三相电力线路结构参数和数学模型
输电线路各主要参数(电阻、电抗、电纳、电导 等)的计算方法及等效电路的意义
*.电力网络数学模型
1、标幺值
1)标幺值=有名值(实际值)/基准值; 2)在标幺制下,线量(如线电流、线电压等) 与相量(如相电流、相电压等)相等,三相与单 相的计算公式相同
3)对于不同系统采用标幺值计算时,首先要 折算到同一基准下。
S B 3U B I B U B 3I B ZB Z B 1 / YB
Z B U / SB
2 B
YB S B / U
2 B
I B S B / 3U B
功率的基准值=100MVA
电压的基准值=参数和变量归算的额 定电压
三. 不同基准值的标幺值间的换算
V X (有名值) =X (N)* SN
电力系统参数

1、输电线路的参数及等值电路:1)导线每公里的电阻计算式为r o=ρ/S(Ω/km)式中 r o——导线材料的电导率,(Ω/km)S——导线的截面面积,mm2;ρ—导线材料的电阻率(Ωmm2/km),在温度t=20°C时,铜的电阻率为18.8Ω·mm2/km,铝的电阻率为31.5Ω·mm/km2,因此导线长度计算公式为R=r O L。
2)电抗如果架空线三相对称排列(等边三角形),或三相不对称排列,但经过完整换位后,单导线每相单位长度电抗:r—导线实际半径(计算半径,比如, LGJ-400/50的计算半径为13.8mm),mmD m—几何均距,mmD ab、 D bc、 D ca分别为A相与B相、 B相与C相、 C相与A相导线间的距离。
如果是分裂导线,则:分裂导线可以减少电晕放电和线路电抗。
其中,n—分裂导线的分裂数;r—分裂导线每一根导体的计算半径;d1i—分裂导线一相中某根导体与其它i-1根导体间的距离。
例:分裂导线每相单位长度电抗:3)电纳如果架空线三相对称排列(等边三角形),或三相不对称排列,但经过完整换位后,单导线每相单位长度电纳:分裂导线每相单位长度电纳:4)电导架空线的电导主要由沿绝缘子表面的泄漏现象和导线的电晕所决定。
沿绝缘子表面的泄漏损失很小,可忽略。
电晕是强电场作用下带电体周围空气的电离现象。
当设计线路时选择合适的导线截面,则可以不考虑电晕损耗。
(正常时G=0)2、电力线路的等值电路架空线路U N≤35KV或长度L<100km;不长的电缆线路或U N≤10KV。
架空线路U N> 35KV或长度L在100-300km;不超过100km电缆线路或U N>10KV[例]有一长度为100km的110kV线路,导线型号为LGJ-185/30,导线计算直径为19mm,导线水平排列,相间距离为4m,试求线路的参数并作出等值电路。
解:r1=ρ/S=31.5/185=0.17 (Ω/km)全线路的集中参数为:Z=(0.17+j0.409)×100=17+j40.9(Ω)Y=j2.78×10-6×100=j278×10-6(S)Y/2=j139×10-6(S)线路的等值电路:2、变压器参数及等值电路⑴电阻R T:⑵电抗X T:⑶电导G T:⑷电纳B T:≤35KV 电网, T 导纳的影响可以忽略不计。
输电线路模型及其特性课件

04 输电线路模型的发展趋势
高电压大容量输电线路模型
总结词
随着电力需求的增长,高电压大容量 输电线路模型成为发展趋势,能够实 现远距离、大容量的电能传输。
详细描述
高电压大容量输电线路模型采用更高 的电压等级和更大的传输容量,能够 实现更远距离的电能传输,减少中间 环节和损耗,提高输电效率。
紧凑型输电线路模型
和运行参数的优缺点,从而优化设计。
02
输电线路模型用于电力系统运行
在电力系统运行过程中,输电线路模型用于实时监控和调度。通过模型
,调度员可以预测和评估电力系统的状态和性能,以便及时调整运行参
数,确保电力系统的稳定性和可靠性。
03
输电线路模型用于电力系统维护
在电力系统维护过程中,输电线路模型用于故障诊断和预防性维护。通
自动化巡检
利用无人机、机器人等技 术,实现输电线路的自动 化巡检,提高巡检效率和 精度。
绿色环保输电线路模型的发展
环保设计
环保材料
优化输电线路的布局,减少对环境的 影响,如采用地下或水下输电线路。
使用环保型材料,如可降解、可回收 材料,降低对环境的影响。
可再生能源整合
将可再生能源如风能、太阳能等整合 到输电线路中,实现能源的可持续发 展。
在电力系统维护中的应用
输电线路模型用于故障诊断
输电线路模型可以用于故障诊断,通过模拟故障发生时的系 统状态,帮助维护人员快速定位故障原因。同时,模型还可 以预测故障可能造成的影响,为维护人员提供决策支持。
输电线路模型用于预防性维护
输电线路模型可以用于预防性维护,通过对线路的老化和故 障模式进行模拟和分析,预测可能出现的故障。维护人员可 以根据模型的预测结果,提前采取措施进行预防性维护,降 低故障发生的概率。
第2章 电力网元件的参数和数学模型

2
2. 电抗
1)单相导线电抗
r Deq 为三相导线间的互几何间距 x0 0.1445lg Deq 0.0157 r ( / km)
Deq 3 D1 D2 D3
r 为导线的计算半径 μr 为导线材料的相对导磁系数,有色金属的相对导磁 系数为1。 在近似计算中,可以取架空线路的电抗为 0.40 / km
2 Pk1U N RT 1 , 2 1000 S N 2 Pk 2U N , 2 1000 S N 2 Pk 3U N 2 1000 S N
RT 2
RT 3
16
•对于100/50/100或100/100/50 首先,将含有不同容量绕组的短路损耗数据归算为额 定电流下的值。
额定容量比为 100/50/100
2)分裂导线线路的电纳
b1 7.58 10 6 (S/km) D lg m req
9
二、电力线路的数学模型
电力线路的数学模型是以电阻、电抗、电纳和电导来表示 线路的等值电路。 1、短线路(<35kv,<100km的架空线路、短电缆线路) 不考虑线路的分布参数特性,只用将线路参数简单地集中 起来的电路表示。
g1 Pg U2 10 3 (S / km)
7
实际上,在设计线路时,已检验了所选导线 的半径是否能满足晴朗天气不发生电晕的要
求,一般情况下可设
g=0
8
4. 电纳 1)单相导线电纳
其电容值为:
C1 0.0241 10 6 D lg m r
最常用的电纳计算公式:
7.58 10 6 (S/km) D lg m r 架空线路的电纳变化不大,一般为 2.85 10 6 S / km b1
3
第四章输电线的参数及模型

I1
.
r1 l
x1 l
I2
.
.
U1
U2
有关,须满足Ua + Ub + Uc = 0(Qa + Qb + Qc = 0),
如不满足,则C要变化。
41
➢ 电导的计算
• 电晕现象
声响
蓝色晕光
电晕损耗
o3气味
Pg
• 计算公式 g1 2 10 3 (S/km)
U
(实测)
42
• Ucr:临界电压
能发生电晕的最低电压
• 影响因素:
材料表面光滑程度
U2
I1 C D I 2
ch l
U1 = sh l
I1 Z c
Z c sh l
U2
ch l
I 2
A
=
D
=
ch
l
sh l
B=Z c sh l C=
❖ 有几个参数可以反映输电线的电磁现象?
❖ 各个参数受哪些因素影响?
❖ 如何用等值电路表示输电线路?
22
➢线路的电磁现象和参数
❖ 线路通电流
发热,消耗有功功率
交流电流
R
交变磁场
感应电势(自感、互感)抵抗电流
电流效应
X
串联还是并联?
23
❖ 线路加电压
绝缘漏电(较小),
一定电压下发光、放电(电晕)
电场
效应
▪ 导线的电感计算公式根据磁场效应推导
30
❖ 推导思路
• 分析导线的磁场
导线自身电流+邻近导线电流(安培环路定律:I→H磁
电力系统输电线路参数计算与优化

电力系统输电线路参数计算与优化电力系统是现代社会必不可少的基础设施。
为了确保电能的高效传输和供应,输电线路的参数计算与优化成为了其中不可忽视的环节。
本文将讨论输电线路参数计算的方法,并探讨如何通过优化来提高电力系统的运行效率。
一、输电线路参数计算方法电力系统的输电线路主要包括导线、杆塔和绝缘子等组成部分。
在进行输电线路参数计算前,需确定导线截面、杆塔类型及其布设方式等关键参数。
以下将介绍几种常用的计算方法:1. 传输线模型法传输线模型法是一种基于电磁场理论的计算方法。
它将导线看作是连续分布参数的传输线,通过求解微分方程来计算电流和电压的变化。
该方法在计算精度和计算速度上都相对较高,适用于较为复杂的输电线路。
2. 发电机迭代法发电机迭代法是一种基于功率平衡原理的计算方法。
该方法将电力系统简化为发电机、传输线和负荷之间的网络,并通过迭代计算各个节点上的电压和功率。
该方法计算简单,适用于简单的输电线路。
3. 感应电流法感应电流法是一种用于计算输电线路绝缘子串、接地电阻等参数的方法。
通过考虑导线和绝缘子间的电磁感应,可以准确地评估电力系统的性能和稳定性。
该方法计算精度高,但计算量较大,适用于系统的细致分析。
二、输电线路参数优化除了准确计算输电线路的参数之外,优化输电线路的设计也是提高电力系统运行效率的重要手段。
下面将从导线优化和杆塔优化两个方面进行讨论。
1. 导线优化导线是输电线路中承载电流的关键组成部分。
优化导线的参数可以减小电阻损耗、提高输电效率。
常用的导线优化方法有:增加导线截面、选择导线材料和减小导线间距等。
同时还可以通过设计合理的导线悬挂方式来减小风荷载对导线的影响。
2. 杆塔优化杆塔是支撑输电线路的重要组成部分。
合理优化杆塔的设计可以提高线路的稳定性和抗倒塌能力。
常用的杆塔优化方法有:选择适宜的杆塔类型、提高杆塔的结构强度和改善杆塔的抗风性能等。
三、实例分析为了更好地说明输电线路参数计算与优化的重要性,我们选取一条实际的输电线路进行分析。
第二章 电力系统各元件的等值电路和参数计算

( (
SN 2 ) S2N SN min{ S 2 N , S 3 N SN 2 ) S 3N
'
S (2−3)
S ( 3 −1)
(
)2 }
(3)仅提供最大短路损耗的情况
R( S N )
2 ∆PS .maxVN = ×103 2 2S N
2 ∆PSiVN Ri = × 10 3 (i = 1,2,3) 2 SN
2.2.3 三绕组变压器的参数计算
(2)三绕组容量不同(100/100/50、100/50/100) 三绕组容量不同(100/100/50、100/50/100)
∆ PS (1 − 2 ) = ∆ P ∆ PS ( 2 − 3 ) = ∆ P ∆ PS ( 3 − 1 ) = ∆ P
2.2.3 输电线路的参数计算
1.电阻 电阻 有色金属导线单位长度的直流电阻: 有色金属导线单位长度的直流电阻: r = ρ / s 考虑如下三个因素: 考虑如下三个因素: (1)交流集肤效应和邻近效应。 )交流集肤效应和邻近效应。 (2)绞线的实际长度比导线长度长 ~3 %。 )绞线的实际长度比导线长度长2~ (3)导线的实际截面比标称截面略小。 )导线的实际截面比标称截面略小。 2 因此交流电阻率比直流电阻率略为增大: 因此交流电阻率比直流电阻率略为增大:铜:18.8 Ω ⋅ mm / km 铝:31.5 Ω ⋅ mm 2 / km 精确计算时进行温度修正: 精确计算时进行温度修正: rt = r20 [1 + α (t − 20)]
架空线路的换位问题
A B C C A B B C A A B C
目的在于减少三相参数不平衡 整换位循环: 整换位循环:指一定长度内有两次换位而三相导线 都分别处于三个不同位置,完成一次完整的循环。 都分别处于三个不同位置,完成一次完整的循环。 滚式换位 换位方式 换位杆塔换位
第二章 电力系统各元件的参数和等值电路

针式绝缘子
悬式绝缘子
主要用于35kV及以 上系统,根据电压 等级的高低组成数 目不同的绝缘子链。
图 中等长度线路的等值电路 (a) π形等值电路;(b) T形等值电路
3 长线路的等值电路(需要考虑分布参数特性) 长线路:长度超过300km的架空线和超过100km的电缆。 精确型 根据双端口网络理论可得:
1 2cosh rl 1 Y' sinh rl Zc sinh rl 其中: Z c z1 / y1 r z1 y1
图2-11
单位长线路的一相等值电路
二.电力线路的阻抗
1、有色金属导线架空线路的电阻
有色金属导线指铝线、钢芯铝线和铜线 每相单位长度的电阻:
r /s
其中: 铝的电阻率为31.5
铜的电阻率为18.8
考虑温度的影响则:
均大于直流电阻率
rt r20 [1 (t 20)]
2、有色金属导线三相架空线路的电抗
2 3
低 三绕组变压器电气结 线图
三绕组变压器的等值电路
铭牌参数:SN;UIN/UⅡN/UⅢN;Pk(1-2)、 Pk(1-3)、 Pk(3-2); Uk(1-2)%、 Uk (1-3) %、 Uk (3-2) %;P0、I0%
按三个绕组容量比的不同有三种不同的类型:
100/100/100、100/50/100、100/100/50
Uk % 3I N XT 100 UN
2 U k % U k %U N 100 100S N
电力系统模型建立与优化调度

电力系统模型建立与优化调度随着社会的不断发展,电力系统作为人们生产和日常生活中必不可少的能源供应方式,发挥着至关重要的作用。
为了保证电力系统的稳定运行和高效供电,建立合理的电力系统模型及进行优化调度显得尤为重要。
一、电力系统模型建立电力系统模型建立是指根据电力系统的特点、组成和运行规律,以数学模型形式对其进行描述和分析。
电力系统模型可以分为潮流模型、输电线路参数模型和发电机组模型等。
接下来,我们将分别对这些模型进行介绍。
1. 潮流模型潮流模型是电力系统中常用的一种数学模型,用于计算电力系统中各节点的电压和功率分布情况。
它可以通过建立节点电流和节点功率之间的方程组进行求解。
潮流模型的建立需要考虑各个节点之间的复杂电气关系,如节点的电压相位间隔限制、节点之间的电流平衡关系等。
2. 输电线路参数模型输电线路是电力系统中的重要组成部分,其正确建模在潮流计算和短路计算中起到关键作用。
输电线路参数模型主要包括线路的电阻、电抗、传输能力等参数的计算和建立。
建立合理的输电线路参数模型可以有效地分析电力系统中的潮流分布和功率调度等问题。
3. 发电机组模型发电机组模型是对电力系统中各个发电机组的动态特性进行描述的数学模型。
一般采用经典的机械系统模型和电磁模型进行建模。
发电机组模型的建立可以通过考虑机械系统的惯性、阻尼和电磁系统的特性等因素,来模拟发电机组在系统故障等异常情况下的响应行为。
二、电力系统优化调度电力系统的优化调度是指在保证电力系统安全运行的前提下,通过计算机技术和优化算法,对发电机组的出力、输电线路的功率分配等进行合理调度,以实现电力系统的经济运行和能源的高效利用。
1. 优化目标电力系统的优化调度需要考虑多个目标,包括成本最小化、电压稳定、系统平衡等。
成本最小化是指在满足用户用电需求和系统安全的前提下,尽量减少发电成本和输电损耗。
电压稳定是指在电力系统中各个节点的电压维持在正常范围内,以保证用户的电器设备正常工作。
电力系统稳态分析 第2章 电力系统元件及其参数

1. 单位长度基本参数
电阻-决定线路上有功功率损耗和电能 损耗的参数,是串联参数。
电导-用来描述绝缘子表面泄漏损耗和 导线电晕损耗的参数,是线路并联参数。
(电晕-输电线在高压情况下,当导线表 面电场强度超过空气的击穿强度时,导线 附近地空气产生电离从而发生放电现象)
电抗-导线通过交流电流时,在导线及 其周围产生交变磁场,因而有电感和电抗, 电抗是串联参数。
近似计算分布参数: Z=(14.71+j248.18) Ω, Y=j5.38×10-3S
精确计算分布参数: Z=(16.6 +j254.48) Ω, Y=j5.55×10-3S
当线路很长时,近似计算与精确计算相 比也有较大误差,必须使用精确计算法。
短线路—— <100km的架空线 集中参数,忽略电纳B;
电力系统分析计算的一般过程
简化—等效电路—数学模型—求解-结果分析
例如某输电线路,其元件参数为R、X,其 等效电路如下:
其数学模型为:
u Ri
•
U R
Ri L di dt
直流稳态
jX
•
I
交流稳态
暂态 u
输电线路
输电线路结构
电力线路结构:架空线路、电缆线路、混 合线路
架空线路:导线、避雷线(架空地线),绝缘 子,金具和杆塔等主要部件组成
电力系统稳态分析 第2章 电力系统元件及其参数
第2章 电力系统元件及其参数
1 概述 2 输电线路 3 电力变压器 4 同步发电机 5 负荷 6 标幺值
概述
电力系统元件、参数、数学模型
电力系统元件——构成电力系统的各组成 部件
电力系统分析和计算一般只需要计及主要 元件或对所分析问题起较大作用的元件
电力系统的模型和参数输电线路

输电线路
三相输电线路的模型与参数
电阻
rR
电感
电容
L j L
Z R jX r j L
沿线路方向
阻抗
电导
1 C jC g G
1 Y G jB g jC
对地方向
导纳
输电线路
三相输电线路的模型与参数
输电线路
特征根法
U Z1Y1
电容
导线之间、导线与避雷线之间、导线与地之间都存在电容
分裂导线:q取代r,故而具有更大的电容 正序电纳
输电线路
三相输电线路的模型与参数
一些实用数据 单导线架空线路 b≈2.8×10-6 S/km 双分裂架空线路 b≈3.4×10-6 S/km 四分裂架空线路 b≈ 4.1×10-6 S/km
—— ——
导线半径 导磁率(H)
输电线路
三相输电线路的模型与参数
分裂导线的作用
减小电感 使导线周围电场分布更均匀,减少电晕现象 提高输电能力 提高可靠性
110kV以下 不分裂
220kV 不分裂或2分裂
500kV 4分裂或6分裂
750kV 6分裂
1000kV 8分裂
输电线路
输电线路
三相输电线路
量词:“回”——一个回路,包含ABC三相
架空线——三根导线 电缆——一根电缆含内含三根导线
“同杆双回线”
架空线的组成
杆塔、导线、绝缘子、线路金具、拉线、杆塔基础、接地装置
输电线路的结构
三相输电线路
架空线的组成
杆塔
材质:木杆、水泥杆、钢管塔、铁塔 功能:直线塔、耐张塔(转角塔、终端塔、跨越塔)
电力系统分析基础知识点总结

电力系统分析基础知识点总结电力系统是指由发电厂、变电站、输电线路和配电网等组成的电能供应系统。
电力系统的分析是对电力系统进行各种参数和运行条件的计算和评估,以保证电力系统的安全、稳定和经济运行。
下面是电力系统分析的基础知识点总结:一、电力系统模型1.电力系统分析的第一步是建立系统的数学模型。
常用的电力系统模型有节点模型、支路模型和矩阵模型。
2.节点模型是利用节点电压和分支电流表示电力系统的模型,适用于潮流计算、稳定计算等。
3.支路模型是利用支路电流和支路电压表示电力系统的模型,适用于短路计算、暂态稳定计算等。
4.矩阵模型是利用节点电压和支路电流构造的矩阵表示电力系统的模型,适用于状态估计、谐波计算等。
二、电力系统潮流计算1.电力系统潮流计算是解决电力系统节点电压和分支电流的问题。
2.潮流计算的目标是求解电力系统中每个节点的电压和每条支路的电流。
3.潮流计算的方法包括高斯-赛德尔迭代法、牛顿-拉夫逊迭代法、迭代法等。
三、电力系统短路计算1.电力系统短路计算是解决电力系统发生短路故障时,电流的分布和电压的变化的问题。
2.短路计算的目标是求解电力系统中每个节点的短路电流和各个分支的短路电压。
3.短路计算的方法包括节点法、支路法、短路阻抗法等。
四、电力系统暂态稳定计算1.电力系统暂态稳定计算是解决电力系统在故障情况下的暂态过程,如发电机的转速和电压的变化等问题。
2.暂态稳定计算的目标是求解电力系统中各个节点、线路和发电机的暂态响应。
3.暂态稳定计算的方法包括直接法、分步法、迭代法等。
五、电力系统谐波计算1.电力系统谐波计算是解决电力系统中谐波电流和谐波电压的问题。
2.谐波计算的目标是求解电力系统中各个节点的谐波电压和各个支路的谐波电流。
3.谐波计算的方法包括傅里叶级数法、谱域法、蒙特卡洛法等。
六、电力系统状态估计1.电力系统状态估计是利用实时测量数据对电力系统的状态进行估计,如电压的估计、负荷的估计等。
电力系统分析

电力系统分析
2.1
输电线路的参数
例题2.2 有一回220kV架空电力线路, 220kV架空电力线路 例题2.2 有一回220kV架空电力线路,长 度为100km 采用每相双分裂导线 100km, 双分裂导线, 度为100km,采用每相双分裂导线,次导 线采用LGJ 185, LGJ- 线采用LGJ-185,每一根导线的计算外径 为19 mm,三相导线以不等边三角形排列, mm,三相导线以不等边三角形排列, 9m, 线间距离 =a参数
近似计算时: 近似计算时:
x 0 = 0.4 Ω km b0 = 2 .8 × 10 −6 s km 单导线路:
对于分裂导线线路: 对于分裂导线线路: 当分裂根数为2 每公里的电抗为0.33 当分裂根数为2时,每公里的电抗为0.33 Ω ,每公里的 纳为3.4 电 纳为3.4 × 10 −6 s。 当分裂根数为3根时,每公里的电抗为0.30 左右, 当分裂根数为3根时,每公里的电抗为0.30 Ω 左右,每公 里的电纳分别为3.8 里的电纳分别为3.8 × 10 −6 s 。 当分裂根数为4根时,每公里的电抗为0.28 当分裂根数为4根时,每公里的电抗为0.28 公里的电纳为4.1 公里的电纳为4.1 × 10 −6 s 。
Ω
左右, 左右,每
电力系统分析
2.1
输电线路的参数
钢导线, 钢导线,由于集肤效应及导线内部的导磁系数 随导线通过的电流大小而变化,因此,它的电 随导线通过的电流大小而变化,因此,它的电 阻和电抗均不恒定,无法用解析法确定, 阻和电抗均不恒定,无法用解析法确定,只能 用实验测定其特性,根据电流值确定其阻抗。 实验测定其特性,根据电流值确定其阻抗。 其特性 电缆线路的电气参数计算比架空线路复杂得多, 电缆线路的电气参数计算比架空线路复杂得多, 通常采取实测办法, 通常采取实测办法,并将其电气参数标明在设 实测办法 计手册中。 计手册中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各级电压单回路架空线路输送功率和输送距离的适宜范围
额定电压 kV 输送容量 MVA 输送距离 km 额定电压 kV 输送容量 MVA 输送距离 km
3
6 10 35 60
0.1~1.0
0.1~1.2 0.2~2 2~10 3.5~30
1~3
4~15 6~20 20~50 30~100
导线
铝绞线:LJ——AAC(All-Aluminum Conductor)
钢芯铝绞线:LGJ——ACSR(Aluminum Conductor Steel Reinforced)
镀锌、掺稀土等
输电线路的结构
三相输电线路
架空线的组成
绝缘子
材质:陶瓷、玻璃、复合
金具
线夹、接续金具、保护金具、连接金具
输电线路
三相输电线路的模型与参数
电阻
rR
电感
电容
L j L
Z R jX r j L
沿线路方向
阻抗
电导
1 C jC g G
1 Y G jB g jC
对地方向
导纳
输电线路
三相输电线路的模型与参数
输电线路
特征根法
U Z1Y1
Z1 ZC , Z1Y1 Y1
输电线路
特征根法
输电长线方程
输电线路
用集中参数近似处理——Π型等值
I1 V1 Y/2 Z Y/2 I2 V2
输电线路
用集中参数近似处理——Π型等值
当架空线路长度小于1000km,电缆长度小于300km时,
可近似认为Z = Z1l,Y=Y1l 对于35kV以下线路
2
U 1,2 Z1Y1
I 1,2 Z1Y1
dU IZ1 dx
I Z1Y1
2
U C1e C2e
x
x
C1 e x C2 e x IZ1
当x 0时C1 C2 IZ1,故而C1 C2 I 2
当x 0时C1 +C2 U 2
输电线路
三相输电线路
量词:“回”——一个回路,包含ABC三相
架空线——三根导线 电缆——一根电缆含内含三根导线
“同杆双回线”
架空线的组成
杆塔、导线、绝缘子、线路金具、拉线、杆塔基础、接地装置
输电线路的结构
三相输电线路
架空线的组成
杆塔
材质:木杆、水泥杆、钢管塔、铁塔 功能:直线塔、耐张塔(转角塔、终端塔、跨越塔)
110
220 330 500 750
10~50 100~500 200~800 1000~1500 2000~2500
50~150 100~300 200~600 150~850 500以上
电容
导线之间、导线与避雷线之间、导线与地之间都存在电容
分裂导线:req取代r,故而具有更大的电容 正序电纳
输电线路
三相输电线路的模型与参数
一些实用数据 单导线架空线路 b≈2.8×10-6 S/km 双分裂架空线路 b≈3.4×10-6 S/km 四分裂架空线路 b≈ 4.1×10-6 S/km
三相输电线路的模型与参数
一些实用数据(x1=2πL1) 单导线架空线路x1 = 0.4Ω/km 双分裂架空线路x1 = 0.3 Ω/km 四分裂架空线路x1 = 0.25 Ω/km
10kV三芯电缆x1 = 0.08 Ω/km
单芯电缆x1 = 0.18 Ω/km
输电线路
三相输电线路的模型与参数
Z1 Y1
输电线路
特征根法
U 2 I 2 ZC U 2 I 2 ZC C1 , C2 2 2
e x e x e x e x U U2 I 2 ZC U 2 sinh x I 2 ZC cosh x 2 2
U 2 e x e x e x e x U 2 I I2 sinh x I 2 cosh x ZC 2 2 ZC
—— ——
导线半径 导磁率(H)
输电线路
三相输电线路的模型与参数
分裂导线的作用
减小电感 使导线周围电场分布更均匀,减少电晕现象 提高输电能力 提高可靠性
110kV以下 不分裂
220kV 不分裂或2分裂
5分裂
输电线路
输电线路
三相输电线路的模型与参数
电阻 电导
成因:电晕放电产生能量损失
输电线路设计时会特别考虑电晕问题,保证晴天不产生电晕 ΔP0很小,故而电导很小
输电线路
三相输电线路的模型与参数
电阻 电感——电磁感应产生
自感(L) 互感(M) 分裂导线
r μ0