全加器组合逻辑电路图

合集下载

实验三 组合逻辑电路

实验三    组合逻辑电路

实验三组合逻辑电路一、实验目的1. 通过简单的组合逻辑电路设计与调试,掌握采用小规模(SSI)集成电路设计组合逻辑电路的方法。

2. 用实验验证所设计电路的逻辑功能。

3. 熟悉、掌握各种逻辑门的应用。

二、实验原理组合逻辑电路是最常见的逻辑电路之一,可以用一些常用的门电路来组合成具有其他功能的门电路。

组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,而与电路过去的状态无关。

在电路结构上的特点是只包含门电路,而没有存储(记忆)单元。

在使用中、小规模集成电路来设计组合电路时,一般步骤如图3-1所示:1. 进行逻辑抽象,首先根据设计任务的要求建立输入、输出变量,列出其真值表。

2. 用卡诺图或代数法化简,求出最简逻辑表达式。

3. 根据简化后的逻辑表达式,画出逻辑电路图。

若已知逻辑电路,欲分析组合电路的逻辑功能,则分析步骤为:1. 由逻辑电路图写出各输出端的逻辑表达式。

2. 由逻辑表达式列出真值表。

3. 根据真值表进行分析,从而确定电路功能。

组合电路的设计过程是在理想情况下进行的,即假设一切器件均没有延迟效应。

图3-1 组合逻辑电路设计流程图三、实验仪器及器件1. EL-ELL-Ⅳ型数字电路实验系统2. 集成电路芯片:74LS00 74LS04 74LS86等四、实验内容及步骤1. 测试用异或门和与非门组成的半加器的逻辑功能如果不考虑来自低位的进位而能够实现将两个1位二进制数相加的电路,称为半加器,半加器的符号如图3-2所示。

半加器的逻辑表达式为:AB COBABABAS=⊕=+=根据半加器的逻辑表达式可知,半加和S是输入A、B的异或,而进位CO则为输入A、B相与,故半加器可用一个集成异或门和二个与非门组成,电路如图3-3所示。

COA BS CO图3-2 半加器符号 图3-3 异或门和与非门组成的半加器逻辑电路在实验仪上用74LS00及74LS86按图3-3接线,当输入端A 、B 为表3-1所列状态时,测量输出端S 及CO 的逻辑状态,将结果记录于表3-1中。

实验五 半加器和全加器

实验五 半加器和全加器

实验五半加器和全加器实验五半加器和全加器一、实验目的1(掌握组合逻辑电路的分析和设计方法。

2(验证半加器、全加器、奇偶校验器的逻辑功能。

二、实验原理使用中、小规模集成门电路分析和设计组合逻辑电路是数字逻辑电路的任务之一。

本实验中有全加器的逻辑功能的测试,又有半加器、全加器的逻辑设计。

通过实验要求熟练掌握组合逻辑电路的分析和设计方法。

实验中使用的二输入端四异或门的电路型号为74LS86,四位二进制全加器的型号为74LS83A,其外引线排列及逻辑图如下:14 13 12 11 10 9 8VCC=1 =174LS86=1 =1GND1 2 3 4 5 6 774LS86引脚排列16 15 14 13 12 11 10 9C C GND B AΣ 44011 BΣ4174LS83AA 2A Σ AB V Σ B 4333CC221 2 3 4 5 6 7 874LS83引脚排列74LS83A是一个内部超前进位的高速四位二进制串行进位全加器,它接收两个四位二进制数(A~A,B~B),和一个进位输入(C),并对每一位产生二进制和14140 (Σ~Σ)输出,还有从最高有效位(第四位)产生的进位输出(C)。

该组件有144越过所有四个位产生内部超前进位的特点,提高了运算速度。

另外不需要对逻辑电平反相,就可以实现循环进位。

三、实验仪器和器件1(实验仪器(1)DZX-2B型电子学综合实验装置(2)万用表(MF47型)2(器件(1)74LS00(二输入端四与非门)(2)74LS86(二输入端四异或门)(3)74LS83(四位二进制全加器)(4)74LS54(双二双三输入端与或非门)四、实验内容1(设计用纯与非门组成的半加器,分析、验证其逻辑功能;解:?根据设计任务列出真值表输入输出A B Y C0 0 0 00 1 1 01 0 1 01 1 0 1?根据真值表写出逻辑表达式C=AB Y,AB,AB?对逻辑表达式进行化简Y =A?B C=AB?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B= C=AB,AB AAB,BAB?根据整理后的逻辑表达式画出逻辑图? Y2 & 接A 逻=AB Y? 辑1& & YY 1 接电Y=A AB 电2平 ? B 平& Y=B AB ?3 Y3 显Y=A?B 示 ? & C=AB C图5-1 半加器设计参考图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-1’(验证) 表5-1(分析)输入输出输入逐级输出Y B C B A B Y C A B YYYY C 1 2 3A 0 1 A 0 1 0 0 0 0 0 0 1 1 1 0 00 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 01 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 01 1 0 1 1 1 0 1 1 0 1 卡诺图Y= A?B C=AB 2(设计用异或门组成半加器,并测试其逻辑功能; 解:???步骤同上?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B C= AB,AB?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-2输入输出接接=1 A Y ? 逻电A B Y C 辑平显电0 0 0 0 平示 B ? C ? & & 0 1 1 0 图5-2测量由异或门组成的半加器的逻辑功能 1 0 1 01 1 0 12(设计用74LS54、74LS86、74LS00组成全加器,并测试其逻辑功能;解:?根据设计任务列出真值表输入输出 ?根据真值表写出逻辑表达式 Y C A B C 00 0 0 0 0 Y,ABC,ABC,ABC,ABC00000 1 0 1 0C,ABC,ABC,ABC,ABC00001 0 0 1 01 1 0 0 1 ?对逻辑表达式进行化简0 0 1 1 0,,,,,,,,Y,AB,ABC,AB,ABC,A,BC,A,BC0 1 1 0 1 00001 0 1 0 1 ,,,,,,,A,BC,A,BC,A,B,C0001 1 1 1 1,,,,,,C,ABC,C,AB,ABC,AB,A,BC0000?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式,, Y,A,B,C0,, C,AB,A,BC0?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-3接电平显示 C 输入输出 Y A B CY C 074LS00 & 0 0 0 0 0 ? 0 1 0 1 0 ?1 0 0 1 0 ?1 =1 =11 1 0 0 1 & & & & 0 0 1 1 0 1/2 74LS860 1 1 0 1 ? ? ? ? ? ? ? 1 0 1 0 1 ? A B C0 1 1 1 1 1 74LS54 接逻辑电平图5-34(分析四位二进制全加器74LS83A的逻辑功能;接电平显示Σ Σ Σ Σ 4321接接电“0” CC4 0 FAFAFAFA4 3 2 1 平或显“1” ? ? 示 ? ?74LS83A A/AA/AB/BB/B24 13 24 24接逻辑电平图5-4 分析四位二进制全加器74LS83A的逻辑功能表5-4输出输入C=0 C=1 00B/BA/A B/B A/A ΣΣΣΣCΣΣΣΣC24 2413131 2 3 4 4 1 2 3 4 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 10 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 11 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 00 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 01 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1*5(用加法器74LS83A实现BCD码和余三码之间的相互转换。

实验四 组合逻辑电路的设计(数据选择器和全加器)

实验四 组合逻辑电路的设计(数据选择器和全加器)

实验四组合逻辑电路的设计(数据选择器和全加器)一、实验目的1.熟悉各种常用 MSI 组合逻辑电路的功能与使用方法。

2.掌握多片 MSI 组合逻辑电路的级联、功能扩展。

3.掌握使用数据选择器和全加器设计组合逻辑电路。

4.进一步培养查找和排除数字电路常见故障的能力。

二、实验器件1. 74LS151 八选一数据选择器。

2. 74LS283 四位二进制全加器。

三、实验原理1.数据选择器又叫多路开关。

数据选择器在地址码(或叫选择控制)电位的控制下,从几个数据输入选择一个并将其送到一个公共的输出端。

它的功能类似一个多掷开关。

2. 74LS151 为互补输出的 8 选 1 数据选择器,选择控制端(地址端)为A、 B、 C,按二进制译码,从 8 个输入数据中选择一个需要的数据送到输出端 Y, S 为使能端,低电平有效。

当 S=0 时,若 CBA=000 时,则选择D0 数据到输出端,即 Y= D0 ,若 CBA=001时,则选择D1数据到输出端,即 Y= D1,其余类推。

引脚图如图11,功能表如表8所示。

当函数输入变量数大于数据选择器地址端时,可以选用一个或几个变量做数据。

3. 全加器是数字系统尤其是计算机中最基本的运算单元电路,其主要功能是实现二进制数算数加法运算,所谓全加器是指既考虑低位来的进位也考虑对高位进位的加法器。

以串行方式完成全加运算的逻辑电路,称为串行全加器;以并行方式完成全加运算的逻辑电路,称为并行全加器。

我们常用的是具有超前进位功能的 4 位全加器 74LS283,是典型的中规模二进制超前进位全加器。

C0 是最低位的进位输入,C4 为相加后的进位输出,它可以完成 A 4A 3A 2A1 +B4B3B2B1 +C0 =C 4S3S2S1S0 二进制加法运算,其引脚图如图12 所示,功能表如表 9 所示。

四、实验内容1、用八选一数据选择器 74LS151 设计一个 8421BCD 非法码检测电路,当输入为非法码组时,输出为 1,否则为零。

实验二组合逻辑电路实验(半加器、全加器)

实验二组合逻辑电路实验(半加器、全加器)

5、记录实验结果(三)
3.全加器组合电路的逻辑功能测试
Ai
Bi
Ci-1
Y
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Z
X1
X2
X3
Si
Ci
5、记录实验结果(四)
自己设计实现逻辑函数,给出逻辑电路连接图,并连接调试。
5、记录实验结果(选做)
(1)画出用异或门、或非门和与非门实现全加器的逻辑电路图,写出逻辑表达式。 (2)找出异或门、或非门和与非门器件,按自己设计画出的电路图接线,注意:接 线时,或非门中不用的输入端应该接地。与非门中不用的输入端应该接VCC。 (3)当输入端Ai Bi Ci-1为下列情况时,测量Si和Ci的逻辑状态并填入表格中
0
0
1
0
1
1
1
0
1
1
1
输出
Y1
Y2
(1)按上图接线(注意数字编号与芯片管脚编号对应) (2)写出Y2的逻辑表达式并化简。 (3)图中A、B、C接实验箱下方的逻辑开关,Y1,Y2接实验箱上方的电平显示发光管。 (4)按表格要求,拨动开关,改变A、B、C输入的状态,填表写出Y1,Y2的输出状态。 (5)将运算结果与实验结果进行比较 。
每个小组在数字电路试验箱上找到本次实验所需要的芯片 ,并查看芯片形状是否完好,芯片管脚有没有插牢。
2、查看数字电路实验箱
74LS86
74LS00
3、了解芯片
芯片管脚示意图
4、实验内容与结果(一)

数字逻辑实验一(全加器)

数字逻辑实验一(全加器)

《数字逻辑》实验报告实验名称:________________学号:______姓名:______同组者:______时间:_____一.实验目的二.实验原理(画接线图)三.实验设备四.实验内容五.结果与讨论实验一组合逻辑电路的设计与测试(全加器)一.实验目的掌握组合逻辑电路的设计与测试方法。

二.实验原理用中、小规模集成电路来设计组合电路是常见的逻辑电路,设计电路的一般步骤如图1-1所示。

图1-1根据设计任务的要求建立输入、输出变量,并列出真值表,然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。

并按实际选用逻辑门的类型修改逻辑表达式。

根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路,最后,用实验来验证设计的正确性。

三.实验设备和器件1.多功能数字逻辑实验仪DVCC2.万用表3.芯片若干(74LS08(与门)、 74LS86(异或)、74LS32(或门))4.导线若干四.实验内容设计一位全加器,要求用异或门、与门、或门组成。

五.实验报告1.列写实验任务的设计过程,画出设计的电路图。

2.对所设计的电路进行实验测试,记录测试结果。

六.思考题“与或非”门中,当某一组与端不用时,应如何处理?附:(74LS08(与门)、 74LS86(异或)、 74LS32(或门)1,2――入3-出4,5――入6-出9,10-入8-出12,13-入11-出7-地14-电源DVCC简介:它是一种智能多功能数字逻辑实验仪,内置单片机存储了大量示范实验软件,提供自动和非自动两类实验方式。

自动实验方式:自动输出并显示所选实验的输入信号和正确的输出信号。

非自动实验方式:实验信号由实验者自动产生。

现采用非自动实验方式。

置KC2-StoP KC0-NumBK0~K7: 8路开关输入(接电路输入)LS0~LS7:显示输入的开关信号E8~E15:实验输出(接电路输出)LE8~LE15:显示输出学生实验电路的输出信号本机电源:+5V(中间位置)DGND-地本例中:(K0-Ai K1―Bi K2-Ci-1拔开关观察LS0~LS2)(Si-E9Ci-E8观察LE9~LE15的输出信号)注意:(1)芯片插入时方向不能错(2)先用万用表测量一下每个芯片7脚是否接地,14脚是否接+5V电源(3)万用表:黑色表笔――接COM红色表笔―――接+V开关在V-(20V)按下Power按钮可正常工作。

全加器逻辑电路图

全加器逻辑电路图

全加器逻辑电路图一、实验目的1. 掌握组合逻辑电路的设计与测试方法2.掌握半加器、全加器的工作原理。

二、实验原理和电路1、组合逻辑电路的设计使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。

设计组合电路的一般步骤如图1.4.1所示。

图1.4.1 组合逻辑电路设计流程图根据设计任务的要求建立输入、输出变量,并列出真值表。

然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。

并按实际选用逻辑门的类型修改逻辑表达式。

根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。

最后,用实验来验证设计的正确性。

1.半加器根据组合电路设计方法,首先列出半加器的真值表,见表1.4.1。

写出半加器的逻辑表达式S=AB+AB=A⊕BC=AB若用“与非门”来实现,即为半加器的逻辑电路图如图1.4.2所示。

在实验过程中,我们可以选异或门74LS86及与门74LS08实现半加器的逻辑功能;也可用全与非门如74LS00反相器74LS04组成半加器。

(a)用异或门组成的半加器 (b )用与非门组成的半加器图1.4.2 半加器逻辑电路图2.全加器用上述两个半加器可组成全加器,原理如图1.4.3所示。

图1.4.3由二个半加器组成的全加器 表1.4.2 全加器逻辑功能表 表1.4.1 半加器逻辑功能三、实验内容及步骤1.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。

0 10 1 0 0 1根据半加器的逻辑表达式可知,相加的和Y是A、B的异或,而进位Z是A、B 相与,故半加器可用一个集成异或门和二个与非门组成如图1.4.4。

图1.4.4 用一个集成异或门和二个与非门组成半加器⑴在实验仪上用异或门和与门接成以上电路。

A、B接逻辑开关,Y、Z接发光二极管显示。

⑵按表1.4.3要求改变A、B状态,将相加的和Y和进位Z的状态填入下表中。

表1.4.32.测试全加器的逻辑功能。

⑴写出图1.4.5电路的逻辑表达式。

Si = Ci=⑵根据逻辑表达式列真值表,并完成表1.4.4,实验证之。

运算电路(半加器、全加器)实验

运算电路(半加器、全加器)实验

实验三运算电路(半加器、全加器及逻辑运算)一、实验目的1、掌握组合逻辑电路的功能测试。

2、验证半加器全加器的逻辑功能。

3、学会二进制的运算规律。

二、实验仪器及器件1、元器件:74LS00 二输入端四与非门 3 片74LS86 二输入端四异或门 1 片三、预习要求1、预习组合逻辑电路的分析方法;2、预习用与非门和异或门构成的半加器、全加器的工作原理;3、预习二进制数的运算。

四、实验内容1、组合逻辑电路功能测试⑴用2 片74LS00 组成图3.1 所示逻辑电路。

为了便于接线和检查,按图中注明的芯片编号及引脚对应的标号接线。

⑵图中A、B、C 接电平开关,Y1、Y2 接发光管电平显示。

⑶按表3.1 要求,改变A、B、C 的状态填表并写出Y1、Y2 的逻辑表达式。

⑷比较逻辑表达式运算结果与实验是否一致。

2、测试用异或门(74LS86)和与非门组成的半加器的逻辑功能根据半加器的逻辑表达式可知,半加器Y 是A、B 的异或,而进位Z 是A、B 相与,故半加器可用一个集成异或门和二个与非门组成如图3.2。

⑴在实验箱上用异或门和与非门接成以上电路。

A、B 接电平开关、Y、Z 接电平显示。

⑵按表3.2 要求改变A、B 状态,将实验结果填表。

3、测试全加器的逻辑功能。

⑴写出图3.3 电路的逻辑表达式;⑵根据逻辑表达式列出真值表;⑶根据真值表画出函数Si、Ci 的卡诺图。

Y = A’B+AB’Z =C X1 =A’B+C’+ABX2 =A’B’+AB+C X3 =A’B+AB’+C’S i =A’B’C+A’BC’+AB’C+ABCC i =AC+AB+BC⑷填写表3.3 各点状态。

⑸按照原理图选择与非门,接线进行测试。

将结果记录在表3.4 中,并与表3.3 数据进行比较,看逻辑功能是否一致。

4、测试用异或、与或和非门组成的全加器的逻辑功能⑴画出用异或门、与或非门和非门实现全加器的逻辑电路图,写出逻辑表达式。

⑵用上述三块逻辑电路器件按自己画出接线图。

组合逻辑电路全加器

组合逻辑电路全加器
执行机构控制
全加器可以用于控制执行机构,例如通过比较设 定值与实际值的差异,控制执行机构的输出。
THANKS
感谢您的观看
Part
05
全加器的性能优化
运算速度的提升
01
02
03
减少信号传输延迟
通过优化电路布局和布线, 减小信号在电路中的传输 延迟,从而提高全加器的 运算速度。
采用高速逻辑门
使用高速逻辑门,如 CMOS门,可以减少门电 路的传输延迟,从而提高 全加器的运算速度。
并行处理
采用并行处理技术,将多 个全加器并行连接,可以 同时处理多个输入信号, 从而提高运算速度。
功耗的降低
降低门电路功耗
选择低功耗的逻辑门,如CMOS门,可以降低 全加器的功耗。
减少信号翻转次数
优化电路设计,减少信号翻转次数,从而降低 功耗。
动态功耗管理
采用动态功耗管理技术,根据实际需求动态调整全加器的功耗,从而达到节能 的目的。
面积的优化
STEP 02
STEP 01
优化电路结构
采用标准单元
结果分析对测试结果进行Fra bibliotek析,判断全加器 是否符合设计要求,并针对问题进 行调试和优化。
Part
04
全加器的实现方式
硬件实现方式
集成电路实现
使用集成电路(IC)实现全加器是一种常见的方法。集成电路是将多个电子元件集成在一块 芯片上,从而实现特定的功能。通过将多个门电路集成在一起,可以构建全加器。
晶体管实现
通过优化全加器的电路结 构,减小其面积,从而减 小芯片的制造成本。
STEP 03
减少元件数量
优化电路设计,减少元件 数量,从而减小全加器的 面积。

全加器

全加器

Ai

Si
Bi
Ci-1 CI CO Ci
44
3. 加法器 实现多位加法运算的电路
两个4 位二进数制相加的过程
1101 + 1001
1 0 01
101 1 0
两个二进制数相加时,也分为不考虑低 位来的进位和考虑低位进位两种情况。 同时必须考虑各个位的进位
55
3. 加法器 4位加法器逻辑框图
加数 被加数 低位进位
组合逻辑电路
1.加法器概念 2.加法器应用
11
加法器概念: 两个1 位二进制数相加
分为不考虑低位来的进位和考虑低位进位两种情况
1.半加器:只考虑本位两个二进制数相加,而不考虑来自低位进 位的运算电路。
2.全加器:除考虑本位两个二进制数相加外,还考虑来自低位进 位的运算电路。
A
S

B
C
Ai
Si
Bi

C2 FA3
C3 进位逻辑 C3
S0
S1
S2
S3
• 进位输入是由专门的“进位逻辑门”来提供 • 该门综合所有低位的加数、被加数及最低位进位输入
超前进位加法器使每位的进位直接由加数和被加数 产生,而无需等待低位的进位信号
99
74LS283逻辑图
B3
&
≥1
A3
B2
&
≥1
A2
B1
&
≥1
A1
B0
&
≥1
A0
进位 和
66
3. 加法器 实现多位加法运算的电路
串行进位加法器
其低位进位输出端依次连至相邻高位的进
位输入端,最低位进位输入端接地。因此,高位 数的相加必须等到低位运算完成后才能进行,这 种进位方式称为串行进位。运算速度较慢。

半加器和全加器

半加器和全加器
半加器和全加器
实验目的


掌握组合逻辑电路的设计方法,验证半加器 和全加器的逻辑功能。 掌握中规模集成电路加法器的工作原理及其 逻辑功能。
实验ቤተ መጻሕፍቲ ባይዱ理


在数字系统中,经常需要进行算 术运算,逻辑操作及数字大小比 较等操作,实现这些运算功能的 电路是加法器。加法器是一种组 合逻辑电路,主要功能是实现二 进制数的算术加法运算。 半加器
C-1
0
B3 B2 B1 B0 加数
8421BCD码
实验内容与步骤


用74LS283设计一个四位二进制数(A=A3A2A1A0)大小可变 的比较器。当控制信号M=0,A≥10时,输出为1。连线并列出真 值表。 用两块四位全加器设计一个二—十进制加法器,并做以下运算: 1) (3)10 +(5)10 = 2) (6)10 +(6)10 = 3) (9)10 +(8)10 = 将8421BCD码的输出分别接至译码/驱动器CC4511的对应输入 口D、C、B、A,接上+5V显示器的电源,观测8421BCD码与 LED数码管显示的对应数字是否一致,及译码显示是否正常。

图2 74LS283集成芯片引脚图


若某一逻辑函数的输出恰好等于输入代码所表示的数加上另一常数或另一组输入代码 时,则用全加器实现非常方便。 例如:用74LS283设计一个四位二进制数(A=A3A2A1A0)大小可变的比较器。当控 制信号M=0,A≥8时,输出为1;当控制信号M = 1,A≥4时,输出为1。 解:74LS283有五个输出端,只有进位输出C4在两个二进制相加大于等于16之后输出为1, 而小于16时输出为0。这一特点与命题要求相符,故选C4作为比较器的输出。 当M = 0时,A ≥8,要使C4 = 1,必定得加1000,即B3B2B1B0 = 1000。 当M = 1时,A ≥4,要使C4 = 1,必定得加1100,即B3B2B1B0 = 1100。

组合逻辑电路(半加器全加器及逻辑运算)

组合逻辑电路(半加器全加器及逻辑运算)

一种常见的实现方式是使 用异或门实现和S,使用 与门实现进位C。
半加器的性能分析
逻辑级数
半加器的逻辑级数通常较低,因 为它只涉及基本的逻辑运算。
可靠性
半加器的结构简单,因此具有较 高的可靠性。
延迟时间
由于逻辑级数较低,半加器的延 迟时间相对较短。
资源消耗
半加器使用的逻辑门数量相对较 少,因此在资源消耗方面较为经 济。
组合逻辑电路(半加器 全加器及逻辑运算)
• 组合逻辑电路概述 • 半加器原理与设计 • 全加器原理与设计 • 逻辑运算原理与设计 • 组合逻辑电路的分析与设计方法 • 组合逻辑电路在数字系统中的应用
目录
Part
01
组合逻辑电路概述
定义与特点
定义
无记忆性
组合逻辑电路是一种没有记忆功能的数字 电路,其输出仅取决于当前的输入信号, 而与电路过去的状态无关。
比较器
比较两个二进制数的大小关系,根 据比较结果输出相应的信号,可以 使用与门、或门和非门实现。
全加器
在半加器的基础上增加对进位的处理 ,使用与门、或门和异或门实现两个 一位二进制数带进位的加法运算。
多路选择器
根据选择信号的不同,从多个输 入信号中选择一个输出,可以使 用与门、或门和非门实现。
Part
用于实现控制系统的逻辑 控制、数据处理等功能。
Part
02
半加器原理与设计
半加器的基本原理
半加器是一种基本的组合 逻辑电路,用于实现两个 二进制数的加法运算。
它接收两个输入信号A和 B,并产生两个输出信号: 和S以及进位C。
半加器不考虑来自低位的进 位输入,因此只能处理两个 一位二进制数的加法。
组合逻辑电路的应用领域

组合逻辑电路(加法器)

组合逻辑电路(加法器)

Ci m3 m5 Ai Bi ( Ai Bi )Ci 1 Ai Bi
全加器的逻辑图和逻辑符号
Si m1 m2 m4 m7 Ai BiCi 1 Ai BiCi 1 Ai BiCi 1 Ai BiCi 1 Ai ( BiCi 1 BiCi 1 ) Ai ( BiCi 1 BiCi 1 ) Ai ( Bi Ci 1 ) Ai ( Bi Ci 1 ) Ai Bi Ci 1
加法器
半加器和全加器
1、半加器
能对两个1位二进制数进行相加而求得和及进位的逻辑 电路称为半加器.
半加器真值表 Ai Bi 0 1 0 1 Si 0 1 1 0 Ci 0 0 0 1
本位 的和 向高 位的 进位
Ai Bi
=1
Si Ci
加数
0 0 1 1
&
半加器电路图 Ai Bi ∑
CO
Si Ci
Si Ai Bi Ai Bi Ai Bi Ci Ai Bi
0
0
1
1
被加数/被减数
加数/减数
加减控制
BCD码+0011=余3码
C0-1=0时,B0=B,电路 执行A+B运算;当C0-1=1 时,B1=B,电路执行A -B=A+B运算。
3、二-十进制加法器
修正条件 C C3 S3S2 S3S1
8421 BCD 输出 S3 ' S2 ' S1 ' S0' 4 位二进制加法器 C0-1 A1 A0 B3 B2 B1 B0
4位超前进位加 法器递推公式
S 2 P2 C1 1G0 P 2P 1P 0C0 1 C2 G2 P2C1 G2 P2G1 P2 P S3 P3 C2 1G0 P 3P 2P 1P 0C0 1 C3 G3 P3C2 G3 P3G2 P3 P2G1 P3 P2 P

数字电路实验报告-组合逻辑电路的设计:一位全加器

数字电路实验报告-组合逻辑电路的设计:一位全加器
Bi
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
描述
一位全加器的表达式如下:
Si=Ai⊕Bi⊕Ci-1
实验仪器
1.电子技术综合实验箱
2.芯片74LS86、74LS08、74LS32
实验内容及步骤
各芯片的管脚图如下图所示:
一位全加器逻辑电路图如下所示:
1.按上图连线
电学实验报告模板
电学虚拟仿真实验室
实验名称
组合逻辑电路的设计:一位全加器
实验目的
1.学习组合逻辑电路的设计方法
2.掌握组合逻辑电路的调试方法
实验原理
真值表
一位全加器的真值表如下图,其中Ai为被加数,Bi为加数,相邻低位来的进位数为Ci-1,输出本位和为Si。向相邻高位进位数为Ci
输入
输出
Ci-1
Ai
2.测试其逻辑功能,并记录数据
实验结果及分析
实验数据:
Ci-1
Ai
Bi
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
10010 Nhomakorabea1
0
1
0
1

组合逻辑电路设计

组合逻辑电路设计

实验报告
课程名称:电路电子技术实验 指导老师:王旃 成绩:__________________ 实验名称:数字钟 实验类型:________________同组学生姓名:__________
实验22——组合逻辑电路设计
1、 写出与非门74LS00、与或非门74LS55的逻辑功能检查方法。

输入信号,记录输出值,得真值表
符合其逻辑功能。



线
输入信号,记录输出值,得真值表
符合其逻辑功能。

2、 写出全加器和奇偶校验器的设计过程。

列出全加器真值表
由卡诺图化
简得S i =___________S i ’C i-1+-S i ’ -C i-1
,C i =_________-A -B +S i ’-C i-1 。

其中S i ’=_______AB+-A -B 。

而由奇偶校验器的功能知其输入输出有如下关系:
则将全加器的A 、
B 、
C i-1改成奇偶校验器的四位输入的其中三位A 、B 、C ,作全加器和后再与第四位做半加器和即可。

3、 画出实验逻辑电路图,并用真值表记录上述电路的实验结果。

全加器逻辑电路图:
真值表:
奇偶校验器逻辑电路图:
真值表:
4、实验中有无出现故障?故障是如何排除的?记录实验的调试过程。

本次实验比较简单,相比上次的数字钟这次实验仅有接线错误和接触不良的问题。

在接线无误的前提下开始改善接线布局的因素,如接线太长、层叠太多、引脚悬空等。

大幅度改善接线布局后实验成功。

5、上述每个实验内容的仿真结果。

全加器仿真结果:
奇偶校验器仿真结果:。

第二章组合逻辑电路分析-含动画

第二章组合逻辑电路分析-含动画
4.优先编码器
普通编码器对输入信号的要求是互相排斥,优先编码器无此约束 允许多个信号同时输入,但电路只对优先级别最高的信号进行编码 【例2-6】3位二进制优先编码器的设计。 解:(1)分析设计要求
8个输入信号(I0~I7) 3个输出信号(Y2~Y0) 编码规则:用000、001、010、011、100、101、
2. 4选1数据选择器
【例2-9】4选1数据选择器的设计。 解:(1)分析设计要求 4路数 据输 入信号 (D0、D1、D2、D3) 1路输出信号(Y) 2位选择控制信号(S1、S0) S1S0=00时,Y=D0; S1S0=01时,Y=D1; S1S0=10时,Y=D2; S1S0=11时,Y=D3。
一个N×N的乘法器,有两个N位的乘数输入端及2N位乘积输出。
2.2.6 乘法器
2.乘法器的实现
以 4 × 4 乘 法 器 为 例 , 乘 法 器 的 输 入 信 号 为 被 乘 数 A(A3A2A1A0) 及 乘 数 B (B3B2B1B0),输出为乘积P(P7~P0)。
部分积的计算可通过与门(AND)实现 若要将部分积移位相加,还需要3个4位加法器进行加法运算
2.2 常用的组合逻辑电路
编码器 译码器 数据选择器 数值比较器 加法器 乘法器
2.2.1 编码器
1.编码原理
编码是指用文字、符号或数字表示特定对象的过程 编码器就是实现编码操作的电路 编码器的结构框图:
I0~Im-1对应m个需要编码的输入信号 Yn-1~Y0对应n位的编码输出 为了保证每一个输入信号都对应一个唯一的编码,n和m之间的关系 应满足关系式 2n-1<m≤2n 设计编码器关键在于编码规则,编码规则不同,设计的结果也完全不同
2.2.5 加法器
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全加器组合逻辑电路图
一、实验目的
1. 掌握组合逻辑电路的设计与测试方法
2.掌握半加器、全加器的工作原理。

二、实验原理和电路
1、组合逻辑电路的设计
使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。

设计组合电路的一般步骤如图1.4.1所示。

图1.4.1 组合逻辑电路设计流程图
根据设计任务的要求建立输入、输出变量,并列出真值表。

然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。

并按实际选用逻辑门的类型修改逻辑表达式。

根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。

1.半加器
根据组合电路设计方法,首先列出半加器的真值表,见表1.4.1。

写出半加器的逻辑表达式
S=AB+AB=A⊕B
C=AB
若用“与非门”来实现,即为
半加器的逻辑电路图如图1.4.2所示。

在实验过程中,我们可以选异或门74LS86及与门74LS08实现半加器的逻辑功能;也可用全与非门如74LS00反相器74LS04组成半加器。

(a)用异或门组成的半加器 (b )用与非门组成的半加器
图1.4.2 半加器逻辑电路图
2.全加器
用上述两个半加器可组成全加器,原理如图1.4.3所示。

图1.4.3由二个半加器组成的全加器 表1.4.2 全加器逻辑功能表 表1.4.1 半加器逻辑功能
三、实验内容及步骤
1.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。

根据半加器的逻辑表达式可知,相加的和Y 是A 、B 的异或,而进位Z 是A 、
B
输入
输出 C1-1 B A Si Ci
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
0 1
1 0
0 1 0 0 1
输入 和 进位 A B S C 0 0 0 1 1 0 1 1 0 1 1 0
0 0 0 1
相与,故半加器可用一个集成异或门和二个与非门组成如图1.4.4。

图1.4.4 用一个集成异或门和二个与非门组成半加器
⑴在实验仪上用异或门和与门接成以上电路。

A、B接逻辑开关,Y、Z接发光二极管显示。

⑵按表1.4.3要求改变A、B状态,将相加的和Y和进位Z的状态填入下表中。

表1.4.3
输入端A 0 1 0 1
B 0 0 1 1
输出端
Y
Z
2.测试全加器的逻辑功能。

⑴写出图1.4.5电路的逻辑表达式。

S
i = C
i
=
⑵根据逻辑表达式列真值表,并完成表1.4.4,实验证之。

⑶根据真值表画逻辑函数SiCi的卡诺图。

完成图1.4.6
图 1.4.5
图 1.4.6
表1.4.4
⑸试设计用异或门、与门、或门组成的全加器的逻辑功能并接线进行测试,将测试结果记入表1.4.5中,与上表进行比较看逻辑功能是否一致。

设计要求按组合逻辑电路设计流程图所述的设计步骤进行,直到测试电路逻辑功能符合设计要求为止。

表1.4.5
设计过程及设计的逻辑电路图写入方框中:
四、实验器材
1.数字电子技术实验系统 1台
2.直流稳压电源 1台
3.集成电路:74LS00 3片
74LS86,74LS32, 74LS08 各1片
五、预习要求
1. 根据实验任务要求设计组合电路,并根据所给的标准器件画出逻辑图。

2. 复习半加器、全加器工作原理和特点。

3. 了解本实验中所用集成电路的逻辑功能和使用方法。

六、实验报告要求
1.列写实验任务的设计过程,画出设计的逻辑电路图。

2.对所设计的电路进行实验测试,记录测试结果。

3.组合电路设计体会。

相关文档
最新文档