江苏省高考数学模拟考试试题(含答案)
江苏省扬州中学2024学年高三5月底高考模拟考试数学试题

江苏省扬州中学2024学年高三5月底高考模拟考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( )A .32B .32-C .23D .23- 2.若执行如图所示的程序框图,则输出S 的值是( )A .1-B .23C .32D .43.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .50504.如图所示的程序框图输出的S 是126,则①应为( )A .5?n ≤B .6?n ≤C .7?n ≤D .8?n ≤5.抛物线2:2(0)C y px p =>的焦点为F ,点()06,A y 是C 上一点,||2AF p =,则p =( )A .8B .4C .2D .16.已知集合A {}0,1,2=,B={}(2)0x x x -<,则A∩B=A .{}1B .{}0,1C .{}1,2D .{}0,1,27.函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .8.已知33a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .b c a >>D .b a c >>9.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .33y x =±B .3y x =±C .22y x =± D .2y x =± 10.已知二次函数2()f x x bx a =-+的部分图象如图所示,则函数()'()x g x e f x =+的零点所在区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)11.已知x ,y R ∈,则“x y <”是“1x y <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件12.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A .5.45B .4.55C .4.2D .5.8二、填空题:本题共4小题,每小题5分,共20分。
高考数学全国统一模拟考试江苏卷、参考答案与评分标准

高考数学全国统一模拟考试数 学(江苏卷)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
1. 已知集合}11log |{2+-==x xy x M ,]}1,0[,|{3∈+==x x x y y N 且,M ∩N = A.]2,1(B.)1,1(-C.)1,0[D.)1,0(2. 数列}{n a (*N n ∈)中,1231,3,5a a a ===,且1237n n n n a a a a +++⋅⋅⋅=,则99a =A.1B.3C.5D.无法确定3. nxx )1(+的展开式中常数项等于20,则n 等于A.4B.6C.8D.104. 空间直线b a ,是成060的异面直线,分别过b a ,作平面βα,,使βα,也成060.这样的平面βα,A.有无穷对B.只有5对C.只有3对D. 只有1对5. 如图AOB ∆,MN 是边AB 的垂直平分线,交OB 于点N ,设b OB a OA ==,,且OB ON λ=,则=λA .b b a 2+B .)(222b a b b a -⋅-C .bb a 2-D .)(222a b b b a -⋅-注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1、本试卷共4页,包含选择题(第1题~第10题,共10题)、填空题(第11题~第16题,共6题)、解答题(第17题~第21题,共5题)三部分。
本次考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在试卷及答题卡上。
3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。
4、作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。
作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
2024年新高考九省联考高三第二次模拟数学试题及答案

2024年高考第二次模拟考试高三数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合(){}{}ln 3,1A x y x Bx x ==−=≤−,则()A B =R ( )A .{}13x x −<≤B .{}1x x >− C .{1x x ≤−,或}3x >D .{}3x x >2.已知复数i z a b =+(a ∈R ,b ∈R 且a b ),且2z 为纯虚数,则zz=( ) A .1B .1−C .iD .i −3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b + 在向量()0,1j = 上的投影向量为( )A . jB . j −C . 2jD . 2j −4. “1ab >”是“10b a>>”( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D . 既不充分也不必要条件5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A .60 B .114 C .278 D .3366.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A . ()5,11,3 −−∪−+∞B . [)5,1,3−∞−∪+∞C . (][) ,21,−∞−∪+∞D . [)()2,11,−−−+∞7.已知ABC ∆中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A . 4πB . 6πC . 8πD . 9π8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”.若长方形G 的四边均与椭圆22:164x y M +=相切,则下列说法错误的是( )A .椭圆MB .椭圆M 的蒙日圆方程为2210x y +=C .若G 为正方形,则G 的边长为D .长方形G 的面积的最大值为18二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得60分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的是( ) A .MN 的最小值是6 B .若点5,22P,则MF MP +的最小值是4C .113MF NF+= D .若18MF NF ⋅=,则直线MN 的斜率为1± 10.已知双曲线()222:102x y E a a−=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( )A . 若E 的两条渐近线相互垂直,则a =B. 若E E 的实轴长为1C . 若1290F PF ∠=°,则124PF PF ⋅=D . 当a 变化时,1F PQ 周长的最小值为11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( ) A .11B D 与EF 是异面直线B .存在点P ,使得12A P PF =,且BC //平面1APBC .1A F 与平面1B EBD .点1B 到平面1A EF 的距离为45三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为13.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.14. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列{}n a 的前n 项和为n S ,且对于任意的*n ∈N 都有321n n S a =+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中的最大值为n M ,最小值为n m ,令2n nn M m b +=,求数列{}n b 的前20项和20T .16.(15分)灯带是生活中常见的一种装饰材料,已知某款灯带的安全使用寿命为5年,灯带上照明的灯珠为易损配件,该灯珠的零售价为4元/只,但在购买灯带时可以以零售价五折的价格购买备用灯珠,该灯带销售老板为了给某顾客节省装饰及后期维护的支出,提供了150条这款灯带在安全使用寿命内更换的灯珠数量的数据,数据如图所示.以这150条灯带在安全使用寿命内更换的灯珠数量的频率代替1条灯带更换的灯珠数量发生的概率,若该顾客买1盒此款灯带,每盒有2条灯带,记X 表示这1盒灯带在安全使用寿命内更换的灯珠数量,n 表示该顾客购买1盒灯带的同时购买的备用灯珠数量.(1)求X 的分布列;(2)若满足()0.6P X n ≥≤的n 的最小值为0n ,求0n ;(3)在灯带安全使用寿命期内,以购买替换灯珠所需总费用的期望值为依据,比较01nn =−与0n n =哪种方案更优.17.(15分)如图,在三棱柱111ABC A B C −中,直线1C B ⊥平面ABC,平面11AA C C ⊥平面11BB C C .(1)求证:1AC BB ⊥;(2)若12AC BC BC ===,在棱11A B 上是否存在一点P ,使二面角1P BC C −−?若存在,求111B PA B 的值;若不存在,请说明理由.18.(17分)已知函数()ln =−+f x x x a .(1)若直线(e 1)yx =−与函数()f x 的图象相切,求实数a 的值; (2)若函数()()g x xf x =有两个极值点1x 和2x ,且12x x <,证明:12121ln()x x x x +>+.(e 为自然对数的底数).19.(17分)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点Q,P 的距离之比()||0,1,||MQ MP λλλλ=>≠是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为224x y +=,定点分别为椭圆2222:1x y C a b+=(0)a b >>的右焦点F 与右顶点A,且椭圆C 的离心率为1.2e = (1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为(0)k k >的直线l 与椭圆C 相交于B ,D(点B 在x 轴上方),点S,T 是椭圆C 上异于B,D 的两点,SF 平分,BSD TF ∠平分.BTD ∠(1)求||||BF DF 的取值范围;(2)将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为818π,求直线l 的方程.2024年高考第二次模拟考试高三数学全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .{13x x −<≤B .{1x x >− C.{1x x ≤−,或}3x >D .{3x x >【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可, 【详解】由题意得{}3A x x =>,{}1B x x =≤−,又{}1B x x =>−R 则(){}1A B x x ∪=>−R ,故选:B.A .1B .1−C .iD .i −【答案】D【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=−+,又因为2z 为纯虚数,所以2220a b ab −= ≠,即0a b =≠(舍)或0a b =−≠, 所以i z a a =−,所以i z a a =+, 所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z −−−====−+++−. 故选:D3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为( )A. jB. j −C. 2jD. 2j −【答案】C 【解析】【分析】根据a 与b 共线,可得240t −−=,求得2t =−,再利用向量a b +在向量()0,1j = 上的投影向量为()a b j jj j+⋅⋅ ,计算即可得解. 【详解】由向量()2,4a =−,()1,b t = ,若a与b共线,则240t −−=,所以2t =−,(1,2)a b +=−,所以向量a b +在向量()0,1j = 上的投影向量为: ()(1,2)(0,1)21a b j j j j j j+⋅−⋅⋅=⋅=, 故选:C4. “1ab >”是“10b a>>”( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断. 【详解】当0a >时,由1ab >,可得10b a>>, 当a<0时,由1ab >,得10b a<<; 所以“1ab >”不是“10b a>>”的充分条件. 因为01010a b ab a a>>>⇔− > ,所以1ab >, 所以“1ab >”是“10b a>>”的必要不充分条件. 故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题. 5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A.60 B.114 C.278 D.336【答案】D【解析】命题意图 本题考查排列与组合的应用.录用3人,有 353360C A = 种情况;录用4 人,有 4232354333162C C A C A −=种情况;录用 5 人,有12323331345333333225)4(C C A C A (C A C A )11A −+−=种情况.所以共有336种.6.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A. ()5,11,3 −−∪−+∞B. [)5,1,3−∞−∪+∞C. (][) ,21,−∞−∪+∞D. [)()2,11,−−−+∞【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1ra =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥°,由此可求解. 【详解】D 的标准方程为()()2221x a y a −+=+,圆心坐标为(),0D a ,半径为1ra =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=°.要使D 上总存在M ,N 两点使得PMN 为等边三角形, 则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥°,故1sin sin 302r MPDPD ∠=≥°=,即()1132a a +≥+,整理得23250a a +−≥,解得[)5,1,3a∈−∞−∪+∞.故选:B.7.已知ABC 中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A. 4π B. 6πC. 8πD. 9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥−P ABC 外接球的球心,求出外接球的半径,再计算它的表面积. 【详解】三棱锥−P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ,∴sin PA PQ θ==≤PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1, 直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°, 所以,A Q 重合,则∠ACB =90°, 则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径R OB =,∴三棱锥−P ABC 的外接球的表面积224π4π6πS R ==×=.故选:B .8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相【分析】由椭圆标准方程求得,a b 后再求得c ,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a =2b =,则c ,离心率为e =A 正确;当长方形G 的边与椭圆的轴平行时,长方形的边长分别为4,因此蒙,圆方程为2210x y +=,B 正确; 设矩形的边长分别为,m n ,因此22402m n mn +=≥,即20mn ≤,当且仅当m n =时取等号,所以长方形G 的面积的最大值是20,此时该长方形G 为正方形,边长为C 正确,D 错误. 故选:D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的【分析】A ,根据12||=MN x x p ++结合基本不等式即可判断;B ,由抛物线定义知当,,P M A 三点共线时MF MP +;C ,D ,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A ,设112212(,),(,),(,0)M x y N x y x x >, 因为这些MN 倾斜角不为0, 则设直线MN 的方程为32x ky =+,联立抛物线得2690y ky −−=, 则12126,9y y k y y +=⋅=−,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=, 则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确; 对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小, 即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确; 对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误; 对D ,1212123339()()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a −=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( ) A. 若E的两条渐近线相互垂直,则a =B. 若EE 的实轴长为1C. 若1290F PF ∠=°,则124PF PF ⋅= D. 当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===,故A 正确;B 选项,若E的离心率为c e a ==, 解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=°,则122221224PF PF a PF PF c −=+=, 整理得222121224448,4PF PF c a b PF PF ⋅=−==⋅=,故C 正确; D 选项,根据双曲线的定义可知,121222PF PF a QF QF a −=−= ,两式相加得11114,4PF QF PQ a PF QF a PQ +−=+=+, 所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥, 当且仅当84a a=,即a = 所以1F PQ周长的最小值为D 正确. 故选:ACD11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( )【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P,得到平面1APB 的法向量()1,0,1m =− ,根据数量积为0得到BC m ⊥ ,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =−=− ,由于112B D EF =,故11B D 与EF 平行,A 错误; B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z −−−−=,即224222x xy y z z =− =− −=−,解得242,,333x y z ===,故242,,333P , 设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⋅=⋅=++=⋅=⋅=+= , 令1a =,则0,1b c ==−,则()1,0,1m =−, 因为()()0,2,01,0,10BC m ⋅=−= ,故BC m ⊥ ,BC //平面1APB , 故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =,故1A F 与平面1B EB则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⋅⋅−+− ⋅=⋅−=−+= , 令11x =,则1131,2y z ==,故131,1,2n = , 则点1B 到平面1A EFD 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240 【解析】【详解】因为二项式nx+ 的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x+,则二项式展开式的通项3662166C C 2r r r r r rr T x x −−+=, 令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r −−++ ≥ ≥ ,解得111433r ≤≤, 因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x −×==,所以填24013.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0 【解析】【详解】注意到,()cos f x a x =+′.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ′′=−⇔++=−()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +−⇔++−=12cos cos 1,0x x a ⇔=−=±=.故答案为014. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+ 【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D Ay y ==,可求3AB CD +的值;当直线方程为()1x n y =−时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论. 【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =−,圆()22114x y +−=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =−=+=−=+,当l y ⊥轴时,则1A Dy y ==,所以113131622AB CD+=+++=; 当l 不垂直于y 轴时,设l 的方程为:()1x n y =−,代入抛物线方程得:()2222240n y n y n −++=, 所以2224,1A D A D n y y y y n++=⋅=。
2022年3月江苏省南京市、盐城市普通高中2022届高三毕业班第二次高考联合模拟考试数学试题及答案

绝密★启用前江苏省南京市、盐城市普通高中2022届高三毕业班第二次高考联合模拟考试数学试题2022年3月注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|y=ln(x-2)},B={x|x2-4x+3≤0},则A∪B=A.[1,3] B.(2,3] C.[1,+∞) D.(2,+∞) 2.若(2+i)z=i,其中i为虚数单位,则复数z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知a,b为单位向量.若|a-2b|=5,则|a+2b|=A. 3 B. 5 C.7 D.54.利用诱导公式可以将任意角的三角函数值转化为0°~90°之间角的三角函数值,而这个范围内的三角函数值又可以通过查三角函数表得到.下表为部分锐角的正弦值,则tan1600°的值为(小数点后保留2位有效数字)α10°20°30°40°50°60°70°80°sinα0.1736 0.3420 0.5000 0.6427 0.7660 0.8660 0.9397 0.98485.已知圆锥的顶点和底面圆周均在球O的球面上.若该圆锥的底面半径为23,高为6,则球O的表面积为A.32πB.48πC.64πD.80π6.泊松分布是统计学里常见的离散型概率分布,由法国数学家泊松首次提出.泊松分布的概率分布列为P(X=k)=λkk!e-λ(k=0,1,2,…),其中e为自然对数的底数,λ是泊松分布的均值.已知某种商品每周销售的件数相互独立,且服从参数为λ(λ>0)的泊松分布.若每周销售1件该商品与每周销售2件该商品的概率相等,则两周共销售2件该商品的概率为A.2e4B.4e4C.6e4D.8e47.已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,过点F与x轴垂直的直线与直线AB交于点P.若线段OP的中点在椭圆C上,则椭圆C的离心率为A.7-12B.7-13C.5-12D.5-138.已知实数a,b∈(1,+∞),且2(a+b)=e2a+2ln b+1,e为自然对数的底数,则A.1<b<a B.a<b<2a C.2a<b<e a D.e a<b<e2a 二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.2017年~2021年某市城镇居民、农村居民年人均可支配收入比上年增长率如下图所示.根据下面图表,下列说法一定正确的是A.该市农村居民年人均可支配收入高于城镇居民B.对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C.对于该市居民年人均可支配收入比上年增长率的中位数,农村比城镇的大D.2021年该市城镇居民、农村居民年人均可支配收入比2020年有所上升(第9题图)。
江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析

江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .4002.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D .21r r 3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )A .甲B .乙C .丙D .丁4.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 5.函数的图象可能是下列哪一个?( )A .B .C .D .6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同7.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭ B .10,10,10 C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 8.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4πB .38πC .2πD .58π 9.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则MN =( ) A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x << 10.已知(2sin ,cos ),(3cos ,2cos )2222x x x x a b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52 B .75[,)42 C .57[,)34 D .7(,2]411.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( ) A .49 B .94 C .23 D .3212.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
2019届高考数学(江苏卷)模拟冲刺卷(含附加及详细解答,共8套)

2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={1,2},B ={a ,a 2-3},若A ∩B ={1},则实数a 的值为________.2. 若命题“∀t ∈R , t 2-at -a ≥0”是真命题,则实数a 的取值范围是________.3. 已知复数z 满足z (1-i)=2+i ,其中i 为虚数单位,则复数z 的模|z |=________.4. 根据如图所示的伪代码,当输出y 的值为1时,则输入的x 的值为________. Read xIf x ≤0 Then y ←x 2+1 Elsey ←ln x End If Print y5. 若函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥4,f (x +3),x <4,则f (log 238)=________.6. 盒子中有2个白球、1个黑球,一人从盒中抓出两球,则两球颜色不同的概率为________.7. 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x -y -2≤0,x +y -2≥0,则z =3x -y 的最大值为________.8. 如图,F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若△AF 1F 2为等腰三角形,则C 2的离心率是________.9. 已知α,β∈(3π4,π),sin(α+β)=-35,sin(β-π4)=13,则cos(α+π4)=________.10. 如图,在△ABC 中,AB =3,BC =2,D 在边AB 上,BD →=2DA →,若DB →·DC →=3,则边AC 的长为__________.11. 设正四面体ABCD 的棱长为6,P 是棱AB 上的任意一点(不与A ,B 重合),且P 到平面BCD 、平面ACD 的距离分别为x ,y ,则3x +1y的最小值是________.12. 已知数列{a n }的前n 项和S n =-a n -(12)n -1+1(n 为正整数),则数列{a n }的通项公式为________.13. 已知函数f (x )(x ∈R )的图象关于点(1,2)对称,若函数y =2xx -1-f (x )有四个零点x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.14. 已知函数f (x )=1e x -ae x(x >0,a ∈R ),若存在实数m ,n ,使得f (x )≥0的解集恰为[m ,n ],则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.如图,在三棱柱ABCA 1B 1C 1中,M ,N 分别为线段BB 1,A 1C 的中点,MN ⊥AA 1,且MA 1=MC .求证:(1)平面A 1MC ⊥平面A 1ACC 1; (2)MN ∥平面ABC .16. (本小题满分14分)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且2cos 2B2=3sin B ,b =1.(1)若A =5π12,求边c 的大小;(2)若sin A =2sin C ,求△ABC 的面积.学校A,B两餐厅每天供应1 000名学生用餐(每人每天只选一个餐厅用餐),调查表明:开学第一天有200人选A餐厅,并且学生用餐有以下规律:凡是在某天选A餐厅的,后面一天会有20%改选B餐厅,而选B餐厅的,后面一天则有30%改选A餐厅.若用a n,b n分别表示在开学第n天选A餐厅、B餐厅的人数.(1)求开学第二天选择A餐厅的人数;(2)若某餐厅一天用餐总人数低于学校用餐总数的920,则该餐厅需整改,问B餐厅在开学一个月内是否有整改的可能,如果有可能,请指出在开学后第几天开始整改;如果没有可能,请说明理由.18. (本小题满分16分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数,直线l:x-y+2=0与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,m=(k1-2,1),n=(1,k2-2),若m⊥n,求证:直线AB过定点.在等比数列{a n }中,a 2=14,a 3·a 6=1512.设b n =log2a 2n 2·log2a 2n +12,T n 为数列{b n }的前n 项和. (1)求a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n -2(-1)n 恒成立,求实数λ的取值范围.20. (本小题满分16分)已知函数f (x )=ln x +ke x(其中k ∈R ,e =2.718 28…是自然对数的底数).(1) 当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2) 若x e x f (x )>m 对x ∈[1,e]恒成立,求k 的取值范围;(3) 若f ′(1)=0,求证:对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤12c d (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.B. (选修44:坐标系与参数方程)在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R ),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.C. (选修45:不等式选讲)已知x ,y ,z ∈R ,且x +2y +3z +8=0.求证:(x -1)2+(y +2)2+(z -3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1)求异面直线BA1与CB1夹角的余弦值;(2)求二面角BAB1C平面角的余弦值.23. 在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1)当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2)求出所有的正整数n,使得5a n+1a n+1为完全平方数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)1. 1或-2 解析:∵ A ∩B ={1},∴ 1∈B ,∴ a =1或a 2-3=1,∴ a =1或a =±2,但a =2 不合题意,舍去.2. [-4,0] 解析:∵ Δ=a 2+4a ≤0,∴ -4≤a ≤0.3. 102 解析:z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=12+32i ,|z |=14+94=102.4. e 或0 解析:y =⎩⎪⎨⎪⎧x 2+1,x ≤0,ln x ,x >0,令y =1,则x =0或x =e .5. 24 解析:∵ log 238=log 23-3<4,log 23<4,又x <4时,f (x )=f (x +3),∴ f ⎝⎛⎭⎫log 238=f (log 23-3)=f (log 23+3).∵ log 23+3>4,∴ f (log 23+3)=2log 23+3=2log 23·23=24. 6. 23 解析:从盒中抓出两球共有3种方法,其中颜色不同的有2种,故概率为23. 7. 6 解析:作出如图所示可行域,当直线经过最优点(4,6)时,z 取得最大值6.8. 23 解析:∵ AF 2=F 1F 2=2c =4,AF 2-AF 1=2,∴ AF 1=2,∴ a =3,∴ e =23. 9. -82+315 解析:由于α,β∈⎝⎛⎭⎫3π4,π,∴ 3π2<α+β<2π,∴ π2<β-π4<3π4,∴ cos(α+β)=45,cos ⎝⎛⎭⎫β-π4=-223,∴ cos ⎝⎛⎭⎫α+π4=cos[(α+β)-⎝⎛⎭⎫β-π4]=45×⎝⎛⎭⎫-232+⎝⎛⎭⎫-35×13=-82+315. 10. 10 解析:∵ DB →·DC →=3,∴ DB →·(BC →-BD →)=3,∴ DB →·BC →-DB →·BD →=3.又|BD →|=2,∴ BD →·BC →=1,∴ cos B =14,由余弦定理得AC =10.11. 2+3 解析:∵ V ABCD =V PBCD +V P ACD ,正四面体ABCD 的高h =2,∴ x +y =2,∴ 3x+1y =⎝⎛⎭⎫3x +1y ⎝⎛⎭⎫x +y 2=12⎝⎛⎭⎫4+3y x +x y ≥2+3,当且仅当3y x =x y 时等号成立. 12. n -12n 解析:当n =1时,得S 1=-a 1-⎝⎛⎭⎫120+1,即a 1=0;当n ≥2时,∵ S n =-a n-⎝⎛⎭⎫12n -1+1,∴ S n -1=-a n -1-⎝⎛⎭⎫12n -2+1,∴ a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1,∴ 2a n =a n -1+⎝⎛⎭⎫12n -1,即2n a n =2n -1a n -1+1.令b n =2n a n ,则当n ≥2时,b n =b n -1+1,即b n -b n -1=1.又b 1=2a 1=0,故数列{b n }是首项为0,公差为1的等差数列,于是b n =b 1+(n -1)·1=n -1.∵ b n=2n a n ,∴ a n =2-n b n =n -12n .13. 4 解析:y =2x x -1-f (x )的零点即为2x x -1=f (x )的解,∴ y =2xx -1与y =f (x )有四个交点.∵y =2x x -1=2+2x -1,∴ y =2x x -1的图象关于点(1,2)对称.又f (x )(x ∈R )的图象关于点(1,2)对称,∴ y =2xx -1与y =f (x )的四个交点关于(1,2)对称,∴ x 1+x 2+x 3+x 4=2+2=4.14. (0,1) 解析:由f (x )≥0及x >0,得a ≤ex e x 的解集恰为[m ,n ],设 g (x )=exe x ,则g ′(x )=e (1-x )e x,由g ′(x )=0,得x =1,当0<x <1时,g ′(x )>0,g (x )单调递增; 当x >1时,g ′(x )<0,g (x )单调递减,且g (1)=1,g (0)=0,当x >0时,g (x )>0,大体图象如图所示.由题意得方程a =exex 有两不等的非零根,∴ a ∈(0,1).15. 证明:(1) ∵ MA 1=MC ,且N 是A 1C 的中点, ∴ MN ⊥A 1C .又MN ⊥AA 1,AA 1∩A 1C =A 1,A 1C ,AA 1⊂平面A 1ACC 1, 故MN ⊥平面A 1ACC 1. ∵ MN ⊂平面A 1MC ,∴ 平面A 1MC ⊥平面A 1ACC 1. (6分) (2) 如图,取AC 中点P ,连结NP ,BP . ∵ N 为A 1C 中点,P 为AC 中点,∴ PN ∥AA 1,且PN =12AA 1.在三棱柱ABCA 1B 1C 1中,BB 1∥AA 1,且BB 1=AA 1.又M 为BB 1中点,故BM ∥AA 1,且BM =12AA 1,∴ PN ∥BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN ∥BP .又MN ⊄平面ABC ,BP ⊂平面ABC , ∴ 故MN ∥平面ABC .(14分)16. 解:(1) 由题意,得1+cos B =3sin B ,∴ 2sin ⎝⎛⎭⎫B -π6=1,∴ B -π6=π6或5π6(舍去),∴ B =π3.∵ A =5π12,则C =π4,由正弦定理c sin C =b sin B ,得c =63.(5分)(2) ∵ sin A =2sin C ,由正弦定理,得a =2c .由余弦定理,得b 2=a 2+c 2-2ac cos B , 将b =1,a =2c ,B =π3代入解得c =33,从而a =233,∴ S △ABC =12ac sin B =12×233×33sin π3=36.(14分)17. 解:(1) 第一天选A 餐厅的学生在第二天仍选A 餐厅的学生有200(1-20%)=160(人), 第一天选B 餐厅的学生在第二天改选A 餐厅的学生有(1000-200)×30%=240(人), 故开学第二天选择A 餐厅的人数为160+240=400.(4分) (2) 由题知b n +1=20%a n +b n (1-30%),而a n +b n =1 000,∴ b n +1=12b n +200,∴ b n +1-400=12(b n -400).又b 1=1 000-200=800,∴ 数列{b n -400}是首项为400,公比为12的等比数列,∴ b n -400=400×⎝⎛⎭⎫12n -1,∴ b n =400+400×⎝⎛⎭⎫12n -1.当选B 餐厅用餐总人数低于学校用餐总数的920时, 有400+400×⎝⎛⎭⎫12n -1<920×1 000, 即⎝⎛⎭⎫12n -1<18,∴ n >4,∴ B 餐厅有整改的可能,且在开学第5天开始整改.(14分) 18. (1) 解:∵ 等轴双曲线的离心率为2,∴ 椭圆的离心率为e =22,∴ e 2=c 2a 2=a 2-b 2a 2=12,∴ a 2=2b 2.∵ 直线l :x -y +2=0与圆x 2+y 2=b 2相切, ∴ b =1,∴ 椭圆C 的方程为x 22+y 2=1.(4分)(2) 证明:由(1)知M (0,1),∵ m =(k 1-2,1),n =(1,k 2-2),m ⊥n ,∴ k 1+k 2=4. ① 若直线AB 的斜率存在,设AB 方程为y =kx +m ,依题意m ≠±1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得 (1+2k 2)x 2+4kmx +2m 2-2=0,则有x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,可得y 1-1x 1+y 2-1x 2=4,∴ kx 1+m -1x 1+kx 2+m -1x 2=4,即2k +(m -1)·x 1+x 2x 1x 2=4,将x 1+x 2,x 1x 2代入得k -km m +1=2,∴ m =k2-1,故直线AB 的方程为y =kx +k2-1,即y =k ⎝⎛⎫x +12-1,∴ 直线AB 过定点⎝⎛⎭⎫-12,-1;(10分) ② 若直线AB 的斜率不存在,设方程为x =x 0, 则点A (x 0,y 0),B (x 0,-y 0).由已知y 0-1x 0+-y 0-1x 0=4,得x 0=-12,此时AB 方程为x =x 0,显然过点⎝⎛⎭⎫-12,-1. 综上所述,直线AB 过定点⎝⎛⎭⎫-12,-1.(16分) 19. 解:(1) 设{a n }的公比为q ,由a 3a 6=a 22·q 5=116q 5=1512,得q =12,∴ a n =a 2·q n -2=⎝⎛⎭⎫12n .(2分)b n =log2a 2n 2·log2a 2n +12=log ⎝⎛⎭⎫122n -12·log ⎝⎛⎭⎫122n +12=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴ T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1. (5分)(2) ① 当n 为偶数时,由λT n <n -2恒成立,得λ<(n -2)(2n +1)n =2n -2n -3恒成立,即λ<⎝⎛⎭⎫2n -2n -3min ,(6分) 而2n -2n-3随n 的增大而增大,∴ n =2时⎝⎛⎭⎫2n -2n -3min =0,∴ λ<0;(8分) ② 当n 为奇数时,由λT n <n +2恒成立得,λ<(n +2)(2n +1)n =2n +2n +5恒成立,即λ<⎝⎛⎭⎫2n +2n +5min .(12分) 而2n +2n +5≥22n ·2n+5=9,当且仅当2n =2n,即n =1时等号成立,∴ λ<9.综上,实数λ的取值范围是(-∞,0).(16分)20. (1) 解:由f (x )=ln x +2e x,得f ′(x )=1-2x -xln xxe x,x ∈(0,+∞),(1分)∴ 曲线y =f (x )在点(1,f (1))处的切线斜率为f ′(1)=-1e .∵ f (1)=2e ,∴ 曲线y =f (x )切线方程为y -2e =-1e (x -1),即y =-1e x +3e.(4分) (2) 解:由xe x f (x )>m ,得k >mx-ln x ,令F (x )=mx-ln x ,则k >F (x )max ,又F ′(x )=-m x 2-1x =-1x2(x +m ),x ∈[1,e ].当m ≥0时,F ′(x )<0,F (x )在[1,e ]上单调递减, ∴ F (x )max =F (1)=m ,∴ k >m ;当m <0时,由F ′(x )=0,得x =-m ,在(0,-m )上F ′(x )>0,F (x )单调递增,在(-m ,+∞)上F ′(x )<0,F (x )单调递减.① 若-m ≤1即-1≤m <0,则F (x )在[1,e ]上单调递减,k >F (x )max =F (1)=m ;② 若1<-m <e 即-e <m <-1,则F (x )在[1,-m ]上单调递增,在[-m ,e ]上单调递减, k >F (x )max =F (-m )=-1-ln (-m );③ 若-m ≥e 即m ≤-e ,则F (x )在[1,e ]上单调递增,k >F (x )max =F (e )=me-1,综上,当m ≥-1时,k ∈(m ,+∞);当-e <m <-1时,k ∈(-1-ln (-m ),+∞);当m ≤-e 时,k ∈⎝⎛⎭⎫me -1,+∞.(8分) (3) 证明:由f ′(1)=0,得k =1. 令g (x )=(x 2+x )f ′(x ),∴ g (x )=x +1ex (1-x -xln x ),x ∈(0,+∞),因此,对任意x >0,g (x )<e -2+1等价于1-x -xln x <e xx +1(e -2+1). 由h (x )=1-x -xln x ,x ∈(0,+∞),得h ′(x )=-ln x -2,x ∈(0,+∞),因此,当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减,∴ h (x )的最大值为h (e -2)=e -2+1,故1-x -xln x ≤e -2+1.设φ(x )=e x -(x +1),∵ φ′(x )=e x -1,所以x ∈(0,+∞)时φ′(x )>0,∴ φ(x )单调递增,φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e x x +1>1, ∴ 1-x -xln x ≤e -2+1<e xx +1(e -2+1), 故对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)21. A . 解:由题意知⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤42c +d =2⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤3c +d =3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4,(4分) 所以A =⎣⎢⎡⎦⎥⎤ 12-14,所以A -1=⎣⎢⎡⎦⎥⎤23-1316 16.(10分) B. 解:因为直线l 的极坐标方程为θ=π3(ρ∈R ), 所以直线l 的普通方程为y =3x .(2分)因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数), 所以曲线C 的直角坐标方程为y =12x 2(x ∈[-2,2]). (4分) 联立解方程组⎩⎪⎨⎪⎧y =3x ,y =12x 2,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =23,y =6, 由x ∈[-2,2],则x =23,y =6(舍去),故P 点的直角坐标为(0,0).(10分)C. 证明:因为[(x -1)2+(y +2)2+(z -3)2](12+22+32) ≥[(x -1)+2(y +2)+3(z -3)]2=(x+2y +3z -6)2=142,当且仅当x -11=y +22=z -33, 即x =z =0,y =-4时,取等号,所以(x -1)2+(y +2)2+(z -3)2≥14.(10分)22. 解:如图,以{CA →,CB →,CC 1→}为正交基底,建立空间直角坐标系Cxyz ,则A(1,0,0),B(0,1,0),A 1(1,0,2),B 1(0,1,2),所以CB 1→=(0,1,2),AB →=(-1,1,0),AB 1→=(-1,1,2),BA 1→=(1,-1,2).(1) 因为cos 〈CB 1→,BA 1→〉=CB 1→·BA 1→|CB 1→||BA 1→|=35×6=3010, 所以异面直线BA 1与CB 1夹角的余弦值为3010.(4分)(2) 设平面CAB 1的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AB 1→=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧-x +y +2z =0,y +2z =0, 取平面CAB 1的一个法向量为m =(0,2,-1).设平面BAB 1的法向量为n =(r ,s ,t ),则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AB →=0,即⎩⎪⎨⎪⎧-r +s +2t =0,-r +s =0, 取平面BAB 1的一个法向量为n =(1,1,0),则cos 〈m ,n 〉=m ·n |m||n|=25×2=105. 易知二面角BAB 1C 为锐角, 所以二面角BAB 1C 平面角的余弦值为105.(10分) 23. 解:(1) 由已知得a 3=70,a 4=180,所以当n =2时,a 2n -a n -1a n +1=-500;当n =3时,a 2n -a n -1a n +1=-500.(2分)猜想:a 2n -a n -1a n +1=-500(n ≥2).下面用数学归纳法证明:① 当n =2时,结论成立.② 假设当n =k(k ≥2,k ∈N *)时,结论成立,即a 2k -a k -1a k +1=-500.将a k +1=3a k -a k -1代入上式,可得a 2k -3a k a k -1+a 2k -1=-500,则当n =k +1时,a 2k +1-a k a k +2=a 2k +1-a k (3a k +1-a k )=a 2k +1-3a k a k +1+a 2k =-500,故当n =k +1时结论成立, 根据①②可得a 2n -a n -1a n +1=-500(n ≥2)成立.(4分)(2) 将a n -1=3a n -a n +1代入a 2n -a n -1a n +1=-500,得a 2n +1-3a n a n +1+a 2n =-500,则5a n +1a n =(a n +1+a n )2+500,5a n a n +1+1=(a n +1+a n )2+501.设5a n +1a n +1=t 2(t ∈N *),则t 2-(a n +1+a n )2=501,即[t -(a n +1+a n )](t +a n +1+a n )=501.又a n +1+a n ∈N *,且501=1×501=3×167,故⎩⎪⎨⎪⎧a n +1+a n -t =-1,a n +1+a n +t =501或⎩⎪⎨⎪⎧a n +1+a n -t =-3,a n +1+a n +t =167,所以⎩⎪⎨⎪⎧t =251,a n +1+a n =250或⎩⎪⎨⎪⎧t =85,a n +1+a n =82. 由a n +1+a n =250,解得n =3; 由a n +1+a n =82,得n 无整数解, 所以当n =3时,满足条件.(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则A ∩B =________.2. 若复数z 1=4-3i ,z 2=1+i ,则复数(z 1-z 2)i 的模为________.3. 如图所示的程序框图,运行相应的程序,则输出S 的值为________.4. 学校从参加安全知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数,成绩≥80分记为优秀)分成6组后,得到部分频率分布直方图(如图),则分数在[70,80)内的人数为________.5. 如图,在▱ABCD 中,AB =4,AD =3,∠DAB =π3,点E ,F 分别在BC ,DC 边上,且BE →=12EC →,DF →=FC →,则AE →·EF →=________.6. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数的乘积小于8的概率是________.7. 已知函数f (x )=12x +1,则f (log 23)+f (log 213)=________. 8. 已知锐角θ满足sin(θ2+π6)=45,则cos(π6-θ)的值为________. 9. 若直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的________条件.10. 已知定义在R 上的函数f (x )的周期为4,当x ∈[0,2]时,f (x )=x 3,且函数y =f (x +2)的图象关于y 轴对称,则f (2 019)=________.11. 设点O ,P ,Q 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y 2=4x 的交点,O 为坐标原点,若△OPQ 的面积为2,则双曲线的离心率为________.12. 若a ≥c >0,且3a -b +c =0,则ac b的最大值为__________. 13. 已知S n 是等差数列{a n }的前n 项和,若S 2≥4,S 4≤16,则S 9的最大值是________.14. 已知函数f (x )=x 3-3x 在区间[a -1,a +1](a ≥0)上的最大值与最小值之差为4,则实数a 的值为________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,三角形PCD 所在的平面与等腰梯形ABCD 所在的平面垂直,AB =AD =12CD ,AB ∥CD ,CP ⊥CD ,M 为PD 的中点.求证:(1)AM ∥平面PBC ;(2)平面BDP ⊥平面PBC .16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos 2A =-13,c =3,sin A =6sin C . (1)求a 的值;(2) 若角A 为锐角,求b 的值及△ABC 的面积.17. (本小题满分14分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0),圆O :x 2+y 2=b 2,过椭圆C 的上顶点A 的直线l :y =kx +b 分别交圆O 、椭圆C 于不同的两点P ,Q .(1)若点P (-3,0),点Q (-4,-1),求椭圆C 的方程;(2)若AP →=3PQ →,求椭圆C 的离心率e 的取值范围.18. (本小题满分16分)某公司一种产品每日的网络销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =m x -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/件时,每日可售出产品21千件.(1)求m 的值;(2)假设网络销售员工的工资、办公等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x 的值,使公司每日销售产品所获得的利润最大.(结果保留一位小数)19. (本小题满分16分)已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n ,n 为奇数,a n -3n ,n 为偶数.(1)求证:数列⎩⎨⎧⎭⎬⎫a 2n -32是等比数列; (2)若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .20. (本小题满分16分)已知函数f (x )=12x 2+kx +1,g (x )=(x +1)ln(x +1),h (x )=f (x )+g ′(x ). (1)若函数g (x )的图象在原点处的切线l 与函数f (x )的图象相切,求实数k 的值;(2)若h (x )在[0,2]上单调递减,求实数k 的取值范围;(3)若对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4),且x 1≠x 2满足f (x i )=g (t )(i =1,2),其中e 为自然对数的底数,求实数k 的取值范围.已知[ln(x +1)]′=1x +1.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)设二阶矩阵A ,B 满足A -1=⎣⎢⎡⎦⎥⎤1234,(BA )-1=⎣⎢⎡⎦⎥⎤1001,求B -1.B. (选修44:坐标系与参数方程)已知直线l 的极坐标方程为ρsin(θ-π3)=3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.C. (选修45:不等式选讲)已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E(ξ).23. 设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)1. {x |-1<x ≤0} 解析:由题意可得,A ={x |-1<x <1},B ={y ∈R |y ≤0}={x |x ≤0}.故A ∩B ={x |-1<x ≤0}.2. 5 解析:∵ (z 1-z 2)i =(3-4i )i =4+3i , ∴ |(z 1-z 2)i |=5.3. 154. 18 解析:分数在[70,80)内的人数为[1-(0.005+0.010+0.015×2+0.025)×10]×60=18.5. -3 解析:AE →=AB →+BE →=AB →+13AD →,EF →=EC →+CF →=-12AB →+23AD →,又AB =4,AD =3,∠DAB =π3,∴ AE →·EF →=⎝⎛⎭⎫AB →+13AD →⎝⎛⎭⎫-12AB →+23AD →=-12AB →2+12AB →·AD →+29AD →2=-12×42+12×4×3×cos π3+29×32=-3. 6. 13解析:从1,2,4,8这四个数中一次随机地取2个数相乘,共有6个结果,其中乘积小于8的有2个,故所求概率为26=13.7. 1 解析:∵ f (x )+f (-x )=12x +1+12-x +1=1,∴ f (log 23)+f ⎝⎛⎭⎫log 213=f (log 23)+f (-log 23)=1.8. 2425 解析:∵ 0<θ<π2,∴ π6<θ2+π6<5π12,∴ cos ⎝⎛⎭⎫θ2+π6=35,∴ sin ⎝⎛⎭⎫θ+π3=2425,∴ cos ⎝⎛⎭⎫π6-θ=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π3=sin ⎝⎛⎭⎫θ+π3=2425.9. 充分不必要 解析:l 1⊥l 2 的充要条件是m (m -3)+1×2=0,即m =1或m =2,∴ “m =1”是“l 1⊥l 2”的充分不必要条件.10. 1 解析:∵ 函数y =f (x +2)的图象关于y 轴对称,∴ 函数y =f (x )的图象关于直线x =2对称.又函数f (x )的周期为4,∴ f (2 019)=f (3)=f (1)=1.11. 5 解析:不妨设P (x 0,y 0)(x 0>0,y 0>0),则y 20=4x 0,12x 0(2y 0)=2,∴ x 0=1,y 0=2.又y 0=b a x 0,∴ b a =2,∴ b 2a 2=4,∴ c 2-a 2a 2=4,∴ e = 5.12. 36 解析:∵ 3a -b +c =0,则b =3a +c ,设t =c a ,则t ∈(0,1],∴ ac b =ac 3a +c =c a 3+c a =t 3+t 2=13t+t .∵ 3t +t ≥23,∴ ac b ≤123=36,∴ ac b 的最大值为36. 13. 81 解析:设等差数列{a n }的公差为d ,∵ S 2≥4,S 4≤16,∴ 2a 1+d ≥4,4a 1+6d ≤16,即2a 1+d ≥4且2a 1+3d ≤8.又S 9=9a 1+9×82d =9(a 1+4d ),由线性规划可知,当a 1=1,d =2时,S 9取得最大值81. 14. 1或0 解析:f ′(x )=3(x +1)(x -1),令f ′(x )=0,则x =-1或x =1,则f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.∵ a ≥0,x ∈[a -1,a +1],∴ a -1≥-1,a +1≥1.① 当a -1<1即a <2时,f (x )min =f (1)=-2,f (x )max =max {f (a -1),f (a +1)},又f (x )max -f (x )min=4,f (x )max =2,∴ ⎩⎪⎨⎪⎧f (a -1)=2f (a +1)≤f (a -1)或⎩⎪⎨⎪⎧f (a +1)=2,f (a -1)≤f (a +1),∴ a 的值为1或0;② 当a -1≥1即a ≥2时,f (x )min =f (a -1),f (x )max =f (a +1), ∴ f (a +1)-f (a -1)=4,无解. 综上,a 的值为1或0.15. 证明:(1) 如图,取为PC 中点N ,连结MN ,BN , ∵ M 为PD 的中点,N 为PC 中点,∴ MN ∥CD ,MN =12CD .又AB ∥CD ,AB =12CD ,∴ MN ∥AB ,MN =AB ,∴ 四边形ABNM 为平行四边形, ∴ AM ∥BN .又AM ⊄平面PBC ,BN ⊂平面PBC , ∴ AM ∥平面PBC .(7分)(2) 如图,在等腰中梯形ABCD 中,取CD 中点T ,连结AT ,BT .∵ AB =12CD ,AB ∥CD ,∴ AB =DT ,AB ∥DT ,∴ 四边形ABTD 为平行四边形.又AB =AD ,∴ 四边形ABTD 为菱形, ∴ AT ⊥BD .同理,四边形ABCT 为菱形,∴ AT ∥BC . ∵ AT ⊥BD ,∴ BC ⊥BD .∵ 平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,CP ⊥CD ,CP ⊂平面PCD , ∴ CP ⊥平面ABCD ,又BD ⊂平面ABCD , ∴ CP ⊥BD .∵ BC ⊥BD ,BC ∩CP =C ,∴ BD ⊥平面PBC . 又BD ⊂平面BDP ,∴平面BDP ⊥平面PBC .(14分) 16. 解:(1) 由题知,c =3,sin A =6sin C .由正弦定理a sin A =c sin C ,得a =csin C·sin A =3 2.(6分)(2) ∵ cos 2A =1-2sin 2A =-13,且0<A <π,∴ sin A =63.由于角A 为锐角,得cos A =33.由余弦定理,a 2=b 2+c 2-2bc cos A ,∴ b 2-2b -15=0, 解得b =5或b =-3(舍去),所以S △ABC =12bc sin A =522.(14分)17. 解:(1) 由P 在圆O :x 2+y 2=b 2上得b =3,又点Q 在椭圆C 上,得(-4)2a 2+(-1)232=1,解得a 2=18,∴ 椭圆C 的方程是x 218+y 29=1.(6分)(2) 由⎩⎪⎨⎪⎧y =kx +b ,x 2+y 2=b 2,得x =0或x P =-2kb 1+k 2; 由⎩⎪⎨⎪⎧y =kx +b ,x 2a 2+y 2b 2=1,得x =0或x Q =-2kba 2a 2k 2+b 2.∵ AP →=3PQ → ,∴ AP →=34AQ →,∴ 2kba 2k 2a 2+b 2·34=2kb 1+k 2,即a 2a 2k 2+b 2·34=11+k2,∴ k 2=3a 2-4b 2a 2=4e 2-1. ∵ k 2>0,∴ 4e 2>1,即e >12.又0<e <1,∴ 12<e <1,即离心率e 的取值范围是(12,1).(14分)18. 解:(1) 因为当x =4时,y =21,代入关系式y =m x -2+4(x -6)2,得m2+16=21,解得m =10. (6分)(2) 由(1)可知,产品每日的销售量为y =10x -2+4(x -6)2, 所以每日销售产品所获得的利润为f (x )=(x -2)·⎣⎡⎦⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在⎝⎛⎭⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝⎛⎭⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以当x =103≈3.3时,函数f (x )取得最大值,故当销售价格约为3.3元/件时,该公司每日销售产品所获得的利润最大.(16分)19. (1) 证明:设b n =a 2n -32,因为b n +1b n =a 2n +2-32a 2n -32=13a 2n +1+(2n +1)-32a 2n -32=13(a 2n -6n )+(2n +1)-32a 2n -32=13a 2n -12a 2n -32=13,所以数列{a 2n -32}是以a 2-32即-16为首项,以13为公比的等比数列.(6分)(2) 解:由(1)得b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32,由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,所以 a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2⎣⎡⎦⎤13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -6(1+2+…+n )+9n =-2·13⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13-6·n (n +1)2+9n=⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n -3(n -1)2+2, 显然当n ∈N *时,{S 2n }单调递减,又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n ,同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 20. 解:(1) 函数g (x )的定义域为(-1,+∞), g ′(x )=ln (x +1)+1,则g (0)=0,g ′(0)=1,∴ 直线l :y =x .联立⎩⎪⎨⎪⎧y =12x 2+kx +1,y =x ,消去y ,得x 2+2(k -1)x +2=0.∵ l 与函数f (x )的图象相切,∴ Δ=4(k -1)2-8=0⇒k =1±2.(4分)(2) 由题意知,h (x )=12x 2+kx +1+ln (x +1)+1,h ′(x )=x +k +1x +1.令φ(x )=x +k +1x +1,∵ φ′(x )=1-1(x +1)2=x (x +2)(x +1)2>0对x ∈[0,2]恒成立, ∴ φ(x )=x +k +1x +1,即h ′(x )在[0,2]上为增函数,∴ h ′(x )max =h ′(2)=k +73.∵ h (x )在[0,2]上单调递减,∴ h ′(x )≤0对x ∈[0,2]恒成立,即h ′(x )max =k +73≤0,∴ k ≤-73,即k 的取值范围是(-∞,-73].(8分)(3) 当x ∈[0,e -1]时,g ′(x )=ln (x +1)+1>0,∴ g (x )=(x +1)ln (x +1)在区间[0,e -1]上为增函数,∴ x ∈[0,e -1]时,0≤g (x )≤e2.∵ f (x )=12x 2+kx +1的对称轴为直线x =-k ,∴ 为满足题意,必须-1<-k <4,此时f (x )min =f (-k )=1-12k 2,f (x )的值恒小于f (-1)和f (4)中最大的一个.∵ 对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4), 且x 1≠x 2满足f (x i )=g (t )(i =1,2),∴ ⎣⎡⎦⎤0,e2⊆(f (x )min ,min {f (-1),f (4)}),∴ ⎩⎪⎨⎪⎧-1<-k <4,f (x )min<0,e2<f (4),e 2<f (-1)⇒⎩⎪⎨⎪⎧-4<k <1,1-12k 2<0,e 2<4k +9,e 2<32-k ,∴e 8-94<k <-2, 即k 的取值范围是(e 8-94,-2).(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)21. A . 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1,所以⎣⎢⎡⎦⎥⎤1001=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤a b c d , 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 32-12.(10分) B. 解:由ρsin ⎝⎛⎭⎫θ-π3=3,可得ρ⎝⎛⎭⎫12sin θ-32cos θ=3,所以y -3x =6,即3x -y +6=0.(4分)由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2, 所以圆心到直线l 的距离d =62=3,所以P 到直线l 的距离的最大值为d +r =5.(10分) C .证明:由题得a 6+b 6-ab (a 4+b 4) =a 5(a -b )-(a -b )b 5 =(a -b )(a 5-b 5)=(a -b )2(a 4+a 3b +a 2b 2+ab 3+b 4).(4分) 又a ≥0,b ≥0,∴ a 6+b 6-ab (a 4+b 4)≥0, 即a 6+b 6≥ab (a 4+b 4).(10分)22. 解:(1) 比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率为P =C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 33×⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1136.(3分) (2) ξ的取值为0,1,2,3,则P (ξ=0)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 23×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=724, P (ξ=1)=⎝⎛⎭⎫133×C 13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1124,P (ξ=2)=⎝⎛⎭⎫133×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫23×13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 13×⎝⎛⎭⎫123=524, P (ξ=3)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=124, 所以ξ(8分)所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.(10分)23. 解:(1) 110(2分)(2) 集合M 有2n 个子集,不同的有序集合对(A ,B)有2n (2n -1)个. 当A B ,并设B 中含有k(1≤k ≤n ,k ∈N *)个元素,则满足A B 的有序集合对(A ,B )有错误!C 错误!=(3n -2n )个.同理,满足B A 的有序集合对(A ,B)有(3n -2n )个.故满足条件的有序集合对(A ,B)的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n .(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={x |x -x 2≥0},B ={x |y =lg(2x -1)},则集合A ∩B =________.2. 已知复数z =11+i+i(i 为虚数单位),则|z |=________.3. 某学校高三年级有700人,高二年级有700人,高一年级有800人,若采用分层抽样的办法,从高一年级抽取80人,则全校总共抽取________人.4. 已知a ∈R ,则“a >2”是“1a <12”的________条件.5. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数差的绝对值小于2的概率是________.6. 执行如图所示的伪代码,最后输出的S 值为________. n ←1 S ←0While S <9S ←S +(-1)n +n n ←n +1 End While Print S7. 曲线f (x )=x -cos x 在点(π2,f (π2))处的切线方程为________.8. 若函数f (x )=⎩⎪⎨⎪⎧kx -1(x ≥1),2x -x 2(x <1)是R 上的增函数,则实数k 的取值范围是________. 9. 若sin α=35且α是第二象限角,则tan(α-π4)=________.10. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右端点分别为A ,B ,点C (0,b2),若线段AC 的垂直平分线过左焦点F ,则椭圆的离心率为________.11. 已知数列{a n }是首项为a ,公差为1的等差数列,b n =a n +2a n,若对任意的n ∈N *,都有b n ≥b 6成立,则实数a 的取值范围是________.12. 已知x ,y 为正实数,满足2x +y +6=xy ,则xy 的最小值为________.13. 已知向量a ,b 是单位向量,若a·b =0,且|c -a|+|c -2b |=5,则|c -b |的最小值是________.14. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≤0,x ln x ,x >0,g (x )=kx -1,若方程f (x )-g (x )=0在x ∈(-2,2)上有三个实数根,则实数k 的取值范围是______________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在四棱锥P ABCD 中,平面P AB ⊥平面ABCD ,∠PBC =∠BAD =90°.求证: (1)BC ⊥平面P AB ;(2)AD ∥平面PBC .16. (本小题满分14分)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3.(1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.17. (本小题满分14分)如图,某地要在矩形区域OABC 内建造三角形池塘OEF ,E ,F 分别在AB ,BC 边上,OA =5 m ,OC =4 m ,∠EOF =π4,设CF =x ,AE =y .(1)试用解析式将y 表示成x 的函数;(2)求三角形池塘OEF 的面积S 的最小值及此时x 的值.18. (本小题满分16分)在直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过点(1,32).(1)求椭圆C 的方程;(2)已知点P (2,1),直线l 与椭圆C 相交于A ,B 两点,且线段AB 被直线OP 平分. ① 求直线l 的斜率;② 若P A →·PB →=0,求直线l 的方程.19. (本小题满分16分)已知数列{a n}是首项为a,公比为q的等比数列,且a n>0.(1)若a=1,a1,a3+2,a5-5成等差数列,求a n;(2)如果a2a4n-2=a4n,①当a=2时,求证:数列{a n}中任意三项都不能构成等差数列;②若b n=a n lg a n,数列{b n}的每一项都小于它后面的项,求实数a的取值范围.20. (本小题满分16分)设函数f(x)的导函数为f′(x).若不等式f(x)≥f′(x)对任意实数x恒成立,则称函数f(x)是“超导函数”.(1)请举一个“超导函数” 的例子,并加以证明;(2)若函数g(x)与h(x)都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数F(x)=g(x)h(x)是“超导函数”;(3)若函数y=φ(x)是“超导函数”且方程φ(x)=φ′(x)无实根,φ(1)=e(e为自然对数的底数),判断方程φ(-x-ln x)=e-x-ln x的实数根的个数并说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤m 00n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎢⎡⎦⎥⎤10,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤01,求矩阵A .B. (选修44:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.C. (选修45:不等式选讲) 解不等式:|x -2|+x |x +2|>2.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.23. 已知抛物线C:x2=2py(p>0)过点(2,1),直线l过点P(0,-1)与抛物线C交于A,B两点.点A关于y轴的对称点为A′,连结A′B.(1)求抛物线C的标准方程;(2)问直线A′B是否过定点?若是,求出定点坐标;若不是,请说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)1. ⎝⎛⎦⎤12,1 解析:A ={x |0≤x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >12,A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1. 2. 22 解析:z =1-i 2+i =12+12i ,∴ |z |=22.3. 220 解析:设全校总共抽取x 人,则x 700+700+800=80800,∴ x =220.4. 充分不必要 解析:由1a <12,得a <0或a >2,∴ “a >2”是“1a <12”的充分不必要条件.5. 16解析:从1,2,4,8这四个数中一次随机地取2个数,有6个结果,绝对值小于2的只有一个,即取2个数差的绝对值小于2的概率是16.6. 10 解析:当n =1时,S =0;当n =2时,S =3;当n =3时,S =5;当n =4时,S =10.7. 2x -y -π2=0 解析:f ⎝⎛⎭⎫π2=π2,f ′⎝⎛⎭⎫π2=1+sin π2=2,切线方程为y -π2=2⎝⎛⎭⎫x -π2,即2x -y -π2=0.8. [2,+∞) 解析:由题知,k >0且k ×1-1≥2×1-12, ∴ k ≥2.9. -7 解析:∵ sin α=35且α是第二象限角,∴ cos α=-45,∴ tan α=-34,∴ tan⎝⎛⎭⎫α-π4=-7.10. 4-13 解析:k AC =b2a ,AC 中点为P ⎝⎛⎭⎫-a 2,b 4,k FP =b 4c -a2,由题知,k AC ·k FP =-1,∴ 3a 2-8ac +c 2=0,∴ e 2-8e +3=0,∴ e =4±13,又0<e <1, ∴ e =4-13.11. (-6,-5) 解析:a n =a +n -1,b n =1+2a +n -1=1+2n +a -1,由y =1x 的图象可得6<1-a <7,∴ -6<a <-5.12. 18 解析:∵ 2x +y +6=xy ,∴ xy -6=2x +y ≥22xy ,令t =2xy ,则12t 2-6≥2t 即t 2-4t -12≥0,∴ t ≥6,∴ xy ≥18,当且仅当2x =y =6时“=”成立,∴ xy 的最小值为18.13. 55解析:设a =(1,0),b =(0,1),将c 的起点放在原点,则|c -a |+|c -2b |的几何意义是c 的终点到向量a ,2b 的终点M (1,0),N (0,2)的距离之和,由于点(1,0),(0,2)的距离为5,故c 的终点在线段MN 上,∴ |c -b |的最小值即为点(0,1)到直线MN 的距离,即55.14. (1,ln 2e )∪⎝⎛⎭⎫32,2 解析:显然x =0不是方程f (x )-g (x )=0的解,由f (x )-g (x )=0,得k =h (x )=⎩⎨⎧x +1x +4,x <0,ln x +1x,x >0,由图象可得实数k 的取值范围是(1,ln 2e )∪⎝⎛⎭⎫32,2. 15. 证明:(1) 如图,在平面P AB 内过点P 作PH ⊥AB 于H , 因为平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PH ⊂平面P AB , 所以PH ⊥平面ABCD .(4分)。
江苏省连云港市2022届高考考前模拟考试(二)数学试题及答案

2022届高考考前模拟考试(二)数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回. 一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数z1,z 2对应的点分别为,−(1,2),则z z 12=A .55B .52C .255D .52.已知集合A x x =−<<15}{,Z =∈<<B x x 18}{,则 A B 的子集个数为 A .4B .6C .8D .93.直线mx y m −++=30与圆x y +=224相切,则m 的值为 A.3 B. 1 C.33D. −3 4.两千多年前我们的祖先就使用“算筹”表示数,后渐渐发展为算盘.算筹有纵式和横式两种排列方式,0~9各个数字及其算筹表示的对应关系如下表:排列数字时,个位采用纵式,十位采用横式,百位采用纵式,千位采用横式……纵式和横式依次交替出现.如“”表示87,“〇”表示502. 在“〇”“”“” “”“”按照一定顺序排列成的三位数中任取一个,取到奇数的概率是 A. 0.7 B. 0.6C. 0.4D. 0.35.柯西分布(Cauchy distribution)是一个数学期望不存在的连续型概率分布.记随机变量X 服从柯西分布为X ~C (γ,x 0),其中当γ=1,x 0=0时的特例称为标准柯西分布,其概率密度函数为f (x )=+x (1)π12.已知X ~C (1,0),P (|X |≤3)=23,P (1<X ≤3)=112,则P (X ≤−1)= A .16 B .23 C .14 D .126.甲,乙,丙,丁四支足球队进行单循环比赛(每两个球队都要比赛一场),每场比赛的计分方法是;胜者得3分,负者得0分,平局两队各得1分,全部比赛结束后,四队的得分为:甲6分,乙5分,丙4分,丁1分,则A .甲胜乙B .乙胜丙C .乙平丁D .丙平丁 7.如果函数f x x =+ϕ()cos(2)满足−=−f x f x 3()()π4,则ϕ||的最小值是 A .6π B .3π C .6π5 D .3π48.已知>t 0,函数=+−f x x t x tx ()()ln 2,当x >1时,+<f x t ()0恒成立,则实数t 的最小值为A .4B .31C .21D .1二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项是符合题目要求.全选对的得5分,部分选对的得2分,有选错的得0分)9.已知由样本数据点集合x i {(,=y i i )|1,2,⋯,n },求得的回归直线方程为=+yx 1.50.5ˆ,且=x 3,现发现两个数据点(1.3,2.1)和(4.7,7.9)误差较大,去除后重新求得的回归直线l 的斜率为1.2,则A .变量x 与y 具有正相关关系B .去除后的回归方程为y x =+^1.2 1.6C .去除后y 的估计值增加速度变慢D .去除后相应于样本点(2,3.75)的残差为0.05 10.已知>>a b 0,0,直线=+2y x a 与曲线=−+−y b x e 11相切,则下列不等式一定成立的是A .≤ab 91B . ≥+a b 921CD 11.过点P (1,0)作两条直线分别交抛物线2=y x 于A ,B 和C ,D ,其中直线AB 垂直于x 轴(其 中A ,C 位于x 轴上方),直线AC ,BD 交于点Q .则A .y y C D ⋅=−1B .x Q =−1C .QP 平分∠CQBD .PC ||的最小值是3212.如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,AD =DE =4,G 为线段AE 上的动点,则A .⊥AE CFB .若G 为线段AE 的中点,则GB //平面CEFC .点B 到平面CEF 的距离为3D .+BG CG 22的最小值为48三、填空题(本大题共4个小题,每小题5分,共20分)13.已知a ,b 是两个单位向量,a b c +−=20,且⊥b c ,则a 与−a b 的夹角为_________.14.设函数≥⎩−⎨=++<⎧x x f x x x 2,1,()(1)2,1,2则不等式+−>f f x (3)(||4)0的解集为_________.15.一个正四棱锥的高为7,底面边长为10,若正四棱锥的五个顶点恰好在一个球面上,则该球的半径为_________.16.建筑学中必须要对组合墙的平均隔声量进行设计.组合墙是指带有门或窗等的隔墙,假定组合墙上有门、窗及孔洞等几种不同的部件,各种部件的面积分别为S 1,S 2,…,S n (单位:m 2),其相应的透射系数分别为1τ,τ2,…,τn ,则组合墙的实际隔声量应由各部分的透射系数的平均值τ确定:++⋅⋅⋅+=++⋅⋅⋅+ττττS S S S S S nn n121122,于是组合墙的实际隔声量(单位:dB )为=τR 4ln 1.已知某墙的透射系数为1014,面积为20 m 2,在墙上有一门,其透射系数为1012,面积为2m 2,则组合墙的平均隔声量约为 dB .(注:≈≈e 2,e 50.693 1.609)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.在①a 3是a 1与a 9的等比中项,②=+a n S n n 21,③S S =+6423,这三个条件中任选一个,补充在下面问题中,并完成解答.问题:在公差不为0的等差数列a n {}中,其前n 项和为S n ,a =412, ,是否存在正整数k ,使得S a k k <−642?若存在,求出所有的正整数k ,若不存在,请说明理由. 注:如果选择多个条件分别解答,按第一个解答计分.18.在平面四边形ABCD 中,对角线AC 平分∠BAD ,=B 4π3,=AC ,=AD 4,=BC >BC CD . (1)求CD ;(2)求△ABC 的面积. 19.在四棱锥−P ABCD 中,平面PAB ⊥平面ABCD ,BC ⊥AB ,PA ⊥CD ,AB =2,BC =DC =23,DAC 60∠=︒.(1)证明:BD ⊥PC ;(2)若点A 到平面PBD 的距离为31010,求二面角−−B PC D 的余弦值.20.为有效防控新冠疫情从境外输入,中国民航局根据相关法律宣布从2020年6月8日起实施航班熔断机制,即航空公司同一航线航班,入境后核酸检测结果为阳性的旅客人数达到一定数量的民航局对其发出“熔断”指令,暂停该公司该航线的运行(达到5个暂停运行1周,达到10个暂停运行4周),并规定“熔断期”的航班量不得调整用于其他航线,“熔断期”结束后,航空公司方可恢复每周1班航班计划.已知某国际航空公司A 航线计划每周有一次 航班入境,该航线第一次航班被熔断的概率是13,且被熔断的一次航班的下一次航班也被熔断的概率是23,未被熔断的一次航班的下一次航班也未被熔断的概率是12.一条航线处于“熔断期”的原计划航班不记入该航线的航班次数,记该航空公司A 航线的第n 次航班被熔断的概率为P n . (1)求P 2;(2)证明:P n 35−⎧⎨⎩⎫⎬⎭为等比数列;(3)求数列P n }{的前n 项和T n ,并说明T n 的实际意义.21.已知函数()ln =+f x x mx .(1)当m =−13时,判断f x ()的零点个数;(2)若不等式≥+++−ax x x a a x e ln (1)对任意x >1恒成立,求实数a 的取值范围.22.已知A ,B 分别为椭圆C :x y +=2241的左、右顶点,P 为直线x =4上的动点,直线PA ,PB与椭圆C 的另一个交点分别为D ,E . (1)证明:直线DE 过定点;(2)设△EDB 和△EDA 的面积分别为S 1,S 2,求−S S 12的最大值.数学模拟考试(二)参考答案一、单项选择题:本大题共8个小题,每小题5分,共40分1.C 2.C 3.C 4.D 5.C 6.C 7.B 8.D 二、多项选择题:本大题共4个小题,每小题5分,共20分 9.AC 10. BCD 11.ABD 12.ABC 三、填空题:本大题共4个小题,每小题5分,共20分 13.π614.−<<x x 11}{ 15. 1499 16.27.624四、解答题:本大题共6个小题,共70分 17.解:公差d 不为0,==+a a d 12341,选择①:由a 3是a 1与a 9的等比中项,=a a a 3192, +=+a d a a d (2)(8)1112,得=a d d 12, 又≠d 0,所以=a d 1,………………………………………………………………………3分 又a d +=1312,所以d =3,a =13,……………………………………………………5分 所以=3n a n ,n S n n =+3(1)2, ………………………………………………………………7分 所以S a k k <−642,k k k +<−3(1)21842得:k k −+<211280,即k <<47, 又k 为正整数,所以正整数k 可以取5,6.………………………………………………10分选择②:由=+a n S n n 21,取=n 2,得=S a 2322,即+=a a a 2()3122,所以=a a 221, 又=+a a d 21,所以=a d 1,…………………………………………………………………3分 又a d +=1312,所以d =3,a =13,……………………………………………………5分 所以=3n a n ,n S n n =+3(1)2, ………………………………………………………………7分 所以S a k k <−642,k k k +<−3(1)21842得:k k −+<211280,即k <<47, 又k 为正整数,所以正整数k 可以取5,6. ………………………………………10分选择③:=+S a d 61561,=+S a d 4641,又=+S S 2464,所以+a d 6151a d =++12(46)3,化简得:a d −+=12330,………………………3分 又a d +=1312,所以d =3,a =13,……………………………………………………5分 所以=3n a n ,n S n n =+3(1)2, ………………………………………………………………7分 所以S a k k <−642,k k k +<−3(1)21842得:k k −+<211280,即k <<47, 又k 为正整数,所以正整数k 可以取5,6. ……………………………………10分18.解:(1)由题意设∠=∠=αBAC DAC ,=CD x ,则=AC ,在∆ACD 中,由余弦定理得⋅∠=+−AD ACDAC AD AC CD 2cos 222,即αcos 222 ………………………2分在∆ABC 中,由正弦定理得∠=B BACAC BCsin sin , 即=αsin ② ………………………………………4分联立①②得=x 2或=x ,故=CD 2. ………………………………………6分 (2) 在∆ABC 中,由余弦定理得=+−⋅∠AC AB BC AB BC ABC 2cos 222,即=+−πAB 4208cos 32, ………………………………………8分所以=AB 2或=−AB 6(舍), ……………………………………10分故=⋅=⨯⨯=∆πS AB BC B ABC 224sin 22113. ……………………………………12分 19. 解:(1)∵面平面平⊥PAB ABCD ,⊥BC AB ,面平面平=PAB ABCD AB ,面平⊂BC ABCD ,∴面平⊥BC PAB ,又面平⊂PA PAB , ∴⊥BC PA ,又⊥PA CD ,=CDBC C ,面平⊂CD BC BCD ,,∴面平⊥PA BCD ,面平⊂BD BCD ,∴⊥PA BD , …………………………2分在∆Rt ABC 中,=AB 2,=BC ,得=∠=AC BAC 4,60,在∆ADC 中,=AC 4,=DC ,DAC 60∠=︒,得∠==ADC AD 90,2,∴⊥AC BD , …………………………4分 又=PA AC A ,面平⊂PA AC PAC ,, ∴面平⊥BD PAC ,又面平⊂PC PAC ,∴⊥BD PC . …………………………6分 (2) 法1:设=BDAC O ,建立如图所示空间直角坐标系,由(1)得B C D (0,3,0),(,由=−−V V A PCD P ABD ,得−P (0,1,3), …………………………8分设平面BPC 法向量为=m x y z (,,),则⎩⎪⋅=⎨⎪⋅=⎧m PC m PB 00,即⎩⎪−=+−=y z y z 43030,取=m (33,3,4)设平面DPC 法向量为=n x y z (,,),则⎩⎪⋅=⎨⎪⋅=⎧n PC n PD 0,即⎩⎪−=⎨⎪+−=⎧y z y z 43030,取=−n (33,3,4) …………………………10分设二面角−−B PC D 的夹角为θ,则++++⋅=〈〉===⋅−++θm nm n m n279162791626cos cos ,279161. 由图可知,二面角−−B PC D 的余弦值为261. ……………………12分 法2:作⊥BQ PC ,垂足为Q ,连接DQ ,由(1)知∆≅∆Rt PDC Rt PBC ,得⊥DQ PC ,故∠BQD 即为−−B PC D 所成二面角的平面角, ……………8分在∆BQD中,=BD,==DQ BQ 5, ………………………10分由余弦定理得⋅∠===+−+−DQ BQ BQD DQ BQ BD 226cos 112156156222, Q故二面角−−B PC D 的余弦值为261. …………………………12分 20. 解:(1)由题意得P =⨯+⨯=21323231259………………………3分 (2)由题意得P P P n n n =+−−−112312(1)=P n −+11612(≥n 2),所以P P n n −−=−13516(35) ………………………5分又P −=−=−≠13513354150, 所以P n 35−⎧⎨⎩⎫⎬⎭是以−415为首项,16为公比的等比数列; ………………………7分(3)由(2)知P n n −=−−35415161, 从而−=−=−−−T n n n nn 6151552561(1)63438111………………………10分 由于P n 可以理解为第n 次航班平均被熔断的次数,所以T n 表示前n 次航班一共被熔断的次数. ………………………12分 21. 解:(1)因为=−f x x x 3()ln ,所以=−='−x x f x x33()113,令='f x ()0,则=x 3,当 ∈x (0,3)时,>'f x ()0,f x ()递增,当∈+∞x (3,) 时,<'f x ()0,f x ()递减,所以==−>f x f ()(3)ln310max , …………………………………2分又因为=−<f 3(1)01,所以<f f (1)(3)0,所以f x ()在(1,3)上有唯一零点,同理,因为=−<f e e 3()2022,所以<f f e (3)()02所以f x ()在e (3,)2上有唯一零点,所以函数f x ()有两个零点. ……………………………………………4分 (2)≥+++−e ax x x a a x ln (1)即≥+−+−e a x x x a x (1)ln (1),即≥+−+−ea x e x a x x (1)ln (1)ln ,构造函数=+F x e x x(),即≥−F a x F x ((1))(ln ), ………………………………………6分F x ()显然为+∞(0,)上的单调递增函数,所以转化为:≥−a x x (1)ln 在+∞(1,)上恒成立,①当≤a 0时,因为>x 1,所以≤−a x (1)0,而>=x ln ln10,显然不符合题意. ……………………………8分 ②当>a 0时,即≥−−a x x (1)ln 0在+∞(1,)上恒成立, 令=−−>G x a x x x ()(1)ln (1),则=−='−x xG x a ax ()11, 令='G x ()0,则=ax 1, i)当≤<a011即≥a 1时,因为>x 1,所以>'G x ()0,所以G x ()在+∞(1,)上递增,所以 >=G x G ()(1)0,即>G x ()0恒成立,符合题意.ii)当>a 11即<<a 01时,当∈a x (1,)1时<'G x ()0,当∈+∞ax (,)1时>'G x ()0,所以==−−=−+a a aG x G a a a ()()(1)ln 1ln 111min ,令=−+<<h a a a a ()1ln (01),则=−+=>'−a ah a a()1011,所以h a ()在(0,1)上递增, 所以<=h a h ()(1)0,所以<G x ()0min 不符合题意,所以舍去.综上所述≥a 1. ………………………………………………………12分 22. 解:(1)设P t (4,),D x y (,)11,E x y (,)22,则直线PA 的方程为:=+y x t6(2) 联立⎩⎪+=⎪⎨⎪⎪=+⎧y x y x t 416(2)22得+=−t x t 9182212,代入=+y x t 6(2)得+=t y t 9621,即++−t t D t t99(,)1826222, 同理可得++−−t t E t t11(,)222222, ………………………………………2分 设直线DE 过定点M m (,0),则当≠t 0时,++−−−−=++−−−t t m m t t t t t t9118222910062222222, 化简得+−=t m (3)(1)02解得=m 1,直线DE 过定点M (1,0),当=t 0时,直线DE 为x 轴,也过定点M (1,0), ………………………5分 综上,直线DE 过定点M (1,0). …………………………………………6分 (2) =−S BM y y 21112,=−S AM y y 21212−=−⋅−=⨯⨯−=−S S AM BM y y y y y y 2221112121212 设直线DE 的方程为:=+x ny 1,联立⎩⎪+=⎨⎪⎧=+y x x ny 41122得++−=n y ny (4)23022则⎩+⎪=⎪−⎨+⎪⎪+=⎧n y y n y y n 4342212212所以−=−===S S y y 1212=14 ………………………………………10分u ,则+−=uu S S 1412,=+uy u 1在+∞)单调递增,故当=u =n 0时,−S S max12 …………………………………12分。
2025届江苏省四星级高中部分学校高考数学全真模拟密押卷含解析

2025届江苏省四星级高中部分学校高考数学全真模拟密押卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,平面α与平面β相交于BC ,AB α⊂,CD β⊂,点A BC ∉,点D BC ∉,则下列叙述错误的是( )A .直线AD 与BC 异面B .过AD 只有唯一平面与BC 平行C .过点D 只能作唯一平面与BC 垂直D .过AD 一定能作一平面与BC 垂直2.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为( )A .B .C .D .3.己知集合{|13}M y y =-<<,{|(27)0}N x x x =-,则M N ⋃=( )A .[0,3)B .70,2⎛⎤ ⎥⎝⎦C .71,2⎛⎤- ⎥⎝⎦D .∅4.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则A .{|0e}AB x x =<<B .{|e}A B x x =<C .{|0e}A B x x =<<D .{|1e}A B x x =-<< 5.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了6.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x 的值为( )A .6481B .3227C .89D .16277.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合AB 的真子集的个数是( ) A .8 B .7C .4D .38.函数()cos 22x x x f x -=+的部分图像大致为( ) A . B .C .D .9.若()*3n x n N x x ⎛+∈ ⎝的展开式中含有常数项,且n 的最小值为a ,则22a a a x dx --=( ) A .36π B .812π C .252π D .25π10.设集合{}2320M x x x =++>,集合1{|()4}2x N x =≤ ,则 M N ⋃=( ) A .{}2x x ≥-B .{}1x x >-C .{}2x x ≤-D .R 11.若复数52z i =-(i 为虚数单位),则z =( ) A .2i + B .2i - C .12i + D .12i -12.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m =,例如112(mod3)=.现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于( ).A .21B .22C .23D .24二、填空题:本题共4小题,每小题5分,共20分。
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。
1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。
6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。
最新江苏省高考最新数学模拟试卷及答案

2016江苏省高考数学模拟试卷及答案一、填空题:本大题共14小题,每小题5分,共计70分. 1. 设集合M ={x |x +3x -2<0},N ={x |(x -1)(x -3)<0},则集合M ∩N =___ ▲ _____. 2. 复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是__ ▲ _____.3. 某公司生产三种型号A 、B 、C 的轿车,月产量分别为1200、6000、2000辆.为检验该公司的产品 质量,现用分层抽样的方法抽取46辆进行检验, 则型号A 的轿车应抽取____ ▲ ____辆. 4. 有红心1、2、3和黑桃4、5共5张扑克牌,现从中随机抽取两张,则抽到的牌中有黑桃的 概率是___ ▲ _______.5. 右图是一个算法的流程图,则输出的结果是____ ▲ ____.6. 设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的_____ ▲ ____条件.7. 取正方体的六个表面的中心,这六个点所构成的几何体的体积记为V 1,该正方体的体积为V 2,则V 1∶V 2=____ ▲ ____. 8. 如图,在△ABC 中,∠BAC =120º,AB =AC =2,D 为BC 边上的点,且→AD ·→BC =0,→CE =2→EB , 则→AD ·→AE =____ ▲ ___.9. 对任意的实数b ,直线y =-x +b 都不是曲线y =x 3-3ax 的切线,则实数a 的取值范围是____ ▲ ____.10. 如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,且两条曲线的交点连线也过焦点F ,则该椭圆的离心率为 ▲ .11. 已知函数f (x )=⎩⎪⎨⎪⎧lg x (0<x ≤10)|6-12x | (x >10),若a ,b ,c 互不相等,且f (a )=f (b )=f (c ), AB C则a +b +c 的取值范围为 ▲ .12. 若函数f (x )=sin(ωπx -π4)(ω>0)在区间(-1,0)上有且仅有一条平行于y 轴的对称轴,则ω的最大值是______ ▲ _____.13. 若实数a ,b ,c 成等差数列,点P (-1,0)在动直线ax +by +c =0上的射影为M ,点N (2,1),则线段MN 长度的最大值是_____ ▲ _____.14. 定义:若函数f (x )为定义域D 上的单调函数,且存在区间(m ,n )⊆D (m <n ),使得当x ∈(m ,n )时,f (x )的取值范围恰为(m ,n ),则称函数f (x )是D 上的“正函数”. 已知函数f (x )=a x (a >1)为R 上的“正函数”,则实数a 的取值范围是▲ .二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,且bca B C -=2cos cos . (1)求B ; (2)若7)4tan(=+πA ,求C cos 的值.16.正方形ABCD 所在的平面与三角形CDE 所在的平面交于CD ,且AE ⊥平面CDE . (1)求证:AB ∥平面CDE ; (2)求证:平面ABCD ⊥平面ADE .ABCDE17.如图,某兴趣小组测得菱形养殖区ABCD 的固定投食点A 到两条平行河岸线l 1、l 2的距离分别为4米、8米,河岸线l 1与该养殖区的最近点D 的距离为1米,l 2与该养殖区的最近点B 的距离为2米.(1)如图甲,养殖区在投食点A 的右侧,若该小组测得∠BAD =60º,请据此算出养殖区的面积S ,并求出直线AD 与直线l 1所成角的正切值;(2)如图乙,养殖区在投食点A 的两侧,试求养殖区面积S 的最小值,并求出取得最小值时∠BAD 的余弦值.18.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,经过椭圆C 的右焦点F 的直线l 交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E . (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且→MA =λ→AF ,→MB =μ→BF ,当直线l 的倾斜角变化时,探究λ+μ是否为定值?若是,求出λ+μ的值;若不是,说明理由;(3)连接AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于一定点?若是,求出定点坐标;若不是,说明理由.(图甲) (图乙)1l 1l 2l 2l AABBCCDD19. 已知数列{a n}的奇数项是公差为d1的等差数列,偶数项是公差为d2的等差数列,S n是数列{a n}的前n项和,a1=1,a2=2.(1)若S5=16,a4=a5,求a10;(2)已知S15=15a8,且对任意n∈N*,有a n<a n+1恒成立,求证:数列{a n}是等差数列;(3)若d1=3d2(d1≠0),且存在正整数m、n(m≠n),使得a m=a n.求当d1最大时,数列{a n}的通项公式.20.已知函数f (x )=mxx 2+n(m ,n ∈R )在x =1处取到极值2. (1)求f (x )的解析式;(2)设函数g (x )=ax -ln x ,若对任意的x 1∈[12, 2],总存在唯一的...x 2∈[1e 2, e ](e 为自然对数的底),使得g (x 2)=f (x 1),求实数a 的取值范围.兴化市第一中学2014-2015学年度春学期期初考试数学附加题1. 已知矩阵M =⎣⎡⎦⎤1a b 1,N =⎣⎡⎦⎤c 20d ,且MN =⎣⎢⎡⎦⎥⎤20-20, (1)求实数a ,b ,c ,d 的值;(2)求直线y =3x 在矩阵M 所对应的线性变换下的像的方程.2. 在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+2ty =1-t(t 为参数),椭圆C 的方程为x 24+y 2=1,试在椭圆C 上求一点P ,使得P 到直线l 的距离最小.班级___________ 学号________ 姓名_____________………………密……………封……………线……………内……………不……………要……………答……………题………………3. 如图,直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,AB =BC =2,BB 1=3,D 为A 1C 1的中点,F 在线段AA 1上. (1)AF 为何值时,CF ⊥平面B 1DF ?(2)设AF =1,求平面B 1CF 与平面ABC 所成的锐二面角的余弦值.4.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为X ,求变量X 的分布列和数学期望E (X ); (2)求恰好得到n (n ∈N *)分的概率.参考答案ACC 1B 1 A 1F1、(1,2)2、(-1,1)3、64、107 5、63 6、充要 7、168、19、(-∞,13)10、2-111、(25,34) 12、54 13、3 214、(1, e 1e)15、(1)3π(2) 16、证明:(1)正方形ABCD 中,//AB CD , 又AB ⊄平面CDE ,CD ⊂平面CDE ,所以//AB 平面CDE .(2)因为AE CDE ⊥平面,且CD CDE ⊂平面, 所以AE CD ⊥,又 ABCD CD AD ⊥正方形中,,且AE AD A =,AE AD ADE ⊂、平面,所以CD ADE ⊥平面, 又CD ABCD ⊂平面,所以ABCD ADE ⊥平面平面.17、解:(1)设AD 与1l 所成夹角为α,则AB 与2l 所成夹角为60α-,对菱形ABCD 的边长“算两次”得()36sin sin 60αα=-, 解得tan α,所以,养殖区的面积()()22231sin 6091sin 6042 3 (m )sin tan S αα=⋅=+⋅=;(5分) (2)设AD 与1l 所成夹角为α,()120 180BAD θ∠=∈,, 则AB 与2l 所成夹角为()180θα-+,对菱形ABCD 的边长“算两次”得()36sin sin 180αθα=-+,解得sin tan 2cos θαθ=+, 所以,养殖区的面积()23sin sin S θα=⋅()2191sin tan θα=+⋅()54cos 9sin θθ+=,由()()254cos 5cos 4990sin sin S θθθθ'++'==-=得4cos 5θ=-, 经检验得,当4cos 5θ=-时,养殖区的面积2min =27(m )S .答:(1)养殖区的面积为2;(2)养殖区的最小面积为227m .(15分) 18、解:(1)x 24+y 23=1(2)设A (x 1,y 1),B (x 2,y 2),M (0,y 0)∵→MA =λ→AF ∴(x 1,y 1-y 0)=λ(1-x 1,-y 1) ∴λλ=x 11-x 1,同理,μ=x 21-x 2∴λλ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 2x 1x 2-x 1-x 2+1∵⎩⎨⎧l :y =k (x -1)3x 2+4y 2-12=0∴(4k 2+3)x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3∴x 1+x 2-2x 1x 2=8k 24k 2+3-2×4k 2-124k 2+3=244k 2+3,x 1x 2-x 1-x 2+1=4k 2-124k 2+3-8k 24k 2+3+1=-94k 2+3∴λλ+μ=-249=-83(3)当l ⊥x 轴时,易得AE 与BD 的交点为FK 的中点(52,0) 下面证明:BD 过定点P (52,0)B 、D 、P 共线⇔k BP =k DP ⇔y 14-52=y 2x 2-52⇔32y 2=x 2y 1-52y 1⇔3y 2=2x 2y 1-⇔3k (x 2-1)=2x 2k (x 1-1)-5k (x 1-1)⇔ ⇔2kx 1x 2-5k (x 1+x 2)+8k =0⇔⇔2k ·4k 2-124k 2+3-5k ·8k 24k 2+3+8k =0 ⇔⇔2k (4k 2-12)-40k 3+8k (4k 2+3)=0成立.得证.同理,AE 过定点P (52,0),∴直线AE 与BD 相交于一定点(52,0). 【注】:书写可证明:k BP -k DP =···-···=·······,证明值为0.19、(1)解:根据题意,有a 1=1,a 2=2,a 3=a 1+d 1=1+d 1,a 4=a 2+d 2=2+d 2,a 5=a 3+d 1=1+2d 1∵S 5=16,a 4=a 5,∴a 1+a 2+a 3+a 4+a 5=7+3d 1+d 2=16,2+d 2=1+2d 1∴d 1=2,d 2=3. ∴a 10=2+4d 2=14(2)证明:当n 为偶数时,∵a n <a n+1d 2﹣d 1)+1﹣d 2<0,∴d 2﹣d 1≤0且d 2>1 当n 为奇数时,∵a n <a n+1,∴(1﹣n )(d 1﹣d 2)+2>0,∴d 1﹣d 2≤0∴d 1=d 2 ∵S 15=15a 82∴d 1=d 2=2 ∴a n =n ∴数列{a n }是等差数列;(3)解:若d 1=3d 2(d 1≠0),且存在正整数m 、n (m≠n),使得a m =a n ,在m ,n 中必然一个是奇数,一个是偶数 不妨设m 为奇数,n 为偶数 ∵a m =a n ∵d 1=3d 2∵m 为奇数,n 为偶数,∴3m﹣n ﹣1的最小正值为2,此时d 1=3,d 2=1∴数列{a n }的通项公式为a n20、解: (1)∵fx )=m (x 2+n )-2mx 2(x 2+n )2=-mx 2+mn (x 2+n )2∵由f (x )在x =1处取到极值2,∴⎩⎨⎧f (1)=0f (1)=2∴-m +mn (1+n )2=0,m1+n =2,∴⎩⎨⎧m =4n =1,经检验,此时f (x )在x =1处取得极值,故f (x )=4x x 2+1(2)记f (x )在[12,2]上的值域为A ,函数g (x )在[1e2,e ]上的值域为B ,由(1)知:f x )=-4x 2+4(x 2+1)2=-4(x -1)(x +1)(x 2+1)2∴f (x )在[12,1]上单调递增,在(1,2]上单调递减,由f (1)=2,f (2)=f (12)=85,故f (x )的值域A =[85,2]依题意g x )=a -1x ∵x ∈[1e 2,e ] ∴1e ≤1x≤e 2①当a ≤1e时,gx )≤0 ∴g (x )在[1e 2,e ]上递减 ∴B =[g (e ),g (1e2)],由题意得:[85,2]⊆B .∵g (e )=ae -1,g (1e 2)=a 1e2+2,∴⎩⎨⎧g (e )=ae -1≤85g (1e 2)=a 1e2+2≥2 ∴⎩⎪⎨⎪⎧a ≤135e a ≥0∵135e >1e ∴0≤a ≤1e②当1e <a <e 2时,e >1a >1e 2 ∴当x ∈[1e 2,1a)时,gx )<0;当x ∈(1a,e ]时,gx )>0;∵对任意的y 1∈[85,2],总存在唯一的...x 2∈[1e 2,e ],使得g (x 2)=y 1 ∵g (e )-g (1e 2)=ae -a 1e 2-3=a (e -1e2)-3∴当3e 2e 3-1<a <e 2时,g (e )>g (1e 2),∴⎩⎪⎨⎪⎧g (1e 2)≤85g (e )≥2∴⎩⎨⎧a ≥3e a ≤-25e 2 无解当1e <a <3e 2e 3-1时,g (e )<g (1e 2) ∴⎩⎨⎧g (e )=ae -1≤85g (1e 2)=a 1e2+2≥2 ∴⎩⎪⎨⎪⎧a ≤135e a ≥0 ∵135e <3e 2e 3-1 ∴1e<a <135e精品文档当a =3e 2e 3-1时,g (e )=g (1e2)不成立;③当a ≥e 2时,1a <1e 2 ∴g x )>0 ∴g (x )在[1e 2,e ]上递增 ∴B =[g (1e2), g (e )]∵[85,2]⊆B ∴g (e )≥2,g (1e 2)≤85 ∴⎩⎪⎨⎪⎧ea -1≥2a e2+2≤85 ∴⎩⎨⎧a ≥3e a ≤-25e2 无解综上,0≤a <135e附加题参考答案1、解:(Ⅰ)由题设,⎣⎢⎡⎦⎥⎤1a b 1⎣⎢⎡⎦⎥⎤c 20d =⎣⎢⎡⎦⎥⎤20-20得⎩⎨⎧c =22+ad =0bc =-22b +d =0,解得⎩⎨⎧a =-1b =-1c =2d =2; (Ⅱ)取直线y =3x 上的两点(0,0)、(1,3), 由⎣⎢⎡⎦⎥⎤1-1-11⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤1-1-11⎣⎢⎡⎦⎥⎤13=⎣⎢⎡⎦⎥⎤-22得:点(0,0)、(1,3)在矩阵M 所对应的线性变换下的像是(0,0),(-2,2),从而直线y =3x 在矩阵M 所对应的线性变换下的像的方程为y =-x .2、解:直线l 的参数方程为⎩⎨⎧x =2+2ty =1-t(t 为参数)∴x +2y =4设P (2cos θ,sin θ)∴P 到l 的距离为d =|2cos θ+2sin θ-4|5=|22sin(θ+ π4)-4|5≥|22-4|5=4-225当且仅当sin(θ+ π 4)=1,即θ=2kπ+ π 4时等号成立.此时,sin θ=cos θ=22∴P (2,22) 3、解:(1)因为直三棱柱ABC -A 1B 1C 1中,BB 1⊥面ABC ,∠ABC = π2.以B 点为原点,BA 、BC 、BB 1分别为x 、y 、z 轴建立如图所示空间直角坐标系. 因为AC =2,∠ABC =90º,所以AB =BC =2,(2,0,0)从而B (0,0,0),A (2,0,0),C (0,2,0),B 1(0,0,3),A 1 A (2,0,3),C 1(0,2,3),D (22,22,3),E (0,22,32).所以→CA 1=(2,-2,3),设AF =x ,则F (2,0,x ), →CF =(2,-2,x ),→B 1F =(2,0,x -3) ,→B 1D =(22,22,0) ∴→CF ·→B 1D =···=0,所以→CF ⊥→B 1D 要使CF ⊥平面B 1DF ,只需CF ⊥B 1F .精品文档由→CF ·→B 1F =2+x (x -3)=0,得x =1或x =2, 故当AF =1或2时,CF ⊥平面B 1DF .(2)由(1)知平面ABC 的法向量为m =(0,0,1). 设平面B 1CF 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·→CF =0n ·→B 1F =0得⎩⎪⎨⎪⎧2x -2y +z =02x -2z =0令z =1得n =(2,322,1),所以平面B 1CF 与平面ABC 所成的锐二面角的余弦值cos <m ,n >=30154、解:(1)所抛5次得分ξ的概率为P (X =i )=C i -55·(12)5(i =5,6,7,8,9,10),其分布列如下: EX ξ=152∴(2)令P n 表示恰好得到n 分的概率. 不出现n 分的唯一情况是得到n -1分以后再掷出一次反面. 因为“不出现n 分”的概率是1-P n ,“恰好得到n -1分”的概率是P n -1, 因为“掷一次出现反面”的概率是12,所以有1-P n =12P n -1,即P n -23=-12( P n -1-23). 于是{P n -23}是以P 1-23=12-23=-16为首项,以-12为公比的等比数列. 所以P n -23=-16(-12)n −1,即P n =13[2+(-12)n ]. 答:恰好得到n 分的概率是13[2+(-12)n ].。
江苏省徐州市2016届高三高考前模拟考试数学试题 含解析

一、填空题:本大题共14个小题,每小题5分,共70分.1。
已知全集{}1,0,1U =-,集合{}0,||A x =,则UC A =▲ .【答案】{}1- 【解析】试题分析:由题意得||1x =,因此UC A ={}1-考点:集合补集2.在复平面内,复数21ii+ (i 为虚数单位)对应的点到原点的距离为 ▲ . 【答案】2【解析】试题分析:22(1i)112i i i i -==++,到原点的距离为11 2.+=考点:复数几何意义3.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 ▲ . 【答案】70 【解析】试题分析:高一、高二共抽取的学生数为160012002070.800+⨯=考点:分层抽样4。
有3个兴趣小组,甲、乙两位同学各参加其中一个小组,且他们参加各个兴趣小组是等可能的,则甲、乙两位同学参加同一个兴趣小组的概率为 ▲ . 【答案】13考点:古典概型概率5.执行如图所示的程序框图,则输出的结果是 ▲ .【答案】124考点:循环结构流程图 6.已知等比数列{}na 满足4212=+a a,523a a =,则该数列的前5项的和为▲ .【答案】31 【解析】试题分析:由等比数列性质得235111a a a a =⇒=,所以521222,31.12a q S -====-,考点:等比数列性质 7a b的左焦点1F 作垂直于实轴的弦MN ,A 为右顶点,若0AM AN ⋅=,则该双曲线的离心率为 ▲ .【答案】2 【解析】试题分析:考点:双曲线离心率8.若指数函数()f x 的图象过点(2,4)-,则不等式5()()2f x f x +-<的解集为▲ . 【答案】(1,1)- 【解析】 试题分析:设()xf x a =,则2142a a -=⇒=,从而由5()()2f x f x +-<得251222(2)5(2)20221122x x x x x x -+<⇒-+<⇒<<⇒-<<,即解集为(1,1)-考点:指数不等式9。
江苏省“五校联考”2021-2022学年高三第三次模拟考试数学试卷含解析

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数y=sin x+x在x∈[-2π,2π]上的大致图象是()A.B.C.D.2.若函数y=2sin (2x+ϕ)ϕ<对称轴的方程可以为() A.x=-⎛⎝π⎫2⎭⎪的图象经过点⎛π⎫,0⎪,则函数f(x)=sin(2x-ϕ)+cos(2x-ϕ)图象的一条12⎝⎭π24B.x=37π24C.x=17π24D.x=-13π243.在等差数列{an}中,a2=-5,a5+a6+a7=9,若bn=A.-3 C.1B.-D.33(n∈N*),则数列{bn}的最大值是()an134.已知a,b∈R,3+ai=b-(2a-1)i,则|3a+bi|=()A.10B.232C.3D.45.设函数f (x)=2cos x+23sin x cos x+m,当x∈⎢0,A.⎡π⎤⎡17⎤f x∈,⎥,则m=()()时,⎢⎥⎣22⎦⎣2⎦D.12B.32C.1726.已知ω>13,函数f (x )=sin ⎛⎝2ωx -π⎫3⎪⎭在区间(π,2π)内没有最值,给出下列四个结论:①f (x )在(π,2π)上单调递增;②ω∈⎢⎡511⎣12,⎤24⎥⎦③f (x )在[0,π]上没有零点;④f (x )在[0,π]上只有一个零点.其中所有正确结论的编号是()A .②④B .①③C .②③D .①②④7.已知直线l :x +m 2y =0与直线n :x +y +m =0则“l //n ”是“m =1”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .9.已知定义在R 上的奇函数f (x ),其导函数为f '(x ),当x ≥0时,恒有x3f '(x )+f (x )>0.则不等式x 3f (x )-(1+2x )3f (1+2x )<0的解集为().A .{x |-3<x <-1}B .{x |-1<x <-13}C .{x |x <-3或x >-1}D .{x |x <-1或x >-13}610.(x 3-1)⎛ ⎝x +2⎫x ⎪的展开式中的常数项为()⎭A .-60B .240C .-80D .18011.在复平面内,复数z =i 对应的点为Z ,将向量OZ 绕原点O 按逆时针方向旋转π6,所得向量对应的复数是(A .-132+32i B .-312+2i C .-12-32i D .-2-12i )12.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE =2EO ,则ED =()12AD -AB3321C .AD -AB33A .21AD +AB3312D .AD +AB33B .二、填空题:本题共4小题,每小题5分,共20分。
江苏省高三下学期模拟考试(理)数学试卷-附带答案解析

江苏省高三下学期模拟考试(理)数学试卷-附带答案解析班级:___________姓名:___________考号:___________一、单选题1.设集合204x A x x +⎧⎫=⎨⎬-⎩⎭∣和{2,3,4,5}B =,则A B =( ) A .{}2 B .{}2,3 C .{}3,4 D .{}2,3,42.已知实数0x y >>,且111216x y +=+-,则x y -的最小值是( ) A .21B .25C .29D .333.1sin cos ,sin25ααα+=-=( )A .2425-B .2425C .1225D .1225-4.下列不等式成立的是( )A 1>B .若0m >,则1122m m +>+ C .若a b >,c d >则a c b d ->- D .若0m >,0n >且1m n +=,则2818m n+≥ 5.已知直线l :3470x y -+=圆C :()()22210x y r r -+=>若圆C 上恰有三个点到直线l 的距离为1,则r =( ) A .1B .3C .125D .46.已知向量,a b 的夹角的余弦值为23,(3)(3)a b a b -⊥+和1b =,则()?a b b -=( ) A .-4 B .-1 C .1 D .47.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知60,1A b =︒=sin sin sin a b cA B C++++的值为( )A B C D8.已知()f x 为定义在R 上的周期函数,其周期为2,且当[1,1]x ∈-时,则πcos ,012(),101x f x x a x x ⎧≤≤⎪⎪=⎨+⎪-≤<⎪-⎩则7(2)2f f ⎛⎫+ ⎪⎝⎭的值为( ) A .52B .0C .12D .239.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数为()f x ',且满足()()20f x f x x'+>,则不等式()()()202320233332023x f x f x ++<+的解集为( )A .{}2020x x >-B .{}2020x x <-C .{}20230x x -<<D .{}20232020x x -<<-二、多选题10.已知双曲线221916y x -=的左、右焦点分别为1F 和2F ,点P 在双曲线上,则下列结论正确的是( )A .该双曲线的离心率为54B .该双曲线的渐近线方程为34y x C .若12PF PF ⊥,则12PF F △的面积为9D .点P 到两渐近线的距离乘积为1442511.对于ABC ,有如下判断,其中正确的判断是( ) A .若A B >,则sin sin A B >B .若sin2sin2A B =,则ABC 为等腰三角形C .若10a =,9b =与60B =︒,则符合条件的ABC 有两个D .若222sin sin sin A B C +>,则ABC 是锐角三角形12.已知函数()()2e xf x x a =+,则( )A .函数()f x 在R 上单调递增,则1a ≥B .当1a =时,则函数()f x 的极值点为-1C .当8a <-时,则函数()f x 有一个大于2的极值点D .当0a =时,则若函数()y f x m =-有三个零点123,,x x x ,则1233x x x ++<-三、填空题13.某活动中,有42人排成6行7列,现从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为_____(用数字作答).14.已知抛物线C :26x y =的焦点为F ,直线l 与抛物线C 交于A 、B 两点,若AB 的中点的纵坐标为5,则AF BF +=______.15.已知0a >和0b >,且1ab =,则111822a b a b+++的最小值为___________.四、双空题16.如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,余下的多面体就成为一个半正多面体,亦称“阿基米德体”.点A ,B ,M 是该多面体的三个顶点,点N 是该多面体外接球表面上的动点,且总满足MN AB ⊥,若4AB =,则该多面体的表面积为______;点N 轨迹的长度为______.五、解答题(1)求数列{}n a ,{}n b 的通项公式;(2)若数列(){}1nn n a b -⋅的前n 项和为n T ,求()1962n n T n ++⨯-的表达式.18.若△ABC 中,角A ,B ,C 所对的边分别记作a ,b ,c .若sin a B =,sin b C =且()c a λλ+=∈R . (1)若2λ=,求cos B ; (2)证明:3B π≤(3)求λ的范围.19.如果,在四棱柱1111ABCD A B C D -中,底面ABCD 与侧面ABB 1A 1都是菱形,AB =4,60BAD ∠=︒平面11CDD C ⊥平面ABCD ,E 、F 、M 、G 分别是1111C D BC AD BB ,,,的中点,N 是AC 上的点且AC =4AN(1)求证://MN 平面EFG ;(2)若四棱柱1111ABCD A B C D -的体积为48,求二面角A EC G --的余弦值.20.近年来,师范专业是高考考生填报志愿的热门专业.某高中随机调查了本校2022年参加高考的90位文科考生首选志愿(第一个院校专业组的第一个专业)填报情况,经统计,首选志愿填报与性别情况如下表:(单位:人)(1)根据表中数据.能否有95%的把握认为首选志愿为师范专业与性别有关?(2)用样本估计总体,用本次调研中首选志愿样本的频率代替首选志愿的概率,从2022年全国文科考生中随机抽取3人,设被抽取的3人中首选志愿为师范专业的人数为X ,求X 的分布列、数学期望()E X 和方差()D X .附:()()()()()22n ad bc a b c d a c b d χ-=++++和n a b c d =+++.21.已知抛物线()2:20C x py p =>上的点(),4t 到焦点F 的距离等于圆2224310x y x y +-+-=的半径.(1)求抛物线C 的方程;(2)过点F 作两条互相垂直的直线1l 与2l ,直线1l 交C 于M ,N 两点,直线2l 交C 于P ,Q 两点,求四边形MPNQ 面积的最小值.22.若对实数0x ,函数()f x ,()g x 满足()()00f x g x =且()()00f x g x ''=,则称()()()00,,f x x x F x g x x x ⎧<⎪=⎨≥⎪⎩为“平滑函数”,0x 为该函数的“平滑点”.已知()323122f x ax x x =-+和()ln g x bx x =.(1)若1是平滑函数()F x 的“平滑点” (ⅰ)求实数a ,b 的值;(ⅱ)若过点()2,P t 可作三条不同的直线与函数()y F x =的图象相切,求实数t 的取值范围; (2)对任意0b >,判断是否存在1a ≥,使得函数()F x 存在正的“平滑点”,并说明理由.参考答案与解析1.B【分析】先解不等式204x x +≤- ,再根据交集的定义求解即可. 【详解】由题意204x x +≤- ,解得2x -≤<4 {}2,3A B ∴= 故选:B. 2.A【分析】根据基本不等式即可求解. 【详解】∵0x y >>,等式111216x y +=+-恒成立 ∴()()111321621x y x y x y ⎛⎫-+=++-+ ⎪+-⎝⎭由于0x y >>,所以10,20y x ->+>∵()1121212242112x y x y x y y x ⎛⎫+-+++-=++≥+= ⎪+--+⎝⎭ 当且仅当21x y +=-时,则即10,11x y ==-时取等号.∴()1346x y -+≥,∴21x y -≥,故x y -的最小值为21. 故选:A 3.A【分析】把已知等式平方化简即得解. 【详解】1sin cos 5αα+=-两边平方得()21sin cos 25αα∴+= 221sin 2sin cos cos ,25αααα∴++= 112sin cos 25αα∴+=24sin225α∴=-故选:A 4.D【分析】利用作差法可判断A ,B ,利用特值法可判断C ,利用乘1法,结合基本不等式的性质可判断D .【详解】由)(()221484220-=+-==<1<A 选项错误;由1102224m m m m +-=>++,可知1122m m +>+,故B 选项错误;若故C 选项错误;由()281442252518m n m n m n m n n m ⎛⎫⎛⎫⎛⎫+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.当且仅当13m =,23n =时取等号,故D 选项正确. 故选:D. 5.B【分析】由数形结合结合点线距离即可求【详解】由题意得()1,0C ,则点C 到直线l 的距离为372916d圆C 上恰有三个点到直线l 的距离为1,则如图所示,直线l 交圆于A 、B 垂直半径CP 于B ,BP=1. 故12BC d r ,故3r =.故选:B6.C【分析】可由题意设出(),a x y =,()1,0b =由(3)(3)a b a b -⊥+,根据向量垂直的性质得22(3)?(3)90a b a b x y -+=+-=,再由向量,a b 的夹角的余弦值为23,可解得2x =,再代入求解即可.【详解】由题意不妨设(),a x y = ()1,0b = 则()33,a b x y +=+ ()33,a b x y -=-由(3)(3)a b a b -⊥+,可得22(3)?(3)90a b a b x y -+=+-=,即229x y += 又由233x==,解得2x =所以()2··211a b b a b b -=-=-=. 故选:C. 7.A【分析】根据面积可求得4c =,然后根据余弦定理得到a = 【详解】∵ABC ∆60,1A b =︒=∴11sin 1sin 6022bc A c =⨯⨯⨯︒==∴4c =.由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=∴a =.由正弦定理得sin sin sin sin a b c a A B C A ++===++ 故选A .【点睛】正弦定理、余弦定理和三角形的面积公式都能反应三角形中的边角关系,因此这些内容常综合在一起考查,成为命题的热点.在解题是要注意公式的灵活应用,特别是在应用正弦定理时要注意公式的常用变形,如本题中所涉及的式子等. 8.D【分析】先根据周期性得到()()11f f -=,由此计算出a 的值,然后利用周期性将7(2)2f f ⎛⎫+ ⎪⎝⎭转变为()102f f ⎛⎫-+ ⎪⎝⎭,根据解析式可求得结果. 【详解】因为()f x 是定义在R 上的周期为2的周期函数,所以()()11f f -= 所以1cos 022a π-==-,所以1a = 所以[]1,1x ∈-时,则πcos ,012()1,101x f x x x x ⎧≤≤⎪⎪=⎨+⎪-≤<⎪-⎩所以()()()1171122222200cos01222312f f f f f f -+⎛⎫⎛⎫⎛⎫+=⨯-++=-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-- 故选:D. 9.D【分析】设()()2,0g x x f x x =>,已知()()20f x f x x'+>,得出()0g x '>,则可求出函数()g x 在区间()0,∞+上为增函数,不等式()()()202320233332023x f x f x ++<+可转化为()()20233g x g +<,再根据函数()g x 的单调性即可求解.【详解】解:根据题意,设()()2,0g x x f x x =>,则导函数()()()22g x x f x xf x ''=+函数()f x 在区间()0,∞+上,满足()()20f x f x x'+>,则有()()220x f x xf x '+> 所以()0g x '>,即函数()g x 在区间()0,∞+上为增函数()()()()()()222023202333202320233332023x f x f x f x f x ++<⇒++<+所以()()20233g x g +< 则有020233x <+< 解得20232020x -<<-即此不等式的解集为{}20232020x x -<<-10.BD【分析】利用双曲线的离心率公式可判断A 选项;求出双曲线的渐近线方程可判断B 选项;利用双曲线的定义以及三角形的面积公式可判断C 选项;利用点到直线的距离公式可判断D 选项. 【详解】对于A 选项,该双曲线的离心率为53c e a ==,A 错; 对于B 选项,该双曲线的渐近线方程为34a y x xb =±=±,B 对; 对于C 选项,若12PF PF ⊥,则()1222212262100PF PF a PF PF c ⎧-==⎪⎨+==⎪⎩ 所以()()222121212264PF PF PF PF PF PF ⋅=+--=,可得1232PF PF ⋅=故12121162PF F S PF PF =⋅=△,C 错; 对于D 选项,设点()00,P x y ,则2200169144y x -=双曲线的两渐近线方程分别为340x y += 340x y -= 所以,点P 到两渐近线的距离乘积为22000000229163434144342525x y x y x y --⋅+==+,D 对.故选:BD. 11.AC【分析】根据三角函数的单调性可判断A 选项,根据正弦函数单调性和对称性可判断B 选项,利用正弦定理可判断C 选项,利用正弦定理及余弦定理可判断D 选项.【详解】对于A :由A B >,则当0,2A π⎛⎤∈ ⎥⎝⎦时,则sin sin A B >,当,2A ππ⎛⎫∈ ⎪⎝⎭时,则由A B π+<可知2B A ππ<-<,所以()sin sin sin B A A π<-=,故A 选项正确;对于B :由()0,A B π+∈得:22A B =或22A B π+=,即A B =或2A B π+=,所以ABC 为等腰三角形或直角三角形,B 选项错误;对于C :由根据正弦定理sin sin a b A B =得:sin 533sin 92a B Ab ==> 233A B πππ∴<<=- 且2A π≠,所以满足条件的三角形有两个,C 选项正确;对于D :由正弦定理可将222sin sin sin A B C +>转化为222a b c +>,则222cos 02a b c C ab+-=>,所以2C π<,但无法判断,A B 的范围,D 选项错误.12.ACD【分析】利用导数与函数单调性的关系可判断A ;利用导数与函数的极值点之间的关系判断B ,C ;对于D ,作出函数大致图象,判断123,,x x x 的范围,进而根据122212e e x x x x =,可得到21212lnx x x x -=,由此采用换元法并构造函数(),(02)n 1(1l )1t t t th t =<+<-+,从而证明1233x x x ++<-,判断D. 【详解】对于A ,由()()2e xf x x a =+可得()()2e 2x f x x x a '=++若函数()f x 在R 上单调递增,则()0f x '≥恒成立,即220x x a ++≥恒成立 故440a ∆=-≤,故1a ≥经验证1a =时,则()2e (1)0xf x x '=+≥,仅在=1x -时取等号,适合题意故函数()f x 在R 上单调递增,则1a ≥,A 正确;对于B ,当1a =时,则()()2e 1xf x x =+()2e (1)0x f x x '=+≥,仅在=1x -时取等号,()f x 在R 上单调递增 函数无极值点,B 错误;对于C ,由于()()2e 2xf x x x a '=++当8a <-时,则222(1)10x x a x a ++=++-=,则不妨取1211x x =-=-且1x x <或2x x >时,则函数220y x x a =++> 0fx当12x x x <<时,则函数220y x x a =++< ()0f x '<故21x =-()f x 的极小值点,且由于8a <-,则19a ->,则22x >,C 正确;对于D ,当0a =时,则 ()()22e ,e (2)x xf x x f x x x '=∴=+当<2x -或0x >时,则0f x,当20x -<<时,则函数()0f x '<则()f x 在(,2),(0,)-∞-+∞上单调递增,在(2,0)-上单调递减,且()0f x ≥ 故可作出其大致图像如图:函数()y f x m =-有三个零点123,,x x x ,即函数()f x 的图象与直线y m =有三个交点不妨设123x x x <<,由于()224e f --=,而()21e 4e f -=>,且234(e )f x m -=<,故301x <<由图象可知122,20x x <--<<考虑到当m 趋近于0时,则1x 会趋近于无限小,2x 趋近于0,故猜测124x x +<-下面给以证明:由题意可知122212e e x x x x =,故1222212211e ,2ln x x x x x x x x -=∴-= 设21,01x t t x =<<,则21x tx =,故1122ln 2ln (1)2ln ,,11t t t x t t x x t t-=∴==-- 则122ln 2ln 2(1)ln 111t t t t t x x t t t++=+=--- 要证明124x x +<-,即证2(1)ln 41t t t +<--,即2(1)ln 01t t t -+<+ 设(),(02)n 1(1l )1t t t th t =<+<-+,故22214(1)()0(1)(1)t h t t t t t --'=+=>++ 故()h t 在(0,1)上单调递增故()(1)0h t h <=,即2(1)ln 41t t t+<--成立,故124x x +<- 而301x <<,故1233x x x ++<-成立,D 正确故选:ACD【点睛】难点点睛:解答本题要综合应用导数与函数的单调性以及极值点之间的关系等知识,同时注意数形结合以及构造函数等方法,难点在于判断1233x x x ++<-时,则要首先判断出三者的范围,进而数形结合,合理猜测,进而利用构造函数的方法加以证明.13.4200【详解】先按顺序依次选三人共有111423020C C C再去掉顺序数:111423020334200.C C C A = 故答案为:4200.14.13【分析】根据抛物线方程求出其准线方程,再结合抛物线定义求解作答.【详解】抛物线C :26x y =的准线方程为32y =-,设()11,A x y 和()22,B x y 由抛物线定义得:132AF y =+,232BF y =+因AB 的中点的纵坐标为5,则有1210y y += 所以121233()()31322AF BF y y y y +=+++=++=. 故答案为:1315.6 【分析】将111822a b a b+++化简,然后利用基本不等式即可求出最小值. 【详解】0,0,0a b a b >>∴+> 1ab =111818222a b a b a b ab a b +∴++=+++1862a b a b +=+≥=+当且仅当6a b +=时取等号,结合1ab =,解得33a b =-=+或33a b =+=-.故答案为:6.【点睛】易错点睛:利用基本不等式求最值时,则要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,则必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.【分析】分别算出每一部分的面积,即可求出该多面体的表面积;首先根据题干中找出点N 的轨迹,然后代入公式即可求出长度.【详解】根据题意该正四面体的棱长为3=12AB ,点A ,B ,M 分别是正四面体的棱三等分点.该正四面体的表面积为141212sin602︒⨯⨯⨯⨯=该多面体是正四面体截去顶角所在的小正四面体每个角上小正四面体的侧面积为1344sin 602︒⨯⨯⨯⨯=每个角上小正四面体的底面积为144sin602︒⨯⨯⨯=所以该多面体的表面积为44⨯⨯=如图,设点H 为该多面体的一个顶点则8HF MF == 4BF =.在HBF 中 22212cos606416248482HB HF BF HF BF ︒=+-⋅⋅=+-⨯⨯⨯=则HB =222HB BF HF +=HB BF ∴⊥,即HB AB ⊥,同理MB AB ⊥又MB HB B =,AB ∴⊥平面MHB .点N 是该多面体外接球表面上的动点,由题可知正四面体与半正多面体的外接球的球心相同,且总满足MN AB ⊥∴点N 的轨迹是HBM △的外接圆.BH BM ==21283MH =⨯= 在HBM △中,由余弦定理得2221cos23HB MB HM HBM HB MB +-∠===⋅sin HBM ∴∠== 设HBM △的外接圆的半径为r ,由正弦定理得2sinMHrHBM===∠r∴=∴点N的轨迹长度为2πr=.故答案为:【点睛】本题的第一小空利用表面积公式即可求解,第二小空分析出正四面体与半正多面体的外接球的球心相同,才可以找出点N的轨迹.17.(1)21na n=-2nnb=(2)n为偶数时,则1196(2)22n nnT n+++⋅-=-;n为奇数时,则1196(2)22n nnT n+++⋅-=+.【分析】(1)设{}n a公差为d,设{}n b公比为q,根据已知条件列出方程求出d、1a和q即可得到两个数列的通项公式;(2)分n为偶数和奇数时,则利用错位相减法求出数列(){}1nn na b-⋅的前n项和为nT,从而求出()1962nnT n++⨯-的表达式.【详解】(1)设{}n a公差为d424S S=()()11144144222a d a d d a-⇒+=+⇒=()()2111212121110n na a a n d a n d a d⎡⎤=+⇒+-=+-+⇒-+=⎣⎦(2)令()(1)(1)212n n nn n na b n c-=--⋅=,则()21221412nn nc c n--+=+⋅当n为偶数时12n n T c c c =+++()1315292212n n T n -=⋅+⋅+++⋅,① ()()311452232212n n n T n n -+=⋅++-⋅++⋅,②①-②得:()3511352424242212n n n T n -+-=⋅+⋅+⋅++⋅-+⋅ ()()121181461223104212149n n n n n n T n T -++⎛⎫⋅- ⎪-⋅+⎝⎭-=+⋅-+⋅⇒=- 当n 为奇数时,则()()167222129n n n n n n T T c n --⋅+=+=--⋅ n ∴为偶数时()111196(2)61226222n n n n n T n n n +++++⋅-=-⋅+-⋅=-n 为奇数时()()11196(2)672292126222n n n n n n T n n n n ++++⋅-=-⋅+-⋅-⋅+⋅=+.18.(1)3cos 4B = (2)证明见解析(3)λ∈⎝⎭【分析】(1)根据正弦定理及余弦定理求解即可;(2)由余弦定理及均值不等式,利于余弦函数的单调性即可证明;(3)由B 的范围求出λ范围,再结合a b c +>,a b c -<确定λ的范围.【详解】(1)由题,可得sin sin a B b C=,由正弦定理得a b b c =,即2b ac =. 由于2c a =,且由余弦定理2222cos b a c ac B ac =+-=化简可得34cos B =,解得3cos 4B =. (2)由(1)得222cos a c ac B ac +-=,代入c a λ=,则有()222212cos a a B a λλλ+-=化简可得()212cos B λλλ+-=即211111cos 222222B λλλλλ-+==+-=≥当且仅当122λλ=即1λ=时,则等号可以取到. 因此,π3B ≤.(3)由(2),可得21111cos ,122222B λλλλλ-+⎡⎫==+-∈⎪⎢⎣⎭及0λ>,解得λ∈⎝⎭.又因为a b c +>,a b c -<><及0b ≠解得λ∈⎝⎭.综上,λ∈⎝⎭. 19.(1)证明见解析【分析】(1)根据平行四边形得线线平行即可求证(2)根据面面垂直以及体积公式可得1C H =进而建立空间直角坐标系,利用法向量的夹角即可求解.【详解】(1)连接BD 与AC 相交于O ,连接1,D O FO ,故O 是AC 中点因为F 是BC 中点,所以1//,,2=OF AB OF AB 又1111111//,2=D E A B D E A B ,故11,//=OF D E OF D E 因此四边形1OFED 为平行四边形,故1//OD FE又AC =4AN ,所以N 为AO 中点,又M 为1AD 中点所以1////,⊄MN OD EF MN 平面EFG ,EF ⊂ 平面EFG ,所以//MN 平面EFG(2)则平面11CC D D内过点1C作1C H DC⊥,垂足为H,连接HB因为平面11CC D D⊥平面ABCD,且平面ABCD平面11CC D D CD=所以1C H⊥平面ABCD易得,ABD BCD是等边三角形因此四棱柱的体积为11144sin6048ABCDV S C H C H C H=⋅=⨯⨯⋅=⇒=所以2DH CH==,即H为DC的中点BH=1,,C H BH CH两两垂直故建立如图所示的空间直角坐标系;则()(()(()14,0,0,,0,2,0,,,--A E C C B因为112=BG CC,则(-G故()()(0,4,23,23,6,0,23,,CE AC GE=-=-=--设平面ACE的法向量为(),,m x y z=则060040m AC ym CE y⎧⎧⋅=-+=⎪⎪⇒⎨⎨⋅=-+=⎪⎪⎩⎩,取y=()3,3,2m=设平面GCE的法向量为()111,,xn y z=则11111040ym GEm CE y⎧⎧--=⋅=⎪⎪⇒⎨⎨⋅=-+=⎪⎪⎩⎩,取1y=122m⎛⎫= ⎪⎝⎭设二面角A EC G--的平面角为θ,由图可知二面角A EC G--的平面角为锐角,故172cos cos,4m nm nm nθ⋅====⨯故二面角A EC G --20.(1)有95%的把握认为首选志愿为师范专业与性别有关;(2)分布列见解析()1E X = 2()3D X =.【分析】(1)求出2χ,比较临界值可得;(2)求得某个考生首选志愿为师范专业的概率301903P ==,X 的所有可能取值为0,1,2,3,由二项分布求得概率得分布列,再由二项分布的期望公式、方差公式计算期望与方差.【详解】(1)2290(2525355) 5.625 3.84160303060χ⨯-⨯==>⨯⨯⨯ ∴有95%的把握认为首选志愿为师范专业与性别有关.(2)某个考生首选志愿为师范专业的概率301903P == X 的所有可能取值为0,1,2,3和1~3,3X B ⎛⎫ ⎪⎝⎭328(0)327P X ⎛⎫=== ⎪⎝⎭ ()2131241C 339P X ⎛⎫==⋅⋅= ⎪⎝⎭ ()2231222C 339P X ⎛⎫==⋅⋅= ⎪⎝⎭ 311(3)327P X ⎛⎫=== ⎪⎝⎭ ∴X 的分布列如下:()1313E X ⨯== 112()31333D X ⎛⎫=⨯⨯-= ⎪⎝⎭. 21.(1)28x y =(2)128【分析】(1)根据圆的半径及抛物线的定义可得方程;(2)分别联立两条直线与抛物线,可得线段MN 与PQ 长度,进而可得面积,结合基本不等式可得最小值.【详解】(1)由题设知抛物线的准线方程为2p y =-由点(),4t 到焦点F 的距离等于圆2224310x y x y +-+-=的半径而2224310x y x y +-+-=可化为()()221236x y -++=,即该圆的半径为6 所以462p +=,解得4p = 所以抛物线C 的标准方程为28x y =;(2)由题意可知直线1l 与直线2l 的斜率都存在,且焦点F 坐标为()0,2因为12l l ⊥,不妨设直线1l 的方程为2y kx =+,直线2l 的方程为12y x k=-+ 联立282x y y kx ⎧=⎨=+⎩,得28160x kx --=,2Δ64640k =+>恒成立. 设()11,M x y ()22,N x y则128x x k += 1216x x =- 所以()2121248822p p MN y y k x x p k =+++=+++=+ 同理,得2218888PQ k k ⎛⎫=-+=+ ⎪⎝⎭所以四边形MPNQ 的面积()222211816488812864222S MN PQ k k k k ⎛⎫⎛⎫==++=++ ⎪ ⎪⎝⎭⎝⎭11281282⎛≥+= ⎝,(当且仅当1k =±时等号成立) 所以四边形MPNQ 的面积的最小值是128.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.22.(1)(ⅰ)1a = 12b =(ⅱ)3,ln 28⎛⎫- ⎪⎝⎭(2)存在,理由见解析【分析】(1)(ⅰ)求导列出a.b 的方程求解即可, (ⅱ)转化为方程:()()()2t F x F x x '=--有3个不同根,构造函数结合图像求解即可;(2)消参得()23ln 3122ln 1x x x a x x -+=-成立,转化为()23ln 3122ln 1x x x x x -+-≤是否恒成立,构造函数证明即可 【详解】(1)(ⅰ)由()323122f x ax x x =-+ ()lng x bx x = 则()21332f x ax x '=-+ ()()1lng x b x '=+ 由题意,1是平滑函数()F x 的“平滑点”可知10a -=,且532a b -=,解得 1a = 12b =. (ⅱ)由题意,()3231,0122ln ,12x x x x F x x x x ⎧-+<<⎪⎪=⎨⎪≥⎪⎩,过点()2,P t 作()F x 的切线 切点()(),x F x 满足方程:()()()2F x t F x x '-=-故题意等价于方程:()()()2t F x F x x '=--有3个不同根设()()()()2p x F x F x x '=--则()()()632,012,12x x x p x x x x ⎧---<<-≥'⎪=⎨⎪⎩令()0p x '>,即122x <<;令()0p x '<,即102x <<或2x > 所以函数()p x 在1,22x ⎛⎫∈ ⎪⎝⎭单调递增,在10,2⎛⎫ ⎪⎝⎭和()2,+∞上单调递减 且11113222228p F F ⎛⎫⎛⎫⎛⎫⎛⎫=--=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭',()()()()22222ln 2p F F =--='如图所示第 21 页 共 21 页所以3,ln 28t ⎛⎫∈- ⎪⎝⎭. (2)题意等价于0b ∀>,是否1a ∃≥,使得()32231ln 221331ln 2ax x x bx x ax x b x ⎧-+=⎪⎪⎨⎪-+=+⎪⎩有解 消去a 有()312ln 12x b x -=-,3122ln 1x b x -=-其中由0b >,可得23x ⎛∈ ⎝ 故题意进一步化简23x ⎛∀∈ ⎝,是否1a ∃≥,使得()23ln 3122ln 1x x x a x x -+=-成立 23x ⎛⇔∀∈ ⎝,()23ln 3122ln 1x x x x x -+-≤是否恒成立 设()()2243ln 231q x x x x x x =--+- ()()83ln q x x x -'= 故2,13x ⎛⎫∈ ⎪⎝⎭时,则单调递减;(x ∈,()q x 单调递增 故()()10q x q ≥=得证即0b ∀>,31a ≥使得()F x 存在的“平滑点”.【点睛】方法点睛:定义函数问题,主要根据定义理解函数性质特征,结合函数求导求解即可.。
2023年高考第二次模拟考试数学试卷试题(含答案)

装 订 线 内 不 要 答 题,装 订 线 外 不 要 写 姓 名、考 号 等, 违 者 试 卷 作 0 分 处 理....................Ꙩ.......Ꙩ..................................Ꙩ.........Ꙩ...............................Ꙩ........Ꙩ...........................Ꙩ......Ꙩ..........................姓名 Ꙩ ꙨXXXX 市XX 中学2023年高考第二次模拟考试数 学注意事项:1.试卷共6页,150分,考试用时120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.2.考试结束后,将本试卷和答题卡一并交回.一、选择题:8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{}1,2,3M =,{}1,3,4N =,则M N =( )A .{}1,3B .1,2,{3,4}C .{2,4}D .{1,3,4}2.函数cos2y x =,x ∈R 的最小正周期为( )A .2B .πC .2πD .1π3.直线11:20l x y --=与直线21:0l mx y ++=互相垂直的充要条件是( )A .2m =-B .12m =-C .12m =D .2m =4.如图,在正方体1111ABCD A B C D -中,,,,E F G H 分别为1111,,,AA AB BB B C 的中点,则异面直线EF 与GH 所成的角等于( )A .45B .60C .90?D .120︒5.已知数列{}n a 的前n 项和是n S ,则下列四个命题中,错误的是( ) A .若数列{}n a 是公差为d 的等差数列,则数列{}n S n 的公差为2d的等差数列 B .若数列{}nS n是公差为d 的等差数列,则数列{}n a 是公差为2d 的等差数列 C .若数列{}n a 是等差数列,则数列的奇数项,偶数项分别构成等差数列60,二、选择题:4小题,每小题5分,共20分.在每小题列出的四个选项中,选出符合题目要求的多项.9.设变量x ,y 满足110x y x y y +≤⎧⎪-+≤⎨⎪≥⎩,则3x y +的最值为 ( )A .-1B .2C .3D .410.已知2()3f x x x =+,若||1x a -≤,则下列不等式不一定成立的是( ) A .()()||3||3f x f a a ≤+- B .()()||2|4|f x f a a -≤+ C .()()|5|||f x f a a ≤+-D .2||()()2|(1)|a f x f a -≤+11.在等比数列{}n a 中,已知462,,48a a 成等差数列,且3564a a =.则{}n a 的前8项和为( ) A .255B .85C .603D .7912.设0a >,0b >,e 是自然对数的底数,则不正确的选项是( ) A .若e 2e 3a b a b +=+,则a b > B .若e 2e 3a b a b +=+,则a b < C .若e 2e 3a b a b -=-,则a b >D .若e 2e 3a b a b -=-,则a b <三、填空题:4小题,每小题5分,共20分. 14.已知函数()lg f x x =,若33()()3f a f b +=,则ab 的值为_______. 15.若直线1 1=+y k x 与直线21y k x =-的交点在椭圆2221x y +=上,则12k k 的值为______.16.如图,O 为ΔABC 的外心,4, 2AB AC ==,ABC ∠为钝角,M 是边BC 的中点,则AM AO的值为______.四、解答题:6小题,共70分.BAC ∠装 订 线 内 不 要 答 题,装 订 线 外 不 要 写 姓 名、考 号 等,违 者 试 卷 作 0 分 处 理...................................Ꙩ.......Ꙩ.............Ꙩ.......Ꙩ.............Ꙩ.......Ꙩ.............Ꙩ.........Ꙩ......................................18.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,AP AD =,M ,N 分别为棱PD ,PC 的中点.求证: (1)//MN 平面PAB(2)AM ⊥平面PCD .19.(12分)已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,1q ≠±,正整数组E m p r m p r =(,,)(<<)(1)若122331a b a b a b +=+=+,求q 的值;(2)若数组E 中的三个数构成公差大于1的等差数列,且m p p r r m a b a b a b +=+=+,求q 的最大值.20.(12分)某校开设了甲、乙、丙、丁四门选修课,每名学生必须且只需选修1门选修课,有3名学生A B C 、、选修什么课相互独立.(Ⅰ)求学生A B C 、、中有且只有一人选修课程甲,无一人选修课程乙的概率; (Ⅱ)求课程丙或丁被这3名学生选修的人数ζ的数学期望.21.(12分)在平面直角坐标系xOy中,已知椭圆22221(0)x y a b a b+=>>的左焦点为10F (-,),且经过点31,2(). (1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F ,且与x 轴不垂直.若D 为x 轴上的一点,DA DB =,求ABDF的值.22.(12分)已知函数2cos ()f x ax x a R =+∈()记f x ()的导函数为g x () (1)证明:当12a =时,g x ()在R 上的单调函数; (2)若f x ()在0x =处取得极小值,求a 的取值范围;(3)设函数h x ()的定义域为D ,区间m D +∞⊆(,).若h x ()在m +∞(,)上是单调函数,则称h x ()在D 上广义单调.试证明函数ln y f x x x =()-在0+∞(,)上广义单调.装 订 线 内 不 要 答 题,装 订 线 外 不 要 写 姓 名、考 号 等, 违 者 试 卷 作 0 分 处 理....................Ꙩ.......Ꙩ..................................Ꙩ.........Ꙩ...............................Ꙩ........Ꙩ...........................Ꙩ......Ꙩ..........................Ꙩ Ꙩ学校 班级 学号 姓名 Ꙩ Ꙩ2023年高考第二次模拟考试数学答案解析1.【答案】A【考点】交集及其运算.【分析】根据交集的定义写出M∩N . 【解答】解:集合M={1,2,3}, N={1,3,4}, ⅠM∩N={1,3}. 故选:A . 2.【答案】B【考点】三角函数的周期性及其求法.【分析】由条件利用函数y=Acos (ωx+φ)的周期为2π,求得结果.【解答】解:Ⅰy=cos2x , Ⅰ最小正周期T=2π2=π,即函数y=cos2x 的最小正周期为π. 故选:B . 3.【答案】C【考点】直线的一般式方程与直线的垂直关系.【分析】由两直线ax+by+c=0与mx+ny+d=0垂直Ⅰam+bn=0解得即可.【解答】解:直线l1:2x ﹣y ﹣1=0与直线l2:mx+y+1=0Ⅰ2m ﹣1=0Ⅰm=12.故选C .4.【答案】B【考点】异面直线及其所成的角.【分析】先通过平移将两条异面直线平移到同一个起点B ,得到的锐角ⅠA1BC1就是异面直线所成的角,在三角形A1BC1中求出此角即可.【解答】解:如图,连A1B 、BC1、A1C1,则A1B=BC1=A1C1, 且EFⅠA1B 、GHⅠBC1,所以异面直线EF 与GH 所成的角等于60°, 故选B . 5.【答案】D【考点】8F :等差数列的性质.【分析】根据等差数列的通项公式和前n 项和公式进行分析,并作出判断. 【解答】解:A .若等差数列{an}的首项为a1,公差为d ,前n 项的和为Sn ,则数列{}为等差数列,且通项为=a1+(n ﹣1),即数列{}的公差为的等差数列,故说法正确;B .由题意得:=a1+(n ﹣1)d ,所以Sn=na1+n (n ﹣1)d ,则an=Sn ﹣Sn ﹣1=a1+2(n ﹣1)d ,即数列{an}是公差为2d 的等差数列,故说法正确;C .若数列{an}是等差数列的公差为d ,则数列的奇数项,偶数项都是公差为2d 的等差数列,说法正确;D .若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}不一定是等差数列,例如:{1,4,3,6,5,8,7},说法错误. 故选:D . 6.【答案】C【考点】KC :双曲线的简单性质.【分析】根据点P 为双曲线上一点,且∠PF1F2=30°,∠PF2F1=60°,可得|PF1|=c ,|PF2|=c ,利用双曲线的定义,可求双曲线的离心率. 【解答】解:设双曲线的焦距长为2c ,∵点P 为双曲线上一点,且∠PF1F2=30°,∠PF2F1=60°, ∴P 在右支上,∠F2PF1=90°, 即PF1⊥PF2,|PF1|=2csin60°=c ,|PF2|=2ccos60°=c ,∴由双曲线的定义可得|PF1|﹣|PF2|=(﹣1)c=2a ,∴e===+1.故选:C . 7.【答案】A【考点】2K :命题的真假判断与应用.【分析】①,由f (x )是定义在R 上的单调递增函数,若f (x0)>x0,则f[f (x0)]>f (x0)>x0,;②,若f (x0)≤x0,由f (x )是定义在R 上的单调递增函数得f[f (x0)]≤f (x0)≤x0与已知矛盾;③,由奇函数的性质及判定得f[f (﹣x )]=f[﹣f (x )]=﹣f[f (﹣x )],即可判定;④,若f (x1)+f (x2)=0,则f (x1)=﹣f (x2)Ⅰx1=﹣x2Ⅰx1+x2=0;若x1+x2=0Ⅰx1=﹣x2Ⅰf (x1)=f (﹣x2)=﹣f (x2)Ⅰf (x1)+f (x2)=0【解答】解:对于①,∵f (x )是定义在R 上的单调递增函数,若f (x0)>x0,则f[f (x0)]>f (x0)>x0,故①正确;对于②,当f[f (x0)]>x0时,若f (x0)≤x0,由f (x )是定义在R 上的单调递增函数得f[f (x0)]≤f (x0)≤x0与已知矛盾,故②正确;对于③,若f (x )是奇函数,则f[f (﹣x )]=f[﹣f (x )]=﹣f[f (﹣x )],∴f[f (x )]也是奇函数,故③正确;对于④,当f (x )是奇函数,且是定义在R 上的单调递增函数时,若f (x1)+f (x2)=0,则f (x1)=﹣f (x2)Ⅰx1=﹣x2Ⅰx1+x2=0;若x1+x2=0Ⅰx1=﹣x2Ⅰf (x1)=f (﹣x2)=﹣f (x2)Ⅰf (x1)+f (x2)=0,故④正确; 故选:A 8.【答案】A【考点】MT :二面角的平面角及求法.【分析】由题意求出AB 与平面ACD 所成角的正弦值和余弦值,然后分类求出平面ACD 与平面α所成角的正弦值的最小值与最大值得答案.【解答】解:∵三棱锥A ﹣BCD 的所有棱长都相等,∴三棱锥A ﹣BCD 为正四面体,如图:设正四面体的棱长为2,取CD 中点P ,连接AP ,BP , 则∠BAP 为AB 与平面ADC 所成角. AP=BP=,可得sin,cos ∠BAP=.设∠BAP=θ.当CD 与α平行且AB 在面ACD 外时,平面ACD 与平面α所成角的正弦值最小, 为sin ()=sin=;当CD 与α平行且AB 在面ACD 内时,平面ACD 与平面α所成角的正弦值最大, 为sin ()=sincos=.∴平面ACD 与平面α所成角的正弦值的取值范围是[,].故选:A .装 订 线 内 不 要 答 题,装 订 线 外 不 要 写 姓 名、考 号 等,违 者 试 卷 作 0 分 处 理...................................Ꙩ.......Ꙩ.............Ꙩ.......Ꙩ.............Ꙩ.......Ꙩ.............Ꙩ.........Ꙩ......................................9. 【答案】AC【解析】作出110x y x y y +≤⎧⎫⎪⎪-+≤⎨⎬⎪⎪≥⎩⎭确定的可行域,设3z x y =+,则33x zy =-+,当1,0x y =-=时,min 1z =-;当0,1x y ==时,max 3z =.10.【答案】ACD【考点】3H :函数的最值及其几何意义.【分析】结合二次函数的图象可知,当f (x )在区间[a ﹣1,a+1]单调时,|f (x )﹣f (a )|的最大值为|f (a+1)﹣f (a )|或|f (a ﹣1)﹣f (a )|,从而得出结论. 【解答】解:∵|x ﹣a|≤1,∴a ﹣1≤x ≤a+1, ∵f (x )是二次函数,∴f (x )在区间[a ﹣1,a+1]上单调时,|f (x )﹣f (a )|取得最大值为|f (a+1)﹣f (a )|或|f (a ﹣1)﹣f (a )|,而|f (a+1)﹣f (a )|=|(a+1)2+3(a+1)﹣a2﹣3a )|=|2a+4|≤2|a|+4, |f (a ﹣1)﹣f (a )|=|(a ﹣1)2+3(a ﹣1)﹣a2﹣3a|=|﹣2a ﹣2|=|2a+2|≤2|a|+2. ∴|f (x )﹣f (a )|≤2|a|+4, 故选ACD . 11.【答案】AB 12.【答案】BCD 13.【答案】160- 14.【答案】10【解析】由题意得33lg lg 3lg lg 1lg 110a b a b ab ab +=⇒+=⇒=⇒=. 15.【答案】-2【解析】由1211y k x y k x =+⎧⎨=-⎩得2121212x k k k k y k k ⎧=⎪-⎪⎨+⎪=⎪-⎩,即交点为2121212,k k k k k k ⎛⎫+⎪--⎝⎭,它在椭圆2221x y +=上,于是有22212121221k k k k k k ⎛⎫⎛⎫++= ⎪ ⎪--⎝⎭⎝⎭,化简后得122k k =-.16.【答案】5【解析】设分别是的中点,则,, 又,∴ .17.解:(Ⅰ)由cosA cos cos a b c B C +=+及正弦定理,得sin sin sin cosA cos cos A B CB C+=+,即 sin cos sin cos sin cos sin cos A B B A C A A C -=-,故sin()sin()A B C A -=-∵π,,(0,)2A B C ∈,∴ππππ,2222A B C A -<-<-<-<,∴A B C A -=-又πA B C ++=,∴π3A =; …6分(Ⅱ)由(Ⅰ)知π3A =,故2π3B C +=,而π02C <<,B 是ABC △的最大内角,故ππ32B ≤<,∴πππππsin cos 2sin()[2sin(),2sin())43424B B B -=-∈--即31sin cos (,1)2B B --∈ …12分18.证明:(1)因为M 、N 分别为PD 、PC 的中点,所以//MN DC ,又因为底面ABCD 是矩形, 所以//AB DC .所以//MN AB , 又AB ⊂平面PAB ,MN ⊄平面PAB , 所以//MN 平面PAB .(2)因为AP AD =,P 为PD 的中点,所以AM PD ⊥. 因为平面PAD ⊥平面ABCD , 又平面PAD平面ABCD =AD ,CD AD ⊥,CD ⊂平面ABCD ,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以CD AM ⊥. 因为CD 、PD ⊂平面PCD ,CD PD D =,∴AM ⊥平面PCD .19.解:(1)∵122331a b a b a b +=+=+,∴21111112a b q a d b q a d b +=++=++,化为:2210q q =--,1q ≠±.解得12q =-.(2)m p p r r m a b a b a b +=+=+,即p m p r a a b b =--,∴p m r mm p m d b q q =--(-)(-),同理可得:1r mm r p d b q =-(-)(-).∵m ,p ,r 成等差数列,∴12p m r p r m ==--(-),记p mqt =-,则2210t t =--, ∵1q ≠±,1t ≠±,解得12t =.即12p m q =-,∴10q -<<, 记p m α=-,α为奇函数,由公差大于1,∴3α≥.∴11311()()22a q =≥,即131()2q ≤-,当3α=时,q 取得最大值为131()2-.20.解:(1)x 、y 可能的取值为1、2、3,|2|1x ∴-≤,||2y x -≤,||5OP ≤,且当1,3x y ==或3,1x y ==时,||5OP =.因此,||OP 最大值为5(6分)(2)有放回抽两张卡片的所有情况有339⨯=种,29P =(12分) 21.解:(1)由题意,10F (-,),由焦点210F (,),且经过31,2P (), 由22PF PF a +=,即24a =,则2a =,,D E AB,AC ⊥OD AB ⊥OE AC ()12=+AM AB AC ()111222⋅=+⋅=⋅+⋅AM AO AB AC AO AB AO AC AO 22cos cos =⋅+⋅=∠+∠=+AD AO AE AO AD AO DAO AE AO EAO AD AE 22215=+=装 订 线 内 不 要 答 题,装 订 线 外 不 要 写 姓 名、考 号 等, 违 者 试 卷 作 0 分 处 理....................Ꙩ.......Ꙩ..................................Ꙩ.........Ꙩ...............................Ꙩ........Ꙩ...........................Ꙩ......Ꙩ..........................2223b a c ==-,∴椭圆的标准方程22143x y +=;(2)设直线AB 的方程为1y k x =+().①若0k =时,24AB a ==,1FD FO +=,∴4AB DF=.②若0k ≠时,11Ax y (,),22B x y (,),AB 的中点为00M x y (,), 22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,整理得:22224384120k x k x k +++=()-, ∴2122834k x x k +=-+,则22434k x k =-+,则0023134k y k x k =+=+(). 则AB 的垂直平分线方程为2223143434k k y x k k k=+++--(), 由DA DB =,则点D 为AB 的垂直平分线与x 轴的交点,∴22034k D k +(-,),∴22223313434k k DF k k +=-+=++, 由椭圆的左准线的方程为4x =-,离心率为12,由1142AF x =+,得11(4)2AF x =+, 同理21(4)2BF x =+, ∴212211212()4234k AB AF BF x x k +=+=++=+,∴4AB DF=则综上,得AB DF的值为4.22.(1)证明:12a =时,21cos 2f x x x =+(),故sin f x x x '=()-,即sin g x x x =()-,1cos 0g x x '=≥()-, 故g x ()在R 递增;(2)解:∵2sin g x f x ax x ='=()()-,∴2cos g x a x '=()-, ①12a ≥时,1cos 0g x x '≥≥()-,函数f x '()在R 递增, 若0x >,则00f x f '=()>(), 若0x <,则00f x f ''=()<(), 故函数f x ()在0+∞(,)递增,在0∞(-,)递减, 故f x ()在0x =处取极小值,符合题意; ②12a ≤-时,1cos 0g x x '≤≤()--,f x '()在R 递减, 若0x >,则00f x f ''=()<(), 若0x <,则00f x f '=()>(), 故f x ()在0+∞(,)递减,在0∞(-,)递增, 故f x ()在0x =处取极大值,不合题意;③1122a -<<时,存在00x π∈(,),使得0cos 2x a =,即00g x '=(), 但当00x x ∈(,)时,cos 2x a >,即0g x '()<,f x '()在00x (,)递减, 故00f x f ''=()<(),即f x ()在00x (,)递减,不合题意, 综上,a 的范围是1[2+∞,);(3)解:记2cos ln0h x ax xx x x =+-()(>), ①0a >时,ln x x <,则1122ln x x <,即ln x <,当2x >时,2sin 1ln 22220h x ax x x ax '==()--->-->,故存在2m =,函数h x ()在m +∞(,)递增;②0a ≤时,1x >时,2sin 1ln sin 1ln 0h x ax x x x x '=()---<---<, 故存在1m =,函数h x ()在m +∞(,)递减;综上,函数ln y f x x x =()-在0+∞(,)上广义单调.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省高考数学模拟考试试题(含答案)数学Ⅰ参考公式:一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{}11,022<<-=<-=x x N x x x M , 则M 与N 的并集..N M Y = ▲ .2.设复数()0>+=a i a z ,若2=z z ,则正实数a 的值为 ▲ .3.某电视台对一节目的喜爱程度进行网络调查,共有12000人参与调查,喜爱、一般、不 喜爱的人分别为6000人、5000人、1000 人,为进一步了解被调查人的具体想法,现利 用分层抽样的方法抽取60人,则抽取不喜爱的人数为 ▲ .4.某校志愿者小组有2名男生和1名女生,现从中任选2人参加活动,则 女生入选的概率是 ▲ .5.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .6.若双曲线()0,012222>>=-b a by a x 的离心率为2.则其两条渐近线所成的锐角为 ▲ .7.设三棱锥ABC P -的体积为1V ,点N M ,分别满足2=,NC PN =,记三棱锥BMN A -的体积为2V ,则12V V = ▲ . 8.在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 若c a ca bB A 2,sin sin =+=则A cos = ▲ .9.已知数列{}{}n n b a 、满足,log 2n n a b =且数列{}n b 是等差数列.若9,2103==b b ,则数列 {}n a 的前n 项和n S = ▲ .10.若函数()()θ+=x x f 2sin 关于直线4π=x 对称,则θ的最小正值....为 ▲ . 11.若存在..实数()4,0∈x ,使不等式01623<+-ax x 成立,则实数a 的取值范围是 ▲ . 12.在锐角ABC △中,已知AH 是BC 边上的高,且满足AC AB AH 3231+=,则ABAC的取 值范围是 ▲ .13.设函数()xb ax x x f 222⋅+-=,若函数()x f y =与函数()()x f f y =都有零点,且它们的零点完全相同,则实数a 的取值范围是 ▲ .14.若圆()16:221=+-y m x C 与圆()16:222=+-y n x C 相交,点P 为其在x 轴下方的交点,且8-=mn ,则点P 到直线01=-+y x 距离的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)若sin cos 22x x m ⎛⎫= ⎪⎝⎭u r ,,cos 22x x n ⎛⎫= ⎪⎝⎭r,设()2f x m n =⋅-u r r .(1)求函数()f x 在[]π,0上的单调减区间;(2)在△ABC ,角A ,B ,C 的对边分别为a ,b ,c ,若)()(B f A f =,b a 2=,求B sin 的值.16.(本小题满分14分)如图,在三棱柱111C B A ABC -中,AC AA =1,11AC B A ⊥,设O 为AC 1与A 1C 的交点,点P 为BC 的中点. 求证:(1)OP ∥平面ABB 1A 1;(2)平面1ACC ⊥平面OCP .17.(本小题满分14分)如图1是淋浴房示意图,它的底座是由正方形截去一角得到,这一角是一个与正方形两邻边相切的圆的41圆弧(如图2),现已知正方形的边长是1米,设该底座的面积为S 平方米,周长为l 米(周长是指图.....2.的实线部分.....),圆的半径为r 米.设计的理想要求是面积S 尽可能大,周长l 尽可能小.但显然S 、l 都是关于r 的减函数,于是设lSr f =)(,当)(r f 的值越大,满意度就越高.试问r 为何值时,该淋浴房底座的满意度最高?(解答时...π以.3.代入运算....).18.(本小题满分16分)如图,A 、B 为椭圆C :1222=+y ax 短轴的上、下顶点,P 为直线l :2=y 上一动点,连接P A 并延长交椭圆于点M ,连接PB 交椭圆于点N .已知直线MA ,MB 的斜率之积恒为21-. (1)求椭圆C 的标准方程;(2)求直线MN 与x 轴平行,求直线MN 的方程;(3)求四边形AMBN 面积的最大值,并求对应的点P 的坐标.19.(本小题满分16分)已知数列{}n a 满足121+=-+n a a n n .(1)若数列{}n a 的首项为1a ,其中301<<a ,且1a ,2a ,3a 构成公比小于0的等比数列,求1a 的值;(2)若n a 是公差为d (d >0)的等差数列{}n b 的前n 项和,求1a 的值;(3)若1a =1,22-=a ,且数列{}1-2n a 单调递增,数列{}n a 2单调递减,求数列{}n a 的通项公式.20.(本小满分16分)设函数xe x xf )()(ϕ=,)(ln )(x xx g ϕ=,其中)(x ϕ恒不为0. (1)设2)(x x =ϕ,求函数)(x f 在1=x 处的切线方程;(2)若0x 是函数)(x f 与)(x g 的公共极值点,求证:0x 存在且唯一;(3)设b ax x +=)(ϕ,是否存在实数a ,b ,使得0)()(<'⋅'x g x f 在()∞+,0上恒成立?若存在,请求出实数a ,b 满足的条件;若不存在,请说明理由.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4—2:矩阵与变换](本小题满分10分)直线l 经矩阵M=⎢⎣⎡θθsin cos ⎥⎦⎤-θθcos sin (其中()πθ,0∈)作用变换后得到直线x y l 2:=',若直线l 与直线l '垂直,求θ的值.B.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l的参数方程112x y t ⎧=-+⎪⎨⎪=-⎩,(t 为参数).以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=,设P 为上动点,求直线l 被曲线C 截得的弦长.C .[选修4—5:不等式选讲](本小题满分10分)若实数a b c ,,满足243a b c ++=,求111123a b c +++++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格.现有A ,B ,C 三名学生报名参加该高校的综合评价,假设A ,B ,C 三位学生材料初审合格的概率分别是31,21,41;面试合格的概率分别是21,31,32. (1)求A ,B 两位考生有且只有一位考生获得录取资格的概率;(2)记随机变量X 为A ,B ,C 三位同学获得该高校综合评价录取资格的人数,求X 的概率分布与数学期望.23.(本小题满分10分)设集合{}n T n ,,3,2,1⋅⋅⋅=(其中*∈≥N n n ,3),将n T 的所有3元子集(含有3个元素的子集)中的最小元素的和记为n S . (1)求3S ,4S ,5S 的值; (2)试求n S 的表达式.参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1. ()1,2- 2. 1 3. 5 4. 23 5. 13 6. 3π7.168.64 9.21n- 10. 2π 11. ()6,+∞ 12. 22⎛⎫ ⎪ ⎪⎝⎭13. (]2,0- 14.522二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解:(1)21()cos sin =sin +22223x x x f x m n x x x π⎛⎫=⋅-++ ⎪⎝⎭u r r , .............4分当32+2232k x k k Z πππππ+≤≤+∈,时函数()f x 单调递减,即722,66k x k k Z ππππ+≤≤+∈, 又因为[0,]x π∈,所以函数()f x 在[0,]π上的减区间为[,]6ππ ...............6分(2)由()()f A f B =得sin +sin +33A B ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,又2a b =,所以A B >,所以+++=33A B πππ,得+=3A B π, ...........8分由2a b =及正弦定理得sin 2sin A B =,所以sin 2sin 3B B π⎛⎫-= ⎪⎝⎭,即sincos cos sin 2sin 33B B B ππ-=,解得cos B B , ...........12分又22sin +cos =1B B ,得23sin =28B ,又因为,所以sin =14B ...........14分sin 0B >16.证明:(1)因为在平行四边形11ACC A 中,O 为1AC 与1A C 的交点,所以O 为1A C 的中点, 又因为点P 为BC 的中点,所以OP ∥1A B , ...............4分又OP ⊄平面11ABB A ,1A B ⊂平面11ABB A ,所以OP ∥平面11ABB A . ...............6分(2)由(1)知OP∥1A B,又11A B AC ⊥,所以1AC OP ⊥, ...............8分在平行四边形11ACC A 中1AA AC =,所以四边形11ACC A 为菱形,所以11AC A C ⊥, ............10分又1,OP A C ⊂平面OCP ,且1OP AC O =I ,所以1AC ⊥平面OCP , ............12分又1AC ⊂平面1AC C,所以平面1AC C ⊥平面OCP . ............14分17.解:周长1122(1)2442l r r r π=+-+⋅=-, 面积222111()144S r r r π=--=-, (4)分所以221144()12(8)42r r f r r r --==--,(0,1)r ∈, …………6分令8r x -=,则224(8)4(8)30()16()16222x x x f r x x x ----===-+≤-…………10分 当且仅当60x x=时,即x =()f r 最大,此时8r =- …………13分 答:当8r =-时,该淋浴房的满意度最高. …………14分18.解:(1)由椭圆222:1x C y a+=,所以(0,1)A ,(0,1)B -,设00(,)M x y ,则00001112y y x x -+⋅=-, …………2分所以2200112y x =-,又220021x y a +=,解得22a =,所以椭圆的方程为2212x y +=. …………4分 (2)设(,2)P t ,当0t =时,0M N x x ==,不符题意,所以0t ≠, 所以1PA k t =,直线PA 的方程为:11y x t=+,即x ty t =-, …………6分代入椭圆方程得到22()12ty t y -+=,即222(1)2(1)0t y y -+-=, 解得1A y =,2222M t y t -=+,同理221818N t y t -=+, …………8分因直线MN 与x 轴平行,所以2222218218t t t t --=++,解得26t =,12M y =, 所以直线MN的方程为12y =. …………10分 (3)由(2)222112M t x t t -=++,解得242M t x t -=+,同理21218N tx t =+, …………12分所以四边形AMBN 的面积2241212()2218M N t t S x x t t =⋅+=+++,根据对称性,不妨设0t >,则3224241216(6)2182036t t t t S t t t t +=+=++++, …………14分所以22266161636620()8t t t t S t t t t++=⋅=⋅++++,设(6m t m t =+≥,则211161616=16888m S m m m =⋅=⋅≤⋅++当且仅当6t t=即t =,所以四边形AMBN 面积的最大值为,此时点(2)P . …………16分19.(1)因121n n a a n +-=+,所以213a a -=±,即213a a =±, 又103a <<,且前三项是公比小于0的等比数列,所以2130a a =-<, …………2分325a a -=±,即3250a a =+>,所以312a a =+所以2111(3)(2)a a a -=+,解得198a =. …………4分 (2)因na 是等差数列{}n b 的前n项和,所以1121n n n a a b n ++-==+, …………6分又111n b b dn dn a +=+=+,所以121dn a n +=+, …………8分当121dn a n +=--时,1(2)10d n a +++=,所以2d =-,不符题意; 当121dn a n +=+时,1(2)10d n a -+-=,所以2d =,11a =. …………10分(3)因为数列{}21n a -单调递增,所以...531<<<a a a ; 因为数列{}2n a 单调递增,所以...642>>>a a a ; 又因为21a a >,所以......531246<<<<<<<a a a a a a 因121n n a a n +-=+,所以21241n n a a n +-=+;同理22141n n a a n --=-+,所以21212n n a a +--=, 又11a =,所以2112(1)21n a n n -=+-=-, …………14分所以2(21)(41)n a n n --=--,22n a n =-, 所以数列{}n a 的通项公式为,21,2n n n k a n n k=-⎧=⎨-=⎩(*k N ∈). …………16分20.解:(1)因2()x x ϕ=,所以2()x x f x e=,22222()x x x x xe x e x x f x e e --'==, (2)分所以1(1)f e '=,又1(1)f e= 所以函数()f x 在1x =处的切线方程为11(1)y x e e-=-,即1y x e=. …………4分 (2)因()()xx f x eϕ=,所以2()()()()()x xxxx e x e x x f x eeϕϕϕϕ''--'==,又ln ()()x g x x ϕ=,所以21()()ln ()()x x x x g x x ϕϕϕ'-'=, …………6分 因0x 是函数()f x 与()g x 的公共极值点,所以0()0f x '=,0()0g x '=, 即00()()x x ϕϕ'=,00001()()ln x x x x ϕϕ'= 因()0x ϕ≠,所以001ln x x =, …………8分 令1()ln h x x x=-,则0x 是()h x 的零点, 因()h x 在(0,)+∞上单调递增,所以()h x 至多有一个零点, 又1(1)ln101h =-<,1()ln 0h e e e=->,且函数()h x 在()0,+∞上连续不间断,由零点存在性定理可知,()h x 的零点x 唯一存在,得证. …………10分(3)(3)因为()x ax b ϕ=+,由(2)得()xax a bf x e-+-'=,2ln ()()ba a x x g x x ϕ+-'=, 记()m x ax a b =-+-,()ln bn x a a x x=+- ①当0a =时,()m x b =-,()bn x x=,若0b =,则()()0m x n x ==,此时'()='()=0f x g x ,不符题意;若0b ≠,()m x 与()n x 符号相反,此时'()'()0f x g x ⋅<,满足题意. …………12分②当0a >时,若a bx a->,则()0m x <,若0b >,当1x >时,则()ln ln bn x a a x a b a x x=+-<+- 由ln 0a b a x +-<,得ln a bx a+>,所以a ba x e +>,所以0max ,1,a ba ab x x e a +⎧⎫->=⎨⎬⎩⎭时,()0m x <,()0n x <,此时函数'()0f x <与'()0g x <,'()'()0f x g x ⋅>,不符题意(舍); 若0b <,则()ln ln bn x a a x a a x x=+-<- 由ln 0a a x -<,得ln 1x >,所以x e > 所以0max ,a b x x e a -⎧⎫>=⎨⎬⎩⎭时,()0m x <,()0n x <, 此时函数'()0f x <与'()0g x <,'()'()0f x g x ⋅>,不符题意(舍); …………14分③当0a <时,若a bx a->,则()0m x >, 若0b >,则()ln ln bn x a a x a a x x=+->- 由ln 0a a x ->,得ln 1x >,所以x e >, 所以0max ,a b x x e a -⎧⎫>=⎨⎬⎩⎭时,()0m x >,()0n x >, 此时函数'()0f x >与'()0g x >,'()'()0f x g x ⋅>,不符题意(舍); 若0b <,当1x >时,则()ln +ln bn x a a x a b a x x=+->-, 由+ln 0a b a x ->,得a bax e+>,所以0max ,1,a ba ab x x e a +⎧⎫->=⎨⎬⎩⎭时,()0m x >,()0n x >,此时函数'()0f x >与'()0g x >,'()'()0f x g x ⋅>,不符题意(舍);综上所述,当0a =且0b ≠时,函数()f x 与()g x 满足'()'()0f x g x ⋅<在(0,)+∞上恒成立. ……16分附加题答案21(A)解:法1:平面列向量关于原点逆时针旋转α所对应的变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-=αααααcos sin sin cos )(M ..……4分直线l 经矩阵⎥⎥⎦⎤-⎢⎢⎣⎡=θθθθcos sin sin cos M 作用,即顺时针旋转θ以后得到直线'l ,且),0('πθ∈⊥,l l , 所以2πθ= (10)分法2:在直线l 上任取一点),(y x P ,经过矩阵M 作用后得到点)','('y x P ,则⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡⋅+⋅⋅-⋅=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤-⎢⎢⎣⎡''cos sin sin cos cos sin sin cos y x y x y x y x θθθθθθθθ .…………6分又点)','('y x P 在直线x y l 2:'=上,所以)sin (cos 2cos sin y x y x ⋅-⋅⨯=⋅+⋅θθθθ 即x y ⋅-=⋅+)sin cos 2()sin 2(cos θθθθ ..…………8分因为,'l l ⊥所以21sin 2cos sin cos 2-=+-θθθθ,所以θθθθcos sin 2sin 2cos 4--=-,所以,0cos =θ因为),0(πθ∈,所以2πθ=. ..…………10分21(B) 解:直线l的直角坐标方程为:013=++y x , ..…………2分曲线C 的直角坐标方程为:222=+y x .圆心为)0,0(C ,半径2=r , ..…………6分圆心C 到直线l 的距离21)3(1122=+=d , 所以直线l被曲线C截得的弦长为6)21()2(222=-. ..…………10分21(C)解:因为正数c b a ,,满足,342=++c b a 所以16)3()2(4)1(2=+++++c b a . 所以)312111()]3()2(4)1(2[161312111+++++⋅+++++=+++++c b a c b a c b a , 162611)122(1612+=++≥...…………8分当且仅当721627,72810,723224-=-=-=c b a 时,取最小值162611+ ...…………10分 22. 解:(1) 记“A,B 两位考生有且只有一位考生获得录取资格”为事件M . A 考生获得录取资格的概率为612131=⨯;B 考生获得录取资格的概率为613121=⨯;所以18561656561)(=⨯+⨯=M P . 答:A,B两位考生有且只有一位考生获得录取资格的概率为185...…………4分 (2) 随机变量X 可能的取值为:0,1,2,3 C 考生获得录取资格的概率为613241=⨯,由(1)得A,B 两位考生获得录取资格的概率均为61. 所以A,B,C 三位考生获得高校综合评价录取资格的人数)61,3(~B X .则,216125)65()0(33===C X P ,21675)61()65()1(1213=⋅==C X P ,21615)61()65()2(2123=⋅==C X P ,2161)61()3(333===C X P随机变量X 的概率分布表如下:21216108216132161522167512161250)(==⨯+⨯+⨯+⨯=X E (人). ..…………8分 答:X的数学期望为21人. ..…………10分 注:(1) 如果随机变量X 的概率分布列写成:)3,2,1,0()61()65()(33=⋅==-k C k X P k k k ,可酌情给分。