人工神经网络及模式识别 ppt课件

合集下载

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

模式识别原理课件-第8章神经网络模式识别法

模式识别原理课件-第8章神经网络模式识别法

可解释性与安全性
可视化技术
利用可视化技术,将神经网络的决策过程和结果以直观的方式呈 现出来,提高可解释性。
模型压缩
通过模型压缩技术,减小模型大小和计算复杂度,同时保持较高的 识别精度,降低模型泄露的风险。
加密技术
利用加密技术对神经网络模型和数据进行保护,防止未经授权的访 问和泄露,提高安全性。
THANKS FOR WATCHING
神经元的输出取决于是 否达到或超过阈值。
激活函数
阈值函数
Sigmoid函数
当净输入信号小于阈值时,输出为0;当净输 入信号大于阈值时,输出为1。
将净输入信号映射到0到1之间,用于二分 类问题。
Tanh函数
ReLU函数
类似于Sigmoid函数,将净输入信号映射到 -1到1之间。
当净输入信号大于0时,输出为该值;当净 输入信号小于等于0时,输出为0。
逐层传递回至输入层。
学习率
控制权重调整幅度的一个参数 ,有助于控制训练速度和防止 过度拟合。
动量法
在反向传播过程中加入上一步 的权重调整量,加快收敛速度 。
正则化
通过添加约束条件来防止过拟 合,如权重衰减、L1/L2正则化
等。
03 常见神经网络类型
前馈神经网络
定义
前馈神经网络是一种最基 础的神经网络,信息从输 入层开始,逐层向前传递, 直至输出层。
卷积神经网络
定义
01
卷积神经网络是一种专门用于处理图像数据的神经网络,通过
模拟人脑视觉皮层的神经元结构实现图像识别。
工作原理
02
卷积神经网络通过卷积运算和池化运算等操作,提取图像中的
局部特征,并逐步构建出完整的图像特征表示。

《人工神经网络》课件

《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。

第6章人工神经网络算法ppt课件

第6章人工神经网络算法ppt课件
1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;

人工神经网络ppt课件

人工神经网络ppt课件
LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率

模式识别人工神经网络以及在模式识别中的应用最全PPT资料

模式识别人工神经网络以及在模式识别中的应用最全PPT资料

第三步,输入X3
WT(2)X3= [0.7 0.8 -0.6 0] [-1 -1 1 0.5]T =-2.1 Y3(2)=sgn(-2.1)=-1
W(3)=W(2)+ η[d3-y3(2)]X3
=[0.5 0.6 -0.4 0.1]T
第四步,返回到第一步,继续训练,直到dp-yp=0
p=1,2,3
11.5 前馈神经网络的反向传播算1982
1982
1987
1984
学习方式
有监督
有监督
有监督
无监督
无监督
无监督
有监督
拓扑结构
前向
前向
前向
前向
反馈
反馈
反馈
活动方式 确定型 确定型 确定型 确定型 确定型 确定型 随机型
11.2 生物神经元的机理
生物神经元的构成
枝蔓(Dendrite)
胞体(Soma)
轴突(Axon) 胞体(Soma)
枝 蔓 ( Dendrite )
胞体(Soma)
轴突(Axon 胞体(So)ma)
突触(Synapse)
生物神经元
枝蔓
x1
w1
轴突
x2
w2
wn 胞体 y
xd
人工神经元
人工神经元:
是构成人工神经网络的最基本单元,是对生物神经元 的模拟,它具备生物神经元的部分特征。
人工神经元的基本概念(续)
输入: x x(1) , , xi, xd T
能够将样本正确分类的权向量并不唯一,一般初始权向量不同, 训练过程和所得到的结果也不同,但都可满足误差为零的要求.
例. 单计算节点感知器有3个 输入,现给定3对训练样本: X1=[-1 1 -2 0]T d1=-1; X2=[-1 0 1.5 -0.5]T d2=-1; X3=[-1 -1 1 0.5]T d3=1.

人工神经网络讲稿ppt课件

人工神经网络讲稿ppt课件

举例:2-3岁小孩能够从人群中认出父母、3-4岁能够顺利地穿过十字路 口,但最先进机器人也难以完成这项任务。
因而模仿人类思维方式能够提升机器人能力
人工神经网络讲稿
5/40
1.2 神经细胞与生物神经网络
1. 神经网络
组织形式 大脑中大约有100亿个神经元,它们相互连接,形成一个复杂庞大网络
系统。所以大脑结构是一个神经(元)网络。 依据预计,每个神经元大约与上千个神经元相互连接。 大脑所形成神经网络是由一些小网络连接而成。依据预计,全部神经元
层次结构:神经元联接按层次排列。 模块结构:主要特点是将整个网络按功效划分为不一样模块,每个模块 内部神经元紧密互联,并完成各自特定功效,模块之间再互联以完成整体功 效; 层次模块结构:将模块结构和层次结构结合起来,使之更靠近人脑神经 系统结构,这也是当前为人们广泛注意一个新型网络互联模式。 依据网络中神经元层数不一样,可将神经网络分为单层网络和多层网络; 依据同层网络神经元之间有没有相互联接以及后层神经元与前层神经元有 没有反馈作用不一样,可将神经网络分为以下各种。
Hopfield网络和BP算法出现,使得人工神经研究出现了复兴。因为人 工神经网络在信息处理方面优点,使得大批学者加入到了这一研究领域, 掀起了神经网络研究新高潮。
人工神经网络讲稿
13/40
4. 全方面发展时期(1987-现在) 1987年在美国召开了第一届国际神经网络学术大会,并宣告成立了
国际神经网络学会,与会代表1600多人。这次大会也宣告了神经网络 学科诞生。神经网络研究进入了一个转折点,其范围不停扩大,领域 几乎包含各个方面。神经网络应用使工业技术发生了很大改变,尤其 是在自动控制领域有了新突破。
互制约,从而能够将层内神经元分为几组,让每组作为一个整体来动作。

【课件】模式识别:神经网络分类精品版

【课件】模式识别:神经网络分类精品版

化函数: o=f(net)
• 1、线性函数(Liner Function)
f(net)=k*net+c
o
c net
o
2、非线性斜面函数(RAMP
FUNCTION)
γ
if net≥θ
f(net)= k*net
if |net|<θ

if net≤-θ
• γ>0为一常数,被称为饱和值,为该神经元 的最大输出。
4、S形函数
o a+b
c=a+b/2
(0,c)
net
a
BP算法
BP算法的基本思想
• BP算法的基本工作过程大概可以分为两个阶段: 1)信号的向前传播,在这个阶段,要求计算出隐 含层和输出层中每一神经元的净输入和输出。 2)误差的向后传播,在这个阶段,要求计算出输 出层和隐含层中每一神经元的误差。
第5讲 神经网络分类
人工神经网络学习概述
• 人工神经网络提供了一种普遍且实用的方法从样 例中学习值为实数、离散值或向量的函数。
• 人工神经网络对于训练数据中的错误健壮性很好。 • 人工神经网络已被成功应用到很多领域,例如视
觉场景分析,语音识别,机器人控制。 • 其中,最流行的网络和算法是20世纪80年代提出
2、弱点:训练速度非常慢、局部极小点的逃离问题、 算法不一定收敛。 3、优点:广泛的适应性和有效性。
BP网络的基本结构
确定BP网络的拓扑结构
• 在开始训练之前,需要确定网络的拓扑结构:出 入层神经元的个数、隐含层神经元的层数及每一 层神经元的个数、输出层神经元的个数。
• 对训练样本中的每一属性的值进行归一化,使其 值落在(0,1)区间,有助于加快学习过程。

人工神经网络课件

人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略

人工神经网络及其应用[PPT课件]

人工神经网络及其应用[PPT课件]

4〕相互结合型网络〔全互联或局部互联〕
相互结合型网络构造如以下图。这种网络在任意两个神经元 之间都可能有连接。在无反响的前向网络中,信号一旦通过, 某神经元,该神经元的处理就完毕了。而在相互结合的网络 中,信号要在神经元之间反复传递,网络处于一种不断改变 状态的动态之中。信号从某初始状态开场,经过假设干次变 化,才会到达某种平衡状态。根据网络的构造和神经元的特 性,网络的运行还有可能进入周期震荡或其他如混沌等平衡 状态。
2〕有反响的前向网路
其构造如以下图。输出层对输入层有信息反响,这种网络 可用于存储某种模式序列。如神经认知机和回归BP网络都 属于这种类型。
3〕层内有相互结合的前向网络
其构造如以下图。通过层内神经元的相互结合,可以实现 同一层内神经元之间的横向抑制或兴奋抑制。这样可以限 制每层内可以同时动作的神经元素,或者把每层内的神经 元分为假设干组,让每一组作为一个整体进展运作。例如, 可以利用横向抑制机理把某层内具有最大输出的神经元挑 选出来,从而抑制其他神经元,使之处于无输出的状态。
➢它是由简单信息处理单元〔人工神经元,简称神经 元〕互联组成的网络,能承受并处理信息。网络的信 息处理由处理单元之间的相互作用来实现,它是通过 把问题表达成处理单元之间的连接权来处理的。
❖ 多年来,学者们建立了多种神经网络模型,决定 其整体性能的三大要素为:
❖ 〔1〕神经元〔信息处理单元〕的特性。 ❖ 〔2〕神经元之间互相连接的形式——拓扑构造。 ❖ 〔3〕为适应环境而改善性能的学习规那么。 ❖ 神经网络是人脑的某种抽象、简化和模拟,反映
Ep (t)
dp yp (t) 2
1 2 [d p
yp (t)]2
1 2
e2p
(t)

人工神经网络及模式识别

人工神经网络及模式识别

Sigmoid函数的特性:
• 非线性,单调性。 • 无限次可微。 • 当权值很大时可近似阑值函数。 • 当权值很小时可近似线性函数。
2022/1/27
11
第11页,本讲稿共69页
3.2.3神经元的学习算法–-Hebb学习规则
• 如果神经元ui接收来自另一神经元uj的输出, 则当这两个神经元同时兴奋时,从uj到ui的 权值wij就得到加强。
2022/1/27
23
第23页,本讲稿共69页
输出层、输入层、隐层
• 三层前馈网络的输出层与输入层是由问题本身决定的。 • 例如,作为模式判别时输入单元数是特征维数,输
出单元数是类数。但中间隐层的单元数如何确定则 缺乏有效的方法。
• 一般来说,问题越复杂,需要的隐层单元越多;或 者说同样的问题,隐层单元越多越容易收敛。但是 隐层单元数过多会增加使用时的计算量,而且会产 生“过学习”效果,使对未出现过的样本的推广能 力变差。
– ①从前向后各层计算各单元
– ②对输出层计算 – ③从后向前计算各隐层
– ④计算并保存各权值修正量 – ⑤修正权值
2022/1/27
21
第21页,本讲稿共69页
• 反向传播算法解决了隐层权值修正问题,但它是用 梯度法求非线性函数极值,因而有可能陷入局部极小
点,不能保证收敛到全局极小点。
• 二层前馈网络的收敛性不受初始值影响,各权值的 初始值可以全设定为零;但三层以上的前馈网络 (含有一个以上隐层)使用反向传播算法时,如果 权值初始值都为零或都相同,隐层各单元不能出现 差异,运算不能正常进行。因此,通常用较小的随 机数(例如-0.3~0.3)作为权值初始值。初始值对 收敛有影响当计算不收敛时,可以改变初始值试算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档