聚乙烯醇及衍生物

合集下载

聚乙烯醇PVA

聚乙烯醇PVA

聚⼄烯醇PVA聚⼄烯醇PV A聚⼄烯醇,有机化合物,⽩⾊⽚状、絮状或粉末状固体,⽆味。

溶于⽔,不溶于汽油、煤油、植物油、苯、甲苯、⼆氯⼄烷、四氯化碳、丙酮、醋酸⼄酯、甲醇、⼄⼆醇等。

微溶于⼆甲基亚砜。

聚⼄烯醇是重要的化⼯原料,⽤于制造聚⼄烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂、胶⽔等。

中⽂名:聚⼄烯醇英⽂名polyvinyl alcohol, vinylalcohol polymer别称:PV A 化学式[C2H4O]n 分⼦量 44.05(单体)CAS登录号9002-89-5熔点230-240℃⽔溶性:溶于⽔外观:⽩⾊⽚状、絮状或粉末状固体闪点:79℃应⽤:粘合剂、乳化剂、分散剂等危险性描述:吸收后对⾝体有害,可燃,具有刺激性。

⽬录1 技术指标2 医药级3 危险性4 急救措施5 消防措施6 泄漏处理7 操作处置8 接触控制9 个体防护10 理化特性特性PV A薄膜制造11 主要⽤途12 配伍禁忌13 ⽤途使⽤产品性能产品⽤途使⽤⽅法贮存消泡剂添加储运14 市场分析技术指标编辑序号指标名称标准1 外观⽩⾊固体粉末2 黏度3~703 PH值 4.5~6.54 ⼲燥失重≤5.05 炽灼残渣≤0.56 酸值≤3.0%7 醇解度85~898 重⾦属≤10PPM聚⼄烯醇产品标准(USP25)低黏度序号指标名称标准1 外观⽩⾊固体粉末2 黏度 4.0~7.03 PH值5~84 平均分⼦量16000~200005 ⼲燥失重≤5.06 炽灼残渣≤2.07 ⽔不溶性杂质≤0.1%8 ⽔解度+9 有机挥发性杂质+10 含量85.0%~115.0% 中黏度序号指标名称标准1 外观⽩⾊固体粉末2 黏度21.0~33.03 PH值5~84 平均分⼦量110000~1300005 ⼲燥失重≤5.06 炽灼残渣≤2.07 ⽔不溶性杂质≤0.1%8 ⽔解度+9 有机挥发性杂质+10 含量85.0%~115.0%序号指标名称标准1 外观⽩⾊固体粉末2 黏度40.0~65.03 PH值5~84 平均分⼦量180000~2000005 ⼲燥失重≤5.06 炽灼残渣≤2.07 ⽔不溶性杂质≤0.1%8 ⽔解度+9 有机挥发性杂质+10 含量85.0%~115.0%医药级编辑医药⽤EG的等级及规格,EG系统的⽤途。

聚乙烯醇的分类

聚乙烯醇的分类
欧洲及朝鲜等国家以天然气乙炔为主,我国 也有套生产装置采用该措施。
❖ [1] 聚乙烯醇旳生产概况及应用.豆礼梅、 刘 元虎精细化工原料及中间体 2023年 第9 期
❖ [2] 聚乙烯醇改性研究旳概况. 刘锋 张康助 王 晓洁.化学与黏合. 2006 年第 28 卷
❖ [3] PVA 复合材料旳研究进展. 张琳琳 2010 年1月
|
|
OCOCH3
OCOCH3
❖ 3.聚乙烯醇旳制备旳反应式
-[ H2C─CH ]- n + CH3OH NaOH -[ H2C─CH ]- n + n CH3COOCH3
|
|
OCOCH3
OH
4.聚乙烯醇旳制备途径
❖ ( 1) 乙烯直接合成法 ) 石油裂解乙烯直接合成
法。目前,国际上生产聚乙烯醇旳工艺路线以乙烯 法占主导 地位,其数量约占总生产能力旳 72%。 石油乙烯法旳工艺特点:生产规模较乙炔法大, 产
❖ [4]牟长荣.吴三华.马延贵聚乙烯醇生产技术 1988
❖ [5]王婧.苑会林.马沛岚.李军聚乙烯醇薄膜旳 生产及应用现状与展望[期刊论文]塑料 2005(02) 等
聚乙烯醇旳分类
❖ 按聚合度可分为超高聚合度(分子量25~30 万)、高聚合度(分子量17~22万),中聚 合度(分子量12~15万)和低聚合度(分子 量2.5~3.5万)。醇解度一般有完全醇解 (醇解度98~100%)、部分醇解(醇解度 87~89%)和醇解度78%三种。
聚乙烯醇旳性质
❖ 1.物理性质 ❖ 聚乙烯醇(PVA)其充填密度约0.20~0.48g/cm3,折射
❖ 2.化学性质
❖ 聚乙烯醇主链大分子上有大量仲羟基,在化 学性质方面有许多与纤维素相同之处。聚乙 烯醇可与多种酸、酸酐、酰氯等作用,生成 相应旳聚乙烯醇旳酯。但其反应能力低于一 般低分子醇类。

聚乙烯醇在造纸行业中的应用

聚乙烯醇在造纸行业中的应用

聚乙烯醇PVA1788、1799在造纸行业中的应用造纸行业专用聚乙烯醇聚乙烯醇在造纸行业用作纸品粘合剂、砂布纸粘合剂。

聚乙烯醇(简称PVA)外观为白色粉末、白色片状、絮状,是一种用途相当广泛的水溶性高分子聚合物,性能介于塑料和橡胶之间,它的用途可分为纤维和非纤维两大用途。

由于PVA具有独特的强力粘接性、皮膜柔韧性、平滑性、耐油性、耐溶剂性、保护胶体性、气体阻绝性、耐磨性以及经特殊处理具有的耐水性,因此除了作纤维原料外,还被大量用于生产涂料、粘合剂、纸品加工剂、乳化剂、分散剂、薄膜等产品,应用范围遍及纺织、食品、医药、建筑、木材加工、造纸、印刷、农业、钢铁、高分子化工等行业。

一、主要产品以及型号主要产品聚乙烯醇PVA0588,PVA1788,PVA2088,PVA1799,PVA2499,PVA2699,PVA2488.,PVA1792二、产品性能聚乙烯醇树脂系列产品系白色固体,外型分颗粒状、粉状、絮状三种;无毒无味、无污染,可在80--90℃水中溶解。

其水溶液有很好的粘接性和成膜性;能耐油类、润滑剂和烃类等大多数有机溶剂;具有长链多元醇酯化、醚化、缩醛化等化学性质。

三、使用方法:聚乙烯醇树脂系列产品均可以在95℃以下的热水中溶解,溶解时,可边搅拌边将本品缓缓加入20℃左右的冷水中充分溶胀、分散和挥发性物资的逸出(切勿在40℃以上的水中加入该产品直接进行溶解,以避免出现包状和皮溶内生现象),而后升温到95℃左右加速溶解,并保温2~2.5小时,直到溶液不再含有微小颗粒。

搅拌速度70~100转/分,升温时,可采用夹套、水浴等间接加热方式,也可采用水蒸汽直接加热;但是,不可用明火直接加热,以免局部过热而分解,若没有搅拌机,可用蒸汽以切线方向吹入的方法,进行溶解。

聚乙烯醇树脂系列产品水溶液浓度一般在12~14%以下;低醇解度聚乙烯醇树脂产品水溶液浓度一般可在20%左右。

检验本品是否完全溶解的方法:取出少量溶液,加入1~2滴碘液,如果出现蓝色团粒状透明体,说明尚未完全溶解,如色泽能均匀扩散,说明已完全溶解。

聚乙烯醇

聚乙烯醇

聚乙烯醇(PV A)是一种水溶性高聚物,性能介于塑料和橡胶之间,用途广泛。

PV A 具有独特的强力粘接性、皮膜柔韧性、平滑性、耐油耐溶剂性、保护胶体性、气体阻绝性、耐磨耗性以及经特殊处理后具有的耐水性,因而除了用于维纶纤维外,还被大量用于生产涂料、胶粘剂、纤维浆料、纸品加工剂、乳化剂、分散剂等产品,应用范围遍及纺织、食品、医药、建筑、造纸等领域。

PV A不但能够溶于水,而且还能溶于含有羟基的极性溶液,具有较好的溶解性和粘度,它的水溶液透明,粘合力好。

PV A与淀粉、塑胶、合成树脂、纤维素的衍生物及各类表面活性剂均能相互混溶并且有较好的稳定性。

PV A形成的薄膜无色透明,具有良好的机械强度,表面光洁而不发粘,氢气、氧气、二氧化碳等气体透过率很低,耐溶剂性好,透光性低,透湿率高,不带电、不吸尘,印刷好,可用于纤维、衣料包装。

纺织浆料和织物整理也是PV A的主要用途之一。

中国产能当状元消费结构变化大目前世界上已经有20多个国家和地区能够生产PV A,我国有13套生产装置,2004年总产能为55.1万t/a。

其中,有3套装置采用天然气乙炔和石油乙烯法,产能为13.5万t/a,占总产能的24.5%;其余10套装置采用电石乙炔法,产能共计41.6万t/a,占总产能的75.5%。

目前世界上PV A产能和产量最大的国家依次是中国、日本、英国和朝鲜。

日本出口量最大,北美和西欧是最大进口地区。

在消费结构上,各国的重点有所不同。

美国在纺织浆料、胶粘剂方面消耗的PV A约占总消费量的50%;用于聚合助剂、纸加工和涂料占21%~23%,并且比例还在上升。

西欧地区在PV A缩甲醛、聚合助剂和纸加工方面消耗的PV A占总消费量的65%~67%,用于纺织浆料和胶粘剂占27%~28%。

日本PV A消耗的重点是维尼纶和胶粘剂,占总消费量的48%~51%;用于纸加工、薄膜和纺织浆料占33%~36%,其中纺织浆料消耗量正在逐年下降。

我国是PV A生产大国,也是消费PV A最多的国家。

PVA的制备——高化实验报告

PVA的制备——高化实验报告

聚乙烯醇的制备——PVAc的合成和醇解2011011743 分1 黄浩一、实验目的1.通过乙酸乙烯酯的溶液聚合,了解溶液聚合原理及过程。

2.掌握用于制备维尼纶的聚乙酸乙烯酯工艺条件的特点。

3.了解高分子化学反应的基本原理及特点。

4.了解聚醋酸乙烯酯醇解反应的原理、特点及影响醇解反应的因素。

二、实验原理(一)PVAc合成:1.聚合机理:自由基聚合。

醋酸乙烯酯是低活性单体、高活性自由基,容易发生链转移,一般转移至醋酸基的端甲基处,如向大分子转移则形成交联产物、向单体和溶剂转移则降低分子量。

为了控制链转移以控制分子量,需要对温度进行控制,温度升高则链转移反应增加,降低分子量,温度降低则反应速率降低,因此要选择适当的反应温度。

因为链转移的存在,聚乙酸乙烯酯(PVAc)为非结晶性聚合物,玻璃化温度较低,性脆,并且呈现出冷流,不能用作塑料制品。

2.实施方法:溶液聚合。

溶液聚合体系由单体、引发剂和溶剂组成,具有反应均匀、聚合热易散发、容易控温、分子量分布均匀等优点。

但同时,溶液聚合也存在着一些缺点,如自由基向溶剂进行链转移,导致分子量降低;单体浓度相对本体聚合降低,使得聚合速率降低;增加了溶剂分离的步骤,增加了工业生产的成本,等等。

因此,溶液聚合通常用于聚合物溶液直接使用的场合,如涂料、粘合剂、合成纤维纺丝液等。

3.聚合条件:本实验使用AIBN为引发剂,甲醇为溶剂,控制聚合温度为70℃,最后通过水浸+水洗的方法,将聚合物与溶剂和单体分离。

AIBN是热引发的引发剂,根据半衰期选择聚合温度在70℃附近;为使聚合终点得以判断,选择低沸点溶剂甲醇,以其气化的气泡来监测体系粘度。

反应方程式如下:O O**OOnn(二)PVAc醇解:本实验为高分子反应,酯的醇解,即酯交换反应,在碱催化下进行。

高分子反应由于链团的屏蔽和分子扩散的阻碍,以及邻基效应、几率效应和溶解度效应等,反应程度普遍不高,与小分子反应存在较大差别。

由于“乙烯醇”易异构化为乙醛,不能通过理论单体“乙烯醇”的聚合来制备聚乙烯醇,只能通过聚乙酸乙烯酯的醇解或水解反应来制备,而醇解法制成的PVA 精制容易,纯度较高,主产物的性能较好,因此工业上通常采用醇解法。

聚乙烯醇(108建筑胶水)

聚乙烯醇(108建筑胶水)

聚乙烯醇.丙烯酰胺胶水详解目前的丙烯酰胺胶水做法有两种:一种是丙烯酰胺共聚后与聚乙烯醇水溶液进行混合,另一种是丙烯酰胺和聚乙烯醇一起在引发剂下进行共聚。

现在常用的是第二种的生产方法。

那么这里有个疑问,这两种方法有没有区别?聚乙烯醇和丙烯酰胺是否会发生反应?丙烯酰胺主要含有双键和酰氨基的两个官能团,能与各种活性单体反应。

聚乙烯醇主要含有羟基一个官能团。

可以进行缩醛化、酯化、醚化等反应。

丙烯酰胺水溶液单独共聚,主要进行的是以双键为主的自由基聚合反应。

聚乙烯醇和丙烯酰胺之间能否反应,国内相关的文献报道比较少。

唯一可参照的是淀粉和丙烯酰胺之间的接枝反应。

在接枝反应中采用氧化还原体系以丙烯酰胺单体接枝改性大分子淀粉。

但聚乙烯醇的分子量比较大,与丙烯酰胺的接枝反应速度远远低于丙烯酰胺单体之间的双键自由基共聚反应。

通过降低聚乙烯醇的分子量,可以提高两者的反应速度。

如聚乙烯醇高温溶解后,加入一定量的双氧水,降低聚乙烯醇的聚合度。

但降低聚合度的话,胶水的粘接强度和稠度都会有所损失,所以这一方法不适合实际应用。

所以,我们可以得出结论:聚乙烯醇和丙烯酰胺之间可以进行接枝反应,但相对于丙烯酰胺单体之间的双键自由基共聚反应,基本上可以忽略不计。

从实际生产中我们也可以看出,共聚和复配,基本性能差不多。

唯一区别的是,丙烯酰胺与聚乙烯醇一起反应后,两者之间的混溶性比较好,不容易分层。

丙烯酰胺单体在氧化还原体系下发生自由基聚合反应,那我们通过操控聚合反应来达到我们所需要的聚合产物。

那首先明确一点,我们需要什么样的聚合产物?我个人认为,在建筑胶水里,我们通过反应来控制胶水的分子量、离子*联度。

分子量——分子量大小,分子量越大,稠度越高;离子性——阴离子、阳离子、非离子和两性离子;交联度——线型、星型、交联网络;分子量是不是越大越好?胶水是不是越稠越好吗?当然不是,如果稠的胶水好用,那很简单,聚丙烯酰胺多加一点。

事实上,我碰到很多客户反应,同样的原料,胶水做稠了反而不好批了。

全生物降解材料聚乙烯醇(PVA)淀粉合金项目简介

全生物降解材料聚乙烯醇(PVA)淀粉合金项目简介

全生物降解材料聚乙烯醇(PVA)/淀粉合金项目简介塑料包装材料质轻、强度高,可制成适应性强的多功能包装材料,因此人们对塑料包装的依赖愈来愈大。

但塑料包装物的大量一次性使用也产生大量废弃物,由于这些废弃物量大、分散、收集再生利用成本高昂,而且其原料大部分属惰性材料,很难在自然环境中降解等原因,使得它们对环境造成的污染和生态平衡的破坏不断积累,已经成为二十一世纪社会与生态的噩梦。

因此解决塑料的自然降解,使塑料进入生态良性循环,解除其对自然与环境的破坏,成为各国科学家与企业开发热点。

降解塑料的研究开发可追溯到20世纪70年代,当时在美国开展了光降解塑料的研究。

20世纪80年代又研究开发了淀粉填充型“生物降解塑料”,其曾风靡一时。

但经过几年应用实践证明,这种材料没有获得令人信服的生物降解效果。

20世纪90年代以来降解塑料技术有了较大进展,并开发了光生物降解塑料、光热降解塑料、淀粉共混型降解塑料、水溶性降解塑料、完全生物降解塑料等许多新品种。

近年来,生物降解塑料特别是生物物质塑料,完全可以融入自然循环,是最有社会与市场前景的降解材料,已在业界成为共识,并有成果不断涌现。

降解塑料是塑料家族中的一员,对它既要求在用前保持或具有普通塑料的特性,而用后又要求在自然环境条件下快速降解。

稳定与降解本是一对矛盾,而要求它在同一产品不同阶段实现,难度很大,是集合尖端高新技术的材料。

降解塑料由于它具有易降解功能,只适于特定的应用领域和某些塑料产品,如一次性包装材料、地膜、医用卫生材料等。

这些产品受污染严重,不易回收,或即使强制收集利用价值不大,效益甚微或无效益。

当前市场所见的相当部分降解塑料属崩坏性降解,尚不能快速降解和完全降解。

它在一定环境条件下和一定周期内可劣化、碎裂成相对较易被环境消纳的碎片(碎末),再经过很长时间,最终能降解,但降解的速度远赶不上废物产生的速度。

完全生物降解塑料在一定环境条件下,能较快和较完全生物降解成CO2和水,它与堆肥化处理方法相结合,作为回收利用的补充,被认为是治理塑料包装废弃物污染环境的好办法,是当前国际上的开发方向。

聚乙烯醇(PVA)的应用开发

聚乙烯醇(PVA)的应用开发
⑤具有羧基的药物分子通过与PVA 的酯化具有缓效释放的效果。 近年来PVA 在制造长效药物中崭露头角。将药物接于PVA 分子链 上, 或者包容于PVA 膜内, 然后口服或埋置于病患组织处, 药物徐徐 释放出来而达到治疗的目的。其优点是药性持久、副作用小。
3、 通过加成形成酰胺键-NHCO-改性
①聚乙烯醇与异氰酸酯加成制备聚乙烯醇聚氨酯。聚
4、乳化稳定剂
利用聚乙烯醉的表面活性,在工业上,它被用作稳定乳化剂使用。 其最大的用途是在醋酸乙烯乳液中用来做醋酸乙烯单体的稳定乳化 剂。也可用来做抓乙烯悬浮聚合的分散稳定剂。
5、薄膜
聚乙烯醇水溶液有良好的成膜性。
纤维包装用薄膜,以玻璃纸为主,尚有聚乙烯、聚氯乙烯、聚丙烯 等,但维纶薄膜的透明度、光泽度、不带电性、强韧性好,与其它薄 膜比较,虽然比较贵但仍占有很大比例。
乙烯醇聚氨酯制成的膜具有很好的抗雾性且具有很高的透 明度, 机械强度达18 ×103 Pa, 撕裂伸长达110%。
②聚乙烯醇与二苯甲基二异氯酸酯反应物用于制备防 腐粘合剂。将聚乙烯醇与二苯甲基二异氰酸酯反应的产物 与甘油醚、苯甲酸盐及少量香料等混合制成为有防腐性能 的粘合剂。
③聚乙烯醇与HMPI反应物应用于制备耐热的涂料。聚 乙烯醇与HMPI反应,制备的涂料具有耐热,同时具有很好耐 油、耐水及稳定性。将聚乙烯醇与HMPI在二异丁基锡引 发下反应物与醋酸乙烯酯及2- 氨基硫酚配制的乳液其膜在 甲苯中, 90℃浸泡1 h, 失重3%。
⑥聚乙烯醇与带有感光基团的苯甲醛缩合制备光敏树脂。
2、聚乙烯醇酯化及应用。
聚乙烯醇与酰氯或羧酸在酸催化下可缩合成聚乙烯醇酯, 由于酯键 有较大极性, 使得聚乙烯醇酯材料会是有较大的光泽度、硬度、很 强的吸水性。因此, 这种聚合物具有广泛的用途。

lubricent uv626成分

lubricent uv626成分

Lubricent UV626是一种广泛应用于润滑油和润滑脂等领域的界面活性剂。

其成分主要包括聚乙烯醇及其乙基酯、聚硅氧烷改性物、矿物油、抗氧剂和防锈剂等。

本文将对Lubricent UV626的成分进行详细介绍,并分析其在润滑油和润滑脂中的应用。

一、聚乙烯醇及其乙基酯Lubricent UV626中的主要成分之一是聚乙烯醇及其乙基酯。

聚乙烯醇具有优异的表面活性,能够在润滑油和润滑脂中起到良好的润滑和抗磨损作用。

而其乙基酯化合物则可以增加润滑脂的黏度和附着性,提高润滑脂在工作温度和压力下的稳定性,从而延长设备的使用寿命。

二、聚硅氧烷改性物除了聚乙烯醇及其乙基酯外,Lubricent UV626中还含有聚硅氧烷改性物。

聚硅氧烷改性物具有优异的耐高温性能和化学稳定性,能够增强润滑油和润滑脂的抗氧化和抗磨损能力,减小摩擦系数,在高温和高压条件下保持润滑脂的稳定性,有效保护设备的润滑部件。

三、矿物油Lubricent UV626中还包含矿物油成分,矿物油是一种优良的基础油,具有良好的润滑性和冲洗性能,能够在设备运行时形成均匀的润滑膜,减小金属表面的摩擦和磨损,延长设备的使用寿命。

四、抗氧剂和防锈剂Lubricent UV626还添加了抗氧剂和防锈剂。

抗氧剂能够延缓润滑油和润滑脂的氧化降解,保持其化学稳定性和润滑性能;防锈剂则能够形成一层保护膜,防止金属表面受到空气、水汽和化学介质的腐蚀,保护设备的表面免受腐蚀的侵害。

在实际应用中,Lubricent UV626常用于工业润滑油和润滑脂的配方中,可用于轴承润滑、齿轮传动、润滑泵和气体压缩机等设备。

其出色的润滑性能和优异的抗氧化性能,使其成为工业润滑领域中备受青睐的添加剂。

Lubricent UV626是一种具有优异润滑性能和抗氧化性能的界面活性剂,其成分包括聚乙烯醇及其乙基酯、聚硅氧烷改性物、矿物油、抗氧剂和防锈剂等。

通过合理配比和混合,Lubricent UV626能够为润滑油和润滑脂提供良好的润滑性能和保护性能,保障工业设备的正常运行和使用寿命。

聚乙烯醇与顺丁烯二酸酐酯化反应的研究

聚乙烯醇与顺丁烯二酸酐酯化反应的研究

聚乙烯醇与顺丁烯二酸酐酯化反应的研究近年来,针对聚乙烯醇(PVA)与顺丁烯二酸酐(AAC)反应的研究受到越来越多学者的关注,该反应可以用于制备淀粉和树脂类高分子材料,可用于食品、医药、纺织、遥感等领域。

本文将详细介绍聚乙烯醇与顺丁烯二酸酐酯化反应的相关研究,并就其未来发展方向进行分析和展望。

首先,本文介绍了聚乙烯醇与顺丁烯二酸酐酯化反应的基本原理和过程。

聚乙烯醇(PVA)本身具有较强的抗氧化性,可以与顺丁烯二酸酐(AAC)反应,从而形成烯丙基聚醚醚(EPE),其分子结构中含有聚乙烯醇及顺丁烯二酸酐的片段。

该反应一般由两步组成,首先是醇和酐的反应,然后是由于产生的烯丙基聚醚醚衍生物的水解而形成酯。

其次,本文介绍了聚乙烯醇与顺丁烯二酸酐酯化反应的变量因素和反应结果,指出不同因素对反应结果的影响。

PVA与AAC反应的初始摩尔比,反应温度和反应时间都是反应结果的重要因素。

通常情况下,PVA与AAC分子比1:2到1:4,反应温度为200℃-250℃,反应时间为4-6小时。

此外,该反应还受重氮介质(如胺、磷酸、吡啶)的影响,添加适量重氮介质可以促进反应,提高产物收率。

综上所述,聚乙烯醇(PVA)与顺丁烯二酸酐(AAC)反应可用于生产淀粉和树脂类高分子材料,它的变量因素和反应结果确定了其应用的各种可能性。

在未来,可以进一步开发改善PVA与AAC反应,使其产物收率更高,从而更好地满足工业应用的要求。

除此之外,科学家和工业界还可以进一步研究PVA与AAC的多组分结构,以及如何应用PVA与AAC在食品、医药、纺织、遥感等领域的方法。

只有充分挖掘和探索聚乙烯醇与顺丁烯二酸酐的反应机理,才能有效地利用这种反应来开发新的高分子材料,以满足世界各地不同领域的需求。

本文详细介绍了聚乙烯醇与顺丁烯二酸酐酯化反应的研究,阐明了该反应的变量因素与反应结果、未来发展趋势等。

未来,有望通过进一步研究PVA与AAC反应,在食品、医药、纺织、遥感等领域开发新型高分子材料,从而实现先进高分子材料的更新换代。

日本积水公司聚乙烯醇在化妆品行业应用市场调研

日本积水公司聚乙烯醇在化妆品行业应用市场调研

聚乙烯醇在化妆品行业应用市场调研前言聚乙烯醇,有机化合物,白色片状、絮状或粉末状固体,无味。

溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。

微溶于二甲基亚砜。

聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。

基本信息中文名称:聚乙烯醇中文别名聚乙烯醇浆糊; 聚乙烯醇薄膜; 维尼纶; 聚乙烯醇纤维; 聚乙烯醇(17-99型); 聚乙烯醇(17-88型)英文名称2:polyvinyl alcohol,vinylalcohol polymer,poval,简称PVA英文别名PV A; polyvinyl alcohol 28-99; polyvinyl alcohol 3-98; polyvinyl alcohol 18-88; polyvinyl alcohol standard 200000; polyvinyl alcohol 15000; polyvinyl alcohol 22000; polyvinyl alcohol 49000; polyvinyl alcohol 72000; polyvinyl alcohol 100000; MOWIOL 4-88; Poly(vinyl alcohol) (Enzyme Grade)(Fully hydrolyzed); poly(1-hydroxyethylene); Poly(vinyl alcohol) (Fully hydrolyzed-very; POLYVINYL ALCOHOL (PV A); Polyvinyl alcohol (Release agent); POL YVINYLIC ALCOHOL; Mowiol?28-99; Mowiol?4-98; Mowiol?3-96; Mowiol?40-88; Vinyl alcohol - polymerisedCAS No.:9002-89-5分子式:[C2H4O]n分子量44.05结构式:PVA无毒安全术语:S24/25 Avoid contact with skin and eyes.避免与皮肤和眼睛接触。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档