超疏水材料的加工
《仿生超疏水纳米材料-聚氨酯涂层的研究》
《仿生超疏水纳米材料-聚氨酯涂层的研究》篇一仿生超疏水纳米材料-聚氨酯涂层的研究一、引言随着科技的不断进步,材料科学领域的研究日益深入,其中仿生超疏水材料因其独特的表面性质,在诸多领域中表现出强大的应用潜力。
本文着重研究了一种仿生超疏水纳米材料/聚氨酯涂层,通过对生物体表超疏水现象的模仿,赋予涂层优异的自清洁、抗污染、抗腐蚀等性能。
该研究对于拓宽超疏水材料的应用范围、推动相关领域的科技进步具有重要意义。
二、背景介绍自然界中,荷叶等生物体表所具有的超疏水现象一直是科学研究的热点。
通过仿生学原理,研究人员从自然界中获取灵感,制备出仿生超疏水材料。
此类材料在接触液体时表现出优良的拒水性能,能够有效保持材料表面的清洁与干爽。
在众多材料中,聚氨酯因其优异的物理性能和良好的可加工性,成为制备超疏水涂层的理想基材。
三、研究内容本研究采用纳米技术,制备出一种仿生超疏水纳米材料/聚氨酯涂层。
首先,通过化学气相沉积法合成具有特殊结构的纳米粒子;然后,将这些纳米粒子与聚氨酯进行复合,制备出涂层材料。
在制备过程中,我们通过控制纳米粒子的形态、尺寸以及分布等参数,优化涂层的超疏水性能。
(一)材料制备本研究所用材料主要包括纳米粒子、聚氨酯及相应的溶剂和添加剂。
具体制备过程包括以下几个步骤:纳米粒子的合成、纳米粒子与聚氨酯的复合、涂层的成膜等。
在制备过程中,严格控制各个步骤的工艺参数,以确保涂层的质量和性能。
(二)表征与性能测试为全面了解涂层的结构和性能,我们采用了多种表征手段和性能测试方法。
包括扫描电子显微镜(SEM)观察涂层的表面形貌、原子力显微镜(AFM)分析涂层的表面粗糙度、接触角测量仪测定涂层的静态和动态接触角等。
此外,我们还对涂层的机械性能、耐候性能、自清洁性能等进行了测试。
四、结果与讨论(一)结果分析1. 通过对涂层表面形貌的观察,我们发现纳米粒子的成功复合使涂层表面呈现出独特的微纳结构,这种结构对于提高涂层的超疏水性能具有重要意义。
超疏水材料的原理及应用
超疏水材料的原理及应用超疏水材料又称为超润湿材料,是一种具有极强润湿性的材料,其原理是利用表面微纳结构设计和涂层技术,在材料表面形成特殊的结构,使液体无法在其表面附着,以实现液体无法渗透的效果。
超疏水材料具有许多独特的性质和广泛的应用,如液体滴落性能、自清洁性、低摩擦性等,因此在各个领域具有广阔的应用前景。
超疏水材料的原理主要包括表面微纳结构和液-固界面特性两个方面。
通过表面微纳结构的设计,可以使液体滴在材料表面时形成球状并迅速滚落,从而达到抗液体渗透的效果。
同时,材料表面微纳结构的形态也可以改变液-固界面的接触角,使得液体滴状物在材料表面上保持球状滚动,阻止液体与材料表面之间的接触,从而实现超疏水效果。
超疏水材料的制备方法主要包括自组装法、电化学法、激光加工法、模板法等。
其中,自组装是一种较为常见的制备方法,通过调节材料的成分和工艺参数,可以控制材料表面的微纳结构形态,实现超疏水效果。
此外,涂层技术也是制备超疏水材料的常用方法之一,通过在材料表面涂覆一层特殊的涂层,可以改变材料表面的液-固界面特性,从而实现超疏水效果。
超疏水材料具有广泛的应用前景。
首先,在防污和自清洁方面,超疏水材料可以阻止污垢和液体的黏附,使表面易于清洁。
例如,在建筑材料方面,超疏水涂料可以延长建筑物的使用寿命,减少清洗和维护成本。
其次,在油污分离方面,超疏水材料可以将油和水分离,实现资源的回收和利用。
例如,在环境污染处理方面,超疏水材料可以用于水油分离、油污吸附等领域,起到净化环境的作用。
此外,超疏水材料还可以在光学、电子、航空航天等领域中发挥作用。
在光学方面,超疏水材料可以应用于抗反射涂层、光学薄膜等领域,提高光学元件的性能。
在航空航天方面,超疏水材料可以应用于飞机机翼和风挡等部位,减少飞行中的气动阻力和气溶胶沾染。
总之,超疏水材料基于表面微纳结构和液-固界面特性的设计和制备,实现了抗液体渗透和自清洁等特性,具有广阔的应用前景。
超疏水材料介绍
自然界中的超疏 水现象
特殊浸润性界面材料 —— 超疏水材料介绍
1.2 影响表面浸润性的因素
影响因素
表面微细结构:Wenzel模型和Cassie模型 表面自由能:化学结构、组成
1.2.1 表面微细结构的影响
(1) Wenzel模型
现象:特殊的表面微细结构能够 增加疏水表面的接触角,减小亲 水表面的接触角。
Wenzel理论:粗糙表面的存在 使得实际上的固液接触面积要 大于表观几何上观察到的面 积,于是增加了疏水性或者亲 水性。
铜-铁酸盐薄膜随晶体生长时间的SEM图
2.2 模板法 模板法制备超疏水性涂层具有操作简单、重复性好、纳米线径比可控等 优点。
荷叶 表面
应用1:南京工大自然科学基金项目做的类荷叶表面疏水结构的SEM图片
PS阴模SEM图
PVA阴模SEM图
PDMS表面图
应用2:Shang等用聚碳酸酯微孔膜做模板,放在由正硅酸乙酯及甲基丙 烯酰氧基三甲氧基硅烷(MPS)配置好的溶胶上,待溶剂蒸发,经500°热 处理去除模板,得到均一竖直排列纳米棒状表面。如下图:
若θ﹤90°,则θ’﹤θ,则亲水性随粗糙度的增加而增加; 若θ﹥90°,则θ’﹥θ,则疏水性随粗糙度的增加而增加。
两个基本前提: ①基底的表面粗糙度与液滴的大小相比可以忽略不计; ②基底表面的几何形状不影响其表面积的大小。 ③适用于中等亲水或者疏水表面。
(2)Cassie模型----气垫模型
大面积超疏水铝表面的电化学加工_徐文骥
( 90923022) . 作者简介:徐文骥( 1964 - ) ,男,教授,博士生导师.
而仿壁虎的高黏附性超疏水表面则可用于昂贵液 体的无损转移[16].
金属基体超疏水表面的制备主要是通过构建 合适的粗糙结构和降低表面能两步法实现[17]. 目 前,已有多种方法可以制备出金属基体超疏水表 面,如阳极氧化法[18]、化学刻蚀法[19 - 20]、物理化 学气相沉积 法[21]、激 光 刻 蚀 法[22]、模 板 法[23] 等, 但这些方法大多只适合于小面积超疏水表面的制 备,很难用于制备大面积超疏水表面. 如: 物理化 学气相沉积法受加工腔室的限制,无法制备出大 面积超疏水表面; 激光刻蚀法加工大面积超疏水 表面则需要昂贵的设备成本和加工成本; 阳极氧 化法需要使用硫酸、磷酸、草酸等酸性电解液,实
NaCl 电解液时,在较优单位面积去除量不变的情况下,单位面积去除速度对铝表面的疏水性几乎无影响,这
有利于实现超疏水表面的高效加工; 加工后的铝表面获得超疏水性的关键在于表面存在合适的二元微纳米
粗糙结构和低表面能涂层.
关键词:电化学加工; 大面积; 超疏水; 移动式阴极
中图分类号:TG66
文献标志码:A 文章编号:1005 - 0299( 2012) 02 - 0052 - 09
Electrochemical machining of large-area superhydrophobic Al surfaces
XU Wen-ji,SONG Jin-long,LIU Xin,SUN Jing,LU Yao
( School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China,E-mail: wenjixu@ dlut. edu. cn)
复合材料表面超疏水
复合材料表面超疏水目录一、内容概要 (2)1.1 复合材料的定义与特点 (2)1.2 超疏水的概念及研究意义 (3)1.3 两者结合的研究背景与现状 (4)二、复合材料表面超疏水制备技术 (5)2.1 物理法 (7)2.2 化学法 (8)2.3 生物法 (9)2.4 复合制备技术 (10)三、复合材料表面超疏水性能表征 (11)3.1 表面形貌分析 (12)3.2 接触角测量 (13)3.3 摩擦学性能测试 (14)3.4 耐久性评估 (15)四、复合材料表面超疏水的应用领域 (16)4.1 自清洁涂层 (18)4.2 油水分离 (18)4.3 防腐蚀涂层 (19)4.4 其他应用领域 (21)五、复合材料表面超疏水性能优化策略 (22)5.1 添加剂优化 (23)5.2 结构设计优化 (24)5.3 制备工艺优化 (25)5.4 环境因素影响及应对策略 (25)六、复合材料表面超疏水技术挑战与前景 (26)6.1 技术挑战及存在问题 (27)6.2 发展趋势与展望 (28)6.3 行业应用前景及预测 (30)七、结论 (31)7.1 研究总结 (31)7.2 研究展望与建议 (33)一、内容概要本文档主要探讨了复合材料表面超疏水的设计、制备及其在各个领域的应用潜力。
通过深入研究复合材料的表面性质和微观结构,我们成功地实现了表面超疏水的性能,并在实际应用中展现出了优异的性能表现。
在理论方面,我们详细阐述了超疏水表面的基本原理和特性,包括表面张力、接触角以及表面粗糙度等因素。
我们还讨论了超疏水表面的形成机制,如化学改性、表面改性和自组装等。
在实验方面,我们介绍了复合材料表面超疏水制备的具体步骤和条件,如溶剂热法、溶剂蒸发法和化学气相沉积法等。
我们还通过改变实验参数,如温度、溶液浓度和搅拌速度等,来优化超疏水表面的性能。
在应用方面,我们展示了复合材料表面超疏水在多个领域中的潜在应用价值,如防雾、防水和自清洁表面等。
超疏水表面的制备 结构与性能研究
3、抗腐蚀性能:通过浸泡实验和电化学测试,评估制备的超疏水金属表面在 腐蚀环境中的抗腐蚀性能。
五、结果与讨论实验结果表明
六、结论本次演示研究了仿生超 疏水金属表面的制备工艺和性能 测量方法
展望未来,超疏水表面在各个领域的应用前景仍然广阔。本次演示的研究成果 对实际应用具有一定的指导意义,但仍需从以下方面进行深入研究:1)优化 制备工艺,提高超疏水表面的批量生产能力;2)研究超疏水表面的抗生物污 损性能,拓展其在生物医学领域的应用;3)探究超疏水表面在其他极端环境 (如高温、低温、强辐射等)下的稳定性和耐久性。
参考内容二
摘要:本次演示旨在研究仿生超疏水金属表面的制备工艺和性能测量方法。首 先,本次演示介绍了超疏水表面的相关理论和知识,为后续制备和性能研究提 供理论基础。接着,本次演示详细阐述了仿生超疏水金属表面的制备工艺和方 法,包括表面微结构加工、低表面能物质修饰等关键环节。
最后,本次演示介绍了性能测量方法,对制备出的仿生超疏水金属表面进行了 水滴接触角、耐久性和抗腐蚀性能等指标的测量和分析。实验结果表明,所制 备的仿生超疏水金属表面具有优异的水滴接触角、耐久性和抗腐蚀性能。
3、表面修饰法:采用表面修饰法将低表面能物质与金属表面牢固结合,提高 其耐久性和稳定性。
四、性能测量方法为评估仿生超 疏水金属表面的性能,本次演示 采用以下方法进行测量:
1、水滴接触角:通过静态接触角测量仪测量水滴在表面上的接触角,评估其 疏水性能。
2、耐久性:通过摩擦实验和热稳定性实验,考察制备的超疏水表面在不同条 件下的耐久性和稳定性。
2、低表面能物质:低表面能物质如氟化物或硅氧烷可以显著降低表面的水滴 滚动阻力。通过选择合适的低表面能物质和制备工艺,可以获得具有优异超疏 水性能的表面。
一种超疏水聚乙烯醇薄膜的制备方法及其材料
一种超疏水聚乙烯醇薄膜的制备方法及其材料1. 准备原材料在本研究中,我们需要的原材料包括:聚乙烯醇(PVA)、改性剂、增塑剂、溶剂等。
其中,PVA是一种高分子化合物,具有优良的机械性能、耐热性和化学稳定性,是制备薄膜的常用材料。
改性剂用于改善PVA的加工性能和力学性能,增塑剂可以增加PVA的柔韧性,溶剂则用于溶解PVA和其他添加剂。
2. 熔融挤出将PVA和其他添加剂按照一定的比例加入到挤出机中,在高温下熔融混合。
通过调整挤出机的螺杆转速和口模尺寸,控制薄膜的厚度和宽度。
熔融挤出过程中,要密切关注物料温度和挤出速度,确保物料在挤出过程中不发生分解或氧化。
3. 薄膜成型将熔融物料通过口模挤出,进入冷却水槽进行冷却定型。
冷却水槽中的水温应控制在一定范围内,以避免薄膜产生收缩或变形。
通过调整口模的间隙和冷却水槽的温度,可以控制薄膜的厚度和表面粗糙度。
4. 冷却定型将成型的薄膜从冷却水槽中取出,放入干燥室中进行自然冷却。
干燥室中的温度和湿度应控制在一定范围内,以避免薄膜产生变形或裂纹。
在冷却定型过程中,要密切关注薄膜的表面质量和厚度变化,及时调整工艺参数。
5. 后处理将冷却定型的薄膜进行后处理,包括热处理、紫外线处理、化学处理等。
热处理可以改善薄膜的力学性能和耐热性,紫外线处理可以改善薄膜的耐候性和表面硬度,化学处理可以改善薄膜的耐化学腐蚀性和亲水性。
根据需要选择合适的后处理方法,以获得所需的薄膜性能。
6. 表面修饰为了提高薄膜的超疏水性能,需要进行表面修饰。
表面修饰的方法包括物理表面处理和化学表面处理。
物理表面处理可以采用机械摩擦、喷砂、电晕等方法,化学表面处理可以采用氧化、还原、接枝等方法。
通过表面修饰可以增加薄膜表面的粗糙度和极性基团数量,提高薄膜的超疏水性能。
7. 性能检测对制备的超疏水聚乙烯醇薄膜进行性能检测,包括表面形貌、表面粗糙度、吸水率、透光率、抗拉强度等方面的检测。
通过性能检测可以评估薄膜的超疏水性能和机械性能等指标,判断其是否符合应用要求。
超疏水表面
关于超疏水表面的基本介绍及其制备【摘要】超疏水表面材料具有防水,防污,可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。
其中关于超疏水表面材料性能的研究及其制备是关键,从微观角度对其性能的说明,介绍和评述超疏水的制备方法,并对该领域的发展进行了展望。
【引言】尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。
直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。
其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。
自从Onda等1996年首次报道在实验室合成出人造超疏水表面以来,这引起了研究人员的广泛兴趣。
总体来说,目前的研究主要集中以下几个领域:1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。
2)使用无机物或在金属表面制备具有超疏水性表面的材料。
3)使用高分子材料制备具有超疏水性的表面。
4)理论研究,主要是通过构建模型以探讨表面结构状况与接触角或滚动角的关系。
超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米纳米级粗糙结构;另外一类是用低表面能物质在微米纳米级粗糙结构上进行修饰处理。
其中,制备合适微米纳米级粗糙结构的方法是相关研究的关键。
从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。
在此对各种制备方法进行分类评述。
【超疏水表面特性】根据水在固体表面的浸润程度,固体可以分为亲水性和疏水性,所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。
对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。
超疏水材料的加工
精选版ppt
3
超疏水材料的简介
超疏水表面
精选版ppt
4
超疏水材料的简介
不同表面水滴接触角界面状态
精选版ppt
5
超疏水材料的简介
超疏水表面形成的原因 固体表面的润湿性能由化学组成和微观结构共同决定:
◆化学组成结构是内因: 低表面自由能物质如含硅、含氟可以得到疏水的效果。
研究表明,光滑体表面接触角最大为120°左右。 ◆表面几何结构有重要影响:
17
( d) 水滴的形貌图 (接触角为 160.4° )
超疏水材料的制备方法
5.溶胶-凝胶法
溶胶一凝胶法就是采用含高化学活性组分的化合 物作为前驱体,一定条件下,在液相中水解、缩聚, 从而生成稳定的透明溶胶体系,溶胶陈化而胶粒间缓 慢聚合,最终形成三维空间网络结构的凝胶。
精选版ppt
18
超疏水材料的制备方法
精选版ppt
9
超疏水材料的制备方法
复制模塑技术制备仿生超疏水表面的操作示意图
精选版ppt
10
超疏水材料的制备方法
2.等离子体法 等离子体是由部分电子被剥夺后的原子及原子团被电离后 产生的正负离子组成的离子化气体状物质,尺度大于德拜 长度的宏观电中性电离气体,其运动主要受电磁力支配, 并表现出显著的集体行为。等离子体是不同于固体、液体 和气体的物质第四态。 等离子体法原理:利用等离子体对表面进行处理,获得粗 糙结构,从而得到超疏水性的材料表面。
具有微细粗糙结构的表面可以有效地提高疏(亲)水表 面的疏(亲)水性能。
精选版ppt
6
超疏水材料的制备方法 制备原理
制备原理
一种是在 粗糙表面 修饰低表 面能物质
一种是将 疏水材料 构筑粗糙 表面
超疏水表面材料的制备与润湿性能研究
超疏水表面材料的制备与润湿性能研究近年来,随着科技的不断发展,人们对材料特性的研究也越来越深入。
超疏水表面材料作为一种具有特殊润湿性能的材料,在油水分离、液体滴落等领域展现出巨大的潜力。
本文将介绍超疏水表面材料的制备方法以及润湿性能的研究。
一、超疏水表面材料的制备超疏水表面材料的制备可以采用物理与化学方法相结合的方式。
其中,常见的物理方法包括微纳加工技术和自组装技术。
微纳加工技术通过利用光刻、电子束曝光等手段,在材料表面形成微米或纳米级别的结构,从而实现超疏水性。
而自组装技术则利用分子间的相互作用,在表面构建特殊结构,达到超疏水效果。
化学方法主要是通过特定的化学反应或表面修饰来制备超疏水表面材料。
例如,利用化学反应在材料表面修饰纳米颗粒,可以实现一种具有微观结构的超疏水表面。
而利用化学反应或热处理改变材料表面的能量状况,则可从能学角度调控材料的润湿性能。
二、超疏水表面材料的润湿性能研究超疏水表面材料的润湿性能研究主要包括接触角测量和液滴形状分析两种方法。
接触角测量是一种常见的液滴测量方法,通过测量液滴与材料表面的接触角来评估润湿性能。
一般情况下,超疏水表面的接触角大于150度,而超疏水材料则可以达到接近180度的极值。
液滴形状分析则是通过对液滴形状的测量和分析,得到液滴在不同表面的接触角和液滴的挺立高度等参数。
通过这些参数,可以进一步了解超疏水表面材料的润湿性能和持久性。
除了润湿性能的基本研究外,人们还在探索超疏水表面材料在实际应用中的潜在价值。
例如,超疏水表面材料在油水分离技术中的应用已经取得了一定的突破。
在这种应用中,超疏水材料可以将油滴分离出水中,从而实现高效的油水分离。
此外,超疏水表面材料在液体滴落方面的研究也引起了广泛关注。
通过控制液滴在超疏水材料表面的行为,可以实现液体的滴吸和微液滴的收集,为微流控和微胶囊制备等领域提供了新的解决方案。
总结起来,超疏水表面材料的制备与润湿性能研究是当前材料领域研究的热点之一。
超疏水材料
超疏水材料超疏水材料是一种具有极高防水性能的材料,能够在接触水的情况下将其迅速排斥并形成水滴滚落的现象,具有很广泛的应用前景。
本文将从超疏水材料的作用、制备方法、应用领域等方面进行介绍。
超疏水材料的作用是基于其特殊的表面结构和化学成分,表面的微小结构使其具有极低的表面能,从而可以将水迅速排斥并滚落,同时又具有耐久性和稳定性。
超疏水材料还具有自清洁、抗污染、耐侵蚀等特点,使其广泛应用于防水、防腐、防污染等领域。
超疏水材料的制备方法有多种,其中包括表面改性、纳米结构、涂层等技术。
表面改性是通过改变材料表面的化学性质,使其具有疏水性。
纳米结构是通过制备微小的纳米结构,使材料表面形成多孔结构,进而实现超疏水性能。
涂层则是将疏水材料涂覆在基材上,形成一层保护层,使其具有超疏水性。
超疏水材料的应用领域非常广泛,其中最常见的就是防水领域。
超疏水材料可以应用于建筑物的外墙、屋顶、地板等,能够有效防止水的渗透,保护建筑内部结构。
此外,超疏水材料还可以应用于船舶、飞机等交通工具的外表面,防止水的侵蚀和污染,提高使用寿命。
此外,超疏水材料还可以应用于高温场合、化学工业、生物医学等领域,用于增加材料的耐高温性能、耐腐蚀性能和抗菌性能。
超疏水材料的研究和应用还处于初级阶段,仍有许多挑战需要克服。
其中包括材料的稳定性、耐久性和加工性等方面。
当前,研究者正在不断探索新的制备方法和材料,以提高超疏水材料的性能和应用范围。
总之,超疏水材料是一种具有极高防水性能的材料,具有自清洁、抗污染、耐侵蚀等特点,并具有广泛的应用前景。
随着制备技术的进一步发展和突破,相信超疏水材料将在更多的领域得到应用,并为人们的生活和工作带来更大的便利和舒适。
超疏水表面的定义
超疏水表面的定义1. 引言超疏水表面是一种特殊的表面结构,其具有非常强的疏水性质,即液体在其上无法附着。
这种表面的应用潜力巨大,可以在许多领域发挥重要作用,如自清洁涂层、防污染材料、液滴传感器等。
本文将详细介绍超疏水表面的定义、原理、制备方法以及应用领域。
2. 超疏水表面的定义超疏水表面是指具有非常高的接触角和低的滑移角的表面。
接触角是指液体与固体界面上形成的接触线与固体表面之间形成的夹角,而滑移角则是指液体在固体表面上滑动时形成的夹角。
当接触角大于90度且滑移角接近于0度时,就可以将该表面称为超疏水表面。
3. 超疏水表面的原理超疏水表面的疏水性质主要源于两个方面:微纳米结构和化学改性。
3.1 微纳米结构超疏水表面通常具有微纳米级别的结构特征,如微凸起、纳米柱状结构等。
这些结构可以使液体在表面上只接触到少量的固体区域,从而减小了液体与固体之间的接触面积,使接触角增大。
微纳米结构还可以形成空气层,在液体滑过表面时降低摩擦力,从而实现液滴无法附着的效果。
3.2 化学改性除了微纳米结构外,化学改性也是实现超疏水表面的重要手段。
通过在表面上引入特定的化学官能团或涂层,可以使表面具有更好的疏水性质。
在聚合物材料上引入氟碳链可以增加表面的亲-疏水性差异,从而提高接触角;在金属材料上进行化学溶液处理可以形成氧化物层,进一步提高疏水性能。
4. 超疏水表面的制备方法制备超疏水表面的方法多种多样,常见的包括物理处理和化学处理。
4.1 物理处理物理处理方法主要是通过改变表面的形貌来实现超疏水性质。
常见的物理处理方法包括刻蚀、薄膜沉积、激光加工等。
刻蚀可以通过化学腐蚀或机械加工来改变表面的形貌,形成微纳米结构;薄膜沉积可以在表面上形成具有特定性质的涂层;激光加工则可以通过瞬间高温和高压来改变材料表面的形貌。
4.2 化学处理化学处理方法主要是通过在材料表面引入特定的化学官能团或涂层来实现超疏水性质。
常见的化学处理方法包括溶液浸泡、溶胶凝胶法、自组装等。
神奇的超疏水材料,灵感来自荷叶
神奇的超疏水材料,灵感来自荷叶神奇的超疏水材料是指能够在水面上形成极为稳定的气体膜,使其表面能够完全不受水的浸润,而在水滴滑落时像水珠一样自行滚动,甚至干净的水滴也能在其表面停留很长一段时间。
这种材料在日常生活中有着非常广泛的应用,比如用在防水衣物、防水设备、防污染材料、防龙卷风飞溅、海上船只表面涂装、冰面航行的船只表面涂装等等。
超疏水材料的研究一直是材料科学的重点领域之一,而触觉机器人目前正在逐步发展并逐渐被人们接受,关于神奇的超疏水材料的制作已然成为一个重要的议题。
有趣的是,这些超疏水材料的设计灵感大多来自大自然,比如鲨鱼皮肤、莲花叶片和最为经典的,荷叶表面。
荷叶是一种生长在水中的植物,可以说是自然界中最为经典的超疏水材料之一。
荷叶表面特殊的结构使得其能够在水面上漂浮并且不被浸润。
这种特殊的表面结构被称为蜡质微结构,由于植物表皮细胞蜡质直连排列且极其规则,表皮细胞形态呈现出微观高度和微纳结构级别的复杂结构。
这些微纳结构上的小颗粒和多孔结构使得水分子无法在其上凝聚并在超疏水表面上形成水滴,从而实现了超疏水性能。
如果我们能够将荷叶表面的这种结构以及特殊性能复制出来,将会对材料科学领域产生极大的影响。
荷叶表面的超疏水效果是令人惊叹的,然而如何将这种效果转化为工程材料并制作出实用的超疏水材料,却是一个极具挑战性的问题。
在过去的几十年里,科学家们一直在致力于深入研究荷叶表面的微观结构和物理机制,并试图将这种结构复制到人造材料上。
经过不懈努力,终于取得了一些成果,成功制作出了一系列具有仿生超疏水性能的人造材料。
研究人员通过对荷叶表面的微观结构进行详细的观察和分析,发现其主要特征是微米级的多孔结构和奇妙的微球状微观结构。
这些微孔和微球状结构能够使得水滴无法在表面停留,而是以极快的速度滚动掉落。
基于这一发现,科学家们开始尝试利用纳米技术手段制备具有相似结构的人造材料。
通过控制材料表面的微观形貌,他们成功地制作出了一系列具有良好超疏水性能的材料。
聚氯乙烯基超疏水材料的制备及应用研究进展
化工进展Chemical Industry and Engineering Progress2022年第41卷第7期聚氯乙烯基超疏水材料的制备及应用研究进展朱雪丹1,姚亚丽1,马利利1,王嘉鑫1,杨杰2,彭磊1,何金梅1,屈孟男1(1西安科技大学化学与化工学院,陕西西安710054;2西安科技大学安全科学与工程学院,陕西西安710054)摘要:聚氯乙烯(PVC )是世界上应用最广泛的塑料之一,因其具有化学和机械特性优异、廉价易得等优点而广泛应用于医疗器械制造、建筑、食品和电子等行业。
PVC 对水的接触角为90°,而在生物医学和金属防腐蚀等领域的应用中,需要PVC 达到超疏水性能。
因此,PVC 基超疏水材料的需求也变得愈加迫切。
本文综述了聚氯乙烯基超疏水材料的分类、制备方法和应用领域,对比了不同种类、不同制备方法的聚氯乙烯基超疏水材料的疏水性能优劣,总结出目前该领域的一些问题,主要包括制备工艺仅限于实验室操作、材料的耐磨耐久性及机械强度有待考察等,并指出该领域的发展方向:①开发简单、环保、低成本的大规模制备工艺;②克服PVC 材料热、光稳定性差的弱点,发扬其耐腐蚀性好、机械强度高的优点,进一步扩大材料的应用范围。
关键词:聚氯乙烯;超疏水;制备;应用;涂层中图分类号:TQ317.9文献标志码:A文章编号:1000-6613(2022)07-3676-13Progress in preparation and application of superhydrophobic materialsbased on polyvinyl chlorideZHU Xuedan 1,YAO Yali 1,MA Lili 1,WANG Jiaxin 1,YANG Jie 2,PENG Lei 1,HE Jinmei 1,QU Mengnan 1(1College of Chemistry and Chemical Engineering,Xi 'an University of Science and Technology,Xi 'an 710054,Shaanxi,China;2College of Safty Science and Engineering,Xi 'an University of Science and Technology,Xi 'an 710054,Shaanxi,China)Abstract:Polyvinyl chloride (PVC)is one of the most widely used plastics in the world because of itsexcellent chemical and mechanical characteristics,the advantages of cheap accessible and widely used in medical equipment manufacturing,construction,food and electronic industries.PVC has a contact angle of 90°to water and is required to achieve superhydrophobic properties in applications such as biomedicaland metal corrosion prevention.Therefore,the demand for PVC-based superhydrophobic materials has become increasingly urgent.In this paper,the classification,preparation methods and application fields of PVC-based superhydrophobic materials are reviewed.The different types,different preparation methodsof hydrophobic performance of polyvinyl chloride based superhydrophobic material are compared.Finally,some problems of this field are summarized,mainly including that the preparation process is limited to laboratory operations,and the wear resistance,durability and mechanical strength of the materials need tobe investigated,etc.The development direction of this field is pointed out:①developing a simple,environmentally friendly,low-cost large-scale preparation processes;②overcoming the weak points of综述与专论DOI :10.16085/j.issn.1000-6613.2021-1683收稿日期:2021-08-09;修改稿日期:2021-09-18。
环氧树脂在超疏水领域的应用_概述及说明
环氧树脂在超疏水领域的应用概述及说明1. 引言1.1 概述在现代科技和工程领域中,超疏水性能的材料和涂层广泛应用于各种领域,包括自清洁表面、抗污染材料、防腐蚀涂层等。
超疏水性能的提升对于解决许多实际问题具有重要意义。
环氧树脂作为一种重要的聚合物材料,在超疏水领域也具备广阔的应用前景。
1.2 文章结构本文主要分为五个章节来探讨环氧树脂在超疏水领域的应用。
首先,我们将介绍环氧树脂的概述,包括其定义、特性以及生产和合成方法。
接着,我们将回顾超疏水技术的发展,并介绍其定义、原理以及材料分类和特点。
随后,我们将详细讨论环氧树脂在超疏水领域的应用,包括改进润湿问题的方法和与其他超疏水材料的复合应用。
最后,我们将总结目前环氧树脂在超疏水领域应用的现状和进展,并展望未来环氧树脂超疏水材料的发展前景。
1.3 目的本文的目的是全面概述环氧树脂在超疏水领域的应用,深入探讨其与其他超疏水材料的复合应用以及其在实际应用中的效果和前景展望。
通过对环氧树脂在超疏水领域的综述,我们将为该领域的研究者提供参考,并促进更多创新技术和方法的发展。
同时,我们也将总结论文的主要观点和贡献,以期对读者提供清晰准确地理解。
2. 环氧树脂的概述2.1 定义和特性环氧树脂是一种重要的高分子材料,由环氧基团与含有活性氢的化合物通过开环聚合反应得到。
它具有许多优良的特性,例如高强度、优异的黏附性、良好的耐化学腐蚀性能等。
这些特性使得环氧树脂广泛应用于涂料、胶粘剂、复合材料等领域。
环氧树脂为无色或淡黄色液态或固体,可通过控制组成和合成方法来调整其物理和化学性质。
它可以与许多不同类型的固化剂(如胺类、酸酐类等)反应形成三维联结网络结构,使其在固化后形成坚硬耐磨的材料。
此外,在不同的配方设计下,环氧树脂还可以具备耐温性、电绝缘性以及其他特殊功能。
2.2 生产和合成方法环氧树脂通常通过将环氧基团丙烯酸盐与双酚A型等含有活性氢原子的化合物进行开环聚合反应来合成。
金属材料表面超疏水涂层的研究进展
金属材料表面超疏水涂层的研究进展目录一、内容描述 (2)1. 超疏水涂层的定义与意义 (3)2. 金属材料表面处理技术的发展背景 (4)二、超疏水涂层材料的研究进展 (5)1. 纳米材料在超疏水涂层中的应用 (6)纳米TiO2、SiO2等颗粒的制备与应用 (7)纳米复合材料的设计与性能优化 (9)2. 有机高分子材料在超疏水涂层中的应用 (10)涂层材料的表面接枝改性技术 (11)自组装单分子层的构筑与性能研究 (12)3. 生物启发型超疏水涂层的研究 (13)蜡烛蜡、硅酮等生物启发材料的模仿与应用 (14)生物矿化原理在涂层设计中的应用 (15)三、超疏水涂层制备方法的研究进展 (17)1. 化学气相沉积法 (18)2. 动力学激光沉积法 (19)3. 离子束溅射法 (20)4. 溶液沉积法 (21)5. 微纳加工技术 (22)四、超疏水涂层性能评价及优化策略 (23)1. 表面张力与接触角测量 (24)2. 耐磨性、耐腐蚀性等性能评估 (26)3. 涂层稳定性与耐久性分析 (27)4. 性能优化策略与实验方法 (28)五、超疏水涂层在特定领域的应用研究进展 (29)1. 抗生物污染涂层的研发与应用 (30)2. 防腐蚀保护涂层的性能研究 (32)3. 光学性能改进的超疏水涂层设计 (33)4. 涂层在航空航天、电子电气等领域的应用探索 (34)六、结论与展望 (35)1. 超疏水涂层技术的发展趋势 (36)2. 存在的问题与挑战 (38)3. 未来研究方向与应用前景展望 (39)一、内容描述随着科技的不断发展,材料科学领域对于表面性能的要求日益提高,尤其是在防水、防污、自清洁等方面具有特殊需求的材料。
金属材料作为现代工业的重要基础材料,其表面性能的优劣直接影响到产品的使用寿命和可靠性。
对金属材料表面进行超疏水涂层的研发和应用成为了当前研究的热点。
超疏水涂层是一种具有特殊表面性能的涂层,其表面的水接触角大于150,表现出“荷叶效应”,即水滴在涂层表面上能够迅速滚落,而不会附着和渗透。
超疏水表面的制备与性能研究
超疏水表面的制备与性能研究在当今科技不断发展的时代,超疏水表面因其独特的性能引起了广泛的关注和研究。
超疏水表面通常是指与水的接触角大于 150°,滚动角小于10°的表面。
这种表面具有自清洁、防腐蚀、抗结冰等优异性能,在许多领域都有着广阔的应用前景,如航空航天、建筑、生物医学等。
超疏水表面的制备方法多种多样,常见的有以下几种:化学刻蚀法是一种较为传统的制备方法。
通过使用强酸、强碱等化学试剂对材料表面进行刻蚀处理,从而形成微观粗糙结构。
例如,使用氢氟酸刻蚀硅表面,可以得到具有一定粗糙度的结构。
但这种方法往往存在环境污染和对材料本身性能可能造成损害的问题。
模板法是利用具有特定结构的模板来制备超疏水表面。
例如,以多孔氧化铝模板为基础,通过电沉积或化学沉积等方法在模板的孔隙中填充材料,然后去除模板,就可以得到具有规则微观结构的超疏水表面。
这种方法能够精确控制表面结构,但模板的制备和去除过程较为复杂。
溶胶凝胶法是一种制备超疏水涂层的常用方法。
将前驱体在溶液中进行水解和缩合反应,形成溶胶,然后通过涂覆、干燥等工艺在基底表面形成凝胶涂层。
通过调整反应条件和添加适当的改性剂,可以控制涂层的粗糙度和化学组成,从而实现超疏水性能。
另外,还有一些新兴的制备方法,如激光刻蚀法、等离子体处理法等。
激光刻蚀法利用激光的高能量对材料表面进行加工,能够快速、精确地制备出具有特定形貌的超疏水表面。
等离子体处理法则通过等离子体中的活性粒子与材料表面发生反应,改变表面的化学组成和粗糙度。
在超疏水表面的性能研究方面,其自清洁性能是一个重要的研究方向。
当水滴在超疏水表面上时,由于表面的低粘附性,水滴很容易滚落,并带走表面的污染物,从而实现自清洁效果。
这种自清洁性能在太阳能电池板、建筑外墙等领域具有很大的应用潜力,可以减少人工清洁的成本和工作量。
防腐蚀性能也是超疏水表面的一个显著特点。
由于水难以在超疏水表面停留和渗透,能够有效地阻止腐蚀介质与基底材料的接触,从而提高材料的耐腐蚀性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
超疏水材料的制备方法
1.模板法 模板法也称复制模塑法,自20世纪90年代提出以来 已经得到了广泛应用。进入21世纪,复制模塑技术也深入 到超疏水表面的制备研究中,尤其是在仿生超疏水表面的 复制中有着独特的优势。
步骤:
1.复制模塑法是指先用一种预聚物A(一般为PDMS,有 时也可采用溶液)复制出荷叶等超疏水植物叶片表面微结 构;
段辉等采用两步酸碱催化溶胶一凝胶法合成了 FR/Si02/PTFE复合涂层,测得该涂层的静态接 触角能达到155°。在扫描电镜照片上能观察到涂 层表面的形貌与荷叶表面的微米与纳米相结合的双 微观结构极其类似。在其中的聚四氟乙烯(PTFE) 增加了凝胶网络体系的网络模数,一定程度上防止 了含凝胶材料在干燥过程中网络结构遭到破坏:另 外,低表面能的醇溶性氟树脂(FR)又有效降低了表 面张力,同时对增大表面湿润角是有帮助的。
超疏水材料的制备方法
聚苯乙烯 Chen等利用纳米球刻蚀的方法首先得到了排列整齐的单层
( PS)纳米珠阵列 ,再用氧等离子体处理以进一步减小纳米珠的尺寸从而得到粗糙 表面 (图 18)。在其表面覆盖 20 nm厚的金膜并用十八硫醇(ODT)进行修饰可以增 强其疏水性。通过调整 PS纳米珠的直径 (440~190 nm)可以控制表面接触角的大 小 (132° ~168° )。
氧等离子体处理后的超疏水 PS纳米珠阵列表面
精选课件
13
超疏水材料的制备方法
3.化学气相沉积法
原理:两种或两种以上的气态原材料导入到一个反应室内, 然后他们相互之间发生化学反应,形成一种新的材料,沉 积到晶片表面上。化学气相沉积法是传统的制备薄膜的技 术。
特点:该方法成本较高 ,一般用于一些特殊材料的制备。
2.固化A并从荷叶表面剥离,得到负型结构的软模板B,然 后以此软模板为图形,经过二次复制最终得到与荷叶表面 特征相似的仿荷叶微结构。
精选课件
9
超疏水材料的制备方法
复制模塑技术制备仿生超疏水表面的操作示意图
精选课件
10
超疏水材料的制备方法
2.等离子体法 等离子体是由部分电子被剥夺后的原子及原子团被电离后 产生的正负离子组成的离子化气体状物质,尺度大于德拜 长度的宏观电中性电离气体,其运动主要受电磁力支配, 并表现出显著的集体行为。等离子体是不同于固体、液体 和气体的物质第四态。 等离子体法原理:利用等离子体对表面进行处理,获得粗 糙结构,从而得到超疏水性的材料表面。
精选课件
3
超疏水材料的简介
超疏水表面
精选课件
4
超疏水材料的简介
不同表面水滴接触角界面状态
精选课件
5
超疏水材料的简介
超疏水表面形成的原因 ຫໍສະໝຸດ 体表面的润湿性能由化学组成和微观结构共同决定:
◆化学组成结构是内因: 低表面自由能物质如含硅、含氟可以得到疏水的效果。
研究表明,光滑体表面接触角最大为120°左右。 ◆表面几何结构有重要影响:
优点:快速、选择性高、表面均匀; 缺点:设备昂贵,且不利于大面积制备。
精选课件
11
超疏水材料的制备方法
McCarthy等在聚四氟乙烯 ( PTFE)存在下 , 用射频等离子体刻蚀聚丙烯 ( PP)制备出粗糙表面。表面与水的前进角 /后退角可达 θA /θR = 172°/169°。
利用射频等离子体刻蚀法在不同刻蚀时间得到的聚丙烯扫描电子形貌图: ( a) 0 min, ( b) 30 min, ( c) 60 min,精(选d课) 9件0 min,( e) 120 min, ( f) 180 min 12
17
( d) 水滴的形貌图 (接触角为 160.4° )
超疏水材料的制备方法
5.溶胶-凝胶法
溶胶一凝胶法就是采用含高化学活性组分的化合 物作为前驱体,一定条件下,在液相中水解、缩聚, 从而生成稳定的透明溶胶体系,溶胶陈化而胶粒间缓 慢聚合,最终形成三维空间网络结构的凝胶。
精选课件
18
超疏水材料的制备方法
精选课件
14
超疏水材料的制备方法
江雷等利用化学气相沉积法在石英基底上制备了各种图案结构的阵列碳纳米管膜, 结果表明 , 水在这些膜表面的接触角都大于 160° , 滚动角都小于 5° , 纳米结构与微 米结构在表面的阶层排列被认为是产生这种高接触角、低滚动角的原因。
利用 CVD法得到的阵列碳纳米管膜的 SEM照片: ( a,b).蜂房结构 (不同放大
精选课件
16
超疏水材料的制备方法
江雷等以聚苯乙烯 ( PS)为原料 ,制备了一种具有新颖的多孔微球与纳米纤维 复合结构的超疏水薄膜,其中多孔微球对薄膜的超疏水性起主要作用 , 而纳米纤 维则交织成一个三维的网络骨架 ,“ 捆绑 ” 住多孔微球 , 增强了薄膜的稳定性。
利用电纺技术得到的复合结精构选课P件S薄膜: ( a~c) SEM图 ,
纳米粒子增强水凝胶
汇报人:张灿 导师:周应山
精选课件
1
目录
1.
研究水凝胶的目的
2.
目前国内外研究现状
3.
目前研究内容
4
现阶段研究进展
精选课件
2
超疏水材料的简介
超疏水材料的概念: 表面的疏水性能通常用材料表面与水静态的接触角和动态 的滚动角来描述。 超疏水表面是指与水的接触角大于150°,而滚动角小于 10°的表面。
精选课件
19
超疏水材料的应用
新型超疏水材料的应用将十分广泛:
▲ 沙漠集水;
▲ 远洋轮船船底涂料,可以达到防污、
防腐的效果;
▲ 室外天线上,建筑玻璃,汽车、飞
倍数 ) , (C).岛状 , (d).柱状精选课件
15
超疏水材料的制备方法
4.静电纺丝法
静电纺丝:静电纺丝就是高分子流体静电雾化的特殊形式, 此时雾化分裂出的物质不是微小液滴,而是聚合物微小射 流,可以运行相当长的距离,最终固化成纤维。
特点:静电纺丝法具有设备简单 , 可大面积快速制备,工艺 可控等特点 ,适用于工业化生产。但它的一个较大缺点就 是表面微结构的可控性与均匀性比较差。
具有微细粗糙结构的表面可以有效地提高疏(亲)水表 面的疏(亲)水性能。
精选课件
6
超疏水材料的制备方法 制备原理
制备原理
一种是在 粗糙表面 修饰低表 面能物质
一种是将 疏水材料 构筑粗糙 表面
精选课件
7
超疏水材料的制备方法
模板法
等离子体 法
化学气相 沉积法
主要方法
静电纺丝 法
溶胶-凝胶 法
精选课件