ASTM D412标准中文版

合集下载

astm d标准中文版

astm d标准中文版

astm d标准中文版ASTM D标准中文版。

ASTM D标准是指美国材料和试验协会制定的一系列标准,涵盖了材料的测试方法、规范和指南。

这些标准被广泛应用于工程材料和产品的生产、测试和质量控制过程中。

ASTM D标准的中文版对于中国的工程领域同样具有重要意义,因此我们有必要对ASTM D标准中文版进行深入了解和研究。

ASTM D标准中文版的内容涵盖了材料的物理性能、化学性能、机械性能、耐久性能等方面的测试方法和规范。

这些标准不仅对于材料的生产和质量控制具有指导意义,也为工程设计和工程质量检验提供了重要依据。

比如,ASTM D638标准规定了塑料拉伸性能的测试方法,ASTM D790标准规定了塑料弯曲性能的测试方法,ASTM D2240标准规定了硬度测试方法等等。

ASTM D标准中文版的制定过程严格遵循科学、公正、公开、透明的原则,确保了标准的权威性和可靠性。

这些标准的制定依据了大量的实验数据和工程实践经验,经过了多次讨论和修订,是经过权威专家和行业代表共同努力形成的。

因此,ASTM D标准中文版具有很高的参考价值和应用前景。

ASTM D标准中文版的应用范围非常广泛,涉及到塑料、橡胶、涂料、油漆、胶粘剂、纤维、润滑油、聚合物、复合材料等各种材料和制品。

这些材料和制品在航空航天、汽车工程、建筑工程、化工、电子电器、环境保护、医疗器械、食品包装等领域都有着重要的应用。

因此,熟练掌握ASTM D标准中文版对于工程技术人员和质量管理人员来说是非常必要的。

总之,ASTM D标准中文版是一系列权威的工程材料和产品测试方法、规范和指南,具有很高的参考价值和应用前景。

我们应该加强对ASTM D标准中文版的学习和应用,不断提高自己的专业水平和工作质量,为推动中国工程材料和产品质量的提高做出积极的贡献。

希望通过我们的共同努力,ASTM D标准中文版能够更好地为中国的工程领域服务,为中国的工程技术进步和工程质量提升作出更大的贡献。

ASTM D412-06A

ASTM D412-06A

Designation:D412–06aStandard Test Methods forVulcanized Rubber and Thermoplastic Elastomers—Tension1This standard is issued under thefixed designation D412;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1These test methods cover procedures used to evaluate the tensile(tension)properties of vulcanized thermoset rubbers and thermoplastic elastomers.These methods are not appli-cable to ebonite and similar hard,low elongation materials. The methods appear as follows:Test Method A—Dumbbell and Straight Section SpecimensTest Method B—Cut Ring SpecimensN OTE1—These two different methods do not produce identical results.1.2The values stated in either SI or non-SI units shall be regarded separately as normative for this standard.The values in each system may not be exact equivalents;therefore each system must be used independently,without combining values.1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2D1349Practice for Rubber—Standard Temperatures for TestingD1566Terminology Relating to RubberD3182Practice for Rubber—Materials,Equipment,and Procedures for Mixing Standard Compounds and Prepar-ing Standard Vulcanized SheetsD3183Practice for Rubber—Preparation of Pieces for Test Purposes from ProductsD3767Practice for Rubber—Measurement of DimensionsD4483Practice for Evaluating Precision for Test Method Standards in the Rubber and Carbon Black Manufacturing IndustriesE4Practices for Force Verification of Testing Machines 2.2ASTM Adjunct:Cut Ring Specimens,Method B(D412)32.3ISO Standards:ISO37Rubber,Vulcanized and Thermoplastic Determina-tion of Tensile Stress-Strain Properties43.Terminology3.1Definitions:3.1.1tensile set—the extension remaining after a specimen has been stretched and allowed to retract in a specified manner, expressed as a percentage of the original length.(D1566) 3.1.2tensile set-after-break—the tensile set measured by fitting the two broken dumbbell pieces together at the point of rupture.3.1.3tensile strength—the maximum tensile stress applied in stretching a specimen to rupture.(D1566)3.1.4tensile stress—a stress applied to stretch a test piece (specimen).(D1566)3.1.5tensile stress at-given-elongation—the stress required to stretch the uniform cross section of a test specimen to a given elongation.(D1566)3.1.6thermoplastic elastomers—a diverse family of rubber-like materials that unlike conventional vulcanized rubbers can be processed and recycled like thermoplastic materials.3.1.7ultimate elongation—the elongation at which rupture occurs in the application of continued tensile stress.3.1.8yield point—that point on the stress-strain curve,short of ultimate failure,where the rate of stress with respect to strain,goes through a zero value and may become negative. (D1566)1These test methods are under the jurisdiction of ASTM Committee D11on Rubber and are the direct responsibility of Subcommittee D11.10on Physical Testing.Current edition approved Dec.15,2006.Published January2007.Originally approved st previous edition approved in2006as D412–06.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Detailed drawings are available from ASTM Headquarters,100Barr Harbor Drive,Conshohocken,PA19428.Order Adjunct No.ADJD0412.4Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.3.1.9yield strain—the level of strain at the yield point. (D1566)3.1.10yield stress—the level of stress at the yield point. (D1566)4.Summary of Test Method4.1The determination of tensile properties starts with test pieces taken from the sample material and includes the preparation of the specimens and the testing of the specimens. Specimens may be in the shape of dumbbells,rings or straight pieces of uniform cross-sectional area.4.2Measurements for tensile stress,tensile stress at a given elongation,tensile strength,yield point,and ultimate elonga-tion are made on specimens that have not been prestressed. Tensile stress,yield point,and tensile strength are based on the original cross-sectional area of a uniform cross-section of the specimen.4.3Measurement of tensile set is made after a previously unstressed specimen has been extended and allowed to retract by a prescribed procedure.Measurement of“set after break”is also described.5.Significance and Use5.1All materials and products covered by these test meth-ods must withstand tensile forces for adequate performance in certain applications.These test methods allow for the measure-ment of such tensile properties.However,tensile properties alone may not directly relate to the total end use performance of the product because of the wide range of potential perfor-mance requirements in actual use.5.2Tensile properties depend both on the material and the conditions of test(extension rate,temperature,humidity,speci-men geometry,pretest conditioning,etc.);therefore materials should be compared only when tested under the same condi-tions.5.3Temperature and rate of extension may have substantial effects on tensile properties and therefore should be controlled. These effects will vary depending on the type of material being tested.5.4Tensile set represents residual deformation which is partly permanent and partly recoverable after stretching and retraction.For this reason,the periods of extension and recovery(and other conditions of test)must be controlled to obtain comparable results.6.Apparatus6.1Testing Machine—Tension tests shall be made on a power driven machine equipped to produce a uniform rate of grip separation of500650mm/min(2062in./min)for a distance of at least750mm(30in.)(see Note2).The testing machine shall have both a suitable dynamometer and an indicating or recording system for measuring the applied force within62%.If the capacity range cannot be changed for a test (as in the case of pendulum dynamometers)the applied force at break shall be measured within62%of the full scale value, and the smallest tensile force measured shall be accurate to within10%.If the dynamometer is of the compensating type for measuring tensile stress directly,means shall be provided to adjust for the cross-sectional area of the specimen.The response of the recorder shall be sufficiently rapid that the applied force is measured with the requisite accuracy during the extension of the specimen to rupture.If the testing machine is not equipped with a recorder,a device shall be provided that indicates,after rupture,the maximum force applied during extension.Testing machine systems shall be capable of mea-suring elongation of the test specimen in minimum increments of10%.N OTE2—A rate of elongation of10006100mm/min(4064in./min) may be used and notation of the speed made in the report.In case of dispute,the test shall be repeated and the rate of elongation shall be at500 650mm/min(2062in./min).6.2Test Chamber for Elevated and Low Temperatures—The test chamber shall conform with the following requirements: 6.2.1Air shall be circulated through the chamber at a velocity of1to2m/s(3.3to6.6ft/s)at the location of the grips or spindles and specimens maintained within2°C(3.6°F)of the specified temperature.6.2.2A calibrated sensing device shall be located near the grips or spindles for measuring the actual temperature.6.2.3The chamber shall be vented to an exhaust system or to the outside atmosphere to remove fumes liberated at high temperatures.6.2.4Provisions shall be made for suspending specimens vertically near the grips or spindles for conditioning prior to test.The specimens shall not touch each other or the sides of the chamber except for momentary contact when agitated by the circulating air.6.2.5Fast acting grips suitable for manipulation at high or low temperatures may be provided to permit placing dumbbells or straight specimens in the grips in the shortest time possible to minimize any change in temperature of the chamber.6.2.6The dynamometer shall be suitable for use at the temperature of test or it shall be thermally insulated from the chamber.6.2.7Provision shall be made for measuring the elongation of specimens in the chamber.If a scale is used to measure the extension between the bench-marks,the scale shall be located parallel and close to the grip path during specimen extension and shall be controlled from outside the chamber.6.3Dial Micrometer—The dial micrometer shall conform to the requirements of Practice D3767(Method A).For ring specimens,see14.10of these test methods.6.4Apparatus for Tensile Set Test—The testing machine described in6.1or an apparatus similar to that shown in Fig.1 may be used.A stop watch or other suitable timing device measuring in minute intervals for at least30min,shall be provided.A scale or other device shall be provided for measuring tensile set to within1%.7.Selection of Test Specimens7.1Consider the following information in making selec-tions:7.1.1Since anisotropy or grain directionality due toflow introduced during processing and preparation may have an influence on tensile properties,dumbbell or straight specimens should be cut so the lengthwise direction of the specimenisparallel to the grain direction when this direction is known.Ring specimens normally give an average of with and across the grain properties.7.1.2Unless otherwise noted,thermoplastic rubber or ther-moplastic elastomer specimens,or both,are to be cut from injection molded sheets or plaques with a thickness of 3.060.3mm.Specimens of other thickness will not necessarily give comparable results.Specimens are to be tested in directions both parallel and perpendicular to the direction of flow in the mold.Sheet or plaque dimensions must be sufficient to do this.7.1.3Ring specimens enable elongations to be measured by grip separation,but the elongation across the radial width of the ring specimens is not uniform.To minimize this effect the width of the ring specimens must be small compared to the diameter.7.1.4Straight specimens tend to break in the grips if normal extension-to-break testing is conducted and should be used only when it is not feasible to prepare another type of specimen.For obtaining non-rupture stress-strain or material modulus properties,straight specimens are quite useful.7.1.5The size of specimen type used will be determined by the material,test equipment and the sample or piece available for test.A longer specimen may be used for rubbers having low ultimate elongation to improve precision of elongation mea-surement.8.Calibration of the Testing Machine8.1Calibrate the testing machine in accordance with Proce-dure A of Practices E 4.If the dynamometer is of the strain-gauge type,calibrate the tester at one or more forcesinFIG.1Apparatus for Tensile SetTestaddition to the requirements in Sections7and18of Practices E4.Testers having pendulum dynamometers may be calibrated as follows:8.1.1Place one end of a dumbbell specimen in the upper grip of the testing machine.8.1.2Remove the lower grip from the machine and attach it, by means of the gripping mechanism to the dumbbell specimen in the upper grip.8.1.3Attach a hook to the lower end of the lower specimen grip mechanism.8.1.4Suspend a known mass from the hook of the lower specimen grip mechanism in such a way as to permit the mass assembly to temporarily rest on the lower testing machine grip framework or holder(see Note3).8.1.5Start the grip separation motor or mechanism,as in normal testing,and allow it to run until the mass is freely suspended by the specimen in the upper grip.8.1.6If the dial or scale does not indicate the force applied (or its equivalent in stress for a compensating type tester) within specified tolerance,thoroughly inspect the testing ma-chine for malfunction(for example,excess friction in bearings and other moving parts).Ensure that the mass of the lower grip mechanism and the hook are included as part of the known mass.8.1.7After machine friction or other malfunction has been removed,recalibrate the testing machine at a minimum of three points using known masses to produce forces of approximately 10,20and50%of capacity.If pawls or rachets are used during routine testing,use them for calibration.Check for friction in the head by calibrating with the pawls up.N OTE3—It is advisable to provide a means for preventing the known mass from falling to thefloor in case the dumbbell should break.8.2A rapid approximate calibration of the testing machine may be obtained by using a spring calibration device.9.Test Temperature9.1Unless otherwise specified,the standard temperature for testing shall be2362°C(73.463.6°F).Specimens shall be conditioned for at least3h when the test temperature is23°C (73.4°F).If the material is affected by moisture,maintain the relative humidity at5065%and condition the specimens for at least24h prior to testing.When testing at any other temperature is required use one of the temperatures listed in Practice D1349.9.2For testing at temperatures above23°C(73.4°F)preheat specimens for1062min for Method A and for662min for Method B.Place each specimen in the test chamber at intervals ahead of testing so that all specimens of a series will be in the chamber the same length of time.The preheat time at elevated temperatures must be limited to avoid additional vulcanization or thermal aging.9.3For testing at temperatures below23°C(73.4°F)condi-tion the specimens at least10min prior to testing.TEST METHOD A—DUMBBELL AND STRAIGHTSPECIMENS10.Apparatus10.1Die—The shape and dimensions of the die for prepar-ing dumbbell specimens shall conform with those shown in Fig.2.The inside faces in the reduced section shall be perpendicular to the plane formed by the cutting edges and polished for a distance of at least5mm(0.2in.)from the cutting edge.The die shall at all times be sharp and free of nicks(see9.2).N OTE4—The condition of the die may be determined by investigating the rupture point on any series of broken(ruptured)specimens.Remove such specimens from the grips of the testing machine,stack the joined-together specimens on top of each other,and note if there is any tendency for tensile breaks to occur at the same position on each of the specimens. Rupture consistently at the same place indicates that the die may be dull, nicked,or bent at that location.10.2Bench Marker—The two marks placed on the speci-men and used to measure elongation or strain are called“bench marks”(see Note5).The bench marker shall consist of a base plate containing two raised parallel projections.The surfaces of the raised projections(parallel to the plane of the base plate) are ground smooth in the same plane.The raised projection marking surfaces shall be between0.05and0.08mm(0.002 and0.003in.)wide and at least15mm(0.6in.)long.The angles between the parallel marking surfaces and the sides of the projections shall be at least75°.The distance between the centers of the two parallel projections or marking surfaces shall be within1%of the required or target bench mark distance.A handle attached to the back or top of the bench marker base plate is normally a part of the bench marker.N OTE5—If a contact extensometer is used to measure elongation, bench marks are not necessary.10.3Ink Applicator—Aflat unyielding surface(hardwood, metal,or plastic)shall be used to apply either ink or powder to the bench marker.The ink or powder shall adhere to the specimen,have no deteriorating effect on the specimen and be of contrasting color to that of the specimen.10.4Grips—The testing machine shall have two grips,one of which shall be connected to the dynamometer.10.4.1Grips for testing dumbbell specimens shall tighten automatically and exert a uniform pressure across the gripping surfaces,increasing as the tension increases in order to prevent slippage and to favor failure of the specimen in the straight reduced section.Constant pressure pneumatic type grips also are satisfactory.At the end of each grip a positioning device is recommended for inserting specimens to the same depth in the grip and for alignment with the direction of pull.10.4.2Grips for testing straight specimens shall be constant pressure pneumatic,wedged,or toggle type designed to trans-mit the applied gripping force over the entire width of the grippedspecimen.FIG.2Standard Dies for Cutting Dumbbell SpecimensDimensions of Standard Dumbbell Dies A(Metric Units)Dimension Units Tolerance Die A Die B Die C Die D Die E Die FA mm61252525161616B mm max404040303030C mm min140140115100125125D mm66B323232323232D-E mm61131313131313F mm62383819193838G mm61141414141414H mm62252525161616L mm62595933335959W mm60.05,–0.001266336Z mm61131313131313A Dies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.Dies dimensioned in metric units are intended for use with apparatus calibrated in metric units.B For dies used in clicking machines it is preferable that this tolerance be60.5mm.FIG.2(continued)11.Specimens11.1Dumbbell Specimens —Prepare five specimens for test-ing.Whenever possible,the test specimens shall be injection molded or cut from a flat sheet not less than 1.3mm (0.05in.)nor more than 3.3mm (0.13in.)thick and of a size which will permit cutting a specimen by one of the standard methods (see Practice D 3182).Sheets may be prepared directly by process-ing or from finished articles by cutting and buffing.If obtained from a manufactured article,the specimen shall be free of surface roughness,fabric layers,etc.in accordance with the procedure described in Practice D 3183.All specimens shall be cut so that the lengthwise portion of the specimens is parallel to the grain unless otherwise specified.In the case of sheets prepared in accordance with Practice D 3182,the specimen shall be 2.060.2mm (0.0860.008in.)thick died out in the direction of the e Die C,Fig.2(unless otherwise noted)to cut the specimens from the sheet with a single impact stroke (hand or machine)to ensure smooth cut surfaces.11.1.1Marking Dumbbell Specimens —Dumbbell speci-mens shall be marked with the bench marker described in 10.2,with no tension on the specimens at the time of marking.Marks shall be placed on the reduced section,equidistant from its center and perpendicular to the longitudinal axis.The between bench mark distance shall be as follows:for Die C or Die D of Fig.2,25.0060.25mm (1.0060.01in.);for any other Die of Fig.2,50.0060.5mm (2.0060.02in.).11.1.2Measuring Thickness of Dumbbell Specimens —Three measurements shall be made for the thickness,one at the center and one at each end of the reduced section.The median of the three measurements shall be used as the thickness in calculating the cross sectional area.Specimens with a differ-ence between the maximum and the minimum thickness exceeding 0.08mm (0.003in.),shall be discarded.The width of the specimen shall be taken as the distance between the cutting edges of the die in the restricted section.11.2Straight Specimens —Straight specimens may be pre-pared if it is not practical to cut either a dumbbell or a ring specimen as in the case of a narrow strip,small tubing or narrow electrical insulation material.These specimens shall be of sufficient length to permit their insertion in the grips used for the test.Bench marks shall be placed on the specimens as described for dumbbell specimens in 11.1.1.To determine the cross sectional area of straight specimens in the form of tubes,the mass,length,and density of the specimen may be required.The cross sectional area shall be calculated from these mea-surements as follows:A 5M /DL(1)where:A =cross-sectional area,cm 2,M =mass,g,D =density,g/cm 3,and L =length,cm.N OTE 6—A in square inches =A (cm 2)30.155.12.Procedure12.1Determination of Tensile Stress,Tensile Strength and Yield Point —Place the dumbbell or straight specimen in the grips of the testing machine,using care to adjust the specimen symmetrically to distribute tension uniformly over the cross section.This avoids complications that prevent the maximum strength of the material from being evaluated.Unless otherwise specified,the rate of grip separation shall be 500650mm/min (2062in./min)(see Note 7).Start the machine and note the distance between the bench marks,taking care to avoid parallax.Record the force at the elongation(s)specified for the test and at the time of rupture.The elongation measurement is made preferably through the use of an extensometer,an autographic mechanism or a spark mechanism.At rupture,measure and record the elongation to the nearest 10%.See Section 13for calculations.N OTE 7—For materials having a yield point (yield strain)under 20%elongation when tested at 500650mm/min (2062in./min),the rate of elongation shall be reduced to 5065mm/min (2.060.2in./min).If the material still has a yield point (strain)under 20%elongation,the rate shall be reduced to 560.5mm/min (0.260.002in./min).The actual rate of separation shall be reported.12.2Determination of Tensile Set —Place the specimen in the grips of the testing machine described in 6.1or the apparatus shown in Fig.1,and adjust symmetrically so as to distribute the tension uniformly over the cross section.Sepa-rate the grips at a rate of speed as uniformly as possible,that requires 15s to reach the specified elongation.Hold the specimen at the specified elongation for 10min,release quickly without allowing it to snap back and allow the specimen to rest for 10min.At the end of the 10min restDimensions of Standard Dumbbell Dies A (U.S.Customary Units)DimensionUnits Tolerance Die A Die B Die C Die D Die E Die F A in.60.041110.620.620.62B in.max 1.6 1.6 1.6 1.2 1.2 1.2C in.min 5.5 5.5 4.5455D in.60.25B 1.25 1.25 1.25 1.25 1.25 1.25D-E in.60.040.50.50.50.50.50.5F in.60.08 1.5 1.50.750.75 1.5 1.5G in.60.040.560.560.560.560.560.56H in.60.081110.630.630.63L in.60.082.32 2.32 1.31 1.31 2.32 2.32W in.60.002,–0.0000.5000.2500.2500.1250.1250.250Zin.60.040.50.50.50.50.50.5A Dies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.BFor dies used in clicking machines it is preferable that this tolerance by 60.02in.FIG.2(continued)period,measure the distance between the bench marks to the nearest1%of the original between bench mark e a stop watch for the timing operations.See Section13for calculations.12.3Determination of Set-After-Break—Ten minutes after a specimen is broken in a normal tensile strength test,carefully fit the two pieces together so that they are in good contact over the full area of the break.Measure the distance between the bench marks.See Section13for calculations.13.Calculation13.1Calculate the tensile stress at any specified elongation as follows:T~xxx!5F~xxx!/A(2) where:T(xxx)=tensile stress at(xxx)%elongation,MPa(lbf/ in.2),F(xxx)=force at specified elongation,MN or(lbf),andA=cross-sectional area of unstrained specimen,m2 (in.2).13.2Calculate the yield stress as follows:Y~stress!5F~y!/A(3) where:Y(stress)=yield stress,that stress level where the yield point occurs,MPa(lbf/in.2),F(y)=magnitude of force at the yield point,MN(lbf), andA=cross-sectional area of unstrained specimen,m2 (in.2).13.3Evaluate the yield strain as that strain or elongation magnitude,where the rate of change of stress with respect to strain,goes through a zero value.13.4Calculate the tensile strength as follows:TS5F~BE!/A(4) where:TS=tensile strength,the stress at rupture,MPa(lbf/ in.2),F(BE)=the force magnitude at rupture,MN(lbf),andA=cross-sectional area of unstrained specimen,m2 (in.2).13.5Calculate the elongation(at any degree of extension)as follows:E5100[L–L~o!#/L~o!(5) where:E=the elongation in percent(of original bench mark distance),L=observed distance between bench marks on the extended specimen,andL(o)=original distance between bench marks(use same units for L and L(o)).13.6The breaking or ultimate elongation is evaluated when L is equal to the distance between bench marks at the point of specimen rupture.13.7Calculate the tensile set,by using Eq5,where L is equal to the distance between bench marks after the10min retraction period.13.8Test Result—A test result is the median of three individual test measurement values for any of the measured properties as described above,for routine testing.There are two exceptions to this and for these exceptions a total offive specimens(measurements)shall be tested and the test result reported as the median offive.13.8.1Exception1—If one or two of the three measured values do not meet specified requirement values when testing for compliance with specifications.13.8.2Exception2—If referee tests are being conducted.TEST METHOD B—CUT RING SPECIMENS14.Apparatus14.1Cutter—A typical ring cutter assembly is illustrated in Fig.3.This is used for cutting rings fromflat sheets by mounting the upper shaft portion of the cutter in a rotating housing that can be lowered onto a sheet held by the rubber holding plate as shown in Fig.4.14.1.1Blade Depth Gauge—This gauge consists of a cylin-drical disk having a thickness of at least0.5mm(0.02in.) greater than the thickness of the rubber to be cut and a diameter less than the inside diameter of the specimen used for adjusting the protrusion of the blades from the body of the cutter.See Fig.3.14.2Rubber Holding Plate—The apparatus for holding the sheet during cutting shall have plane parallel upper and lower surfaces and shall be a rigid polymeric material(hard rubber, polyurethane,polymethylmethacrylate)with holes approxi-mately1.5mm(0.06in.)in diameter spaced6or7mm(0.24 or0.32in.)apart across the central region of the plate.All the holes shall connect to a central internal cavity which can be maintained at a reduced pressure for holding the sheet in place due to atmospheric pressure.Fig.4illustrates the design of an apparatus for holding standard sheets(approximately1503 15032mm)during cutting.14.3Source of Reduced Pressure—Any device such as a vacuum pump that can maintain an absolute pressure below 10kPa(0.1atm)in the holding plate central cavity.14.4Soap Solution—A mild soap solution shall be used on the specimen sheet to lubricate the cutting blades.14.5Cutter Rotator—A precision drill press or other suit-able machine capable of rotating the cutter at an angular speed of at least30rad/s(approximately300r/min)during cutting shall be used.The cutter rotator device shall be mounted on a horizontal base and have a vertical support orientation for the shaft that rotates the spindle and cutter.The run-out of the rotating spindle shall not exceed0.01mm(0.004in.).14.6Indexing Table—A milling table or other device with typical x-y motions shall be provided for positioning the sheet and holder with respect to the spindle of the cutter rotating device.14.7Tensile Testing Machine—A machine as specified in 6.1shall be provided.14.8Test Fixture—A testfixture as shown in Fig.5shall be provided for testing the ring specimens.The testing machine shall be calibrated as outlined in Section8.14.9Test Chamber—A chamber for testing at high and low temperatures shall be provided as specified in6.2.。

astm d31240-1998

astm d31240-1998

ASTM D1240-1998是一项有关塑料软化剂用途测定的标准规范。

本标准规范由美国材料与试验协会(ASTM)制定,用于测定塑料软化剂的适用性和性能。

本文将从以下几个方面对ASTM D1240-1998进行深入解读。

一、标准规范的起源和目的1.1 起源ASTM D1240-1998标准规范最初出版于1954年,经过多次修订和更新。

该标准规范制定的初衷是为了规范塑料软化剂的测试方法,确保其使用的安全性和有效性。

1.2 目的ASTM D1240-1998的主要目的是确定塑料软化剂的相对适用性和性能。

通过该标准规范规定的测试方法,可以评估塑料软化剂在特定条件下的效果,以及对塑料制品性能和可持续性的影响。

二、标准规范的内容和要求2.1 涵盖范围ASTM D1240-1998标准规范主要涵盖以下方面:(1)塑料软化剂的定义和分类;(2)塑料软化剂的化学成分及其检测方法;(3)塑料软化剂的用途测定方法;(4)测试结果的分析和评价。

2.2 主要要求根据ASTM D1240-1998标准规范,进行塑料软化剂的用途测定时,需满足以下主要要求:(1)采用标准化的实验条件和测试设备;(2)确保测试过程的准确性和重复性;(3)严格遵循规定的测试方法和步骤;(4)对测试结果进行科学分析和评价。

三、标准规范的应用和意义3.1 应用领域ASTM D1240-1998标准规范适用于化工、塑料制品生产、科研院所等相关领域,常用于评估和比较不同类型和品牌的塑料软化剂的适用性和性能。

3.2 意义和影响ASTM D1240-1998标准规范的实施,有助于:(1)规范和统一塑料软化剂的测试方法,提高测试结果的可比性和准确性;(2)促进塑料软化剂的研发和生产,推动行业技术进步和产品质量提升;(3)保障塑料制品的使用安全和环境可持续性。

四、标准规范的最新进展和发展趋势4.1 最新进展自ASTM D1240-1998标准规范发布以来,随着塑料工业的发展和技术进步,相关国际标准和行业标准不断涌现。

中国美国橡胶产品检验标准中英文对比表

中国美国橡胶产品检验标准中英文对比表
低释气性材料室温硫化硅酮橡胶的标准规范
用无转子硫化仪测量橡胶性能硫化的标准试验方法 橡胶线的标准试验方法
Standard Test Methods for Rubber8212;Evaluation of IR (Isoprene Rubber) Standard Test Method for Rubber Chemicals-Wet Sieve Analysis of Sulfur Standard Practice for Rubber8212;Identification by Pyrolysis-Gas Chromatography Standard Test Methods for Rubber Property8212;Heat Generation and Flexing Fatigue In Compression Standard Test Methods for Rubber-Evaluation of NBR (Acrylonitrile-Butadiene Rubber) Standard Practice for Evaluating Precision for Test Method Standards in the Rubber and Carbon Black Manufacturing Industries Standard Specification for Slicone Rubber Room Temperature Vulcanizing Low Outgassing Materials Standard Test Method for Rubber Property-Vulcanization Using Rotorless Cure Meters Standard Test Methods for Rubber Thread

ASTM D412

ASTM  D412

Designation:D412–98a(Reapproved2002)e1Standard Test Methods forVulcanized Rubber and Thermoplastic Elastomers—Tension1This standard is issued under thefixed designation D412;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.e1N OTE—Section9.2was editorially updated in January2003.1.Scope1.1These test methods cover procedures used to evaluate the tensile(tension)properties of vulcanized thermoset rubbers and thermoplastic elastomers.These methods are not appli-cable to ebonite and similar hard,low elongation materials. The methods appear as follows:Test Method A—Dumbbell and Straight Section SpecimensTest Method B—Cut Ring SpecimensN OTE1—These two different methods do not produce identical results.1.2The values stated in either SI or non-SI units shall be regarded separately as normative for this standard.The values in each system may not be exact equivalents;therefore each system must be used independently,without combining values.1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:D1349Practice for Rubber—Standard Temperatures for Testing2D1566Terminology Relating to Rubber2D3182Practice for Rubber—Materials,Equipment and Procedures for Mixing Standard Compounds and Prepar-ing Standard Vulcanized Sheets2D3183Practice for Rubber—Preparation of Pieces for Test Purposes from Products2D3767Practice for Rubber—Measurement of Dimensions2 D4483Practice for Determining Precision for Test Method Standards in the Rubber and Carbon Black Industries2E4Practices for Force Verification of Testing Machines3 2.2ASTM Adjunct:Cut Ring Specimens,Method B(D412)42.3ISO Standards:ISO37Rubber,Vulcanized and Thermoplastic Determina-tion of Tensile Stress-Strain Properties53.Terminology3.1Definitions:3.1.1tensile set—the extension remaining after a specimen has been stretched and allowed to retract in a specified manner, expressed as a percentage of the original length.(D1566) 3.1.2tensile set-after-break—the tensile set measured by fitting the two broken dumbbell pieces together at the point of rupture.3.1.3tensile strength—the maximum tensile stress applied in stretching a specimen to rupture.(D1566)3.1.4tensile stress—a stress applied to stretch a test piece (specimen).(D1566)3.1.5tensile stress at-given-elongation—the stress required to stretch the uniform cross section of a test specimen to a given elongation.(D1566)3.1.6thermoplastic elastomers—a diverse family of rubber-like materials that unlike conventional vulcanized rubbers can be processed and recycled like thermoplastic materials.3.1.7ultimate elongation—the elongation at which rupture occurs in the application of continued tensile stress.3.1.8yield point—that point on the stress-strain curve,short of ultimate failure,where the rate of stress with respect to strain,goes through a zero value and may become negative. (D1566)3.1.9yield strain—the level of strain at the yield point. (D1566)1These test methods are under the jurisdiction of ASTM Committee D11onRubber and are the direct responsibility of Subcommittee D11.10on Physical Testing.Current edition approved Dec.10,2002.Published January2003.Originally approved st previous edition approved in1998as D412–98a.2Annual Book of ASTM Standards,V ol09.01.3Annual Book of ASTM Standards,V ol03.01.4Detailed drawings are available from ASTM Headquarters,100Barr Harbor Drive,Conshohocken,PA19428.Order Adjunct No.ADJD0412.5Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.3.1.10yield stress—the level of stress at the yield point. (D1566)4.Summary of Test Method4.1The determination of tensile properties starts with test pieces taken from the sample material and includes the preparation of the specimens and the testing of the specimens. Specimens may be in the shape of dumbbells,rings or straight pieces of uniform cross-sectional area.4.2Measurements for tensile stress,tensile stress at a given elongation,tensile strength,yield point,and ultimate elonga-tion are made on specimens that have not been prestressed. Tensile stress,yield point,and tensile strength are based on the original cross-sectional area of a uniform cross-section of the specimen.4.3Measurement of tensile set is made after a previously unstressed specimen has been extended and allowed to retract by a prescribed procedure.Measurement of“set after break”is also described.5.Significance and Use5.1All materials and products covered by these test meth-ods must withstand tensile forces for adequate performance in certain applications.These test methods allow for the measure-ment of such tensile properties.However,tensile properties alone may not directly relate to the total end use performance of the product because of the wide range of potential perfor-mance requirements in actual use.5.2Tensile properties depend both on the material and the conditions of test(extension rate,temperature,humidity,speci-men geometry,pretest conditioning,etc.);therefore materials should be compared only when tested under the same condi-tions.5.3Temperature and rate of extension may have substantial effects on tensile properties and therefore should be controlled. These effects will vary depending on the type of material being tested.5.4Tensile set represents residual deformation which is partly permanent and partly recoverable after stretching and retraction.For this reason,the periods of extension and recovery(and other conditions of test)must be controlled to obtain comparable results.6.Apparatus6.1Testing Machine—Tension tests shall be made on a power driven machine equipped to produce a uniform rate of grip separation of500650mm/min(2062in./min)for a distance of at least750mm(30in.)(see Note1).The testing machine shall have both a suitable dynamometer and an indicating or recording system for measuring the applied force within62%.If the capacity range cannot be changed for a test (as in the case of pendulum dynamometers)the applied force at break shall be measured within62%of the full scale value, and the smallest tensile force measured shall be accurate to within10%.If the dynamometer is of the compensating type for measuring tensile stress directly,means shall be provided to adjust for the cross-sectional area of the specimen.The response of the recorder shall be sufficiently rapid that the applied force is measured with the requisite accuracy during the extension of the specimen to rupture.If the testing machine is not equipped with a recorder,a device shall be provided that indicates,after rupture,the maximum force applied during extension.Testing machine systems shall be capable of mea-suring elongation of the test specimen in minimum increments of10%.N OTE2—A rate of elongation of10006100mm/min(4064in./min) may be used and notation of the speed made in the report.In case of dispute,the test shall be repeated and the rate of elongation shall be at500 650mm/min(2062in./min).6.2Test Chamber for Elevated and Low Temperatures—The test chamber shall conform with the following requirements: 6.2.1Air shall be circulated through the chamber at a velocity of1to2m/s(3.3to6.6ft/s)at the location of the grips or spindles and specimens maintained within2°C(3.6°F)of the specified temperature.6.2.2A calibrated sensing device shall be located near the grips or spindles for measuring the actual temperature.6.2.3The chamber shall be vented to an exhaust system or to the outside atmosphere to remove fumes liberated at high temperatures.6.2.4Provisions shall be made for suspending specimens vertically near the grips or spindles for conditioning prior to test.The specimens shall not touch each other or the sides of the chamber except for momentary contact when agitated by the circulating air.6.2.5Fast acting grips suitable for manipulation at high or low temperatures may be provided to permit placing dumbbells or straight specimens in the grips in the shortest time possible to minimize any change in temperature of the chamber.6.2.6The dynamometer shall be suitable for use at the temperature of test or it shall be thermally insulated from the chamber.6.2.7Provision shall be made for measuring the elongation of specimens in the chamber.If a scale is used to measure the extension between the bench-marks,the scale shall be located parallel and close to the grip path during specimen extension and shall be controlled from outside the chamber.6.3Dial Micrometer—The dial micrometer shall conform to the requirements of Practice D3767(Method A).For ring specimens,see14.10of these test methods.6.4Apparatus for Tensile Set Test—The testing machine described in6.1or an apparatus similar to that shown in Fig.1 may be used.A stop watch or other suitable timing device measuring in minute intervals for at least30min,shall be provided.A scale or other device shall be provided for measuring tensile set to within1%.7.Selection of Test Specimens7.1Consider the following information in making selec-tions:7.1.1Since anisotropy or grain directionality due toflow introduced during processing and preparation may have an influence on tensile properties,dumbbell or straight specimens should be cut so the lengthwise direction of the specimenisparallel to the grain direction when this direction is known. Ring specimens normally give an average of with and across the grain properties.7.1.2Unless otherwise noted,thermoplastic rubber or ther-moplastic elastomer specimens,or both,are to be cut from injection molded sheets or plaques with a thickness of3.06 0.3mm.Specimens of other thickness will not necessarily give comparable results.Specimens are to be tested in directions both parallel and perpendicular to the direction offlow in the mold.Sheet or plaque dimensions must be sufficient to do this.7.1.3Ring specimens enable elongations to be measured by grip separation,but the elongation across the radial width of the ring specimens is not uniform.To minimize this effect the width of the ring specimens must be small compared to the diameter.7.1.4Straight specimens tend to break in the grips if normal extension-to-break testing is conducted and should be used only when it is not feasible to prepare another type of specimen.For obtaining non-rupture stress-strain or material modulus properties,straight specimens are quite useful.7.1.5The size of specimen type used will be determined by the material,test equipment and the sample or piece available for test.A longer specimen may be used for rubbers having low ultimate elongation to improve precision of elongation mea-surement.8.Calibration of the Testing Machine8.1Calibrate the testing machine in accordance with Proce-dure A of Practice E4.If the dynamometer is of the strain-gage type,calibrate the tester at one or more forces in addition totherequirements in Sections7and18of Practice E4.Testers having pendulum dynamometers may be calibrated as follows: 8.1.1Place one end of a dumbbell specimen in the upper grip of the testing machine.8.1.2Remove the lower grip from the machine and attach it, by means of the gripping mechanism to the dumbbell specimen in the upper grip.8.1.3Attach a hook to the lower end of the lower specimen grip mechanism.8.1.4Suspend a known mass from the hook of the lower specimen grip mechanism in such a way as to permit the mass assembly to temporarily rest on the lower testing machine grip framework or holder(see Note2).8.1.5Start the grip separation motor or mechanism,as in normal testing,and allow it to run until the mass is freely suspended by the specimen in the upper grip.8.1.6If the dial or scale does not indicate the force applied (or its equivalent in stress for a compensating type tester) within specified tolerance,thoroughly inspect the testing ma-chine for malfunction(for example,excess friction in bearings and other moving parts).Ensure that the mass of the lower grip mechanism and the hook are included as part of the known mass.8.1.7After machine friction or other malfunction has been removed,recalibrate the testing machine at a minimum of three points using known masses to produce forces of approximately 10,20and50%of capacity.If pawls or rachets are used during routine testing,use them for calibration.Check for friction in the head by calibrating with the pawls up.N OTE3—It is advisable to provide a means for preventing the known mass from falling to thefloor in case the dumbbell should break.8.2A rapid approximate calibration of the testing machine may be obtained by using a spring calibration device.9.Test Temperature9.1Unless otherwise specified,the standard temperature for testing shall be2362°C(73.463.6°F).Specimens shall be conditioned for at least3h when the test temperature is23°C (73.4°F).If the material is affected by moisture,maintain the relative humidity at5065%and condition the specimens for at least24h prior to testing.When testing at any other temperature is required use one of the temperatures listed in Practice D1349.9.2For testing at temperatures above23°C(73.4°F)preheat specimens for1062min for Method A and for662min for Method B(see Note3).Place each specimen in the test chamber at intervals ahead of testing so that all specimens of a series will be in the chamber the same length of time.The preheat time at elevated temperatures must be limited to avoid additional vulcanization or thermal aging.(Warning—In ad-dition to other precautions,suitable heat or cold resistant gloves should be worn for arm and hand protection when testing at other than23°C(73.4°F).A mask for the face is very desirable for high temperature testing to prevent the inhalation of toxic fumes when the door of the chamber is open.)9.3For testing at temperatures below23°C(73.4°F)condi-tion the specimens at least10min prior to testing.TEST METHOD A—DUMBBELL AND STRAIGHTSPECIMENS10.Apparatus10.1Die—The shape and dimensions of the die for prepar-ing dumbbell specimens shall conform with those shown in Fig. 2.The inside faces in the reduced section shall be perpendicular to the plane formed by the cutting edges and polished for a distance of at least5mm(0.2in.)from the cutting edge.The die shall at all times be sharp and free of nicks(see9.2).N OTE4—The condition of the die may be determined by investigating the rupture point on any series of broken(ruptured)specimens.Remove such specimens from the grips of the testing machine,stack the joined-together specimens on top of each other,and note if there is any tendency for tensile breaks to occur at the same position on each of the specimens. Rupture consistently at the same place indicates that the die may be dull, nicked,or bent at that location.10.2Bench Marker—The two marks placed on the speci-men and used to measure elongation or strain are called“bench marks”(see Note4).The bench marker shall consist of a base plate containing two raised parallel projections.The surfaces of the raised projections(parallel to the plane of the base plate) are ground smooth in the same plane.The raised projection marking surfaces shall be between0.05and0.08mm(0.002 and0.003in.)wide and at least15mm(0.6in.)long.The angles between the parallel marking surfaces and the sides of the projections shall be at least75°.The distance between the centers of the two parallel projections or marking surfaces shall be within1%of the required or target bench mark distance.A handle attached to the back or top of the bench marker base plate is normally a part of the bench marker.N OTE5—If a contact extensometer is used to measure elongation, bench marks are not necessary.10.3Ink Applicator—Aflat unyielding surface(hardwood, metal,or plastic)shall be used to apply either ink or powder to the bench marker.The ink or powder shall adhere to the specimen,have no deteriorating effect on the specimen and be of contrasting color to that of the specimen.10.4Grips—The testing machine shall have two grips,one of which shall be connected to the dynamometer.10.4.1Grips for testing dumbbell specimens shall tighten automatically and exert a uniform pressure across the gripping surfaces,increasing as the tension increases in order to prevent slippage and to favor failure of the specimen in the straight reduced section.Constant pressure pneumatic type grips also are satisfactory.At the end of each grip a positioning device is recommended for inserting specimens to the same depth in the grip and for alignment with the direction of pull.10.4.2Grips for testing straight specimens shall be constant pressure pneumatic,wedged,or toggle type designed to trans-mit the applied gripping force over the entire width of the gripped specimen.11.Specimens11.1Dumbbell Specimens—Whenever possible,the test specimens shall be injection molded or cut from aflat sheet not less than1.3mm(0.05in.)nor more than3.3mm(0.13in.)thick and of a size which will permit cutting a specimen by one of the standard methods (see Practice D 3182).Sheets may be prepared directly by processing or from finished articles by cutting and buffing.If obtained from a manufactured article,the specimen shall be free of surface roughness,fabric layers,etc.in accordance with the procedure described in Practice D 3183.All specimens shall be cut so that the lengthwise portion of the specimens is parallel to the grain unless otherwise specified.In the case of sheets prepared in accor-dance with Practice D 3182,the specimen shall be 2.060.2mm (0.0860.008in.)thick died out in the direction of the e Die C,Fig.2(unless otherwise noted)to cut the specimens from the sheet with a single impact stroke (hand or machine)to ensure smooth cut surfaces.11.1.1Marking Dumbbell Specimens —Dumbbell speci-mens shall be marked with the bench marker described in 10.2,with no tension on the specimens at the time of marking.Marks shall be placed on the reduced section,equidistant from its center and perpendicular to the longitudinal axis.The between bench mark distance shall be as follows:for Die C or Die D of Fig.2,25.0060.25mm (1.0060.01in.);for any other Die of Fig.2,50.0060.5mm (2.0060.02in.).11.1.2Measuring Thickness of Dumbbell Specimens —Three measurements shall be made for the thickness,one at the center and one at each end of the reduced section.The median of the three measurements shall be used as the thickness in calculating the cross sectional area.Specimens with a differ-ence between the maximum and the minimumthicknessFIG.2Standard Dies for Cutting DumbbellSpecimensD 412–98a (2002)e 15exceeding 0.08mm (0.003in.),shall be discarded.The width of the specimen shall be taken as the distance between the cutting edges of the die in the restricted section.11.2Straight Specimens —Straight specimens may be pre-pared if it is not practical to cut either a dumbbell or a ring specimen as in the case of a narrow strip,small tubing or narrow electrical insulation material.These specimens shall be of sufficient length to permit their insertion in the grips used for the test.Bench marks shall be placed on the specimens as described for dumbbell specimens in 11.1.1.To determine the cross sectional area of straight specimens in the form of tubes,the mass,length,and density of the specimen may be required.The cross sectional area shall be calculated from these mea-surements as follows:A 5M /DL(1)where:A =cross-sectional area,cm 2,M =mass,g,D =density,g/cm 3,and L =length,cm.N OTE 6—A in square inches =A (cm 2)30.155.12.Procedure12.1Determination of Tensile Stress,Tensile Strength and Yield Point —Place the dumbbell or straight specimen in the grips of the testing machine,using care to adjust the specimen symmetrically to distribute tension uniformly over the crosssection.This avoids complications that prevent the maximum strength of the material from being evaluated.Unless otherwise specified,the rate of grip separation shall be 500650mm/min (2062in./min)(see Note 6).Start the machine and note the distance between the bench marks,taking care to avoid parallax.Record the force at the elongation(s)specified for the test and at the time of rupture.The elongation measurement is made preferably through the use of an extensometer,an autographic mechanism or a spark mechanism.At rupture,measure and record the elongation to the nearest 10%.See Section 13for calculations.N OTE 7—For materials having a yield point (yield strain)under 20%elongation when tested at 500650mm/min (2062in./min),the rate of elongation shall be reduced to 5065mm/min (2.060.2in./min).If the material still has a yield point (strain)under 20%elongation,the rate shall be reduced to 560.5mm/min (0.260.002in./min).The actual rate of separation shall be reported.12.2Determination of Tensile Set —Place the specimen in the grips of the testing machine described in 6.1or the apparatus shown in Fig.1,and adjust symmetrically so as to distribute the tension uniformly over the cross section.Sepa-rate the grips at a rate of speed as uniformly as possible,that requires 15s to reach the specified elongation.Hold the specimen at the specified elongation for 10min,release quickly without allowing it to snap back and allow the specimen to rest for 10min.At the end of the 10min rest period,measure the distance between the bench marks to theDimensions of Standard Dumbbell Dies A (Metric Units)DimensionUnits Tolerance Die A Die B Die C Die D Die E Die F A mm 61252525161616B mm max 404040303030C mm min 140140115100125125D mm 66B 323232323232D-E mm 61131313131313F mm 62383819193838G mm 61141414141414H mm 62252525161616L mm 62595933335959W mm 60.05,–0.001266336Zmm61131313131313ADies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.Dies dimensioned in metric units are intended for use with apparatus calibrated in metric units.BFor dies used in clicking machines it is preferable that this tolerance be 60.5mm.FIG.2a (continued)Dimensions of Standard Dumbbell Dies A (U.S.Customary Units)DimensionUnits Tolerance Die A Die B Die C Die D Die E Die F A in.60.041110.620.620.62B in.max 1.6 1.6 1.6 1.2 1.2 1.2C in.min 5.5 5.5 4.5455D in.60.25B 1.25 1.25 1.25 1.25 1.25 1.25D-E in.60.040.50.50.50.50.50.5F in.60.08 1.5 1.50.750.75 1.5 1.5G in.60.040.560.560.560.560.560.56H in.60.081110.630.630.63L in.60.082.32 2.32 1.31 1.31 2.32 2.32W in.60.002,–0.0000.5000.2500.2500.1250.1250.250Zin.60.040.50.50.50.50.50.5A Dies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.BFor dies used in clicking machines it is preferable that this tolerance by 60.02in.FIG.2b(continued)nearest1%of the original between bench mark e a stop watch for the timing operations.See Section13for calculations.12.3Determination of Set-After-Break—Ten minutes after a specimen is broken in a normal tensile strength test,carefully fit the two pieces together so that they are in good contact over the full area of the break.Measure the distance between the bench marks.See Section13for calculations.13.Calculation13.1Calculate the tensile stress at any specified elongation as follows:T~xxx!5F~xxx!/A(2) where:T(xxx)=tensile stress at(xxx)%elongation,MPa(lbf/ in.2),F(xxx)=force at specified elongation,MN or(lbf),andA=cross-sectional area of unstrained specimen,m2 (in.2).13.2Calculate the yield stress as follows:Y~stress!5F~y!/A(3) where:Y(stress)=yield stress,that stress level where the yield point occurs,MPa(lbf/in.2),F(y)=magnitude of force at the yield point,MN(lbf), andA=cross-sectional area of unstrained specimen,m2 (in.2).13.3Evaluate the yield strain as that strain or elongation magnitude,where the rate of change of stress with respect to strain,goes through a zero value.13.4Calculate the tensile strength as follows:TS5F~BE!/A(4) where:TS=tensile strength,the stress at rupture,MPa(lbf/ in.2),F(BE)=the force magnitude at rupture,MN(lbf),andA=cross-sectional area of unstrained specimen,m2 (in.2).13.5Calculate the elongation(at any degree of extension)as follows:E5100@L–L~o!#/L~o!(5) where:E=the elongation in percent(of original bench mark distance),L=observed distance between bench marks on the extended specimen,andL(o)=original distance between bench marks(use same units for L and L(o)).13.6The breaking or ultimate elongation is evaluated when L is equal to the distance between bench marks at the point of specimen rupture.13.7Calculate the tensile set,by using Eq5,where L is equal to the distance between bench marks after the10min retraction period.13.8Test Result—A test result is the median of three individual test measurement values for any of the measured properties as described above,for routine testing.There are two exceptions to this and for these exceptions a total offive specimens(measurements)shall be tested and the test result reported as the median offive.13.8.1Exception1—If one or two of the three measured values do not meet specified requirement values when testing for compliance with specifications.13.8.2Exception2—If referee tests are being conducted.TEST METHOD B—CUT RING SPECIMENS14.Apparatus14.1Cutter—A typical ring cutter assembly is illustrated in Fig. 3.This is used for cutting rings fromflat sheets by mounting the upper shaft portion of the cutter in a rotating housing that can be lowered onto a sheet held by the rubber holding plate as shown in Fig.4.14.1.1Blade Depth Gage—This gage consists of a cylin-drical disk having a thickness of at least0.5mm(0.02in.) greater than the thickness of the rubber to be cut and a diameter less than the inside diameter of the specimen used for adjusting the protrusion of the blades from the body of the cutter.See Fig.3.14.2Rubber Holding Plate—The apparatus for holding the sheet during cutting shall have plane parallel upper and lower surfaces and shall be a rigid polymeric material(hard rubber, polyurethane,polymethylmethacrylate)with holes approxi-mately1.5mm(0.06in.)in diameter spaced6or7mm(0.24 or0.32in.)apart across the central region of the plate.All the holes shall connect to a central internal cavity which can be maintained at a reduced pressure for holding the sheet in place due to atmospheric pressure.Fig.4illustrates the design of an apparatus for holding standard sheets(approximately1503 15032mm)during cutting.14.3Source of Reduced Pressure—Any device such as a vacuum pump that can maintain an absolute pressure below10 kPa(0.1atm)in the holding plate central cavity.14.4Soap Solution—A mild soap solution shall be used on the specimen sheet to lubricate the cutting blades.14.5Cutter Rotator—A precision drill press or other suit-able machine capable of rotating the cutter at an angular speed of at least30rad/s(approximately300r/min)during cutting shall be used.The cutter rotator device shall be mounted on a horizontal base and have a vertical support orientation for the shaft that rotates the spindle and cutter.The run-out of the rotating spindle shall not exceed0.01mm(0.004in.).14.6Indexing Table—A milling table or other device with typical x-y motions shall be provided for positioning the sheet and holder with respect to the spindle of the cutter rotating device.14.7Tensile Testing Machine—A machine as specified in 6.1shall be provided.14.8Test Fixture—A testfixture as shown in Fig.5shall be provided for testing the ring specimens.The testing machine shall be calibrated as outlined in Section8.14.9Test Chamber—A chamber for testing at high and low temperatures shall be provided as specified in6.2.。

D412硫化橡胶、热塑性橡胶和热塑性弹性体----抗拉试验方法1

D412硫化橡胶、热塑性橡胶和热塑性弹性体----抗拉试验方法1

D412-92硫化橡胶、热塑性橡胶和热塑性弹性体----抗拉试验方法1 1.范围1.1本试验方法描述了硫化橡胶、热塑性橡胶,和热塑性弹性体的抗拉性能测定方法。

本方法不适用于硬质橡皮及类似的低伸长率的材料,本方法包括如下两种:方法A:哑铃片或直片试样方法B:环形试片1.2无论是用SI单位或非SI单位表示的数值,在本标准中皆认为是标准值,不同系统的值可能不完全相等,因此各系统只能分别使用,而不能混用。

1.3本标准不涉及与之相关的所有安全因素,标准的使用者有责任制定适当的安全、健康的规定,在使用之前确定其规定极限的适用性。

2.参考文件2.1 ASTM标准D1349:橡皮试验标准温度的实施方法2D1566:有关橡皮的名词术语D3182:橡皮试验实施方法:用于混合标准混合物和准备标准硫化试片的材料、设备和程序2D3183:橡皮试验实施方法:由产品准备试片D3767:橡皮试验实施方法:尺寸测定D4483:橡皮试验实施方法:橡皮、炭黑、工业试验方法标准中精确度的确定E4:试验机的负荷检验2.2 ASTM附件:环形试样,方法B(D412)42.3 ISO标准:ISO37:硫化橡皮和热塑性橡皮抗拉性能的测定3.术语:3.1定义:3.1.1拉伸残变:试样按一定方式拉抻,再让其收缩后仍保留的伸长部分。

用原始长度的百分率表示(D1566)3.1.2拉断伸长率:哑铃片拉断后,将两断点对在一起,测出的拉伸残变3.1.3拉伸强度:将试样拉断所需的最大拉力(D1566)3.1.4张力:拉伸试样所用的力(D1566)3.1.5固定伸长力时的张力:将试样断面均匀一致的部分拉到---给定伸长率所需的第力(D1566)3.1.6热塑性弹性体:橡皮类材料的一个分支,与传统的硫化橡皮不同,具有象热塑性材料一样的加工性能和再使用性能3.1.7最大伸长率:试样被拉断的伸长率3.1.8屈服点:张力—变形曲线上的一点(拉断处除外),此时张力随变形的变化率经过一零值,并可能变为负值。

ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法

ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法

名称:D 412—98a(2002年重新批准)硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出建议并准确进行实验。

因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。

这些方法不适用硬橡胶和相似硬度、低延伸率材料。

方法如下:方法A——哑铃状和直片状试样方法B——剪切环形状试样(不适用)注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。

在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。

建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料2.1 ASTM 标准:D 1349 橡胶标准实验温度准则D 1566 与橡胶相关的术语D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则D 3183 实验用产品片准备准则D 3767 橡胶尺寸测量准则D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则E 4 实验机器力检查准则2.2 ASTM 附件:剪切环形试样,方法B (D 412)2.3 ISO 标准:ISO 37 硫化橡胶,热缩性橡胶张应力性能3.1 术语3.1 定义3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。

(D 1566)3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。

(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。

(D 1566)3.1.4 张应力——伸展试样的力。

(D 1566)3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。

ASTM D471橡胶性能的标准试验方法-液体影响(中文版)

ASTM D471橡胶性能的标准试验方法-液体影响(中文版)

橡胶性能的标准试验方法-液体影响1.范围1.1 本实验方法提出了评价橡胶或类橡胶物质抵抗液体作用的相对能力所需的程序。

试验计划:(1)从标准板材(见规范D3182)上裁取硫化橡胶试样,(2)从涂覆硫化橡胶的织物(见试验方法D751)上裁取试样,或(3)采用商业成品(见规范D3183)为试样。

除第11.2.2 所提者外,本试验方法不适用于多孔橡胶、泡沫橡胶和压制包装板材。

1.2 ASTM 油类No.2 和No.3 用作本标准的标准工作液体,目前尚未商业化,且在1993 年分别被IRM902 和IRM903 替代(详见附录XI)。

1.3 本试验方法包括以下试验内容:质量变化(浸泡后)第10 节体积变化(浸泡后)第11 节水不溶液体和混合液体尺寸变化第12 节液体仅在一表面的质量变化第13 节液体可溶提取物质量的测定第14 节抗张强度、伸长率和硬度的变化(浸泡后)第15 节断裂强度、破裂强度、撕裂强度和涂布织物附着力的变化第16 节计算(试验结果)第17 节2.引用文件2.1 ASTM 标准:D 92 用克利福兰得开杯法测定闪点和燃点的试验方法2D 97 石油产品倾点的试验方法2D 287 原油和石油产品API 比重的试验方法(液体比重计法) 2D 412 硫化橡胶、热塑橡胶和热塑合成橡胶张力3D 445 透明和不透明液体运动粘度的试验方法2D 611 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法2D 751 涂层布试验方法4D 975 柴油规格D1217 用宾汉比重瓶法测定液体密度和相对密度(比重)的试验方法2 D 1415 橡胶特性--国际硬度的试验方法3D 1500 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 1747 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 2008 石油产品紫外线吸收度和吸收系数的试验方法2D 2140 石油制绝缘油的碳类成份的测试方法5D 2240 用硬度计测定橡胶硬度的试验方法3D 2699 研究法测定发动机燃料抗震性的试验方法6D 3182 混炼标准化合物及制备标准硫化橡胶试片用橡胶材料、设备及工序规程3D 3183 用橡胶制品制备试验用橡胶试片的规程3D 4483 橡胶和炭黑制造业用试验方法标准精确性的评定规程7D 4485 发动机油功能规范3D 4678 橡胶参考材料的制备、测试、验收、制定文档和使用规程3D 5900 工业标准物质(IRM)的物理及化学性能规格8E 145 重力传送和强制通风炉规格82.2 SAE 标准:J 300 发动机油粘度分类3.试验方法的摘要3.1 本实验方法提供了把测试样品暴露在液体之下所受影响的程序, 经过一定条件的温度和时间。

硅胶拉伸强度测试标准

硅胶拉伸强度测试标准

硅胶拉伸强度测试标准
硅胶的拉伸强度测试是一种常见的测试方法,用于评估硅胶在拉伸力作用下的抗拉断能力。

下面是一些常见的硅胶拉伸强度测试标准:
1. ASTM D412:这是美国材料和试验协会(ASTM)制定的标准,用于评估橡胶及橡胶材料的拉伸性能。

它包括了从常温到高温下的拉伸测试方法和要求。

2. ISO 37:这是国际标准化组织(ISO)制定的标准,用于评估弹性材料的拉伸性能。

它包括了不同温度和速率下的拉伸测试方法和要求。

3. GB/T 528:这是中国标准化组织(GB/T)制定的标准,用于评估橡胶材料的拉伸性能。

它包括了从室温到高温下的拉伸测试方法和要求。

在进行硅胶的拉伸强度测试时,通常会使用一台拉伸试验机,将硅胶样品固定在试验机上的夹具中,然后通过施加拉力来进行拉伸测试。

测试过程中会记录拉伸力和样品的变形情况,根据测试结果计算出硅胶的拉伸强度。

D41298a硫化橡胶和热塑性弹性体的标准测试方法――拉伸

D41298a硫化橡胶和热塑性弹性体的标准测试方法――拉伸

D412-98a硫化橡胶和热塑性弹性体的标准测试方法――拉伸应力1.范围1.1这个测试方法包括以下的用于估计硫化热固性橡胶和热塑性弹性体的拉伸性能的程序。

这些方法在硬橡胶和硬度相似的,低延伸率的材料方面是不适用的。

这些方法如下:测试方法A -亚玲状的和直截面的试样。

测试方法B -剪成环状的试样。

备注1――这两种不同的方法会产生不同的结果。

1.2这些用国际单位制或者是非国际单位制表示的数值应该被认为是这个标准分开的规范化。

在每一个系统的这些数值是不用精确相等;因此每一个系统必须独立使用,不能把数字混合。

1.3这个标准并不是为了引起在使用过程中的所有的安全重视,这只是一个对这个标准的使用者责任,使他建立一个恰当的安全和健康的操作规程和决定调整优先使用方法的适用性。

2. 参考文献2.1 ASTM标准:D 1349橡胶实践――测试的标准温度。

D 1566与橡胶有关的术语D 3128橡胶实践――混合标准化合物和预先准备标准的硫化片材料,设备和过程。

D 3183橡胶实践――从产品上才下来的用于测试目的预先准备好的片材。

D 3767橡胶实践――尺寸的测量D 4483橡胶和碳黑工业在测试方法标准上的决定精度的实践。

E 4测试机器上的力的校验2.2 ASTM附件圆环形的试样,B方法(D412)2.3 ISO 37硫化和热塑性性橡胶,拉伸应力特性的决定方法。

3. 专业术语3.1定义:3.1.1压缩形变――样品被拉伸后回复到特定的形状后剩下的延长率,用于与原来长度的比值的百分比计算。

(D 1566)3.1.2 断裂后的压缩形变――一种身长率的测试方法,是通过把在一点处断裂的两个哑铃状的片放好再测量它的身长率。

3.1.3 拉伸强度――把一个样品拉断时的的最大的拉伸应力。

(D 1566)3.1.4 拉伸应力――拉伸一个试样时的应力。

(D 1566)3.1.5 在给定身长率下的拉伸应力――把有相同截面积的试样拉伸到一个给定的伸长率时的应力。

ASTM D412硫化橡胶和热塑性弹性体拉伸试验方法

ASTM D412硫化橡胶和热塑性弹性体拉伸试验方法

名称:D 412—98a(2002年重新批准)硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出建议并准确进行实验。

因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。

这些方法不适用硬橡胶和相似硬度、低延伸率材料。

方法如下:方法A——哑铃状和直片状试样方法B——剪切环形状试样(不适用)注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。

在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。

建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料2.1 ASTM 标准:D 1349 橡胶标准实验温度准则D 1566 与橡胶相关的术语D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则D 3183 实验用产品片准备准则D 3767 橡胶尺寸测量准则D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则E 4 实验机器力检查准则2.2 ASTM 附件:剪切环形试样,方法B (D 412)2.3 ISO 标准:ISO 37 硫化橡胶,热缩性橡胶张应力性能3.1 术语3.1 定义3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。

(D 1566)3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。

(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。

(D 1566)3.1.4 张应力——伸展试样的力。

(D 1566)3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。

美标ASTM标准的中文对照大全

美标ASTM标准的中文对照大全

美标A S T M标准的中文对照大全(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除ASTM A6/A6M-2004 a结构用轧制钢板、型钢、板桩和棒钢通用要求ASTM A36/A36M2004碳结构钢标准规范ASTM A106-2002a高温用无缝碳钢公称管规范ASTM A143-2003热侵镀锌结构钢制品防脆化的标准实施规程和催化探测方法ASTM A179/A179M-1990a(R2001)热交换器和冷凝器用无缝冷拉低碳钢管标准规范ASTM A192-2002高压设备用无缝碳钢锅炉管标准规范ASTM A209/A209M-2003锅炉和过热器用无缝碳钼合金钢管标准规范ASTM A210/A210M-2003锅炉和过热器用无缝中碳钢管技术条件ASTM A213/A213Mb-2004锅炉过热器和换热器用无缝铁素体和奥氏体合金钢传热管技术条件ASTM A234/A234M-2004中、高温用锻制碳钢和合金钢管道配件ASTM A252-98(R2002)焊接钢和无缝钢管桩的标准规范ASTM A262-2002a探测奥氏体不锈钢晶间腐蚀敏感度的标准实施规范ASTM A269/A269-2004通用无缝和焊接奥氏体不锈钢管标准规范ASTM A333/A333M-2004低温设备用无缝和焊接钢管的规范标准ASTM A334/A334M-2004低温设备用无缝和焊接碳素和合金钢管的标准规范ASTM A335-2003高温设备用无缝铁素体合金钢管标准规范ASTM A370/A370M-2003a钢制品力学性能试验方法和定义标准ASTM A387/A387M-2003压力容器用铬钼合金钢板的标准规范ASTM A403/A403M-2004锻制奥氏体不锈钢管配件的标准规范ASTM A450/A450M-2004碳素钢管、铁素体合金钢管及奥氏体合金钢管一般要求的标准规范ASTM A500-2003a圆形与异型冷成型焊接与无缝碳素钢结构管标准规范ASTM A515-2003中温及高温压力容器用碳素钢板的标准规范ASTM A516-2004a中温及低温压力容器用碳素钢板的标准规范ASTM A530-2003特种碳素钢和合金钢管一般要求的标准规范ASTM A615/A615M-2004a混凝土配筋用异形钢筋和无节钢胚棒标准规范ASTM A703/A703M-2004标准技术条件—承压件钢铸件通用要求ASTM A781/A781M-2004a铸件、钢和合金的标准规范及通用工业的一般性要求ASTM A788/A788M-2004a标准技术条件—钢锻件通用要求ASTM B209/B209M -2004铝和铝合金薄板和中厚板标准规范ASTM E6-2003金属材料布氏硬度的标准测试方法ASTM E18-2003金属材料洛氏硬度和洛氏表面硬度的标准测试方法ASTM E29-2002使用有效数字确定试验数据与规范符合性作法ASTM E8-2004金属材料拉伸试验的标准测试方法ASTM E94-2004放射性检查的标准指南ASTM E125-1963(R2003)铁铸件的磁粉检验用标准参考照片ASTM E164-2003焊件的超声接触检验的标准操作规程ASTM E208-1995a(R2000)用导向落锤试验测定铁素体钢无塑性转变温度的标准试验方法ASTM E213-2004金属管超声检验方法ASTM F36-1995测定垫片材料压缩率及回弹率的标准试验方法ASTM F37-1995垫片材料密封性的标准试验方法ASTM F38-1995垫片材料的蠕变松弛的标准试验方法ASTM F112-1995色覆垫片密封性能的标准试验方法ASTM F146-1995a垫片材料耐液体标准试验方法ASTM F1311-1995(R2001)大口径组装式碳钢法兰标准规范ASTM G1-2003腐蚀试样的制备、清洁处理和评定用标准实施规范ASTM G36-73(R1981) 参考资料标准实用规程:在沸的氯化镁溶液中进行的应力腐蚀裂纹试验ASTM G46-1976(R1986) 参考资料标准实用规程:麻点腐蚀的检验和评定ASTM G48-1976(R1980) 参考资料使用三氯化铁溶液做不锈钢及其合金的耐麻点腐蚀和抗裂口腐蚀性试验的标准方法ASTM标准中译本丛书(一)碳钢、铸铁、不锈钢及合金钢材料标准规范(含18个标准)ASTM A105/A105M-2002管道部件用碳钢锻件ASTM A126-1995(R2001)阀门、法兰和管道附件用灰铁铸件ASTM A181/A181M-2001通用管路用碳钢锻件标准规范ASTM A193/A193M-2001高温用合金钢和不锈钢螺栓材料ASTM A194/A194M-2001 a高温用合金钢和不锈钢螺栓材料ASTM A216/A216M-2001 a高温用可熔焊碳钢铸件标准规范ASTM A217/A217M-2002高温承压件用马氏体不锈钢和合金钢铸件标准规范ASTM A276-2002 a不锈钢棒材和型材ASTM A278/A278M-2001高温不超过650°F(350℃)的承压部件用灰铸铁件 ASTM A320/A320M-2002低温用合金钢栓接材料 ASTM A350/A350M-2002要求冲击韧性试验的管件用碳钢及低合金钢锻件标准规范 ASTM A351/A351M-2000承压件用奥氏体、奥氏体-铁素体(双相)钢铸件规范ASTM A352/A352M-1993(R1998)低温承压件用铁素体和马氏体钢铸件标准规范 ASTM A395/A395M-1999高温用铁素体球墨铸铁承压铸件 ASTM A439-1983(R1999)奥氏体球墨铸铁件 ASTM A536-1984(R1999)球墨铸铁件 ASTM A694/A694M-2000高温输送用管法兰、管件、阀门及零件用碳钢和合金钢锻件标准规范 ASTM A965/A965M-2002高温高压部件用奥氏体钢锻件 ASTM标准中译本丛书(二)法兰、管件、阀门及部件(含9个标准) ASTM A182/A182M-2002高温用锻制或轧制合金钢法兰、锻制管件、阀门和部件 ASTM A961-2002管道用钢制法兰、锻制管件、阀门和零件的通用要求标准规范 ASTM B462-2002高温耐腐蚀用锻制或轧制的UNS NO6030、UNS NO6022、UNS NO6200、UNS NO8020、UNS NO8024、UNS NO8026、UNS NO8367、UNS NO10276、UNS N10665、UNS N10675和UNS R20033合金管法兰、锻制管件、阀门和零件标准规范 ASTM F885-1984公称管径为NPS 1/4~2的青铜截止阀外形尺寸标准规范 ASTM F992-1986(R2001)阀门铭牌标准规范 ASTM F993-1986(R2001)阀门锁紧装置标准规范 ASTM F1030-1986(R1998)阀门操作装置的选择准则ASTM F1098-1987(R1998)公称管径有NPS2~24的蝶阀外形尺寸标准规范。

ASTMD汽车橡胶产品分类系统标准中文

ASTMD汽车橡胶产品分类系统标准中文

ASTM D2000 – 98C(出版日期1999-11-24,汽车工程师学会同意,SAE推荐J200)汽车橡胶产品分类系统标准*11.范围1.1本分类系统把用于汽车的橡胶产品(但不限于此)列表示出硫化橡胶(天然胶,再生胶,合成胶,单一或混合胶)的特性.注1.本分类系统可用于其他工业的需要,就象SAE的钢号一样.但必须记住:本系统服务于汽车工业.使用时请用最新版本.1.2本分类系统的前提是:所有橡胶制品的性质可以划分入特有的材料牌号.这些牌号被由基于耐热老化的TYPE(类别)和基于耐油溶胀CLASSES(等级),结合描述附加要求的值,从而建立基本的LEVELS(水平),这些值允许全面描述所有弹性材料的质量.1.3对于一件特殊产品,如果本分类系统的早先版本与具体规范有抵触,则以新版本为准.注2.当橡胶产品用于未被本分类系统描述的非常特殊用途,采购方应首先与供方磋商,建立适宜的特性,试验方法和规范试验界限.1.4在S1(译者注:国际单位)单元中陈述的值被视为标准.2.参考文件.2.1ASTM标准D395 橡胶性能试验方法----压缩变形;*2D412 硫化橡胶,热塑橡胶和热塑性弹性体试验方法—拉伸;*2D429 橡胶性能试验方法----与硬底层黏结;*2D430 橡胶老化试验方法-----动态寿命;*2D471 橡胶性能试验方法----液体效应; *2D573 橡胶试验方法----空气炉中老化; *2D575 橡胶压缩特性试验方法; *2D624 常规硫化橡胶和热塑性弹性体的撕裂强度试验方法; *2D865 橡胶试验方法----空气中热老化; *2D925 橡胶性能试验方法----表面瑕疵(接触,移动和扩散); *2D945 压缩或剪切中橡胶性能的试验方法(机械示波器); *2D1053 橡胶性能试验方法----低温硬化:柔性的聚合物和涂织物; *2D1171 橡胶老化试验方法----表面臭氧裂纹,室内和室外(三角试样) *2D1329 评价橡胶性能的试验方法---- 低温回弹(TR试验); *2D1349 橡胶实践----试验温度标准; *2D1418 橡胶和橡胶乳液的实践----术语; *2D2137 橡胶性能试验方法----柔性聚合物和涂织物的脆性点; *2D2240 橡胶性能试验方法----硬度; *2D3183 橡胶实践----用产品上取样的试样准备; *2D5964 橡胶实践----IRM902和IRM903替代ASTM 2号油和ASTM 3号油. *23.目的3.1本分类目录的目的是给工程师选择实际的,可行的橡胶材料,并进一步提供一个简单的”Line—Call—Out”规定材料牌号的方法.3.2本分类系统被发展成允许未来的橡胶材料增加叙述值,而不必完全重组分类系统,且方便结合未来的新试验方法,以保持与工业需求的改进同步.4.类别(Type)和等级(Class)4.1前缀字符“M”用于表示分类系统基于国际单位制(SI).注3“Call –out”不用字符”M”,他参考早先出版与1980年的”英寸—磅”制.4.2橡胶材料以类别(耐热)和等级(耐液)为基础进行设计.类别和等级用字母表示,见表1,表2和9.1中的图.4.3类别(Type)基于拉伸强度变化不大于±30%,伸长率变化不大于-50%,在相应的温度下保持70h,硬度(变化)不超过15点. 在该温度下决定这些材料的类型.按表1.4.4等级(Class)基于材料耐液性,是在ASTM 3号油中浸润70h,保持表1规定的温度,除非所有最高温度是150℃(稳定性上限),每个等级溶账的极限见表2.4.4.1在实践D5964 中ASTM 2号和3号油已分别被IRM902和IRM903油代替.这些油与ASTM 2号和3号油相似,但不相同.4.4.2由于其溶胀性不同,且可能影响化合物分类,IRM 902和IRM 903 代用ASTM 2号和3号油尚未确认. 表1表24.4.3择被理解为由等级建立的一些商务化合物可以期望的值.事实上,材料的类型和等级列表于表 6.在基本要求下,指示商业上可用的材料符合耐热和耐液的要求.4.5牌号字符后面总规定有一个3位数,规定其硬度和拉伸强度,例如505,其中第一位数表示硬度,例如5表示50±5,6表示60±5,后2位数表示最小拉伸强度,例如05表示5Mpa,14表示14Mpa.可用材料所要的硬度和拉伸强度的相对关系可从7.2节表6中获得.5.品级(Grade)号,后缀字符和数字5.1 品级(Grade)号因为基本要求并不能充分描述全部必要的要求,规定设立一个系列的前缀—品级号,描述偏离或附加要求. 品级号1,规定仅表示基本要求.除1以外的品级号表示偏离或附加要求,并列于”可用的前缀品级”,在表6中基本要求下的最后一列. 品级号A作为材料前缀写在类别和等级的前面(见9.1).5.2 后缀字符后缀字符可以和他们的含义一起使用.见表3.5.3验方法的一部分见表4.如果有第二位数,他表示试验温度,见表5.如果要用3位数,它们要用一个短划分开,例如-10;B4-10;F1-11等.b D1171的耐气候试验,历时6周.试验地区和季节由采购方和供方协商;c 用D1171的暴露于臭氧室的试验方法B;—0806 Tredon 邮政信箱5806分配.e 应该用蒸馏水.除非取消酒精,应该用加水的方法增加体积.当确定拉伸强度,延伸率和硬度变化时,在样品被浸润后,实验室充3/4水,30分钟后确定.在蒸馏水中冷却,取消丙酮.f 等量的蒸馏水和Reagant牌乙烯乙二醇.除非取消酒精,用增加水的方法配制.在确定改变拉伸强度,延伸率和硬度变化时,在样品被浸润后,试验管充3/4水.30分钟后确定. 在蒸馏水中冷却,取消丙酮g 规定的试验方法.表5 后缀b 室外试验情况下的环境温度.6.合成和制造。

ASTMD汽车橡胶产品分类系统标准中文

ASTMD汽车橡胶产品分类系统标准中文

A S T M D汽车橡胶产品分类系统标准中文 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-ASTM D2000 – 98C(出版日期1999-11-24,汽车工程师学会同意,SAE推荐J200)汽车橡胶产品分类系统标准*11.范围1.1本分类系统把用于汽车的橡胶产品(但不限于此)列表示出硫化橡胶(天然胶,再生胶,合成胶,单一或混合胶)的特性.注1.本分类系统可用于其他工业的需要,就象SAE的钢号一样.但必须记住:本系统服务于汽车工业.使用时请用最新版本.1.2本分类系统的前提是:所有橡胶制品的性质可以划分入特有的材料牌号.这些牌号被由基于耐热老化的TYPE(类别)和基于耐油溶胀CLASSES(等级),结合描述附加要求的值,从而建立基本的LEVELS(水平),这些值允许全面描述所有弹性材料的质量. 1.3对于一件特殊产品,如果本分类系统的早先版本与具体规范有抵触,则以新版本为准.注2.当橡胶产品用于未被本分类系统描述的非常特殊用途,采购方应首先与供方磋商,建立适宜的特性,试验方法和规范试验界限.1.4在S1(译者注:国际单位)单元中陈述的值被视为标准.2.参考文件.2.1ASTM标准D395 橡胶性能试验方法----压缩变形;*2D412 硫化橡胶,热塑橡胶和热塑性弹性体试验方法—拉伸;*2D429 橡胶性能试验方法----与硬底层黏结;*2D430 橡胶老化试验方法-----动态寿命;*2D471 橡胶性能试验方法----液体效应; *2D573 橡胶试验方法----空气炉中老化; *2D575 橡胶压缩特性试验方法; *2D624 常规硫化橡胶和热塑性弹性体的撕裂强度试验方法; *2D865 橡胶试验方法----空气中热老化; *2D925 橡胶性能试验方法----表面瑕疵(接触,移动和扩散); *2D945 压缩或剪切中橡胶性能的试验方法(机械示波器); *2D1053 橡胶性能试验方法----低温硬化:柔性的聚合物和涂织物; *2D1171 橡胶老化试验方法----表面臭氧裂纹,室内和室外(三角试样) *2D1329 评价橡胶性能的试验方法---- 低温回弹(TR试验); *2D1349 橡胶实践----试验温度标准; *2D1418 橡胶和橡胶乳液的实践----术语; *2D2137 橡胶性能试验方法----柔性聚合物和涂织物的脆性点; *2D2240 橡胶性能试验方法----硬度; *2D3183 橡胶实践----用产品上取样的试样准备; *2D5964 橡胶实践----IRM902和IRM903替代ASTM 2号油和ASTM 3号油. *23.目的3.1本分类目录的目的是给工程师选择实际的,可行的橡胶材料,并进一步提供一个简单的”Line—Call—Out”规定材料牌号的方法.3.2本分类系统被发展成允许未来的橡胶材料增加叙述值,而不必完全重组分类系统,且方便结合未来的新试验方法,以保持与工业需求的改进同步.4.类别(Type)和等级(Class)4.1前缀字符“M”用于表示分类系统基于国际单位制(SI).注3“Call –out”不用字符”M”,他参考早先出版与1980年的”英寸—磅”制.4.2橡胶材料以类别(耐热)和等级(耐液)为基础进行设计.类别和等级用字母表示,见表1,表2和中的图.4.3类别(Type)基于拉伸强度变化不大于±30%,伸长率变化不大于-50%,在相应的温度下保持70h,硬度(变化)不超过15点. 在该温度下决定这些材料的类型.按表1.4.4等级(Class)基于材料耐液性,是在ASTM 3号油中浸润70h,保持表1规定的温度,除非所有最高温度是150℃(稳定性上限),每个等级溶账的极限见表2.4.4.1在实践D5964 中ASTM 2号和3号油已分别被IRM902和IRM903油代替.这些油与ASTM 2号和3号油相似,但不相同.4.4.2由于其溶胀性不同,且可能影响化合物分类,IRM 902和IRM 903 代用ASTM 2号和3号油尚未确认.表1表2胀范围的选择被理解为由等级建立的一些商务化合物可以期望的值.事实上,材料的类型和等级列表于表6.在基本要求下,指示商业上可用的材料符合耐热和耐液的要求.4.5牌号字符后面总规定有一个3位数,规定其硬度和拉伸强度,例如505,其中第一位数表示硬度,例如5表示50±5,6表示60±5,后2位数表示最小拉伸强度,例如05表示5Mpa,14表示14Mpa.可用材料所要的硬度和拉伸强度的相对关系可从节表6中获得.5.品级(Grade)号,后缀字符和数字品级(Grade)号因为基本要求并不能充分描述全部必要的要求,规定设立一个系列的前缀—品级号,描述偏离或附加要求. 品级号1,规定仅表示基本要求.除1以外的品级号表示偏离或附加要求,并列于”可用的前缀品级”,在表6中基本要求下的最后一列. 品级号A作为材料前缀写在类别和等级的前面(见.后缀字符后缀字符可以和他们的含义一起使用.见表3.表;试验次数作为试验方法的一部分见表4.如果有第二位数,他表示试验温度,见表5.如果要用3位数,它们要用一个短划分开,例如-10;B4-10;F1-11等.b D1171的耐气候试验,历时6周.试验地区和季节由采购方和供方协商;c 用D1171的暴露于臭氧室的试验方法B;—0806 Tredon 邮政信箱5806分配.e 应该用蒸馏水.除非取消酒精,应该用加水的方法增加体积.当确定拉伸强度,延伸率和硬度变化时,在样品被浸润后,实验室充3/4水,30分钟后确定.在蒸馏水中冷却,取消丙酮.f 等量的蒸馏水和Reagant牌乙烯乙二醇.除非取消酒精,用增加水的方法配制.在确定改变拉伸强度,延伸率和硬度变化时,在样品被浸润后,试验管充3/4水.30分钟后确定. 在蒸馏水中冷却,取消丙酮g 规定的试验方法.表5b 室外试验情况下的环境温度.6.合成和制造。

astm d2-汽车橡胶产品分类系统标准-中文

astm d2-汽车橡胶产品分类系统标准-中文

ASTM D2000 – 98C(出版日期1999-11-24,汽车工程师学会同意,SAE推荐J200)汽车橡胶产品分类系统标准*11.范围1.1本分类系统把用于汽车的橡胶产品(但不限于此)列表示出硫化橡胶(天然胶,再生胶,合成胶,单一或混合胶)的特性.注1. 本分类系统可用于其他工业的需要,就象SAE的钢号一样.但必须记住:本系统服务于汽车工业.使用时请用最新版本.1.2本分类系统的前提是:所有橡胶制品的性质可以划分入特有的材料牌号.这些牌号被由基于耐热老化的TYPE(类别)和基于耐油溶胀CLASSES(等级),结合描述附加要求的值,从而建立基本的LEVELS(水平),这些值允许全面描述所有弹性材料的质量.1.3对于一件特殊产品,如果本分类系统的早先版本与具体规范有抵触,则以新版本为准.注2. 当橡胶产品用于未被本分类系统描述的非常特殊用途,采购方应首先与供方磋商,建立适宜的特性,试验方法和规范试验界限.1.4在S1(译者注:国际单位)单元中陈述的值被视为标准.2.参考文件.2.1ASTM标准D395 橡胶性能试验方法----压缩变形;*2D412 硫化橡胶,热塑橡胶和热塑性弹性体试验方法—拉伸;*2D429 橡胶性能试验方法----与硬底层黏结;*2D430 橡胶老化试验方法-----动态寿命;*2D471 橡胶性能试验方法----液体效应; *2D573 橡胶试验方法----空气炉中老化; *2D575 橡胶压缩特性试验方法; *2D624 常规硫化橡胶和热塑性弹性体的撕裂强度试验方法; *2D865 橡胶试验方法----空气中热老化; *2D925 橡胶性能试验方法----表面瑕疵(接触,移动和扩散); *2D945 压缩或剪切中橡胶性能的试验方法(机械示波器); *2D1053 橡胶性能试验方法----低温硬化:柔性的聚合物和涂织物; *2D1171 橡胶老化试验方法----表面臭氧裂纹,室内和室外(三角试样) *2D1329 评价橡胶性能的试验方法---- 低温回弹(TR试验); *2D1349 橡胶实践----试验温度标准; *2D1418 橡胶和橡胶乳液的实践----术语; *2D2137 橡胶性能试验方法----柔性聚合物和涂织物的脆性点; *2D2240 橡胶性能试验方法----硬度; *2D3183 橡胶实践----用产品上取样的试样准备; *2D5964 橡胶实践----IRM902和IRM903替代ASTM 2号油和ASTM 3号油. *2 3.目的3.1本分类目录的目的是给工程师选择实际的,可行的橡胶材料,并进一步提供一个简单的”Line—Call—Out”规定材料牌号的方法.3.2本分类系统被发展成允许未来的橡胶材料增加叙述值,而不必完全重组分类系统,且方便结合未来的新试验方法,以保持与工业需求的改进同步.4.类别(Type)和等级(Class)4.1前缀字符“M”用于表示分类系统基于国际单位制(SI).注3 “Call –out”不用字符”M”,他参考早先出版与1980年的”英寸—磅”制.4.2橡胶材料以类别(耐热)和等级(耐液)为基础进行设计.类别和等级用字母表示,见表1,表2和9.1中的图.4.3类别(Type)基于拉伸强度变化不大于±30%,伸长率变化不大于-50%,在相应的温度下保持70h,硬度(变化)不超过15点. 在该温度下决定这些材料的类型.按表1.4.4等级(Class)基于材料耐液性,是在ASTM 3号油中浸润70h,保持表1规定的温度,除非所有最高温度是150℃(稳定性上限),每个等级溶账的极限见表2.4.4.1在实践D5964 中ASTM 2号和3号油已分别被IRM902和IRM903油代替.这些油与ASTM 2号和3号油相似,但不相同.4.4.2由于其溶胀性不同,且可能影响化合物分类,IRM 902和IRM 903 代用ASTM 2号和3号油尚未确认.表1表2热性,同样,基于溶胀范围的选择被理解为由等级建立的一些商务化合物可以期望的值.事实上,材料的类型和等级列表于表 6.在基本要求下,指示商业上可用的材料符合耐热和耐液的要求.4.5牌号字符后面总规定有一个3位数,规定其硬度和拉伸强度,例如505,其中第一位数表示硬度,例如5表示50±5,6表示60±5,后2位数表示最小拉伸强度,例如05表示5Mpa,14表示14Mpa.可用材料所要的硬度和拉伸强度的相对关系可从7.2节表6中获得.5.品级(Grade)号,后缀字符和数字5.1 品级(Grade)号因为基本要求并不能充分描述全部必要的要求,规定设立一个系列的前缀—品级号,描述偏离或附加要求. 品级号1,规定仅表示基本要求.除1以外的品级号表示偏离或附加要求,并列于”可用的前缀品级”,在表6中基本要求下的最后一列. 品级号A作为材料前缀写在类别和等级的前面(见9.1).5.2 后缀字符后缀字符可以和他们的含义一起使用.见表3.示试验方法;试验次数作为试验方法的一部分见表4.如果有第二位数,他表示试验温度,见表5.如果要用3位数,它们要用一个短划分开,例如-10;B4-10;F1-11等.b D1171的耐气候试验,历时6周.试验地区和季节由采购方和供方协商;c 用D1171的暴露于臭氧室的试验方法B;—0806 Tredon 邮政信箱5806分配.e 应该用蒸馏水.除非取消酒精,应该用加水的方法增加体积.当确定拉伸强度,延伸率和硬度变化时,在样品被浸润后,实验室充3/4水,30分钟后确定.在蒸馏水中冷却,取消丙酮.f 等量的蒸馏水和Reagant牌乙烯乙二醇.除非取消酒精,用增加水的方法配制.在确定改变拉伸强度,延伸率和硬度变化时,在样品被浸润后,试验管充3/4水.30分钟后确定. 在蒸馏水中冷却,取消丙酮g 规定的试验方法.表5b 室外试验情况下的环境温度.6.合成和制造。

ASTMD471橡胶性能的标准试验方法_液体影响(中文版)

ASTMD471橡胶性能的标准试验方法_液体影响(中文版)

橡胶性能的标准试验方法-液体影响1.范围1.1 本实验方法提出了评价橡胶或类橡胶物质抵抗液体作用的相对能力所需的程序。

试验计划:(1)从标准板材(见规范D3182)上裁取硫化橡胶试样,(2)从涂覆硫化橡胶的织物(见试验方法D751)上裁取试样,或(3)采用商业成品(见规范D3183)为试样。

除第11.2.2 所提者外,本试验方法不适用于多孔橡胶、泡沫橡胶和压制包装板材。

1.2 ASTM 油类No.2 和No.3 用作本标准的标准工作液体,目前尚未商业化,且在1993 年分别被IRM902 和IRM903 替代(详见附录XI)。

1.3 本试验方法包括以下试验内容:质量变化(浸泡后)第10 节体积变化(浸泡后)第11 节水不溶液体和混合液体尺寸变化第12 节液体仅在一表面的质量变化第13 节液体可溶提取物质量的测定第14 节抗张强度、伸长率和硬度的变化(浸泡后)第15 节断裂强度、破裂强度、撕裂强度和涂布织物附着力的变化第16 节计算(试验结果)第17 节2.引用文件2.1 ASTM 标准:D 92 用克利福兰得开杯法测定闪点和燃点的试验方法2D 97 石油产品倾点的试验方法2D 287 原油和石油产品API 比重的试验方法(液体比重计法) 2D 412 硫化橡胶、热塑橡胶和热塑合成橡胶张力3D 445 透明和不透明液体运动粘度的试验方法2D 611 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法2D 751 涂层布试验方法4D 975 柴油规格D1217 用宾汉比重瓶法测定液体密度和相对密度(比重)的试验方法2 D 1415 橡胶特性--国际硬度的试验方法3D 1500 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 1747 石油产品ASTM 颜色的试验方法(ASTM 比色度) 2D 2008 石油产品紫外线吸收度和吸收系数的试验方法2D 2140 石油制绝缘油的碳类成份的测试方法5D 2240 用硬度计测定橡胶硬度的试验方法3D 2699 研究法测定发动机燃料抗震性的试验方法6D 3182 混炼标准化合物及制备标准硫化橡胶试片用橡胶材料、设备及工序规程3D 3183 用橡胶制品制备试验用橡胶试片的规程3D 4483 橡胶和炭黑制造业用试验方法标准精确性的评定规程7D 4485 发动机油功能规范3D 4678 橡胶参考材料的制备、测试、验收、制定文档和使用规程3D 5900 工业标准物质(IRM)的物理及化学性能规格8E 145 重力传送和强制通风炉规格82.2 SAE 标准:J 300 发动机油粘度分类3.试验方法的摘要3.1 本实验方法提供了把测试样品暴露在液体之下所受影响的程序, 经过一定条件的温度和时间。

ASTM D412-98a(2002)硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法(中文版部分)

ASTM D412-98a(2002)硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法(中文版部分)

名称:D 412—98a(2002年重新批准)硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出建议并准确进行实验。

因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。

这些方法不适用硬橡胶和相似硬度、低延伸率材料。

方法如下:方法A——哑铃状和直片状试样方法B——剪切环形状试样注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。

在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。

建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料2.1 ASTM 标准:D 1349 橡胶标准实验温度准则D 1566 与橡胶相关的术语D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则D 3183 实验用产品片准备准则D 3767 橡胶尺寸测量准则D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则E 4 实验机器力检查准则2.2 ASTM 附件:剪切环形试样,方法B (D 412)2.3 ISO 标准:ISO 37 硫化橡胶,热缩性橡胶张应力性能3.1 术语3.1 定义3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。

(D 1566)3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。

(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。

(D 1566)3.1.4 张应力——伸展试样的力。

(D 1566)3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2 页 共 9页
7 试样的选取 7.1 选取试样时应考虑以下及点 7.1.1 在制备和处理过程中,由流动引起的材料的各向异性和取向会影响拉伸性 能。因此在制备哑铃或直条形试样时,在知道压延方向的前提下,试样裁取的方 向应平行于压延方向。对于环形试样其通常是对取向特性作出一定的平均。 7.1.2 除有特别要求,对于热塑性橡胶或弹性体,试样应从厚度为 3.0±0.3mm 的 注射成型的试片上裁取,由其他厚度的试样得到的试验结果物可比性。试样应为 垂直和平行成型流动方向的两组。试片或试板的大小应能满足试验要求。 7.1.3 对于环形试样的伸长可以夹头的分离来测量,但对于试样半径宽度上的伸 长分布是不一致的。为了减少这影响,应试样宽度应小于环形试样的直径。 7.1.4 用直条形小、试样作普通的拉伸试验时,试样的破坏一般发生在夹头中。 因此尽当样品无法制取其他形状的样品时才使用直条形试样。 对于非破坏性的应 力应变或材料模量实验,才用直条形试样。 7.1.4 试样的尺寸大小取决于材料的要求、试验设备和试验用的样品试片。对于 低扯断伸长率的材料,为力提高测量伸长的精度可使用较长的试样。 8 试验设备的校准 8.1 对于测量精度型的测力计按规范 E 4 的过程 A 校准试验机,按照规范 E 4 的 7 和 18 节试验校准一个或多个力值点。对于摆锤式测力计按以下步骤校准: 8.1.1 将哑铃试样的一端放入试验机上夹头。 8.1.2 将下夹头移试验机从试验机上移开,也就是说试样的夹持机构在试验机的 上夹头。 8.1.3 在下夹头上安装钩子,以持试样下端 8.1.4 将一个以知重量的砝码挂到钩子上,这样就可以在试样的下夹具上临时的 施加一定质量(见注 2). 8.1.5 开启夹具移动的监视装置,在普通的试验中,保持其持续运行直到砝码自 由的悬挂于试样上。 8.1.6 如果圆盘或标尺(或者相当于是应力补偿的试验器)不能在规定的精度内 指示力值,应彻底检查设备的故障(例如轴或其他移动部件的摩擦) 。应确定下 夹头和钩子的质量也被计算在内。 8.1.7 在试验机的摩擦和其他故障被排除后,再对试验机进行校准,用以知的砝 码在试验机满量程约 10、20 和 50%处测量三点。如果平常试验时使用棘轮和棘 齿,在校准时也应使用他们。通过安装棘轮来检查摩擦。 注 3——应有防止砝码从试验机上掉落的装置。 8.2 可用弹簧来作大致的快速校准。 9 试验温度 9.1 除有其他规定,标准试验温度为 23±2℃。试样应至少在 23℃温度下调节 3 小时。如果材料受湿度的影响,试验前试样应在 50±5%R.H.的环境中调节 24 小 时以上。如在其他温度中试验应使用规范 D 1349 所列的温度。 9.2 如试验在高于 23℃的温度中进行,对于方法 A 试样应预热 10±2min;对于 方法 B 应预热 6±2min。在每次试验间隔前,分别将试样放如试验箱,这样所有 的试样会连续接受相同的预热时间。高温下的预热试验应受严格限制,以防止过 硫和热老化。 注 3——警告:除其他警告外,应使用绝热、绝冷的手套以保护手不受高低温的 伤害。在高温实验时应使用面罩以防止实验箱门打开时吸入有毒气体。
第 3 页 共 9页
9.3 对于低温试验, 设备 10.1 裁刀——裁刀的外形和尺寸应符合图 2 所示。裁刀中狭窄部分的内侧应于 裁刀端面面垂直,并且至少有从裁刀端面起 5mm 长的部分经过抛光。裁刀外形应 保持不变,并无缺损。 (见注 4) 注 4——可通过观察试样断裂点来确定裁刀的情况。将断裂试样从夹头上取下, 沿断裂面拼合, 观察试样破坏是否发生在相同的位置。 如果破坏发生在相同位置, 表示裁刀在此位置可能变钝、缺损或弯曲。 10.2 作标线——在试样上画两条标线用来测量伸长合应变的称为作标线(见注 5) 。标线器应包括一个平板,平板上有两个相互平行的凸起。凸起的表面(与平 板表面平行)应有狭长的平面,两个面保持在同一平面内。凸起的平面宽度为 0.05 到 0.08mm 长至少 15mm。平板与凸起之间的角度至少为 75º。两凸起平面中 心的距离应保持在要求或目标距离偏差的 1%内。在标线器的背面或顶部应包含 有一个手把。 注 4——如果使用接触式引伸计则无须作标线。 10.3 墨线标志——使用一个扁平坚硬的表面(硬木、金属或塑料)来制作墨水 或墨粉的标距。墨水或墨粉应与试样粘合牢固,不对试样产生腐蚀,并且与试样 的颜色形成对比。 10.4 夹头——试验计有两个夹头,一个与测力计相连。 10.4.1 试验哑铃试样的夹头应有自紧装置在夹头表面产生恒定的压力,随着伸 长的增加夹持力也增加以防止滑动,并且使破坏发生在试样的狭窄部分。恒定的 气动夹头也同样适用。在夹具的断部由一特殊部位,可使试样塞入夹具的长度相 同并且应力分布均匀。 10.4.2 用于试验直条试样的夹具应有气动夹具,钳形口或栓型扣,这样可将夹 具的夹持力均匀的施加在整个试样宽度上。 11 试样 11.1 哑铃试样——只要有可能, 试样应用注射成型或从厚 1.3 到 3.3mm 的试片 上裁取。可用一种试验方法裁取试样的厚度和尺寸(见规范 D 3182) 。试片可直 接制作或从成品上切割打磨制备。如果试片是从成品上直接制备,那么其表面不 应有硬皮或织物等。根据规范 D 3183 的要求。所有试样都应是平行于试片长度 方向裁取,除非有特别规定。如果试样是按规范 D 3182 制备的,其厚度应为 2.0±0.2mm,并沿材料取向方向裁切。使用 C 型裁刀(图 2) ,用一简单的冲压 装置,并保证裁切面的光滑。. 11.1.1 标注哑铃试样——哑铃试样应按 10.2 中所述划标线,在划线时试样不应 受张力。标线应划在狭窄部分,与试样中心距离相等并垂直与纵轴。两标线间距 离为:C 型、D 型试样为 25.00±0.25mm;其它为 50.00±0.5mm 11.1.2 哑铃试样厚度测量——试样厚度应测三点,一点在中心两点在狭窄部分 的两端。取三个值的中值用来计算截面积。如试样厚度的极差大于 0.08,则该试 样作废。试样的宽度可按裁刀的工作部位宽度计算。 11.2 直条试样——如无法从样品上裁切哑铃或环形试样则可裁切直条试样(如 窄带、小管或细电绝缘材料) 。试样应足够长能塞进夹具。标距按 11.1.1 作。从 管上计算试验截面积,应使用管子的质量、长度和密度。截面积按下式计算:
第 4 页 共 9页
第 1 页 共 9页
原始截面积。 4.3 拉伸永久变形和扯断永久变形,测量试样拉伸后经按规定方法回缩后的形 变。 5 重点与应用 5.1 本试验涉及的材料或产品在实际应用过程中必须受拉伸力作用。本试验即 为测定此种拉伸特性。但拉伸性能不直接代表产品最终使用的全部情况,因为在 实际使用中产品需含盖较广的潜在使用情况。 5.2 拉伸性能与材料和试验条件(拉伸速度、试验温度和湿度、试样几何外形、 试验前调节情况等)有关。因此,尽在相同条件下材料的试验结果才有可比性。 5.3 试验温度和拉伸速度对拉伸性能影响较显著,需严格控制。且影响随材料 不同而不同。 5.4 拉伸永久变形代表了试样的残余变形,他表示试样经拉伸和回缩后部分的 永久变形和部分的回复。因此,拉伸和回缩过程(和其他试验条件)必须受严格 控制,以保证结果的可比性。 6 设备 6.1 拉力机——拉力试验机应有电力驱动机构以保证试样夹头的分离速度恒定 为 500±50mm/min,最小行程为 750mm(见注 1) 。试验机应有一套适合的测力 计和读数记录系统,以保证测量的力偏差在±2%以内。如果试验机的量程不能改 变(例如摆锤式测力计) ,那么试样断裂时测得力的偏差在测力计满量程的±2%, 且测量的最小力的精度为 10%。 如果测力计在直接测量拉伸应力时有自动补偿功 能,那么在测量过程中应将其对试样结截面积的补偿功能关闭。记录装置对力的 测量速度应足够快,并且在试样破坏的整个过程中应保证需要的精度。如果试验 机没有记录装置,那么应该有一个指示器用来指示拉伸过程中的最大力值。试验 体系中应能测量伸长,且最小的增量为 10%。 注 1——如果使用的拉伸速度为 1000±100mm/min 应在试验报告中注明。如有疑 义,试验应在 500mm/min 的速度下重新进行。 6.2 高低温试验箱——试验箱应满足以下要求: 6.2.1 试验箱内在夹头和轴的位置上应有环绕的热流,环绕速度为 1 到 2m/s, 温度保持在要求温度偏差的 2℃范围内。 6.2.2 应用校准过的测温装置在夹头和轴的附近测量实际温度。 6.2.3 试验箱应有排气通风装置,以将在高温中(试样)释放的气体排出到大气 中。 6.2.4 在试验前试样应垂直的放置在夹头和轴附近接受调节。试样不应相互接触 或与试验箱壁接触除了由环绕空气的搅动引起的瞬间的接触。 6.2.5 将夹头适宜的安放以方便在高低温的环境中操作。这样在向夹头中放置哑 铃或直条试样时尽可能缩短时间,以减少试验箱温度的变化。 6.2.6 测力计应适宜在试验温度下工作,或则与试验箱绝热良好。 6.2.7 试验箱中应配有伸长测量装置。如果用尺来测量试样标距的伸长,尺应在 靠近夹头移动路径的位置平行于标距放置,并可从试验箱外进行控制。 6.3 测厚计——厚度计应符合规范 D 3767(方法 A)的要求。对于环形试样,见 本试验方法 14.10 条。 6.4 拉伸永久变形的测量——使用如 6.1 中所述或如图 1 示的试验设备。秒表或 其他计时装置的量程应大于 30min,尺或其他测量伸长的装置的测量精度应在 1%内。
ASTM D412 DIEC 标准中文版 硫化橡胶和热塑性弹性体拉伸试验方法
1 简述 1.1 本试验方法包括了硫化热固性橡胶和热塑性弹性体拉伸性能的评定方法。 本试验方法不能用来试验硬质胶和高硬度、低伸长的材料。试验方法如下: 方法 A——直条和哑铃试样 方法 B——环形试样 注 1——这两种试验的结果不可比。 1.2 基于 SI 或非 SI 的单位制均视为本标准的标准单位。 由于使用不同单位制的 结果数值可能不同,因此不同单位应单独使用,不能混用。 1.3 安全性 2 引用文献 D 1349 橡胶规范——试验标准温度 D 1566 橡胶相关术语 D 3182 橡胶规范——制取标准混炼胶和标准硫化试片的的材料、 设备和操作步 骤 D 3183 橡胶规范——从成品上制备试片 D 4483 橡胶与碳黑工业种标准试验方法的测量精度规范 2.2 ASTM 附件 环形试样的制取,方法 B 2.3 ISO 标准 ISO 37 硫化或热塑性橡胶拉伸应力—应变性能的测定方法 3 术语 3.1 定义 3.1.1 拉伸永久变形——试样在因一定作用下伸长后, 在作用力解除的情况下其 残余的变形,以原始长度的百分数表示。 3.1.2 扯断永久变形——将拉断后的哑铃试样以断面紧贴,测得的永久变形。 3.1.3 拉伸力——试样拉断过程中产生的最大力。 3.1.4 拉伸强度——拉伸试样时使用的应力 3.1.5 定伸应力——规则截面的试样,拉伸到特定长度时产生的应力。 3.1.6 热塑性弹性体——一种类似与橡胶的材料,但与普通的硫化胶不同,他可 象塑料一样的被加工和回收。 3.1.7 断裂伸长——在连续的拉伸过程中,试样发生断裂时的伸长率。 3.1.8 屈服点——在应力-应变曲线上,在试样最终的破坏前,关于应变的应力 变化的速度变为 0 并且相反的点。 3.1.9 屈服应变——屈服点的应变的水平 3.1.10 屈服应力——屈服点的应力的水平 4 方法描述 4.1 测定拉伸性能的试验,首先从样品材料上裁取试样,包括制样和试验两部 分。试样的外形可以是哑铃形、环形或直条形,截面形状规则。 4.2 在试样未经预伸的情况下测定拉伸强度、定神应力、屈服点、扯断伸长率。 对规正截面试样的拉伸强度、定神应力、屈服点和扯断伸长率测定是基于试样的
相关文档
最新文档