matlab求功率谱

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab实现经典功率谱估计

fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息;频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数

matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计。psd求出的结果应该更光滑吧。

1、直接法:

直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。

Matlab代码示例:

clear;

Fs=1000; %采样频率

n=0:1/Fs:1;

%产生含有噪声的序列

xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));

window=boxcar(length(xn)); %矩形窗

nfft=1024;

[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法

plot(f,10*log10(Pxx));

2、间接法:

间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。

Matlab代码示例:

clear;

Fs=1000; %采样频率

n=0:1/Fs:1;

%产生含有噪声的序列

xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));

nfft=1024;

cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数

CXk=fft(cxn,nfft);

Pxx=abs(CXk);

index=0:round(nfft/2-1);

k=index*Fs/nfft;

plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx);

3、改进的直接法:

对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

3.1、Bartlett法

Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。

Matlab代码示例:

clear;

Fs=1000;

n=0:1/Fs:1;

xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));

nfft=1024;

window=boxcar(length(n)); %矩形窗

noverlap=0; %数据无重叠

p=0.9; %置信概率

[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);

index=0:round(nfft/2-1);

k=index*Fs/nfft;

plot_Pxx=10*log10(Pxx(index+1));

plot_Pxxc=10*log10(Pxxc(index+1));

figure(1)

plot(k,plot_Pxx);

pause;

figure(2)

plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);

3.2、Welch法

Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。

Matlab代码示例:

clear;

Fs=1000;

n=0:1/Fs:1;

xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));

nfft=1024;

window=boxcar(100); %

矩形窗

window1=hamming(100); %海明窗

window2=blackman(100); %blackman窗

noverlap=20; %数据无重叠

range='half'; %频率间隔为[0 Fs/2],只计算一半的频率

[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);

[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,range);

[Pxx2,f]=pwelch(xn,window2,noverlap,nfft,Fs,range);

plot_Pxx=10*log10(Pxx);

plot_Pxx1=10*log10(Pxx1);

plot_Pxx2=10*log10(Pxx2);

figure(1)

plot(f,plot_Pxx);

pause;

figure(2)

plot(f,plot_Pxx1);

pause;

figure(3)

plot(f,plot_Pxx2);

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

相关文档
最新文档