通信原理——第四章
通信原理》第六版课件第4章
调频合成器的原理
介绍了调频合成器的基本原理 和存在的问题,以及几种常用 的合成技术及其应用。
频率分析与频谱分析
连续信号频谱分析
介绍了连续信号分析中的傅里叶 变换和功率谱密度估计算法,以 及常用的频谱分析工具。
离散信号频谱分析
小波变换分析
阐述了离散信号分析中的离散傅 里叶变换和快速傅里叶变换算法, 以及它们的应用领域。
介绍了小波变换分析的基本原理 和优势,以及它在信号处理和图 像处理中的应用。
数据信号处理
1
采样与重构
Байду номын сангаас
抗混叠滤波器
2
讲述了抗混叠滤波器设计和优化的方法,
以及实际应用中的不足和改进措施。
3
介绍了采样定理和采样过程中的抗混叠 滤波器,以及重构过程与误差控制的方 法。
数字信号的量化
阐述了数字信号的量化原理和编码方法,
介绍了几种基本的相位调制方式和频移 键控技术,以及它们在通信中的应用。
宽带调制与调制方式
宽带调制的概念
阐述了宽带调制的基本原理和实现方法,以及它 在数字通信中的重要性。
频段抖动(FBS)调制方式
介绍了频段抖动调制技术的基本原理和应用,以 及它的特点和实现方法。
调换抖动(Cordic)调制方式
介绍了调换抖动调制技术的基本原理和应用,以 及它的优缺点及改进方法。
通信原理》第六版课件第 4章
本章介绍了调制与解调的基本概念,宽带调制和调制方式,频率合成和锁相 等通信原理的重要知识点。
调频与解调
1
调频基本概念
介绍了调频技术的基本概念和特点,包
调频与解调过程
2
括调变量和调制指数等的定义。
从频谱分析角度描述了调频与解调的基
通信原理(第四章)
27
第4章 信 道 章
四进制编码信道模型
0 0
1 送
端
发
1
收 端
接
2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 编码信道模型是用数字的转移概率来描述。
通信原理第4章信道
第4章 信道
4.0 信道的定义及分类 4.1 无线信道 4.2 有线信道 4.3 信道数学模型 4.4 信道特性及其对信号传输的影响 4.5 信道中的噪声 4.6 信道容量
2
本章教学目的:了解各种实际信道、信
道的数学模型和信道容量的概念。
本章的讨论思路:通过介绍实际信道的例
子,在此基础上归纳信道的特性,阐述信道的 数学模型,最后简介了信道容量的概念。
信道模型的分类: 调制信道 编码信道
信 息 源 信 源 编 码 加 密 信 道 编 码 数 字 调 制 数 字 解 调 信 道 译 码 解 密 信 源 译 码 受 信 者
信道 噪声源
调制信道 编码信道
31
4.3.1 调制信道模型
有一对(或多对)输入端和一对(或多对)输出端; 绝大多数的信道都是线性的,即满足线性叠加原理;
41
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
|H( )|
d ( ) ( ) d
( ) td
O (b) td
K0
O (a)
O (c)
42
2、实际电话信道的群延迟特性 一种典型的音频电话信道的群延迟特性。
25
光纤呈圆柱形,由芯、封套和外套三部分组成(如 图所示)。芯是光纤最中心的部分,它由一条或多 条非常细的玻璃或塑料纤维线构成,每根纤维线都 有它自己的封套。由于这一玻璃或塑料封套涂层的 折射率比芯线低,因此可使光波保持在芯线内。环 绕一束或多束有封套纤维的外套由若干塑料或其它 材料层构成,以防止外部的潮湿气体侵入,并可防 止磨损或挤压等伤害。
通信原理第四章ppt课件
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
通信原理第四章word版
第四章.连续时间信号与系统频域分析一.周期信号的频谱分析1. 简谐振荡信号是线性时不变系统的本征信号:()()()()()j tj t j tj y t eh t eh d ee h d ωωτωωτττττ∞∞---∞-∞=*==⋅⎰⎰简谐振荡信号傅里叶变换:()()j H j e h d ωτωττ∞--∞=⎰点 测 法: ()()j t y t e H j ωω=⋅ 2.傅里叶级数和傅里叶变换3.荻里赫勒(Dirichlet )条件(只要满足这个条件信号就可以用傅里叶级数展开)○1()f t 绝对可积,即00()t T t f t dt +<∞⎰○2()f t 的极大值和极小值的数目应有限 ○3()f t 如有间断点,间断点的数目应有限4.周期信号的傅里叶级数5.波形对称性与谐波特性的关系6.周期矩形脉冲信号7.线性时不变系统对周期信号的响应一般周期信号:()jn tnn F ef t ∞Ω=-∞=∑系统的输出 :()()jn tnn F H jn t e y t ∞Ω=-∞Ω=∑ 二.非周期信号的傅里叶变换(备注)二.非周期信号的傅里叶变换1.连续傅里叶变换性质2.常用傅里叶变换对四.无失真传输1.输入信号()f t 与输出信号()f y t 的关系 时域: ()()f d y t kf t t =-频域:()()dj t f Y ke F ωωω-=2.无失真传输系统函数()H ω ()()()d f j t Y H ke F ωωωω-==无失真传输满足的两个条件:○1幅频特性:()H k ω= (k 为非零常数) 在整个频率范围内为非零常数 ○2相频特性:ϕ()d t ωω=- ( 0d t > )在整个频率范围内是过坐标原点的一条斜率为负的直线3. 信号的滤波:通过系统后 ○1产生“预定”失真○2改变一个信号所含频率分量大小 ○3全部滤除某些频率分量 4.理想低通滤波器不存在理由:单位冲击响应信号()t δ是在0t =时刻加入滤波器 的,而输出在0t <时刻就有了,违反了因果律5.连续时间系统实现的准则时 域 特 性 : ()()()h t h t u t =(因果条件) 频 域 特 性 : 2()H d ωω∞-∞<∞⎰佩利-维纳准则(必要条件):22()1H d ωωω∞-∞<∞+⎰五.滤波。
《通信原理教程》(第3版)-樊昌信-编著----第四章--PPT课件
*
由 有 为了保持信号量噪比恒定,要求: x x 即要求: dx/dy x 或 dx/dy = kx, 式中 k =常数 由上式解出: 为了求c,将边界条件(当x = 1时,y = 1),代入上式,得到 k + c =0, 即求出: c = -k, 将c值代入上式,得到 由上式看出,为了保持信号量噪比恒定,在理论上要求压缩特性为对数特性 。 对于电话信号,ITU制定了两种建议,即A压缩律和压缩律,以及相应的近似算法 - 13折线法和15折线法。
*
由抽样信号恢复原信号的方法 : 从频域看:当fs 2fH时,用一个截止频率为fH的理想低通滤波器就能够从抽样信号中分离出原信号。 从时域中看,当用抽样脉冲序列冲激此理想低通滤波器时,滤波器的输出就是一系列冲激响应之和,如图所示。这些冲激响应之和就构成了原信号。 理想滤波器是不能实现的。实用滤波器的截止边缘不可能做到如此陡峭。所以,实用的抽样频率fs 必须比 2fH 大较多。 例如,典型电话信号的最高频率限制在3400 Hz,而抽样频率采用8000 Hz。
*
4.4 脉冲编码调制 4.4.1脉冲编码调制(PCM)的基本原理 抽样 量化 编码 例:见右图 3.15 3 011 3.96 4 100 方框图:
*
A压缩率 式中,x为压缩器归一化输入电压; y为压缩器归一化输出电压; A为常数,决定压缩程度。 A律中的常数A不同,则压缩曲线的形状不同。它将特别影响小电压时的信号量噪比的大小。在实用中,选择A等于87.6。
*Hale Waihona Puke *求量化噪声功率的平均值Nq : 式中,sk为信号的抽样值,即s(kT) sq为量化信号值,即sq(kT) f(sk)为信号抽样值sk的概率密度 E表示求统计平均值 M为量化电平数 求信号sk的平均功率 : 由上两式可以求出平均量化信噪比。
精品课件-通信原理(第二版)(黄葆华)-第4章
y(t) kx(t td )
(4-3-1)
式中,k和td均为常数,k是衰减(或放大)系数,td为固定的 时延。
第4章 信道
对上式进行傅氏变换,得到
Y ( f ) F y(t) F kx(t td ) k X ( f )e j2 ftd
因此,传输特性为
H ( f ) Y ( f ) k e j2 ftd H ( f ) e j( f ) X( f )
第4章 信道
调制信道的共性如下: (1) 有一对(或多对)输入端和一对(或多对)输出端。 (2) 绝大多数的信道都是线性的,即满足线性叠加原理。 (3) 信号通过信道具有一定的延迟时间,而且它还会受到固 定的或时变的损耗。 (4) 即使没有信号输入,在信道的输出端仍可能有一定的噪 声输出。 根据上述共性,我们可以用一个二对端(或多对端)的时变线 性网络来表示调制信道,该网络称为调制信道模型,如图4.2.2所 示。
P(0 / 0) 1 P(1/ 0)
P(1/1) 1 P(0 /1)
Pe P(0)P(1/ 0) P(1)P(0 /1)
第4章 信道
图4.2.3 二进制编码信道模型
第4章 信道
4.3 恒参信道特点及其对信号传输的影响
1.无失真传输 无失真传输是指信号通过信道后波形形状并未发生改变, 即输出信号的波形与输入信号波形相比只是成比例地缩小(或 放大)和时间上的延迟。因此,无失真传输时,输入输出信号
(4-3-2)
式(4-3-2)表明,要保证信号通过信道不产生失真,信道传 输特性必须具备下列两个条件:
(1)幅频特性为一条水平直线,即|H(f)|=k(常数)。
第4章 信道
(2)相频特性是一条通过原点且斜率为2πtd的直线, 或者其群时延特性是一条水平直线(常数)。即
《通信原理》第04章模拟信号的数字化精品PPT课件
t
…
t
…
t
S(f)
( f ) Sk ( f ) Sˆ( f )
f
…
f
…
f
t
f
7
4.2.1 低通模拟信号的抽样
频谱混叠
S(f)
spectrum aliasing
f ( f )
f
Sk ( f )
…
…
f
8
4.2.1 低通模拟信号的抽样
ideal lowpass filter
抽样信号恢复低通滤波器
s(t)
s(t)
t
t
δT (t)
c (t)
t
t
sk(t)
sk(t)
t
t
3
4.2.1 低通模拟信号的抽样
band-limited signal
低通抽样定理 一个带宽有限信号 s (t) 的最高频率为 fH ,若
抽样频率 fs ≥ 2 fH ,则可以由抽样信号序列 sk (t) 无 失真地恢复原始信号 s (t) 。 说明
抽样频率与信号频率的关系曲线
fs 4B
3B
2B
B
O
B 2B 3B 4B 5B 6B
fL
15
4.2.2 带通模拟信号的抽样
带通抽样的频谱
fH = 4 kHz fL = 3 kHz B = 1 kHz
fs = 2 kHz
S(f)
−4B
0
4B
Sk( f )
bandpass sampling
f
−4fs −3fs −2fs −fs O fs 2fs 3fs 4fs
领域也有广泛应用
pulse amplitude modulation (PAM)
通信原理第4章 数字基带传输
2020/1/25
第4章 数字基带传输
16
4.3 数字基带传输系统及码间干扰
数字基带传输系统模化为
其中
d(t) bk (t kTs )
k
H( f ) HT ( f )HC ( f )HR ( f )
h(t) F 1[H ( f )] H ( f )e j2 ft df
14
4.2 数字基带信号的功率谱分析
【例4-2】试分析下图a)所示双极性全占空矩形脉冲序列 的功率谱。设“1”、“0”等概。
2020/1/25
第4章 数字基带传输
15
4.2 数字基带信号的功率谱分析
AMI码数字基带信号如下图(a)所示,“1”、“0”等 概,则其功率谱表达式为 P( f ) A2Ts Sa2 ( fTs ) sin2 ( fTs )
y(t) bk h(t kTs ) nR (t) k
研究表明,影响系统正确接收的 因素有两个: ① 码间干扰(Inter-Symbol
Interference—ISI)
② 信道中的噪声
2020/1/25
第4章 数字基带传输
17
4.3 数字基带传输系统及码间干扰
2020/1/25
第4章 数字基带传输
1
第4章 数字基带传输
将输入数字信号 变换成适合信道 传输的信号
低通型 信道
滤除噪声和 校正信道引 起的失真
输入
a
码型
发送
变换 b 滤波器
信道
c
定时脉冲
噪声 n(t)
接收 d
滤波器
取样 判决
通信原理第四章
• 2、调幅(AM)信号 如果输入的基带信号带有直流分量,h(t) 是理想理想低通滤波器,得到的输出信 号是有载波分量的双边带信号,表示为:
m(t) m0 m(t)
如果满足m0>∣m,(t) ∣max 调幅(AM)信号
其时域与频域的表示为:
Sm (t) m(t) cosc
m0 m(t)cosc
c f
3 108 20 103
1.5 104 (m)
式中,λ为波长(m);c为电磁波传播速度 (光速)(m/s);f为音频(Hz)。
• 可见,要将音频信号直接用天线发射出 去,其天线几何尺寸即便按波长的百分 之一取也要150米高(不包括天线底座或 塔座)。因此,要想把音频信号通过可 接受的天线尺寸发射出去,就需要想办 法提高欲发射信号的频率(频率越高波 长越短)
Sm
()
1 2
M
(
c
)
M
(
c
)H
()
• 确定H(ω)
•从接收端入手
•VSB信号的解调和SSB信号一样不能用包络 检波,而要采用相干解调法
•通过解调的公式推导说明残留边带滤波器 的传输函数在载频附近必须具有互补对称 特性
• Sm(t)
LPF
m(t)
•
S (t ) =cosωct
-c 0
c
(f) 已 调 信 号 频 谱
调幅AM示意图
• 3、单边带(SSB)信号
从上述的双边带调制(AM和DSB)中可知,上 下两个边带是完全对称的,即两个边带所包含 的信息完全一样。那么在传输时,实际上只传 输一个边带就可以了,而双边带传输显然浪费 了一个边带所占用的频段,降低了频带利用率。 对于通信而言,频率或频带是非常宝贵的资源。 因此,为了克服双边带调制这个缺点,人们又 提出了单边带调制的概念。
通信原理课件第四章
s
n
(t nT ) 相乘的过程,即抽样信号
s
ms(t) m(t) δTs (t)
(4.2)
《通信原理课件》
一、低通信号的抽样定理
抽样定理指出:一个频带限制在(0, f H )内的时间连续 的模拟信号 m (t),如果抽样频率 f ≥ 2 f ,则可以通过低通滤波
1 Hz 。而理想 τ
抽样频谱的包络线为一条直线,带宽为无穷大。 如上所述,脉冲宽度τ越大,自然抽样信号的第一过零点带宽越 小,这有利于信号的传输。但增大τ会导致时分复用的路数减小,显 然考虑τ的大小时,要兼顾带宽和复用路数这两个互相矛盾的要求。
《通信原理课件》
二、平顶抽样
平顶抽样又称为瞬时抽样,从波形上看,它与自然抽样的不同之 处在于抽样信号中的脉冲均具有相同的形状——顶部平坦的矩形 脉冲,矩形脉冲的幅度即为瞬时抽样值。在实际应用中,平顶抽 样信号采用脉冲形成电路(也称为“抽样保持电路”)来实现, 得到顶部平坦的矩形脉冲。 平顶抽样PAM信号在原理上可以看作由理想抽样和脉冲形成电 路产生。
《通信原理课件》
[例4.2.1]
设输入抽样器的信号为门函数 G t ,宽度 10ms ,若忽略第一零 点以外的频率分量,计算奈奎斯特抽样速率。 解:门函数的频谱为
ωτ Gω τ Sa 2
(4.5)
则第一零点的频率
B 1 Hz τ
(4.6)
忽略第一零点以外的频率分量,则门函数的最高频率(截止频 率) f H 为 100 Hz 。由抽样定理可知,奈奎斯特抽样速率为
f H n 1B kB ,由式(4.7)可得带通信号的最低抽样频率
f s( min ) 2 fH k 2 B1 n 1 n 1
通信原理第4章
P(0 / 0) P(1 / 0)
0 接收端
1
1
P(1 / 1)
图4-13 二进制编码信道模型
P(0 / 0)和P(1 / 1) - 正确转移概率 P(1/ 0)和P(0 / 1) - 错误转移概率
散射传播 电离层散射 机理 - 由电离层不均匀性引起 频率 - 30 ~ 60 MHz 距离 - 1000 km以上 对流层散射 机理 - 由对流层不均匀性(湍流)引起 频率 - 100 ~ 4000 MHz 最大距离 < 600 km
有效散射区域
地球
图4-7 对流层散射通信
h
10
第4章 信 道
第4章 信 道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
Hale Waihona Puke 按折射率分类 (b) 阶跃型
梯度型 按模式分类
n2 n1 折射率
125
多模光纤
7~10
(c)
单模光纤
单模阶跃折射率光纤
h 图4-11 光纤结构示意图
16
第4章 信 道
损耗与波长关系
1.31 m 1.55 m
0.7
0.9
1.1
1.3
1.5
1.7
光波波长(m)
图4-12光纤损耗与波长的关系
损耗最小点:1.31与1.55 m
h
17
第4章 信 道
4.3 信道的数学模型
信道模型的分类:
调制信道 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数 字 调
制
信道
数 字 解 调
信 道 译
通信原理第四章
第 4章模拟调制系统
4.1幅度调制(线性调制)的原理
定义: 幅度调制:用调制信号去控制高频载波的振
幅,使其按调制信号的规律而变化的过程。 幅度调制器的通用模型如图 4 - 1 所示。
4/169 12:07
m(t)
×
h(t)
sm(t)
cos ω ct
图 4 - 1幅度调制器的一般模型
6
由 于 : x (t )e jωct ⇔ X (ω − ω c )
1 [δ (t ) + j ] ⇔ u (ω )
2
πt
⇒
sUSB(t)
=
1[m(t)*(δ 4
(t)
+
j πt
)]e
jωct
+
1 [m(t) *(δ 4
(t)
−
j πt
)]e−
jωct
= 1[m(t) + jmˆ (t)]ejωct + 1[m(t) − jmˆ (t)]e−jωct
如图4 - 7所示。
38/169 12:07
1 m(t) 2
t
Hh(ω)
1 2
m(t)
£π -2
± sSSB(t)
sSSB
(t)
=
1 2
m(t)
cos ωct
∓
1 2
mˆ
(t) sin
ωct
1 2
mˆ (t)
sin
ωct
图 4 –7 相移法形成单边带信号
39/169 12:07
cosωct
25/169 12:07
DSB调制结论: 1. 由频谱结构可知,发射信号没有载波分
通信原理第4章
1. 概述 � 2. 脉冲编码调制 � 3. 增量调制 � 4. 差分脉码调制 � 5. 其他编码技术 � 6. 各种编码技术的应用
�
1
4.1 概述
�
与模拟通信相比,数字通信有许多优点,是当今通信的 发展方向。
� �
如何利用数字通信系统来传输模拟信号? 模/数变换:脉冲编码调制(PCM) 处理过程: 抽样、量化、编码。
29
(2)非均匀量化的方法
�
非均匀量化的量化间隔与信号的大小有关。当信号 幅度小时,量化间隔小,其量化误差也小;当信号 幅度大时,量化间隔大,其量化误差也大。 实现非均匀量化的方法有两种: 直接非均匀编解码法 模拟压扩法(应用比较多)
� � �
30
�
(A) 直接非均匀量化 (小信号量化区间小 ,大信号量化区间大 )
�
8
PCM信号形成过程示意图
9
4.2.1 抽样
抽样是把时间上连续的模拟信号变成一系列时间上离散的 样值序列的过程。
图 抽样的输入与输出
关于抽样需要考虑两个问题: 第一,由抽样信号完全恢复出原始的模拟信号,对和抽 样频率有什么限制条件? 第二,如何从抽样信号还原?
10
1.低通信号的抽样定理
11
�
模 拟 信 源 编 码 数字传 输系统 译 码 收 端
模拟信号数字化传输的系统框图
2
信源编码目的:压缩信源产生的冗余信息,减少传递不 必要信息的开销,从而提高整个传输链路的有效性。
�
模拟信号数字化后,再进行传输的方式分两类: 一、脉冲编码调制(PCM)通信; 二、增量调制 ∆M 通信
3
几种信源编码方法 波形编码:特点是利用抽样定理,恢复原始信号的 波形。如PCM等。 信源 编码 方法 参数编码:提取语音的一些特征信息进行编码,在 收端利用这些特征参数合成语声; 混合型编码:波形编码和参数型编码方式的混合。
通信原理课件——第四章
τ 宽为无穷大。
如上所述,脉冲宽度τ越大,自然抽样信号的带宽越小, 这有利于信号的传输。但增大τ会导致时分复用的路数减小, 显然考虑τ的大小时,要兼顾带宽和复用路数这两个互相矛 盾的要求。
二、平顶抽样
平顶抽样又称为瞬时抽样,从波形上看,它与自然抽样 的不同之处在于抽样信号中的脉冲均具有相同的形状— —顶部平坦的矩形脉冲,矩形脉冲的幅度即为瞬时抽样 值,如图4-11(a)所示。在实际应用中,平顶抽样信号 采用脉冲形成电路(也称为“抽样保持电路”)来实现, 得到顶部平坦的矩形脉冲。
图4-25 PCM系统的原理图
4.5.2 PCM
[例4.5.1]
4.5.3 PCM系统的抗噪声性能分析
4.6 语音压缩编码
4.6.1语音压缩编码技术的概念
通常,人们把话路速率低于64kb/s的语音编码方 法,称为语音压缩编码技术。常见的语音压缩编 码有差值脉冲编码调制(DPCM)、自适应差值脉 冲编码调制(ADPCM)、增量调制(DM或M)、自 适应增量调制(ADM)、参量编码、子带编码 (SBC)等。
第四章 模拟信号的数字传输
4.1 引言 4.2 抽样 4.3 量化 4.4 编码 4.5 脉冲编码调制系统 4.6 语音压缩编码 4.7 图像压缩编码
4.1 引言
图4-1 PCM通信系统原理图
图4-2 PCM信号形成过程示意图
4.2 抽样
所谓抽样是把时间上连续的模拟信号变成 一系列时间上离散的样值序列的过程,如 图4-3所示。
4.3 量化
图4-13 量化的输入和输出
4.3.1均匀量化
图4-14 量化过程及量化误差
[例4.3.1]
通信原理_第四章 信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
短波电离层反射信道 (1) 传播路径
地面高度为60km — 400km
反射层 入射角φo 4000km D F2 F1 E 吸收层
地球
■ □ □ □
电离层: 各个层次的高度、厚度、电子密度等都会随时间变化。 一次或多次反射的距离也会发生变化,且与入射角有关。 不同层次(F1、F2)的不同高度上都会产生反射。
通信原理
4.1 无线信道
第四章
信
道
东北大学网
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
一 地球大气层的结构:
对流层:地面上 0 ~ 10 km 平流层:约10 ~ 60 km 电离层:约60 ~ 400 km
60 km 对流层 10 km 0 km 地 面 电离层
典型的模拟信道是调制信道。 典型的数字信道是编码信道。
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
引言(调制信道与编码信道) 调制信道与编码信道分别是模拟信道与数字信道的 典型例子。
自编码器
调 制 器
发 送 转 换 器
传输媒体 调制信道 编码信道
第四章
信
道
东北大学网
通信卫星
卫星中继信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发送信号——接收信号的关系为: (1)只有幅度大小和出 现先后的不同 (2)波形没有畸变 表达式:
s(t)
恒参信道作用
r(t)
0
发送信号 t
0
td
接收信号
r (t ) Ks(t td )
t
课件制作:曹丽娜
西安电子科技大学 通信工程学院
恒参信道 特性
指传输特性随时间随机快变的信道。
短波电离层反射信道
西安电子科技大学 通信工程学院
课件制作:曹丽娜
随参信道
衰减随时间变化 时延随时间变化 多径传播
无线通信信道是随参信道的典型实例:
无线信道的衰落分为大尺度衰落和小尺度衰落
衰落特性可以描述为: r (t )
m(t ) r0 (t )
偿。
无论幅频失真、相频失真均属于线性失真,可以用一个线性网络进行补 此外还存在非线性失真,频率偏移、相位抖动等失真因素,会引起信号 的非线性码间干扰,使得模拟和数字通信系统的解调性能下降,对高速 数据通信系统的性能影响比较大。
西安电子科技大学 通信工程学院
课件制作:曹丽娜
随参信道 特性及其对信号传输的影响
调制信道对信号的影响程度取决于H()与n(t)的特性
导致的结果:会使信号产生失真、延时和衰落
西安电子科技大学 通信工程学院
课件制作:曹丽娜
不同的物理信道具有不同的特性H() = 常数(可取1)
调制信道分为: (依据冲激响应随时间变化的情况)
恒参信道
——信道的冲激响应随时间 变化缓慢,或者不变
课件制作:曹丽娜
§4.2
有线信道
利用人造的传导或光信号的媒介来传输信号; e.g. 明线 对称电缆 同轴电缆 光纤
西安电子科技大学 通信工程学院
课件制作:曹丽娜
明线
平行架设在电线杆上的架空线路
易受天气和外界干扰的影响
西安电子科技大学 通信工程学院
课件制作:曹丽娜
对称电缆
有线信道
由多对 双绞线组成
第4章
信 道
通信原理(第7版)
樊昌信 曹丽娜 编著
西安电子科技大学 通信工程学院 课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传
输的通道,是通信系统的重要组成部分
西安电子科技大学 通信工程学院
课件制作:曹丽娜
本章内容:
信道分类
第4章 信道
信道模型
恒参/随参信道特性对信号传输的影响
m(t ):大尺度衰落,随时间和位移缓慢变化 r0 (t ):小尺度衰落,随时间和位移快速变化 r (t ): 信道的衰落因子
西安电子科技大学 通信工程学院 课件制作:曹丽娜
3. 多径效应
— 多经传播的影响
发送信号经过反射、散射、绕射传播到接收机,这些经不同途径的信号在 接收机处叠加,导致接收信号发生剧烈变化——多径效应
H ( ) 幅频特性
( ) ~ 相频特性
H () K
幅频特性
2. 无失真传输(恒参信道)
H () Ke
西安电子科技大学 通信工程学院
jtd
( ) td 相频特性
课件制作:曹丽娜
恒参信道
H () K
幅频特性
表明
( ) t d ( ) d ( ) td d 相频特性
幅频失真信道
0
t
r (t ) r1 (t ) r2 (t )
0
t
0
相邻码元之间发生重叠
西安电子科技大学 通信工程学院
t
即:接收信 号发生畸变
课件制作:曹丽娜
3. 失真 影响 措施
恒参信道
相频失真: td 群迟延失真:
( ) td
相频无失真信道
( ) td
信道噪声
信道容量
西安电子科技大学 通信工程学院
课件制作:曹丽娜
概述
信道的定义与分类
按照传输媒介的不同
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
编 码 器
调 制 器
单模阶跃折射率光纤
光纤结构示意图
西安电子科技大学 通信工程学院 课件制作:曹丽娜
有线信道
优点
缺点
应用
西安电子科技大学 通信工程学院
课件制作:曹丽娜
§4.3
信道数学模型
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
按照系统模型中研究对象的不同:
西安电子科技大学 通信工程学院
接收 天线
line-of-sight
h
发射 天线
d
频率: > 30 MHz
特性:直线传播、穿透电离层
用途:卫星和外太空通信 超短波及微波通信 距离:与天线高度有关
r
r
视线传播方式
例如
D D h ( m) 8r 50
D 为收发天线间距离(km)
西安电子科技大学 通信工程学院
2
2
设收发天线的架设 高度均为40 m,则最 远通信距离为: D = 44.7 km
西安电子科技大学 通信工程学院 课件制作:曹丽娜
3. 失真 影响 措施
恒参信道
幅频失真: H () K 即幅频特性在信号的频带范围内不是常数 r (t ) r1 (t ) r2 (t ) H () K
幅频无失真信道
s(t ) s1 (t ) s2 (t )
H () K
(等效为线性是不变滤波器)
随参信道 ——信道的冲激响应随时间较快变化 (等效为线性时变率滤波器)
r (t ) si (t ) n(t )
加性高斯白噪声信道模型 即:描述通信信号只有加 性噪声影响的实际物理信 道,是一种理想信道
课件制作:曹丽娜
若恒参信道,随参信道 的特性不理想,会影响 信号的无失真传输
地球
对流层散射通信
西安电子科技大学 通信工程学院
课件制作:曹丽娜
无线信道
流星余迹散射
流星余迹
特性: 高度80 ~ 120 km,长度15 ~ 40 km 存留时间:小于1秒至几分钟 频率: 30 ~ 100 MHz 距离: 1000 km以上 用途: 低速存储、高速突发、断续传输
西安电子科技大学 通信工程学院
西安电子科技大学 通信工程学院
§4.3.2 编码信道模型
编码信道是一种数字信道或离散信道,
其输入和输出都是离散信号(数字序
列)
编 码 器
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
模型:用 条件转移概率来描述
编码信道
二进制 无记忆 编码信道模型
P(0/0) + P(1/0) = 1 P(1/1) + P(0/1) = 1
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
西安电子科技大学 通信工程学院
课件制作:曹丽娜
光纤
有线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用: 电信网和移动网的骨干网
r (t ) r1 (t ) r2 (t )
s(t ) s1 (t ) s2 (t )
相频失真信道
0
t
( ) td r (t ) r1 (t ) r2 (t )
0
t
0
西安电子科技大学 通信工程学院
t
课件制作:曹丽娜
接收信号同 样发生畸变
恒参信道 特性及其对信号传输的影响 恒参信道
西安电子科技大学 通信工程学院 课件制作:曹丽娜
§4.4
恒参/随参信道特性 对信号传输的影响
西安电子科技大学 通信工程学院
课件制作:曹丽娜
恒参信道 特性及其对信号传输的影响
线性时不变系统
特点:传输特性随时间缓变或不变。 举例:各种有线信道、卫星信道…
在不考虑噪声的前提下,理想恒参信道是一种特殊类型的信道,可以实现 信号的无失真传输
jtd
频域表达式:
H () Ke
IFT
h(t ) K (t td )
即:此时信道的冲激响 应也是冲激函数,只是 强度变化了K倍,延迟 了时间td
若输入信号为s(t),则理想恒参信道的输出:
so (t ) K s(t td )
固定的迟延 固定的衰减
—— 这种情况称为无失真传输
西安电子科技大学 通信工程学院
衡量该信道优劣的重要参数指标:
e P(0) P(1/ 0) 误码率: P
正确
错误
P(1) P(0 /1) 课件制作:曹丽娜
模型:
0 0
四进制 无记忆 编码信道
发 1 送 端
2
1 接
2
收 端
3
3
注意:从上述编码信道模型可以看出,数字序列的传输有时是不可靠 的。因此,如何在不可靠的信道中实现高效的可靠通信是通信理论研 究的一个主要内容。
非屏蔽双绞线(UTP)
(便宜、易弯曲、易安装)