高一数学《函数》全章知识点整理

合集下载

高中数学高一函数知识点

高中数学高一函数知识点

高中数学高一函数知识点一、知识概述《高中高一函数知识点》①基本定义:函数呢,简单来说就是一种对应关系。

就好比是一个加工机器,你往这个机器里放入一个输入值(自变量),这个机器就会根据它内部设定的规则,输出另外一个值(因变量)。

例如,y = 2x,x就是我们放进机器的东西,y就是机器根据2倍这个规则吐出来的值。

②重要程度:函数在高中数学那可是超级重要的,整个高中数学很多知识都和函数扯得上关系。

就像骨架一样,撑起了高中数学的一大片天地。

代数里面很多式子都要用函数的思想去理解,几何里有些图形的变化也能通过函数来研究。

③前置知识:在学习函数之前,得先把代数式、等式这些运算的基础知识掌握好。

像正数、负数的运算,整式、分式的运算,这些要是都一知半解的话,函数学起来可就费劲了。

④应用价值:在生活中用处可大了。

比如说计算成本,成本随着产量的变化而变化,这就可以用函数来描述这种关系。

在物理里面,速度、路程和时间的关系也可以看成是函数关系。

二、知识体系①知识图谱:函数是高中数学的基础核心部分。

它就像树根,很多其他知识都从这个根上长出去的。

像二次函数会在解析几何中用到,函数的单调性在导数的学习里也是基础内容。

②关联知识:和方程、不等式关系密切。

比如说,函数y = x²和方程x²= 1就有联系,函数的值域和不等式的求解也相互影响。

③重难点分析:- 掌握难度:函数概念很抽象,初学者可能理解起来费劲,而且函数的各种性质像单调性、奇偶性等也不好掌握。

- 关键点:要理解函数的定义域、值域和对应关系这三个核心要素。

比如说,对于函数y = 1 / x,定义域就不能包含0,这是很关键的一点。

④考点分析:- 在考试中的重要性:超级重要,每次考试必有函数方面的题目。

- 考查方式:会直接考查函数的概念、让你求函数的定义域值域;或间接考查函数的性质在解题中的应用。

像是给一个函数判断它的奇偶性,或者利用函数单调性求最值。

三、详细讲解【理论概念类】①概念辨析:函数就是两个非空数集A与B之间的对应关系,其中每个A中的元素在B中都有唯一确定的元素与之对应。

高一函数 知识点大全

高一函数 知识点大全

高一函数知识点大全一、函数的定义函数是一种数学操作,它将输入值(或参数)映射到输出值(或结果)。

函数的定义通常包括函数名称、参数列表和函数体。

在高一阶段,我们将学习一些基本的函数,如一次函数、二次函数、幂函数和对数函数等。

二、函数的表示方法函数的表示方法有三种:符号表示法、列表表示法和图像表示法。

符号表示法是用函数名称和参数列表来表示函数,例如y = 2x + 1;列表表示法是将输入值和对应的输出值列成一个表格;图像表示法是通过绘制函数的图像来表示函数的关系。

三、函数的性质函数的性质包括奇偶性、单调性、周期性和对称性等。

奇偶性是指函数是否具有奇偶性;单调性是指函数在某个区间内是单调递增或单调递减;周期性是指函数是否存在周期性;对称性是指函数是否具有对称性。

四、函数的运算函数的运算包括函数的加减乘除、复合运算和反函数运算等。

函数的加减乘除是指将两个或多个函数进行加、减、乘、除运算;复合运算是指将多个函数嵌套在一起,形成一个复合函数;反函数运算是指将一个函数转换为其反函数。

五、函数的图像函数的图像是用来描述函数变化的直观工具。

在绘制函数的图像时,我们需要先确定函数的定义域和值域,然后根据函数的表达式绘制出对应的图像。

同时,我们还需要掌握一些常见的图像变换方法,如平移、伸缩和对称变换等。

六、函数的实际应用高一函数知识点还包括一些实际应用,如利用函数解决实际问题、利用函数进行数据分析等。

在实际问题中,我们需要根据问题的具体情境来选择合适的函数和数学模型进行解决。

我们还需要掌握一些数据处理和分析的方法,如回归分析、聚类分析等。

高一函数知识点是数学学习的重要内容之一。

通过学习和掌握这些知识点,我们可以更好地理解函数的本质和特点,为后续的学习和实际应用打下坚实的基础。

高一函数知识点总结函数是数学的重要概念,是高中数学的核心内容。

在初中数学中,函数通常被视为变量之间的依赖关系,而高中的函数则更加强调映射的概念。

高一函数知识点汇总

高一函数知识点汇总

高 一 函 数一。

函数的概念1、映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A→B 。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射二。

求函数定义域的方法1、已知解析式求定义域 1)、分母不为零;2)、偶数次的开方数大于或等于零; 3)、真数大于零;4)、底数大于零且不等于1。

5)x 0中的x 不为零例题1.2143)(2-+--=x x x x f2.x x x x f -+=)1()(3、g(x)=211+-++x x2、抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于x 的。

1)设)(x f 的定义域是[-3,求函数)2(-x f 的定义域。

2)已知y=f(2x+1)的定义域为[-1,1],求f(x)的定义域; 3)已知y=f(x+3)的定义域为[1,3],求f(x-1)的定义域. 4)若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y +)41(-x f 定义域三、求函数值域的方法1)观察法 2)图象法 3)分式分离常数法 4)换元法 5)判别式法 6)配方法 7)函数单调性法 8)反函数法 例题 (1)335-+=x x y (2)22++-=x x y(3)132222++++=x x x x y (4)xx y 314--=(5)1212-+=x x y (6) 21414()log (2)log ,,82f x x x x ⎡⎤=⋅∈⎢⎥⎣⎦例求函数的值域(7)四、求函数解析式(1)配凑法;(2)换元法; (3)待定系数法;(4)方程组法. 例题(1)已知3311()f x x x x+=+,求()f x ;(2)已知2(1)lg f xx+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x .五、函数的单调性1、证明函数的单调性要利用定义来证明2、没有告诉函数的单调性,而我们要利用这一性质时,应该先证明(在解答题中应用较多)3、判断单调性的方法:①定义; ②导数; ③复合函数单调性:同增则增,异增则减; 用定义证明函数的单调性的步骤:(1)设x 1<x 2, 并是某个区间上任意二值; (2)作差 f(x 1)-f(x 2) (3)判断 f(x 1)-f(x 2) 的符号:①分解因式, 得出因式x1-x2 ②配成非负实数和. (4)作结论. 4、常用结论:①两个增(减)函数的和为_______;一个增(减)函数与一个减(增)函数的差是_______; ②奇函数在对称的两个区间上有_______的单调性;偶函数在对称的两个区间上有_________的单调性;1)、如果对于属于定义域内某个区间的任意两个自变量的值x1 , x2 ,当x1 < x2 时,都有f (x1)<f (x2) ,那么就说f (x)在这个区间上是增函数[]1:()422,1,1.x x f x x +=-+∈-练习求的值域2)、如果对于属于定义域内某个区间的任意两个自变量的值x1 , x2 ,当x1 < x2 时,都有f (x1)>f (x2) ,那么就说f (x)在这个区间上是减函数。

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理高一数学必修一函数必背知识点1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+ba>0,a、b属于Qa^a^b=a^aba>0,a、b属于Qab^a=a^a*b^aa>0,a、b属于Q指数函数对称规律:1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称3、函数y=a^x与y=-a^-x关于坐标原点对称幂函数y=x^aa属于R1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.1所有的幂函数在0,+∞都有定义并且图象都过点1,1;2时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;3时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:1 代数法求方程的实数根;2 几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.感谢您的阅读,祝您生活愉快。

高一函数知识点总结及例题

高一函数知识点总结及例题

高一函数知识点总结及例题高一函数知识点总结及例题:1. 函数的定义与性质:- 函数的定义:函数是一种对应关系,每个自变量对应唯一的因变量。

- 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能的因变量值的集合。

- 奇偶性:奇函数的图像以原点对称,即满足$f(-x)=-f(x)$;偶函数的图像以y轴对称,即满足$f(-x)=f(x)$。

- 单调性:递增函数的图像从左到右逐渐升高;递减函数的图像从左到右逐渐降低。

例题:给定函数$f(x)=2x^2+3x-1$,求其定义域和值域。

解答:由于函数是多项式函数,所以定义域为全体实数。

接下来求值域,可以求出函数的导函数$f'(x)=4x+3$,根据导函数的单调性可以判断函数的增减性。

导函数的系数为正数4,所以原函数是递增函数。

考虑到函数是二次函数,开口向上,所以函数的最小值就是导数的零点,即$x=-\frac{3}{4}$。

将$x=-\frac{3}{4}$代入函数中,得到最小值为$f(-\frac{3}{4}) = -\frac{7}{8}$。

所以值域为$[-\frac{7}{8},+\infty)$。

2. 基本初等函数:- 线性函数:$f(x)=kx+b$,k为斜率,b为截距。

- 幂函数:$f(x)=x^a$,a为常数,当a>0时,函数递增;当a<0时,函数递减。

- 指数函数:$f(x)=a^x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 对数函数:$f(x)=\log_a x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 三角函数:正弦函数、余弦函数、正切函数等。

例题:已知函数$f(x)=2^x-3$,求解方程$f(x)=0$的解。

解答:将$f(x)$置0得到方程$2^x-3=0$,移项得$2^x=3$。

由指数函数的性质可知,$x=\log_2 3$。

高一数学函数重点知识点

高一数学函数重点知识点

高一数学函数重点知识点高一数学函数重点知识点1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一函数知识点总结

高一函数知识点总结

高一函数知识点总结高一函数知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的'被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇某奇=偶偶某偶=偶奇某偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学函数知识点总结(5篇)

高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一数学必修一《函数》章节整合

高一数学必修一《函数》章节整合

2.
3. 幂函数在第一象限内直线 x=1 的右侧,顺时针旋转指数逐渐变小。 二、幂函数单调性的应用 1. 利用单调性比较大小
1) a=( )3 ,
3
4 1
b=(2)3 ,
2
c= (− )3
3
2
, d=( )2 的大小顺序为
4
3 1
2.
利用单调性解不等式 2) 已知幂函数
y= x m²−2m −3 (m ∈ N + ) 的 图 像 关 于 1)

五、 含参数的函数奇偶性的判断 1) 判断 f(x)= x + a − x − a (a∈ R)的奇偶性
2) 判断函数 f(x)=ax²+bx+c(a,b,c∈ R, x ∈ R)的奇偶性
3) 已知函数 f(x)=x²+ x − a +1(a∈ R,x ∈ R),试判断 f(x)的奇偶性
抽象函数奇偶性的判定(另见文档) 抽象函数单调性与奇偶性的综合应用(另见文档) 六、 函数单调性与奇偶性的综合应用 1. 函数 f(x)=1+x 2 是定义在(-1,1)上的奇函数,且 f(2)=5. 1) 确定函数 f(x)的解析式 2) 用定义法证明:f(x)在(-1,1)上是增函数 3) 解不等式:f(t-1) +f(t)<0
x² − 2x + 3,(x > 0) 判断函数 f(x)= 0,(x = 0) x² − 2x − 3,(x < 0) 的奇偶性
函数奇偶性的应用 一、 利用函数奇偶性求函数值 1) 已知 f(x) , g(x)都是定义在 R 上的奇函数,且 F(x)=3 f(x)+5 g(x)+2,若 F(a)=b,则 F(-a)= 2) 设函数 f(x)=ax ³ +cx+d 的图像如图,则 f(-1)+ f(1)= 3) 已知函数 f(x)为奇函数, g(x)= f(x)+9, g(-2)=3, 则 f(2)= 二、 利用函数奇偶性求解析式 1) 已知定义在 (-∞, +∞) 上的函数 f(x)的图像关于原点对称, 且当 x> 0时, f(x)=x²-2x+2,求函数 f(x)的解析式。 2) 设函数 f(x)为偶函数,g(x)为奇函数,且 f(x)+ g(x) =x −1,求 f(x) 和 g(x)的解析式 三、 利用函数奇偶性求参数的值 1) 若函数 f(x)=ax²+bx+3a+b 是定义在 a − 1,2a 上的偶函数, 求 a,b 的值。 2) 已知函数 f(x)是定义在 R 上的奇函数,且 f(x)=x 2 +nx +1,求 n,m 的值。 3) 若函数 f(x)=x 2 − x + a 为偶函数,求实数 a 的值。 四、 利用奇函数、偶函数图像的对称性解题 1) 已知 y= f(x)和 y= g(x)都是定义在 −π ,π 上的函数,y= f(x)是偶 函数, y= g(x) 是奇函数, x ∈ 0,π 上的图像如图所示,求不等式

(完整word版)高一数学必修一函数知识点总结

(完整word版)高一数学必修一函数知识点总结

3.函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型f(x) ax2 bx c,x (m, n)的形式;②逆求法(反求法):通过反解,用y 来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;常用来解,型如:y ,x (m,n);cx d④换元法:通过变量代换转化为能求值域的函数,化归思想;常针对根号,举例:-—-- —— -J—J- —- —~ - - - —~ - —L T™Lr——y--1 十一,再利用配方法。

令\戈;-1 = t,则/ = F' + 1,原式转化为:•'亠八:—一+5⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;k⑥基本不等式法:转化成型如:y x (k 0),利用平均值不等式公式来求值域;x⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

^WWWMWVWMWWWWWWV.⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

二•函数的性质1.函数的单调性(局部性质)(1) 增函数设函数y=f(x)的定义域为|,如果对于定义域I内的某个区间D内的任意两个自变量X i, X2,当X i<X2时,都有f(xi)<f(x 2),那么就说f(x)在区间D上是增函数. 区间D称为y=f(x)帀单调增区间—如果对于区间D上的任意两个自变量的值X i,X2,当X i<X2时,都有f(x 1) >f(x 2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(Xf的单调减注意:函数的单调性是函数的局部性质;⑴单调性:定义(注意定义是相对与某个具体的区间而言)增函数:对任意的X i ,X2 [a,b],X i X2 f (x i) f (X2) 减函数对任意的X i, X2 [a,b], X i X2 f (x i) f (X2)注:① 函数上的区间I且X i,X2 € I.若f ( X i ) f ( X2 ) >0 ( X i工X2),则函数f(x)在区间I上是增函数;X i X2若f(x i ) f ( x2 ) < 0 ( X i工X2),贝寸函数f(x)是在区间I上是减函数。

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。

函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。

函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。

二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。

奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。

周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。

三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。

指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。

对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。

函数y=log_ax(a>0,且a≠1)叫做对数函数。

三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。

四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。

函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。

以上是高一数学函数的主要知识点总结。

在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。

高中数学函数知识点最新总结

高中数学函数知识点最新总结

高中数学函数知识点总结一、函数的概念与性质1.1 函数的定义函数是一种数学关系,它将一个集合(称为定义域)中的每个元素唯一地对应到另一个集合(称为值域)中的一个元素。

形式化地,如果集合A和B都是数集,且对于A中的任意一个元素x,按照某个确定的规则,在B中都有唯一的一个元素y与之对应,那么就称y为x的函数,记作y=f(x),A称为定义域,B称为值域。

1.2 函数的性质(1)一一映射:函数具有唯一性,即对于定义域中的任意一个元素x,在值域中都有唯一的元素y与之对应。

(2)单调性:函数可以在定义域内单调增加或单调减少,也可以是单调不增不减。

(3)连续性:函数在定义域内连续。

(4)周期性:函数可以具有周期性,即存在正数T,使得对于任意x,都有f(x+T)=f(x)。

二、常见函数类型2.1 线性函数形式为y=kx+b的函数,其中k和b为常数,k称为斜率,b称为截距。

2.2 二次函数形式为y=ax^2+bx+c的函数,其中a、b、c为常数,a≠0。

2.3 对数函数形式为y=log_a(x)的函数,其中a为底数,x为真数。

2.4 三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。

2.5 反三角函数包括反正弦函数arcsin(x)、反余弦函数arccos(x)、反正切函数arctan(x)等。

2.6 指数函数形式为y=a^x的函数,其中a为底数,x为指数。

三、函数的图像与性质3.1 图像的画法函数的图像可以通过解析法、描点法、图象平移等方法来画出。

3.2 函数的单调区间通过导数或者图像,可以判断函数在定义域内的单调性。

3.3 函数的极值函数的极值是指在定义域内函数取得最大值或最小值的点。

3.4 函数的周期性通过观察函数的周期性,可以简化函数的计算。

四、函数的应用4.1 函数的求值给定函数和自变量,求出函数的值。

4.2 函数的解析式求解已知函数的图像或性质,求出函数的解析式。

4.3 函数的图像变换通过平移、缩放等操作,可以得到函数的图像变换。

高一数学《函数》全章知识点整理

高一数学《函数》全章知识点整理

△情况 △ =b2-4ac
一元二次不等式解集
ax2+bx+c>0
ax2+bx+c<0
(a>0)
(a>0)
△ >0
x x x1或x x2
x x1 x x2


△ =0
x x x0


△ <0
R
1、已知函数 f ( x) 4x 2 mx 5 在区间 [ 2, ) 上是增函数,则 f (1) 的范围是(

、 1个
C 、 2个
D 、3个
()
y
y
2
2
1
1
O 12 x
O 1 2x
y 3 2 1
O 1 x
y
2 1 O 12 x
二、函数的解析式与定义域
1、求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于
与 g(x) 的单调性相同,则 y f g x 在 M 上是增函数。
1 判断函数 f ( x) x3 (x R) 的单调性。
2 例 函数 f (x) 对任意的 m, n R ,都有 f (m n) f ( m) f (n) 1 ,并且当 x 0时, f ( x) 1,
⑴求证: f ( x) 在 R 上是增函数;
注意点:(1)对映射定义的理解。 ( 2)判断一个对应是映射的方法。一对多不是映射,多对一是映射
2、函数 构成函数概念的三要素
①定义域②对应法则③值域
两个函数是同一个函数的条件:三要素有两个相同

高一数学必修1函数知识点总结

高一数学必修1函数知识点总结

高一数学必修1函数知识点总结一、函数的基本概念函数的定义:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A。

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A }叫做函数的值域。

二、函数的性质函数的奇偶性:若f(x)是偶函数,那么f(x)=f(-x);若f(x)是奇函数,且0在其定义域内,则f(0)=0;判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或f(x)≠f(-x);奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性。

函数的单调性:通过对函数求导,可以判断函数的单调性。

若导数大于0,则函数在此区间内单调递增;若导数小于0,则函数在此区间内单调递减。

三、复合函数复合函数的定义域:若已知g(x)的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;复合函数的单调性:由同增异减判定,即内外函数单调性相同时,复合函数单调性相同;内外函数单调性相反时,复合函数单调性相反。

四、对数函数对数函数的定义域为大于0的实数集合;对数函数的值域为全部实数集合;对数函数总是通过(1,0)这一点;当底数a大于1时,对数函数为单调递增函数,并且上凸;当0<a<1时,对数函数为单调递减函数,并且下凹。

五、函数图像与对称性函数图像的对称性可以通过观察图像或利用函数的性质进行判断;对于某些特定的函数,如反比例函数,其图像具有特定的对称性。

六、指数函数与幂函数指数函数的形式通常为y=a^x,其中a为底数,x为指数;幂函数的形式为y=x^n,其中n为实数。

这些知识点构成了高一数学必修1中关于函数的基本框架。

在学习过程中,需要深入理解每个知识点的概念、性质和应用,同时结合具体的例题和习题进行练习,以加深对知识点的理解和掌握。

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。

我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。

需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。

同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。

相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。

在考虑函数的值域时,我们可以使用观察法、配方法或代换法。

函数图象是指在平面直角坐标系中,以函数y=f(x)。

(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。

我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。

区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。

同时,还有无穷区间。

我们可以使用数轴来表示区间。

映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。

我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。

对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。

3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。

高一数学函数知识点归纳

高一数学函数知识点归纳

高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。

2. 定义域:能够输入到函数中的所有可能的x值的集合。

3. 值域:函数输出的所有可能的y值的集合。

4. 函数图像:函数在坐标系中的图形表示。

二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。

2. 表格法:用表格列出x与y的对应值。

3. 图像法:通过函数图像直观表示函数关系。

三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。

3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。

4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。

四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。

2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。

3. 幂函数:y=x^n,其中n为实数。

4. 指数函数:y=a^x(a>0,a≠1)。

5. 对数函数:y=log_a(x)(a>0,a≠1)。

6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。

五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。

2. 函数的乘积:(f*g)(x)=f(x)g(x)。

3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。

六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。

2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。

七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。

最全函数知识点总结高中

最全函数知识点总结高中

最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。

在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。

其中A称为定义域,B称为值域。

1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。

比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。

我们可以看到,函数本质上就是一种输入与输出的关系。

1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。

1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。

1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。

1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。

1.7 函数的分类函数可以分为初等函数和非初等函数。

初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。

非初等函数包括无穷级数、常微分方程等。

1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。

1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。

1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。

对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。

1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。

二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。

高一函数知识点总结归纳

高一函数知识点总结归纳

高一函数知识点总结归纳高一函数知识点总结1函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A 叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A}叫做函数的值域。

2、函数定义域的解题思路:⑴若x处于分母位置,则分母x不能为0。

⑵偶次方根的被开方数不小于0。

⑶对数式的真数必须大于0。

⑷指数对数式的底,不得为1,且必须大于0。

⑸指数为0时,底数不得为0。

⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数⑴表达式相同:与表示自变量和函数值的字母无关。

⑵定义域一致,对应法则一致。

4、函数值域的求法⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵图像法:适用于易于画出函数图像的函数已经分段函数。

⑶配方法:主要用于二次函数,配方成y=(x-a)2+b的形式。

⑷代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵伸缩变换:在x前加上系数。

⑶对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶不要求集合B中的每一个元素在集合A中都有原象。

7、分段函数⑴在定义域的不同部分上有不同的解析式表达式。

数学必修一函数知识点

数学必修一函数知识点

数学必修一函数知识点一、函数的概念1. 函数的定义:给定一个集合A,另一个集合B,如果存在一个确定的对应关系f,使得A中的每一个元素x都对应B中的一个元素y,我们就称f: A → B为一个函数。

2. 函数的表示:通常用f(x) = y来表示函数关系,其中x是自变量,y是因变量。

二、函数的图象1. 坐标图:通过在平面直角坐标系中绘制点(x, y)来表示函数的图象。

2. 常见函数图象:线性函数、二次函数、指数函数、对数函数等。

三、函数的性质1. 单调性:函数在某个区间内,随着自变量的增加,函数值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x) = f(x)则称为偶函数;如果满足f(-x) = -f(x)则称为奇函数。

3. 周期性:如果存在一个非零实数T,使得对于所有x,都有f(x+T) = f(x),则称函数f(x)具有周期T。

四、函数的运算1. 四则运算:两个函数的和、差、积、商。

2. 复合函数:如果有两个函数f(x)和g(x),那么(f(g(x)))定义为f和g的复合函数。

五、常见函数类型1. 线性函数:f(x) = ax + b,其中a和b是常数。

2. 二次函数:f(x) = ax^2 + bx + c,其中a、b和c是常数。

3. 指数函数:f(x) = a^x,其中a > 0且a ≠ 1。

4. 对数函数:f(x) = log_a(x),其中a > 0且a ≠ 1。

六、函数的应用1. 实际问题建模:将实际问题转化为函数关系进行求解。

2. 最值问题:求解函数的最大值和最小值。

3. 函数的极值:研究函数在某个区间内的最大值和最小值。

七、函数的极限1. 极限的定义:描述函数值随着自变量趋向于某一点时的行为。

2. 极限的性质:极限的四则运算、夹逼定理等。

八、导数与微分1. 导数的定义:描述函数在某一点处的瞬时变化率。

2. 微分的定义:函数的微小增量的线性部分。

请注意,以上内容是一个概要,您可以根据需要添加详细的解释、例题和图形来丰富文档内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数复习主要知识点
一、函数的概念与表示
1、映射
(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A →B 。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射
2、函数
构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件:三要素有两个相同
二、函数的解析式与定义域
1、求函数定义域的主要依据: (1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于1;
2求函数定义域的两个难点问题
(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。

(2) (21)x x 已知f -
的定义域是[-1,3],求f()的定义域
三、函数的值域
1求函数值域的方法
①从自变量x 的围出发,推出y=f(x)的取值围,适合于简单的复合函数;
②换元法:利用换元法将函数转化为二次函数求值域,适合根式外皆为一次式;
③判别式法:运用方程思想,依据二次方程有根,求出y 的取值围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域;
四.函数的奇偶性
1.定义: 设y=f(x),x ∈A ,如果对于任意x ∈A ,都有()()f x f x -=,则称y=f(x)为偶函数。

如果对于任意x ∈A ,都有()()f x f x -=-,则称y=f(x)为奇函数。

2.性质:
①y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称, ②若函数f(x)的定义域关于原点对称,则f(0)=0 ③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称] 3.奇偶性的判断
①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系
五、函数的单调性
1、函数单调性的定义:
2 设()[]x g f y =是定义在M 上的函数,若f(x)与g(x)的单调性相反,则()[]x g f y =在M 上是减函数;若f(x)
与g(x)的单调性相同,则()[]x g f y =在M 上是增函数。

六.函数的周期性:
1.(定义)若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期。

说明:nT 也是)(x f 的周期
(推广)若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期
2.若)()(x f a x f -=+;)
(1)(x f a x f =
+;)(1)(x f a x f -=+;则)(x f 周期是2a
1.只有单调的函数才有反函数;反函数的定义域和值域分别为原函数的值域和定义域; 2、求反函数的步骤 (1)解 (2)换 (3)写定义域。

3、关于反函数的性质
(1)y=f(x)和y=f -1(x)的图象关于直线y=x 对称; (2)y=f(x)和y=f -1(x)具有相同的单调性;
(3)已知y=f(x),求f -1(a),可利用f(x)=a ,从中求出x ,即是f -1(a); (4)f -1[f(x)]=x;
(5)若点 (a,b)在y=f(x)的图象上,则 (b,a)在y=f --1(x)的图象上;
(--1
八.二次函数(涉及二次函数问题必画图分析)
1.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴a b x 2-=,顶点坐标)44,2(2
a
b a
c a b --
2.二次函数与一元二次方程关系
一元二次方程)0(02
≠=++a c bx ax 的根为二次函数f(x)=ax 2+bx+c(a ≠0)0=y 的x 的取值。

一元二次不等式)0(02<>++c bx ax 的解集(a>0)
九.指数式与对数式
1.幂的有关概念
(1)零指数幂)0(10
≠=a a (2)负整数指数幂()1
0,n n a
a n N a
-*=
≠∈ (3)正分数指数幂)0,,,1m n
a a m n N n *=>∈>;
(5)负分数指数幂)10,,,1m
n
m n
a
a m n N n a
-*
==
>∈>
(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质
()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s
r rs a a a r s Q =>∈ ()()()30,0,r
r r ab a b a b r Q =>>∈
3.根式
根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨
⎧<-≥==0
0a a
a a a a n n
4.对数
(1)对数的概念:如果)1,0(≠>=a a N a b
,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a
(2)对数的性质:①零与负数没有对数 ②01log =a ③1log =a a (3)对数的运算性质
logMN=logM+logN
对数换底公式:)10,10,0(log log log ≠>≠>>=
m m a a N a
N
N m m a 且且
对数的降幂公式:)10,0(log log ≠>>=
a a N N
n
N a n
a m 且
x
2. 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理) 记住下列特殊值为底数的函数图象:
3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制
4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函
数的单调性是解决问题的重要途径。

十.函数的图象变换
(1) 1、平移变换:(左+ 右- ,上+ 下- )即
k
x f y x f y h x f y x f y k k h h +=−−−−−→−=+=−−−−−→−=><><)()()
()(,0;,0,0;,0上移
下移左移
右移
① 对称变换:(对称谁,谁不变,对称原点都要变)
)
()()()()
()()
()()
()()()(1
x f y x f y x f y x f y x f
y x f y x f y x f y x f y x f y x f y x f y x x y x
y y x =−−−−−−−−−→−==−−−−−−−−−−→−==−−→−=--=−−→−=-=−→−=-=−→−=-=轴下方图上翻轴上方图,将保留边部分的对称图轴右边不变,左边为右原点轴轴
十.函数的其他性质
1.函数的单调性通常也可以以下列形式表达:
1212
()()
0f x f x x x ->- 单调递增
1212
()()
0f x f x x x -<- 单调递减
2.函数的奇偶性也可以通过下面方法证明:
()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数
3.函数的凸凹性:
1212()()
()22x x f x f x f ++<
凹函数(图象“下凹”,如:指数函数) 1212()()
()22
x x f x f x f ++>
凸函数(图象“上凸”,如:对数函数)。

相关文档
最新文档