三角函数导数及不定积分公式

合集下载

不定积分的基本公式和直接积分法

不定积分的基本公式和直接积分法

14
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
1 x 2
(2 )1 d x x 2 a r c ta n x C a rcc o tx C
(a r c ta n x ) 1 1 x 2,(a r c c o tx ) 1 1 x 2
精选ppt可编辑版
5
基 (1 )k dkx x C(k 是常数);


(2)
xd xx1C(1); 1


(3) 说明dxx:lnx| x|0,C ; dxlnxC,
x
x 0 ,[l n x )] (1 (x) 1,
x
x
dxxln(x)C, dxxln|x|C,
简写为
dx x
ln|
x|
C.
精选pt可编辑版
6
(4) 11x2dxarcxtaC;n
(5)
1 dxarcxsC i;n 1x2
(6) coxsdxsix nC;
第二节 不定积分的基本公式和直 接积分法
一、不定积分的基本公式 二、直接积分法
精选ppt可编辑版
1
一、基本积分公式
实例
x1 x
1
xdxx1 C. 1
(1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的,因 此可以根据求导公式得出积分公式.
精选ppt可编辑版
2
1 常量函数:0dxC(常数) (C) 0
2 幂函数:
(1) xdxx1 C(1)
1
(2)1xdxlnxC
(
x 1
1
x
)
( (ln x ) 1) x

高二数学知识点及公式总结5篇

高二数学知识点及公式总结5篇

高二数学知识点及公式总结5篇第一篇:高二数学必备知识点及公式总结1.函数的概念及其性质函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。

函数的三要素为定义域、值域和对应关系。

常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。

常见函数的公式:一次函数:y = kx + b二次函数:y = ax^2 + bx + c指数函数:y = a^x (a > 0, a ≠ 1)对数函数:y = loga(x) (a > 0, a ≠ 1)2.三角函数及其应用三角函数是指正弦函数、余弦函数、正切函数等。

由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。

三角函数的公式:正弦函数:y = sinx余弦函数:y = cosx正切函数:y = tanx割函数:y = secx余割函数:y = cotx3.微积分基础微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。

导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。

微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。

微积分的公式:导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx第二篇:高二数学解析几何知识点及公式总结1.向量及其运算向量是数学中的一种对象,具有大小和方向两个要素。

向量的运算包括加、减、数乘、点乘等,可以用来描述物体的运动、力的作用等。

向量运算的公式:向量加法: A + B = (Ax + Bx, Ay + By)向量减法: A - B = (Ax - Bx, Ay - By)向量数乘: kA = (kAx, kAy)向量点乘:A·B = |A||B|cosθ2.平面及直线的方程平面是空间内的一种二维图形,可以通过点和法向量来确定。

不定积分常用公式

不定积分常用公式

不定积分常用公式积分是微积分中的重要概念,其在多个科学和工程领域中都有广泛的应用。

本文将介绍一些常用的积分公式,帮助读者更好地理解积分的概念和应用。

1. 定积分的基本性质在介绍具体的公式之前,我们先回顾一下定积分的基本性质。

定积分的定义如下:如果函数f(x)在区间[a, b]上连续,那么它的定积分可以表示为:∫(a to b) f(x) dx = F(b) - F(a)其中,F(x)是f(x)的一个原函数。

这个公式是定积分的基本性质,它告诉我们如何计算定积分。

2. 基本公式(1)函数f(x) = x^n的定积分公式:∫ x^n dx = (1/(n+1)) * x^(n+1) + C其中,C为常数。

特别地,当n=-1时,上述公式变为:∫1/x dx = ln|x| + C(2)函数e^x的定积分公式:∫ e^x dx = e^x + C(3)函数sin(x)和cos(x)的定积分公式:∫ sin(x) dx = -cos(x) + C∫ cos(x) dx = sin(x) + C3. 常见函数积分公式(1)反三角函数的积分公式:∫ 1/sqrt(1-x^2) dx = arcsin(x) + C∫ 1/(1+x^2) dx = arctan(x) + C(2)指数和对数函数的积分公式:∫ e^x dx = e^x + C∫ a^x dx = (a^x)/(ln(a)) + C其中,a为常数且a>0,a≠1。

(3)三角函数的积分公式:∫ sin(ax) dx = -(1/a) * cos(ax) + C∫ cos(ax) dx = (1/a) * sin(ax) + C其中,a为常数。

(4)反双曲函数的积分公式:∫ 1/sqrt(x^2 + 1) dx = ln|x + sqrt(x^2 + 1)| + C ∫ 1/(x^2 - 1) dx = 1/2 * ln|(x - 1)/(x + 1)| + C4. 特殊的积分公式(1)分部积分法:如果u和v是两个具有连续导数的函数,那么有:∫ u dv = uv - ∫ v du这是求解一类复杂积分的常用方法之一。

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。

下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。

不定积分公式口诀

不定积分公式口诀

不定积分公式口诀摘要:一、引言二、不定积分的概念与基本公式1.不定积分的定义2.基本积分公式三、常用初等函数的积分公式1.幂函数的积分公式2.三角函数的积分公式3.指数函数与对数函数的积分公式4.反三角函数的积分公式5.其他常见函数的积分公式四、记忆口诀与技巧1.口诀一:奇偶函数积分规律2.口诀二:高阶导数求积分3.口诀三:分部积分法五、总结正文:一、引言在微积分学习中,不定积分是重要的基础知识之一。

掌握好不定积分的方法和技巧,对于后续学习定积分、微分方程等课程具有重要意义。

本文将为大家介绍一些常用的不定积分公式,并通过口诀形式帮助大家记忆。

二、不定积分的概念与基本公式1.不定积分的定义:设函数f(x) 在区间[a, b] 上有界,F(x) 是f(x) 在[a, b] 上的一个原函数,则称F(x) 在[a, b] 上关于x 的不定积分。

通常用∫(a~b)f(x)dx 表示。

2.基本积分公式:对于一些基本的初等函数,我们可以直接查表或记忆其不定积分公式。

例如:∫(x^n)dx = x^(n+1)/(n+1)、∫(sinx)dx = -cosx +C、∫(ex)dx = ex + C 等。

三、常用初等函数的积分公式1.幂函数的积分公式:对于幂函数f(x) = x^n,其不定积分为F(x) =x^(n+1)/(n+1) + C。

2.三角函数的积分公式:对于正弦函数f(x) = sinx,其不定积分为F(x) = -cosx + C;对于余弦函数f(x) = cosx,其不定积分为F(x) = sinx + C。

3.指数函数与对数函数的积分公式:对于指数函数f(x) = ex,其不定积分为F(x) = ex + C;对于自然对数函数f(x) = lnx,其不定积分为F(x) = xlnx - ln(x) + C。

4.反三角函数的积分公式:对于反正弦函数f(x) = arcsin(x),其不定积分为F(x) = -√(1-x^2) + C;对于反余弦函数f(x) = arccos(x),其不定积分为F(x) = √(1-x^2) + C。

不定积分计算公式

不定积分计算公式

不定积分计算公式不定积分是微积分中一个重要的概念,它表示函数的原函数。

计算不定积分可以使用一系列的公式和技巧。

下面将介绍一些常用的不定积分计算公式。

1.幂函数不定积分的基本公式之一是幂函数的不定积分公式。

∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)其中C为常数。

例如,∫x^2 dx = x^3/3 + C只有当指数n不等于-1时,幂函数才有原函数。

2.指数函数和对数函数指数函数和对数函数是常用的函数,它们的不定积分可以通过以下公式计算。

∫e^x dx = e^x + C∫ln(x) dx = xln(x) - x + C其中e为自然对数的底数。

3.三角函数三角函数也有常用的不定积分公式。

∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫tan(x) dx = -ln,cos(x), + C∫cot(x) dx = ln,sin(x), + C其中C为常数。

4.反三角函数其不定积分公式如下所示。

∫sec^2(x) dx = tan(x) + C∫csc^2(x) dx = -cot(x) + C∫sec(x)tan(x) dx = sec(x) + C∫csc(x)cot(x) dx = -csc(x) + C其中C为常数。

5.一些特殊函数除了上述常见的函数,还有一些特殊的函数和它们的不定积分公式。

∫1 dx = x + C∫1/x dx = ln,x,+ C (x≠0)∫e^ax sin(bx) dx = (a e^ax sin(bx) - b e^ax cos(bx))/(a^2 + b^2) + C∫e^ax cos(bx) dx = (a e^ax cos(bx) + b e^ax sin(bx))/(a^2 + b^2) + C其中a和b为常数。

6.分部积分法分部积分法是一个常用的计算不定积分的技巧,它基于导数运算和不定积分之间的关系。

三角函数的换算公式

三角函数的换算公式

三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))5、和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差sinαsinβ = -1/2*[cos(α-β)-cos(α+β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]7、万能公式2tan 12tan 2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

不定积分(公式大全)

不定积分(公式大全)

所以 x2、x2+1、x2-1、x2+C (C为任意常数)
都是函数f(x)=2x的原函数。
[定理5.1] 设F(x)是函数f(x)在区间I上的一个原函数,
C是一个任意常数,那么, ⑴ F(x)+C也是f(x) 在该区间I上的原函数 ⑵ f(x)该在区间I上的全体原函数可以表示
为F(x)+C 证明:
于是有 ∫u(x)·v'(x)dx=u(x)·v(x)-∫u'(x)·v(x)dx
或表示成 ∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x)
这一公式称为分部积分公式。
二、讲解例题
例1 求∫xexdx
解:令 u(x)=x,v'(x)=ex 则原式为∫u(x)·v'(x)dx的形式
∵(ex)'=ex ∴v(x)=ex,
x 1 1
元,令u
x

1
则原式=

u
1
1
dx,再反解x=u2+1,
得dx=2udu,代入

x
1 1
1
dx
2
u
u
1
du

2
(1
u
1 )du 1
2[u ln u 1] C 2 x 1 2ln | x 1 1| C
这就是第二换元积分法。
例 求 sin x x dx
dx
(
1 )dx arccos x C 1 x2
两式都是本题的解
[注意] 不能认为 arcsinx=-arccosx,他们之间
的关系是 arcsinx=π /2-arccosx
四、 不定积分的性质 ⑴ [∫f(x)dx]'=f(x) 该性质表明,如果函数f(x)先求不定积分再求导,

不定积分中五个公式的推导

不定积分中五个公式的推导

不定积分中五个公式的推导1. $\int \sec^2(x) dx = \tan(x) + C$我们首先从$\textrm{sec}^2(x)$开始。

需要注意的是,$\textrm{sec}^2(x)$是$\frac{d}{dx} \tan(x)$的导数。

因此,我们可以将积分项看作是$\frac{d}{dx} \tan(x)$的原函数,即可得出积分结果为$\tan(x) + C$。

2. $\int \csc^2(x) dx = -\cot(x) + C$同样地,$\textrm{csc}^2(x)$是$\frac{d}{dx} \cot(x)$的导数。

因此,我们可以将积分项看作是$\frac{d}{dx} \cot(x)$的原函数,即可得出积分结果为$-\cot(x) + C$。

3. $\int \sec(x) \tan(x) dx = \sec(x) + C$对于积分项$\sec(x) \tan(x)$,我们考虑将其写成$\frac{d}{dx}\sec(x)$的形式。

我们知道$\frac{d}{dx} \sec(x) = \sec(x) \tan(x)$,因此积分结果为$\sec(x) + C$。

4. $\int \csc(x) \cot(x) dx = -\csc(x) + C$我们同样将积分项$\csc(x) \cot(x)$写成$\frac{d}{dx}\csc(x)$的形式。

我们知道$\frac{d}{dx} \csc(x) = -\csc(x)\cot(x)$,因此积分结果为$-\csc(x) + C$。

5. $\int \sin^2(x) dx = \frac{x}{2} - \frac{\sin(2x)}{4} +C$对于积分项$\sin^2(x)$,我们需要进行一些代数变换。

我们可以利用三角恒等式$\sin^2(x) = \frac{1 - \cos(2x)}{2}$将其转化为$\cos(2x)$的形式。

导数微分不定积分公式

导数微分不定积分公式

导数微分不定积分公式一、导数导数是微积分中的重要概念,表示函数在特定点上的变化率。

假设函数y=f(x),其中x是自变量,y是因变量,那么函数在其中一点x=a处的导数表示为f'(a)或$\frac{dy}{dx}$。

导数的定义可以通过极限来表示:$$f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,h是一个无穷小的增量。

导数有以下几个基本规则:1. 常数规则:如果f(x)是一个常数,那么它的导数等于零,即$\frac{d}{dx}(c) = 0$。

2. 幂函数规则:对于幂函数f(x) = $x^n$,其中n是任意实数,它的导数是f'(x) = $nx^{(n-1)}$。

3. 指数函数规则:对于指数函数f(x) = $a^x$,其中a是常数且大于零,它的导数是f'(x) = $a^x\ln(a)$。

4. 对数函数规则:对于对数函数f(x) = $\log_a{x}$,其中a是常数且大于零且不等于1,它的导数是f'(x) = $\frac{1}{x\ln(a)}$。

5.和差规则:设f(x)和g(x)是可导函数,那么它们的和(差)f(x)±g(x)的导数是f'(x)±g'(x)。

6. 积法则:设f(x)和g(x)是可导函数,那么它们的积fg的导数是f'(x)g(x)+f(x)g'(x)。

7. 商法则:设f(x)和g(x)是可导函数,且g(x)不等于零,那么它们的商$\frac{f(x)}{g(x)}$的导数是$\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。

此外,还有复合函数的导数、隐函数的导数等规则,它们的求导公式可以根据基本规则和链式法则来推导。

二、微分微分是导数的一个重要应用,它描述了函数局部变化的情况。

微分有两种方式表示,一种是微分形式,另一种是微分方程形式。

三角函数转换公式

三角函数转换公式

三角函数转换公式1、诱导公式:sin(- α )二Sin αcos(- α ) = cos; stn( ∏-∕2 ) = cos; cos( ∏-Z2 ) = Sin; α sin( ∏ /2+ / ) = ;oos( π /2+ α-^iff ∕sin( -∏ ) = sin; coα( πα ) =CoS /Sin( ∏ + α-s= ; cos( ∏ + / -COS ; tanA= SinA/cosA; tan ( ∏ /缶∕) =—cot ; tan ( ∏ /2- ∕)= cot ; tan ( n— /)=—tan ; tan ( ∏+ ∕)=tan /2、两角和差公式:sin(A ±B) = SinAcos ±BCOSASinB cos(A±B) =CosAcosB Zi=S inAsinBtan(A±B) = (tanA ±tanB)∕(1 =j=tanAtanB)cot(A ±B) = (COtACOt^=1)∕(cotB ±cotA)3、倍角公式Si n2A=2si nA?cosAcos2A=cosA2-si nA2=1-2si nA2=2cosA2-1tan2A=2tanA/ ( 1-tanA2) =2cotA∕(cotA2-1)4、半角公式tan( A/2)=(1-cosA)/si nA=si nA∕(1+cosA); cot(A/2)=si nA∕(1-cosA)=(1+cosA)∕si nA.Si n^2(a∕2)=(1-cos (a))∕2cos^2(a∕2)=(1+cos(a))∕2tan( a∕2)=(1-cos(a))∕si n(a)=si n( a)∕(1+cos(a))7、 2 2 2 5、 和差化积Sin θ +sin φ = 2 Sin[( θ + φ φ2∕2]os[(θ Sin θsin φ = 2 cos[( θ + φ )∕2]-s⅜∏I∕2] θcos θ +cos φ = 2 cos[( θ + φ )/2- φOS2d θcos θcos φ =2 Sin[( θ +φ )/2] sin φ)/2] θtan A+ta nB=si n(A+B)/CoSACosB=ta n(A+B)(1-ta nAta nB)ta nA-ta nB=si n( A-B)/CoSACosB=ta n( A-B)(1+ta nAta nB)6、 积化和差Sin α Sin ∙^∕2*[cos( - [0)os( α + β )]cos α cos β =1∕2*[cos(α + β ∙)βC⅛S( OC Sin α cos β =1∕2*[s in( α + β β+)⅞in( OCcos α Sin β =1∕2*[s in( -sin(+ββ)]万能公式2 Of 1 —t a n Ct2t a n sin> 二 C o s: a n>7、2 2 2 2 Ct1 t a n — 22 Of 1 t a n 一 2 2 0(1 —t a n — 22010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分•线性代数•概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56 %线性代数22%概率论与数理统计22 %四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1•理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2•了解函数的有界性•单调性•周期性和奇偶性.3•理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4•掌握基本初等函数的性质及其图形,了解初等函数的概念.5•了解数列极限和函数极限(包括左极限与右极限)的概念•6•了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7 .理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(UHospitaI )法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1•理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数•3•了解高阶导数的概念,会求简单函数的高阶导数.4•了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5•理解罗尔(ROlIe )定理•拉格朗日(Lagrange)中值定理•了解泰勒定理•柯西(CaUChy)中值定理,掌握这四个定理的简单应用.6•会用洛必达法则求极限.7•掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8•会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9 .会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(NeWtOn- Leibniz )公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2•了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3•会利用定积分计算平面图形的面积•旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4•了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值•最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1•了解多元函数的概念,了解二元函数的几何意义•2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3•了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幕级数及其收敛半径.收敛区间(指开区间)和收敛域幕级数的和函数幕级数在其收敛区间内的基本性质简单幕级数的和函数的求法初等函数的幕级数展开式考试要求1•了解级数的收敛与发散•收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3•了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幕级数的收敛半径、收敛区间及收敛域.5.了解幕级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幕级数在其收敛区间内的和函数.6 .了解...及的麦克劳林(MaClaurin )展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5. 了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幕方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幕与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1•了解向量的概念,掌握向量的加法和数乘运算法则•2•理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3•理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4•理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(SChmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理, 会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1•了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(BayeS)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握O - 1分布、二项分布、几何分布、超几何分布、泊松(PoissOn )分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1•理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(ChebySheV )不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理切比雪夫大数定律伯努利(Bernoulli )大数定律辛钦(Khinchine )大数定律棣莫弗一拉普拉斯(De MOiVre —LaPIaCe )定理列维一林德伯格(LeVy —Lindberg ) 定理考试内容考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗一拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维一林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1 了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2 .了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

三角函数的定积分计算与曲线像面积应用

三角函数的定积分计算与曲线像面积应用

三角函数的定积分计算与曲线像面积应用在数学中,三角函数是一组重要的数学函数,包括正弦函数、余弦函数、正切函数等。

三角函数在物理、工程、计算机图形学等领域有广泛的应用。

而定积分是求解曲线与坐标轴所夹的面积的方法之一。

本文将讨论三角函数的定积分计算以及将定积分应用于曲线的像面积计算。

一、三角函数的定积分计算在定积分中,我们需要将被积函数表示为一个不定积分的导数形式。

对于三角函数而言,我们可以利用其导数的关系来进行定积分的计算。

以下是三角函数的常用导数和定积分的公式:1. 正弦函数和余弦函数的导数和定积分公式:∫ sin(x) dx = -cos(x) + C∫ cos(x) dx = sin(x) + C2. 正切函数的导数和定积分公式:∫ tan(x) dx = -ln|cos(x)| + C这些公式为我们计算三角函数的定积分提供了便利。

通过将被积函数转化为这些公式的形式,我们可以轻松地求解三角函数的定积分。

二、曲线像面积的应用在物理和工程领域,我们经常需要计算曲线所夹的面积,这时候定积分可以派上用场。

对于曲线像面积的计算,我们可以将其分为两种情况:一是曲线位于x轴之上,二是曲线位于x轴之下。

1. 曲线位于x轴之上的情况如果曲线位于x轴之上,我们可以通过计算曲线与x轴之间的定积分来求解曲线所夹的面积。

具体步骤如下:(1) 找出曲线的交点,求出曲线的两个根,作为积分的上界和下界。

(2) 将根代入曲线方程计算对应的y值,得到曲线与x轴交点的坐标。

(3) 计算被积函数,即曲线的方程,利用定积分公式计算定积分,并取绝对值。

(4) 将上下界和定积分结果代入面积公式,即面积= ∫|f(x)|dx。

2. 曲线位于x轴之下的情况如果曲线位于x轴之下,我们需要通过计算x轴与曲线之间的定积分来求解曲线所夹的面积。

具体步骤如下:(1) 找出曲线的交点,求出曲线的两个根,作为积分的上界和下界。

(2) 将根代入曲线方程计算对应的y值,得到曲线与x轴交点的坐标。

微积分公式大全

微积分公式大全

微积分公式大全一、基本公式:1.微分基本公式(导数):(1)常量函数导数:(k)'=0;(2)幂函数导数:(x^n)'=n·x^(n-1);(3)指数函数导数:(a^x)'= ln(a)·a^x;(4)对数函数导数:(log_a x)'= 1/(x·ln(a));(5)三角函数导数:(sin x)'=cos x, (cos x)'=-sin x, (tan x)'=sec^2 x;(6)反三角函数导数:(arcsin x)'=1/√(1-x^2), (arccos x)'=-1/√(1-x^2), (arctan x)'=1/(1+x^2);(7)复合函数导数:f(g(x))'=f'(g(x))·g'(x);2.积分基本公式:(1)不定积分:∫(k)dx=kx+C, ∫(x^n)dx= (x^(n+1))/(n+1)+C;(2)定积分:∫(a~b)f(x)dx= F(b)- F(a),其中 F(x) 是 f(x) 在[a, b] 上的一个原函数;(3)换元积分:∫f(g(x))·g'(x)dx=∫f(u)du, 其中 u = g(x);(4)分部积分:∫u·dv = u·v - ∫v·du;二、微分学公式:1.高阶导数:如果函数f(x)的n阶导数存在,则记作f^(n)(x),有以下公式:(1)常函数的n阶导数为0;(2)幂函数的n阶导数为n!(n-1)!·x^(n-m);(3)指数函数的 n 阶导数为a^x·ln^n(a);(4)对数函数的n阶导数为(-1)^(n-1)·(n-1)!/x^n;(5)三角函数的n阶导数:sin(x):n 为奇数时,n 阶导数为sin(x+ nπ/2);n 为偶数时,n 阶导数为cos(x+ nπ/2);cos(x):n 为奇数时,n 阶导数为 -cos(x+ nπ/2);n 为偶数时,n 阶导数为sin(x+ nπ/2);tan(x):n 为奇数时,n 阶导数为 (-1)^(n-1)·2^(n-1)·B_n·(2n)!·x^(2n-1),其中 B_n 为 Bernoulli 数;n为偶数时,n阶导数为0;2.泰勒展开:函数f(x)的泰勒展开式为:f(x)=f(a)+f'(a)·(x-a)+f''(a)·(x-a)^2/2!+......+f^(n)(a)·(x-a)^n/n!+......;当x接近a时,可以使用前n阶导数来估算函数的值;三、积分学公式:1.牛顿-莱布尼茨公式:设函数F(x)是f(x)在[a,b]上的一个原函数,则有∫(a~b)f(x)dx= F(b)- F(a);2.反常积分:(1)瑕积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域内发散;(2)收敛式积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域外收敛为 ln,x;(3)点收敛、条件收敛和绝对收敛;3.广义积分:(1)广义积分存在:∫(a~+∞)f(x)d x= A 表示对于任意定义域上的f(x),在 a 之后的任意区间上都是收敛的;(2)比较判别法:若存在p>0和M>0,使得,f(x),<=M·g(x),那么当f(x)的积分是收敛的,那么g(x)的积分也是收敛的;(3)绝对收敛:如果,f(x),在定义域上是收敛的,那么f(x)的积分是绝对收敛的;(4)积分判别法:如果积分是收敛的,但是f(x)的绝对值不是;或者f(x)的绝对值是收敛的,但是积分是发散的,那么f(x)的积分是条件收敛的;以上仅是微积分常用公式的集合,只能作为参考,实际应用仍需根据具体问题进行判断和运用。

大学数学微积分基本公式

大学数学微积分基本公式

大学数学微积分基本公式微积分是数学中的重要分支,是研究变化和累积的数学方法。

它包括微分学和积分学两个部分,通过研究函数的导数和不定积分来揭示数学问题的本质。

微积分中有一些基本公式,对于学习和应用微积分来说是至关重要的。

本文将介绍大学数学微积分的基本公式。

一. 导数的基本公式1. 常数函数导数公式对于常数c,其函数f(x) = c的导数为f'(x) = 0。

这是因为常数函数在任意点处的斜率都为0。

2. 幂函数导数公式对于幂函数f(x) = x^n,其中n是常数,它的导数为f'(x) = nx^(n-1)。

这是通过应用幂函数的导数定义得到的。

3. 指数函数导数公式对于指数函数f(x) = a^x,其中a是常数且a>0,它的导数为f'(x) =a^x·ln(a)。

这个公式是指数函数的特性之一。

4. 对数函数导数公式对于对数函数f(x) = log_a(x),其中a是常数且a>0且a≠1,它的导数为f'(x) = 1/(x·ln(a))。

这是对数函数的基本导数公式。

5. 三角函数导数公式常见的三角函数sin(x),cos(x),tan(x)等它们的导数公式分别为:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)这些导数公式可以通过极限定义和三角函数的基本性质推导得到。

6. 反三角函数导数公式反三角函数的导数公式与三角函数导数公式相对应,具体如下:arcsin'(x) = 1/√(1-x^2)arccos'(x) = -1/√(1-x^2)arctan'(x) = 1/(1+x^2)这些导数公式可以通过反函数的导数性质得到。

二. 积分的基本公式1. 不定积分基本公式不定积分是积分学中的重要概念,它表示函数的反导数。

不同函数的不定积分有不同的基本公式,常见的如下:∫x^n dx = (1/(n+1))·x^(n+1) + C,其中n≠-1∫e^x dx = e^x + C∫1/x dx = ln|x| + C∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫sec^2(x) dx = tan(x) + C∫1/√(1-x^2) dx = arcsin(x) + C∫1/(1+x^2) dx = arctan(x) + C这些不定积分的基本公式可以通过求导的逆过程得到。

不定积分的基本性质与计算方法

不定积分的基本性质与计算方法

不定积分的基本性质与计算方法不定积分是微积分中的重要内容,它可以用来求解函数的原函数。

在本文中,我们将探讨不定积分的基本性质以及计算方法。

1. 基本性质1.1 线性性质对于函数f(x)和g(x)以及常数a和b,有以下性质成立:∫[a,b] (af(x) + bg(x)) dx = a∫[a,b] f(x) dx + b∫[a,b] g(x) dx这意味着在求不定积分时,我们可以将常数和函数分别积分,再将结果相加。

1.2 递推性质设F(x)是f(x)的一个原函数,那么对于任意常数c,有以下性质成立:∫ f(x) dx = F(x) + c这意味着不定积分的结果可以通过求函数的一个原函数来获得。

1.3 换元积分法如果函数f(x)可以表示为另一个函数u的导数乘以u对x的导数,即f(x) = u'(x)·u''(x),那么可以通过换元积分法来求解不定积分。

具体步骤如下:1)选取合适的u,使得f(x)可以表示为u'(x)·u''(x)的形式;2)计算u(x)的导数u'(x)和u''(x);3)将f(x)用u'(x)·u''(x)形式表示,并且将dx表示为u'(x)的导数;4)进行代换,将不定积分转化为求解u的不定积分;5)求解u(x)的不定积分;6)将结果重新换回x的形式,即得到f(x)的原函数。

2. 计算方法2.1 常数函数的不定积分对于常数C,不定积分∫ C dx等于Cx + k,其中k是常数。

2.2 幂函数的不定积分对于幂函数f(x) = x^n,n≠-1,不定积分∫ x^n dx = (x^(n+1))/(n+1) + k,其中k是常数。

2.3 三角函数的不定积分对于三角函数的不定积分,有以下常用的计算公式:∫ sin(x) dx = -cos(x) + k∫ cos(x) dx = sin(x) + k∫ sec^2(x) dx = tan(x) + k∫ csc^2(x) dx = -cot(x) + k∫ sec(x)tan(x) dx = sec(x) + k∫ csc(x)cot(x) dx = -csc(x) + k2.4 指数函数和对数函数的不定积分对于指数函数和对数函数的不定积分,有以下常用的计算公式:∫ e^x dx = e^x + k∫ a^x dx = (a^x)/(ln(a)) + k∫ 1/x dx = ln|x| + k2.5 分部积分法分部积分法是求解不定积分的常用方法之一,在计算两个函数的乘积的不定积分时特别有用。

tan方x的不定积分

tan方x的不定积分

tan方x的不定积分
(最新版)
目录
1.引言
2.tanx 的导数
3.不定积分的概念
4.求解 tanx 的不定积分
5.结论
正文
1.引言
在微积分中,求解函数的不定积分是一种基本的运算。

本文将以 tanx 为例,介绍如何求解其不定积分。

2.tanx 的导数
首先,我们需要知道 tanx 的导数。

根据三角函数的导数公式,我们可以得出 tanx 的导数为 secx。

3.不定积分的概念
不定积分是指对一个函数进行积分,但不求出具体的值,只求出它的原函数。

求解不定积分可以帮助我们更好地理解函数的性质,以及求解其他相关的积分问题。

4.求解 tanx 的不定积分
根据求导的逆运算,我们可以通过求解 secx 的不定积分来得到
tanx 的不定积分。

首先,我们知道 secx 的导数为 secx,那么它的不定积分就是∫secx dx。

根据积分的公式,我们可以得出∫secx dx = tanx + C,其中 C 为积分常数。

因此,tanx 的不定积分为∫secx dx = ∫(1/cosx)
dx = tanx + C。

5.结论
通过求解 tanx 的不定积分,我们可以更好地理解 tanx 的性质,并为其他相关的积分问题提供帮助。

tan方x的不定积分

tan方x的不定积分

tan方x的不定积分
【原创版】
目录
1.引言
2.tanx 的导数
3.不定积分的概念和求解方法
4.求解 tanx 的不定积分
5.结论
正文
1.引言
在微积分中,求解函数的不定积分是一个重要的课题。

本篇文章将介绍如何求解 tanx 的不定积分。

首先,我们需要了解一些基本的概念和方法。

2.tanx 的导数
在三角函数中,tanx 表示正切函数,其导数为 secx。

这是一个基本的导数公式,可以在求解 tanx 的不定积分时用到。

3.不定积分的概念和求解方法
不定积分是指对一个函数进行积分,但不求具体的值,只求其原函数。

求解不定积分的方法有很多,如分部积分法、换元法等。

本篇文章将采用分部积分法求解 tanx 的不定积分。

4.求解 tanx 的不定积分
根据分部积分法,我们可以将 tanx 的不定积分表示为:∫tanx dx = secx - ∫secx dx。

进一步化简得到:∫tanx dx = secx - tanx + C,其中 C 为积分常数。

5.结论
通过分部积分法,我们成功求解了 tanx 的不定积分。

在实际求解过程中,还需要注意一些细节问题,如积分常数的选取等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档