专题复习---摩擦力做功与变力做功
变力做功问题-高一物理举一反三系列(人教版2019必修第二册)(解析版)
变力做功问题【人教版】【题型1 微元法】 ....................................................................................................................................................... 【题型2 功能关系法】 ............................................................................................................................................... 【题型3 图像法】 ....................................................................................................................................................... 【题型4 等效替代法】 ............................................................................................................................................... 【题型5 P -t 法】 ......................................................................................................................................................... 【题型6 联系实际】 ................................................................................................................................................... 【题型7 变化的摩擦力做功问题】 ........................................................................................................................... 【题型8 涉及弹簧的变力做功问题】 .......................................................................................................................【题型1 微元法】【例1】在水平面上,有一弯曲的槽道AB ,槽道由半径分别为R2和R 的两个半圆构成。
高中物理必修二 第四章 专题强化11 摩擦力做功问题 变力做功的计算
根据速度的合成与分解,可得 A 位置船速大小为 vA=cosv30°=233 m/s,故 A 错误; 同理可得 B 位置船速大小为 vB=cosv60°=2 m/s,故 B 正确; 船从 A 运动到 B 的过程中,人的拉力做的功 W=F(2 AB sin 60°- AB ) =10×(2×4× 23-4) J=40( 3-1) J,故 C 错误,D 正确.
小球受到的拉力F在整个过程中大小不变,方向时刻 变化,是变力.但是,如果把圆周分成无数微小的弧 段,每一小段可近似看成直线,拉力F在每一小段上 方向不变,每一小段上可用恒力做功的公式计算,然后将各段做功累 加起来.设每一小段的长度分别为l1、l2、…、ln,拉力在每一段上做的 功W1=Fl1、W2=Fl2、…、Wn=Fln,拉力在整个过程中所做的功W= W1+W2+…+Wn=F(l1+l2+…+ln)=F(π·R2+πR)=32πFR.故选 C.
知识深化
3.一对相互作用的滑动摩擦力等大反向但物体之间相对滑动,即两 个物体的对地位移不相同,由W=Fscos α可判断两个相互作用的滑 动摩擦力做功的总和不为零.
[深度思考] 一对相互作用的滑动摩擦力做功的总和是正值还是负值? 答案 相互作用的一对滑动摩擦力中至少有一个做负功,且两力做功的 总和一定为负值.
√D.从 A 到 C 过程,摩擦力做功为-πRf
1 2 3 4 5 6 7 8 9 10 11
滑块从A到B过程,重力做功不为零,选项A错误; 弹力始终与位移方向垂直,弹力做功为零,选项 B正确; 滑块从 A 到 B 过程,摩擦力方向始终与速度方向相反,摩擦力做功 为 W1=-fsAB=-f(14×2πR)=-12πRf,选项 C 错误; 同理,滑块从 A 到 C 过程,摩擦力做功 W2=-f(12×2πR)=-πRf, 选项 D 正确.
2023届浙江高三物理高考复习专题模型精讲精练第31讲 与摩擦力做功及摩擦热相关的6种题型(含详解)
第31讲与摩擦力做功及摩擦热相关的6种题型1.(2021·浙江)如图所示,质量m=2kg的滑块以v0=16m/s的初速度沿倾角θ=37°的斜面上滑,经t=2s滑行到最高点。
然后,滑块返回到出发点。
已知sin37°=0.6,cos37°=0.8,求滑块(1)最大位移值x;(2)与斜面间的动摩擦因数;(3)从最高点返回到出发点的过程中重力的平均功率P。
一.知识回顾1.摩擦力做功正负情况运动的物体受到滑动摩擦力或静摩擦力时,若摩擦力的方向与运动方向相反,则摩擦力做负功,该摩擦力就是阻力;若摩擦力的方向与运动方向相同,则摩擦力做正功,该摩擦力就是动力。
总之,摩擦力既可能做负功,也可能做正功,还可能不做功。
举例如下:2.两种摩擦力做功与能量转化的情况比较类别5.摩擦力做功计算要注意过程中位移的方向是否改变。
(1)物体在粗糙水平面上做单方向的直线运动时,路程与位移大小相等,此时摩擦力做功W=-Fl(l指位移,F指摩擦力)。
(2)物体在粗糙水平面上做往复运动或曲线运动时,路程与位移大小不同,此时摩擦力做功W=-Fs(s指路程,F指摩擦力)。
6.易错点:(1)计算摩擦力做功时,物体的位移是指对地的位移。
而计算摩擦热时,是该摩擦力的施力物体与受力物体之间相对运动运动的路程。
2一对静摩擦力的总功为零是因为物体间的静摩擦力总是大小相等、方向相反,而它们运动时相对地面的位移是相同的,所以物体之间的静摩擦力若做功,则必定对一个物体做正功,对另一个物体做等量负功。
但是滑动摩擦存在相对运动,对地面的位移不同,其正负功不相等。
3摩擦力做功问题,常涉及两个物体的相对运动,要注意两物体的位移关系。
二.摩擦力做功与摩擦热公式推导质量为M的木板放在光滑的水平面上,一个质量为m的滑块以某一速度沿木板表面从A点滑至B点,在木板上前进了L,而木板前进了l,如图所示。
若滑块与木板间的动摩擦因数为μ,重力加速度为g,求摩擦力对滑块、对木板做功各为多少?这一对摩擦力做功的代数和为多大?[答案] -μmg(l+L) μmgl-μmgL 思维引导:(1)滑块的位移多大?所受摩擦力的方向是什么?提示:滑块的位移是木板前进的距离l再加上它相对木板前进的距离L,表达式为(l+L)。
人教版高中物理必修第二册精品课件 分层作业 第八章 重难专题12 摩擦力做功问题、变力做功的计算
重难专题12 摩擦力做功问题、变力做功的计算
1 知识基础练 2 能力提升练
01 知识基础练
一、摩擦力做功
1.[2023广东高三联考]在110米栏比赛中,主要有起跑加速、途中匀速跨栏和加速冲刺 三个阶段。若运动员的脚与地面未发生相对滑动,则下列说法正确的是( D ) A.起跑加速阶段地面对运动员的摩擦力做正功 B.匀速阶段地面对运动员的摩擦力做负功 C.加速冲刺阶段地面对运动员的摩擦力做正功 D.整个过程地面对运动员的摩擦力不做功
B C
B
二、变力做功的计算
B
A
B A
02 能力提升练
B
C
图1
图2
D
甲
乙
A
甲
乙[答案] 0.5源自
摩擦力做功问题及求变力做功的几种方法(学生版)-高考物理热点模型
摩擦力做功问题及求变力做功的几种方法学校:_________班级:___________姓名:_____________模型概述1.摩擦力做功问题1)无论是静摩擦力还是滑动摩擦力都可以对物体可以做正功,也可以做负功,还可以不做功。
2)静摩擦力做功的能量问题①静摩擦做功只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能。
②一对静摩擦力所做功的代数和总等于零,而总的机械能保持不变。
3)滑动摩擦力做功的能量问题①滑动摩擦力做功时,一部分机械能从一个物体转移到另一个物体,另一部分机械能转化为内容,因此滑动摩擦力做功有机械能损失。
②一对滑动摩擦力做功的代数和总是负值,总功W =-F f ⋅x 相对,即发生相对滑动时产生的热量。
2.求变力做功的几种方法1.用W =Pt 求功当牵引力为变力,且发动机的功率一定时,由功率的定义式P =W t,可得W =Pt .1)“微元法”求变力做功:情形一:当力的大小不变,而方向始终与运动方向相同或相反时,力F 做的功与路程有关,W =Fs 或W =-Fs ,其中s 为物体通过的路程.情形二:当力的大小不变,运动为曲线时,将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做功的代数和,此法适用于求解大小不变、方向改变的变力做功.【举例】质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ⋅Δx 1+F f ⋅Δx 2+F f ⋅Δx 3+...=F f ⋅(Δx 1+Δx 2+Δx 3+...)=F f ⋅2πR2)“图像法”求变力做功:在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移内所做的功,且位于x 轴上方的“面积”为正功,位于x 轴下方的“面积”为负功,但此方法只适用于便于求图线与x 轴所围面积的情况(如三角形、矩形、圆等规则的几何图形).【举例】一水平拉力拉着一物体在水平面上运动的位移为x 0,图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x3)“平均力”求变力做功:当力的方向不变而大小随位移线性变化时,可先求出力对位移的平均值F =F 0+F 12,再由W =F l cos θ计算,如弹簧弹力做功.【举例】弹力做功,弹力大小随位移线性变化,取初状态弹力为0,则W =F x =0+F k 2x =0+kx 2x =12kx 24.应用动能定理求解变力做功:在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理W 变+W 恒=12mv 22-12mv 21,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12mv 22-12mv 21-W 恒,就可以求出变力做的功了.【举例】用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F +W G =0⇒W F -mgl (1-cos θ)=0⇒W F =mgl (1-cos θ)5)等效转换法求解变力做功:将变力转化为另一个恒力所做的功。
如何求力做功
F
返回
用铁锤把小铁钉钉入木板,设木板对钉子旳阻力 与钉进木板旳深度成正比,已知铁锤第一次将钉 子钉进d深度,假如第二次敲钉子时对钉子做旳功 与第一次相同,那么第二次钉子进入木板旳深度 d1是多少?
答案:( 2 1)d
答案
d
d1
返回
mgL答(1案-cosθ)。
下一题
如图所示,质量为m 旳物体静放在水平光滑旳
平台上,系在物体上旳绳子跨过光滑旳定滑轮
由地面以速度vo向左匀速走动旳人拉着,设人
从地面上且从平台旳边沿开始向右行至绳和水 平方向成30°角处,在此过程中人所做旳功为 多少?答案
答案:
1 8
mv02
vo
人旳心脏每跳动一次大约输送8x10-5m3旳 血液,正常人血压(可看作压送血液旳压 强)旳平均值约为1.5x104Pa,心跳约每 分钟70次,据此估算心脏工作旳平均功 率约为多少 ?
放大图
卡车在平直旳公路上从静止开始加速行驶,经
过时间t,速度到达最大值Vm,设此过程中发 动机旳功率恒为P,车所受到旳阻力恒定,求
此时间内车迈进旳距离S?
答案
答案:tvm
mvm3 2P
返回
一学生用100N旳力将质量为0.5kg旳球 迅速踢出,在水平路面上滚动20m远,则 该学生对球做旳功是( 答D案)
跳水运动员从高于水面H=10m旳跳台自由落下,假设运 动员旳质量m=60kg,其体形可等效为长度L=1.0m、直 径d=0.30m旳圆柱体,不计空气旳阻力。运动员入水后, 水旳等效阻力f作用于圆柱体旳下端面,f旳量值随入 水深度y变化旳函数曲线如图。该曲线可近似看作椭圆 旳一部分,椭圆旳长、短半轴分别与坐标轴Oy和Of重 叠。
椭圆与y轴相交于y=h处, 与f轴相交于f=5mg/2处, 为了确保运动员旳安全, 试计算池中水旳深度h至少 应该为多少?(水旳密度 ρ=1.0x103kg/m3,椭圆旳 面积公式 s=πab/4其中 a、b分别为椭圆旳长轴、短轴)
2023届高考物理一轮复习--简明精要的考点归纳与方法指导--专题六 功能关系(八大考点)
2023年高考物理一轮复习--简明精要的考点归纳与方法指导专题六功能关系(八大考点)考点一功的正负判断和大小计算1.功的正负判断方法(1)恒力功的判断:依据力与位移方向的夹角来判断。
(2)曲线运动中功的判断:(3)依据能量变化来判断:功是能量转化的量度,若有能量转化,则必有力对物体做功。
此法常用于两个相联系的物体之间的相互作用力做功的判断。
2.恒力功的计算方法3.总功的计算方法方法一:先求合力F合,再用W总=F合l cos α求功,此法要求F合为恒力。
方法二:先求各个力做的功W 1、W 2、W 3、…,再应用W 总=W 1+W 2+W 3+…求总功,注意代入“+”“-”再求和。
4.变力做功的计算方法方法常见情境方法概述微元法将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移方向上的恒力所做功的代数和。
此法在中学阶段,常应用于求解大小不变、方向改变的变力做功问题 平均 力法在求解变力做功时,若物体受到的力方向不变,而大小随位移呈线性变化,即力均匀变化,则可以认为物体受到一大小为F =F 1+F 22的恒力作用,F 1、F 2分别为物体初、末态所受到的力,然后用公式W=F l cos α求此力所做的功图像法在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只便于求图线所围图形规则的情况(如三角形、矩形、圆等规则的几何图形)化变力 为恒力在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只便于求图线所围图形规则的情况(如三角形、矩形、圆等规则的几何图形)用W= Pt计算这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是不变的这一条件考点二功率的分析与计算1.平均功率的计算方法(1)利用P=Wt。
变力做功的几种方法
巧用物理知识求变力做功祁东育贤中学周东云关键词:做功变力做功功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下:一、平均作用力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。
例1、一辆汽车质量为105千克,从静止开始运动,其阻力为车重的0.05倍。
其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。
当车前进100米时,牵引力做的功是多少?分析:由于车的牵引力和位移的关系为F=103x+f0,是线性关系,故前进100米过程中的牵引力做的功可看作是平均牵引力所做的功。
由题意可知f0=0.05×105×10N=5×104N,所以前进100米过程中的平均牵引力=N=1×105N,∴W=S=1×105×100J=1×107J。
二、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例2 、如图1所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A0焦耳B20π焦耳C 10焦耳D20焦耳分析:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=FΔS,则转一周中各个小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故B正确。
三、等值法等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。
而恒力做功又可以用W=FScosa计算,从而使问题变得简单。
专题2:变力做功(教学课件)高一物理(人教版2019必修第二册)
1 2
t1
,
选项 C 错误;
D.在t2 时刻,汽车达到最大速度,则有汽车的牵引力 F Kmg ,
则 vm
P0 F
P0 Kmg
,选项
D
正确;故选
BD。
三、关键点拨
涉及到机车的启动、吊车吊物体 等问题,如果在某个过程中保持功 率P恒定,随着机车或物体速度的 改变,牵引力也改变,要求该过程 中牵引力的功,可以通过W=Pt求 变力做功。
功通过绳子将能量转移到物体
上,故此恒力F做功应该等于绳
子对物体做的功。
W F( h h )
sin sin
Fh
A
B
二、变式训练
【变式1】人在A点拉着绳通过一个光滑定滑轮以加速度a匀加速吊起质量为m的物体, 如图所示,保持人手与滑轮间的竖直距离不变,大小为h,开始时绳与水平方向成 600 角,当人拉着绳由A点沿水平方向运动到B点时,绳与水平方向成300 角,求人 对绳的拉力做了多少功?(不计摩擦)
B.W3=W1+W2
C.W1=W2
D.W1>W2
【参考答案】BD
三、关键点拨
做曲线运动的物体,当力的大小不变,力的方向时刻与速度同向(或反向)时,把 物体的运动过程分为很多小段,这样每一小段可以看成直线,先求力在每一小段上做 的功,再求和即可。用微元累积法的关键是如何选择恰当的微元,如何对微元作恰 当的物理和数学处理。
量为m,额定功率为P0,汽车在行驶过程中所受阻力恒为车重的K倍,在t2时刻汽
车刚好获得最大速度。则下列说法正确的是( )
【参考答案】BD
A.在t1~t2时间内汽车做匀速直线运动
B.在0~t1时间内汽车平均功率为
1 2 P0
(完整版)五种方法搞定变力做功问题
五种方法搞定变力做功一.微元法思想。
当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w •=来求解,但是可以将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。
例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
求此过程中摩擦力所做的功。
思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果 图1图2把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功二、平均值法当力的大小随位移成线性关系时,可先求出力对位移的平均值221F F F +=,再由αcos L F W =计算变力做功。
如:弹簧的弹力做功问题。
例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则小物块运动到x 0处时的动能为 ( ) A .0 B .021x F mC .04x F m πD .204x π【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为04m F x π.C 答案正确.三.功能关系法。
功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。
例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系一定是:A .E KB -E KA =E KC -E KB B .E KB -E KA <E KC -E KB C .E KB -E KA >E KC -E KBD .E KC <2E KBF x 0FxF •Ox 0图2-甲图2乙【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD.四.应用公式Pt W =求解。
摩擦力做功与能量转化问题
专题专题专题 摩擦力做功与能量转化问题摩擦力做功与能量转化问题【学习目标】【学习目标】1.1.理解静摩擦力和滑动摩擦力做功的特点;理解静摩擦力和滑动摩擦力做功的特点;理解静摩擦力和滑动摩擦力做功的特点;2.2.2.理解摩擦生热及其计算。
理解摩擦生热及其计算。
理解摩擦生热及其计算。
【知识解读】【知识解读】1.1.静摩擦力做功的特点静摩擦力做功的特点静摩擦力做功的特点如图5-1515--1,放在水平桌面上的物体A 在水平拉力F 的作用下未动,则桌面对A 向左的静摩擦力不做功,因为桌面在静摩擦力的方向上没有位移。
如图5-1515--2,A 和B 叠放在一起置于光滑水平桌面上,在拉力F 的作用下,的作用下,A A 和B 一起向右加速运动,则B 对A 的静摩擦力做正功,的静摩擦力做正功,A A 对B 的静摩擦力做负功。
可见静摩擦力做功的特点是:的静摩擦力做负功。
可见静摩擦力做功的特点是: (1)静摩擦力可以做正功,也可以做负功,还可以不做功。
功,还可以不做功。
(2)相互作用的一对静摩擦力做功的代数和总等于零。
数和总等于零。
(3)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其它形式的能。
,而没有机械能转化为其它形式的能。
2.2.滑动摩擦力做功的特点滑动摩擦力做功的特点滑动摩擦力做功的特点如图5-1515--3,物块A 在水平桌面上,在外力F 的作用下向右运动,桌面对A 向左的滑动摩擦力做负功,A 对桌面的滑动摩擦力不做功。
力不做功。
如图5-1515--4,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度v 从木板的左端滑上木板,当铁块和木板相对静止时木板相对地面滑动的距离为s,小铁块相对木板滑动的距离为d ,滑动摩擦力对铁块所做的功为:W 铁=-f(s+d)―――①―――①根据动能定理,铁块动能的变化量为:k w =f s+d ED 铁铁=-()―――②―――②②式表明,铁块从开始滑动到相对木板静止的过程中,其动能减少。
035变力做功的6种计算方法 精讲精练-2022届高三物理一轮复习疑难突破微专题
一..变力做功的6种计算方法方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在Fx图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.典型例题精讲题型一:应用动能定理例1:如图所示,质量均为m 的木块A 和B ,用一个劲度系数为k 的竖直轻质弹簧连接,最初系统静止,重力加速度为g ,现在用力F 向上缓慢拉A 直到B 刚好要离开地面,则这一过程中力F 做的功至少为( )A.m 2g 2kB.2m 2g2kC.3m 2g2kD.4m 2g2k答案 B解析 开始时,A 、B 都处于静止状态,弹簧的压缩量设为x 1,由胡克定律有kx 1=mg ;木块B 恰好离开地面时,弹簧的拉力等于B 的重力,设此时弹簧的伸长量为x 2,由胡克定律有kx 2=mg ,可得x 1=x 2=mgk,则这一过程中,弹簧弹力做功为零,木块A 上升的高度h =x 1+x 2=2mgk,设变力F 做的功为W F ,由动能定理得W F -W G =0,又W G =mgh =2m 2g2k,所以W F =2m 2g2k,B选项正确.题型二:微元法例2:如图所示,在水平面上,有一弯曲的槽道AB ,槽道由半径分别为R2和R 的两个半圆构成.现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FR C.32πFR D .2πFR答案 C解析 虽然拉力方向时刻改变,但力与运动方向始终一致,用微元法,在很小的一段位移内F 可以看成恒力,小球的路程为πR +π·R 2,则拉力做的功为32πFR ,故C 正确.题型三:等效转换法例3:如图所示,轻绳一端受到大小为F 的水平恒力作用,另一端通过定滑轮与质量为m 、可视为质点的小物块相连。
备战2023年物理高考复习必备(全国通用)专题07 机械能的最新“新情景问题”(解析版)
专题07 机械能机械能是高中物理的主干内容,也是历年高考必考的内容。
以选择题形式考查的多集中于功、平均功率和瞬时功率的分析与计算,且常与实际情景联系;以计算题形式多利用新情景来考查机械能守恒定律和功能关系的应用。
功和功率是高考命题的热点,重点考查功和功率的计算,主要涉及的问题有摩擦力做功问题、变力做功问题、力与速度方向不共线的功率问题、平均功率问题、瞬时功率问题,求功的大体思路是根据物体的受力情况和物体的运动情况判断待求功对应的力是恒力还是变力,求恒力做功的方法有:用功的公式直接求解、正交分解力或位移后再求解;求变力做功的方法有:W = Pt (功率恒定)、图像法、动能定理法。
求功率的大体思路是先判断待求功率是瞬时功率还是平均功率,根据公式P = Fυcos α求解瞬时功率,根据公式P =Wt求解平均功率。
机械能守恒定律是高中物理学的一条重要规律,同时也是高考命题的热点,此类问题主要涉及的是连接体问题、与弹簧结合的问题、与实际生活相结合的问题,其特点是综合性强,也可和其他的知识综合考查.解题的关键点是分析哪个物体或系统在哪个阶段机械能守恒.预计2018年仍会对机械能守恒定律进行考查,可能会结合动量进行,在复习时要多加重视1.(2022·贵州黔南·模拟预测)在多年前的农村,人们往往会选择让驴来拉磨把食物磨成面,假设驴对磨杆的平均拉力为600N ,半径r 为0.5m ,转动一周为5s ,则( )A .驴转动一周拉力所做的功为0B .驴转动一周拉力所做的功为650J πC .驴转动一周拉力的平均功率为120W πD .磨盘边缘的线速度为0.1m /s π 【答案】C【解析】驴对磨的拉力沿圆周切线方向,拉力作用点的速度方向也在圆周切线方向,故可认为拉磨过程中拉力方向始终与速度方向相同,故根据微分原理可知,拉力对磨盘所做的功等于拉力的大小与拉力作用点沿圆周运动弧长的乘积,则磨转动一周,弧长2(m)L r ππ== 所以拉力所做的功600J 600J W FL ππ==⨯= 故AB 错误;根据功率的定义得600W 120W 5W P t ππ===, 故C 正确;线速度为220.5m /s 0.2m/s 5r v T πππ⨯===,故D 错误。
变力做功的计算
一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。
例1、用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
分析:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图所示。
经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W=Fs,s轴上方的面积表示力对物体做正功(如图(a)所示),s轴下方的面积表示力对物体做负功(如图(b)所示)。
如果F-s图象是一条曲线(如图所示),表示力的大小随位移不断变化,在曲线下方作阶梯形折线,则折线下方每个小矩形面积分别表示相应恒力做的功。
高中物理专题讲解 专题六机械能守恒定律(讲解部分)
三、应用动能定理解题的基本步骤
栏目索引
栏目索引
例1 某滑沙场示意图如图所示,某旅游者乘滑沙橇从A点由静止开始滑 下,最后停在水平沙面上的C点,设滑沙橇和沙面间的动摩擦因数处处相同, 斜面和水平面连接处可认为是圆滑的,旅游者保持一定姿势坐在滑沙橇上 不动,若测得AC间水平距离为x,A点高为h,求滑沙橇与沙面间的动摩擦因 数μ。
(1)拉力F做的功。 (2)重力mg做的功。 (3)圆弧面对物体的支持力FN做的功。 (4)圆弧面对物体的摩擦力Ff做的功。 解题导引 (1)拉力F大小不变,但方向不断改变→变力功→用微元法。 (2)重力做功与路径无关,与始末位置高度差有关。 (3)支持力与速度方向垂直不做功。 (4)摩擦力为变力,可用动能定理求其做功。
解题导引
栏目索引
解析 设斜面的倾角为θ,旅游者和滑沙橇总质量为m,则旅游者和滑沙橇
从A点到B点,
重力做功WG=mgh
摩擦力做功Wf=-μmg
cos
θ· h
sin
θ
在水平面上运动时,只有滑动摩擦力做功
Wf'=-μmg(x-
h tan
θ
)。
栏目索引
解法一 “隔离”过程,分段研究,设在B点旅游者和滑沙橇的速度为v,由A
栏目索引
二、应用动能定理解题时的注意事项 1.W总是所有外力对物体所做功的代数和,即W总=W1+W2+…,或先将物体的 外力进行合成,求出合外力F合后,再利用W总=F合x cos α 进行计算。 2.因为动能定理中功和能均与参考系的选取有关,所以动能定理也与参考 系的选取有关。中学物理中一般取地面为参考系。 3.做功的过程是能量转化的过程,动能定理表达式中的“=”的意义是一 种因果关系在数值上相等的符号,意味着“功引起物体动能的变化”。 4.动能定理表达式两边的每一项都是标量,因此动能定理的表达式是一个 标量式。
变力做功(微元法、平均力法、图像法)
2.平均力法:
若变力大小随位移是线性变化,且方向不变时,可 将变力的平均值求出后用公式
W Fl cos F1 F2 l cos
2
计算。如弹簧的弹力做功就可以用此法计算。
例3. 用铁锤将一铁钉击入木块,设木块对铁钉的阻
力与铁钉进入木块内的深度成正比.在铁锤击第一
次时,能把铁钉击入木块内1cm,问击第二次时,
0
解后有:x2= 2 x2=1.41cm.
x
x1 x2
(b)
∴ △x=x2-x1=0.41cm.
• 基 的本过应程用中:,当 弹弹 力簧 做的 的长 功度 为由 多原 大长?x伸长到x1
• 弹力F与伸长量的关系正好是线性关系:
• F=Kx
• 因此易得:W=-1/2K(x1-x)2 • 若弹簧是由原长到压缩到x1 • 弹力做功为:W=-1/2K(x1-x)2 • 为什么都是负功?
二.变力做功
对于变力做功不能依定义式
W Flcos
直接求解,但可依物理规律通过技巧的转化间接求解。
基本原则——过程分割与代数累积
1.可用(微元法)无限分小法来求, 过程无限分小后, 可认为每小段是恒力做功。
例一 一辆马车在恒定大小摩擦力力f=100N的作用下 绕半径为50m的圆形轨道做匀速圆周运动,当车运 动一周回到原位置时,摩擦力所做的功为多少?
能击入多少深度 ? (设铁锤每次做功相等)
解一: 用平均力法.铁锤每次做功都用来克服铁钉阻
力做的功,但摩擦阻力不是恒力,其大小与深度成正
比,F=-f=kx,可用平均阻力来代替. 如图(a)
第一次击入深度为x1,平均阻力F1= 1/2× kx1,
做功为W1= F1 x1=1/2×kx21.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题摩擦力做功与变力做功一、摩擦力做功2、摩擦力的方向3、摩擦力的大小4、判断一个力是否做功及做功正负的方法5、计算功的方法及注意事项摩擦力大小和方向的不确定性,使得摩擦力做功有其自身的特殊性,本文简单归纳摩擦力做功的一些特点。
(一)静摩擦力对物体可以做正功,可以做负功,也可以不做功;滑动摩擦力对物体可以做正功,可以做负功,也可以不做功。
如图1所示,物体在水平拉力下静止在粗糙水平面上,物体与桌面间有静摩擦力,该摩擦力不做功。
图1如图2所示,光滑水平面上物体A、B在外力F作用下能保持相对静止地匀加速运动,则在此过程中,A对B的静摩擦力对B做正功。
图2如图3所示,物体A、B以初速度滑上粗糙的水平面,能保持相对静止地减速运动,则在此过程中A对B的静摩擦力对B做负功。
图3例1. 在光滑的水平地面上有质量为M的长平板A(如图4),平板上放一质量的物体B,A、B之间动摩擦因数为。
今在物体B上加一水平恒力F,B和A发生相对滑动,经过时间,求:(1)摩擦力对A所做的功;(2)摩擦力对B所做的功;(3)若长木板A固定时B对A的摩擦力对A做的功。
图4解析(1)平板A在滑动摩擦力的作用下,向右做匀加速直线运动,经过时间,A的位移为因为摩擦力的方向和位移相同,即对A做正功,其大小为。
(2)物体B在水平恒力F和摩擦力的合力作用下向右做匀加速直线运动,B的位移为摩擦力方向和位移方向相反,所以对B做负功为。
(3)若长木板A固定,则A的位移,所以摩擦力对A做功为0,即对A不做功。
(二)、滑动摩擦力做功的特点:①滑动摩擦力可以对物体做正功,也可以对物体做负功,还可以不做功。
②相互摩擦的系统内,一对滑动摩擦力所做的功总为负值,其绝对值等于滑动摩擦力与相对位移的乘积。
1.一对滑动摩擦力做功的代数和必不为零,且等于滑动摩擦力的大小与两物体间相对位移的乘积,即例2.如图6,一质量为M的木板,静止在光滑水平面上,一质量为的木块以水平速度滑上木板。
由于木块和木板间有摩擦力,使得木块在木板上滑动一段距离后就跟木板一起以相同速度运动。
试求此过程中摩擦力对两物体做功的代数和。
图6解析:设木块与木板的共同速度为,以木块和木板整体为研究对象,则由动量守恒定律可得①摩擦力对木板做正功,对木块做负功。
由动能定理得②③由①②③可知,摩擦力对两物体做功的代数和为④上式即表明:一对滑动摩擦力做功的代数和必不为零,且等于滑动摩擦力的大小与两物体间的相对位移的乘积。
例3: 质量为M 的长木板放在光滑的水平面上,一个质量为m 的滑块以某一初速度沿木板表面从A 点滑至B 点,在木板上前进了L,而木板前进了x ,如图,若滑块与木板间的动摩擦因素为,求滑动摩擦力对滑块、对木板做功各是多少?分析:以木块A 为研究对象,木块A 受到的滑动摩擦力的方向水平向左,大小为,滑块的对地位移为,方向水平向右根据功的定义式以木板B 为研究对象,木板B 受到的滑动摩擦力的方向水平向右,大小也为,木板的对地位移为x ,方向水平向右根据功的定义式补充问题:求解这对相互作用的滑动摩擦力做的总功<0注:实际上,,即产生的热量2、滑动摩擦力做功与路程有关,其值等于滑动摩擦力的大小和物体沿接触面滑动的路程的乘积,即例3. 滑雪者从山坡上A 点由静止出发自由下滑,设动摩擦因数为常数,他滑到B 点时恰好停止,此时水平位移为(如图5所示)。
求 A 、B 两点间的高度差。
图5x LA B解析:设滑雪者质量为,取一足够小的水平位移,对应的滑行路线可视为小直线段,该处滑雪者所受的摩擦力为所以在段摩擦力所做的功为对滑行路线求和可得摩擦力的总功从A到B的过程中,重力做功,而动能的变化为,所以由动能定理得,即,可解得A、B两点间的高度差为。
3. 对于与外界无能量交换的孤立系统而言,滑动摩擦产生的热等于滑动摩擦力的大小与两物体间相对路程的乘积,即例3.如图7(a)所示,质量为的木板静止在光滑水平面上,板的右端放一质量为的小铁块,现给铁块一个水平向左速度,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求整个过程中,系统机械能转化为内能的多少?图7解析:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩到最短时和铁块最终停在木板右端对系统的共同速度(铁块与木板的速度相同),由动量守恒定律得代入数据得从开始滑动到弹簧压缩到最短的过程中(如图7b),摩擦力铁块做负功;摩擦力对木板做正功从弹簧压缩最短到铁块最终停在木板右端的过程中(如图7c),摩擦力对铁块做正功;摩擦力对木板做负功故整个过程中,摩擦力做功的代数和为(弹簧力做功代数和为零)(式中就是铁块在木板上滑过的路程)根据动能定理有。
由功能关系可知,对于与外界无能量交换的孤立系统而言,系统克服摩擦力做功将这的动能转化为了系统的内能,即,这表明滑动摩擦产生的热等于滑动摩擦力的大小与两物体间相对路程的乘积。
4. 系统机械能的损失等于滑动摩擦力的大小与两物体间的相对位移的乘积,即例4. 设木块与木板间的摩擦系数为,则木块在木板上滑动过程中,在摩擦力作用下,木板做匀加速运动,木块做匀减速运动直至达到共同速度为止。
图8以木块和木板整体为研究对象,由动量守恒定律可得这一过程中,木板的位移为木块的位移为摩擦力对木板做正功对木块做负功则摩擦力对两物体做功的代数和为①整个过程中木板动能的增量为木块动能的增量为系统动能的总增量为②上述①、②表明:系统机械能的减少刚好与一对摩擦力做功的代数和的绝对值对等。
(三)、静摩擦力做功的特点:1.静摩擦力可以做正功,也可以做负功,还可以不做功.2.相互摩擦的系统内,一对静摩擦力所做功的和总是等于零.1.单个静摩擦力做功有不少初学者认为,静摩擦力是产生于“静止”的物体之间,所以静摩擦力一定不会对物体做功。
其实不然,请看下面的情境:用大拇指和食指捏起一支铅笔,让铅笔呈竖直状态。
当手和铅笔向上匀速运动时,铅笔受到向上的静摩擦力作用,位移也向上,静摩擦力是动力,对铅笔做正功;当手和铅笔向下匀速运动时,铅笔受到向上的静摩擦力作用,位移向下,静摩擦力是阻力,对铅笔做负功;当手和铅笔不运动或一起在水平面内运动时,铅笔受到向上的静摩擦力作用,但在力的方向上位移为零,静摩擦力对铅笔不做功。
由此可见,静摩擦力可以对物体做正功,也可以做负功,还可以不做功,关键是看物体受到的静摩擦力和它运动方向的关系。
当物体在静摩擦力的方向上有位移时,静摩擦力就要对物体做功。
2.一对静摩擦力的合功。
一对相互作用的静摩擦力做功的代数和必为零,即对相互有静摩擦力作用的两物体A和B来说,A对B的摩擦力和B对A的摩擦力是一对作用力和反作用力:大小相等,方向相反。
由于两物体相对静止,其对地位移必相同,所以这一对静摩擦力一个做正功,一个做负功,且大小相等,其代数和必为零,即例5:如图所示,A和B叠放在一起置于光滑水平桌面上,在拉力F的作用下,A和B一起向右加速运动,则B对A的静摩擦力做正功,A对B 的静摩擦力做负功。
由于A、B的对地位移相等,故这对相互作用的静摩擦力做功的和为零。
静摩擦力存在于无相对运动而有相对运动趋势的物体之间,因此产生摩擦力的两个物体的位移一定是相等的,但互为作用力和反作用力的一对摩擦力的方向一定相反,所以,如果作用力做正功,反作用力一定做负功,而且负功的绝对值等于正功的大小。
即:一对静摩擦力做功之代数和一定为零。
具体来说,一对静摩擦力做功代数和为零包含两种情况:一是每个静摩擦力都不做功(例推箱子而未动,静摩擦力对箱子、对地面均不做功,或者物体随转盘一起做匀速圆周运动,静摩擦力提供向心力的情况),二是两个静摩擦力一个做正功,一个做负功,但数值相等,其代数和为零。
3、静摩擦力对物体做正功例6、码头工人常用皮带机将货物运之高处,皮带由卷扬机牵引,能匀速顺时针转动,货物一放上皮带,即可与之一起运动,保持相对静止.求皮带对货物在运往h高处时做什么功?【分析】货物受力如图所示.因货物向右上方做匀速直线运动,故静摩擦力f θ的位移S与物体运动方向一致,则θ=(θθ)θ > 0 ,做正功4.静摩擦力对物体做负功例7、如图,若皮带反转,则可将高h处货物匀速送到地面,求该过程静摩擦力做什么功.【分析】货物因匀速运动,故f=θ,沿斜面向上,位移S方向沿斜面向下180θθ=—∵ = - < 0 ∴ f做负功5、静摩擦力可以对物体不做功如图所示,一水平圆盘绕其竖直轴以ω匀速转动,距离轴R处有一质量为m的物体随盘一起转动,求在这一过程中摩擦力对物体做的功.【分析】对m进行受力分析可知,m所受的摩擦力为f = ω.静摩擦力方向与线速度方向垂直,任取一小段位移S,则有θω 90=0 即静摩擦力对物体不做功目标检测:1、关于摩擦力对物体做功,以下说法中正确的是( D )A、滑动摩擦力总是做负功B、滑动摩擦力要么做负功,要么做正功C、静摩擦力对物体一定不做功D、静摩擦力对物体可以做正功,也可以做负功2、如图所示的水平传送装置,间距为L,传送带以v匀速运转,把一质量为m的零件无初速度地放在传送带的A处,已知零件与传送带之间的动摩擦因素为,试求从A到B 的过程中,摩擦力对零件所做的功。
分析:当零件与传送带之间存在摩擦力时,摩擦力的大小为分两种情况进行讨论:(1)、零件在到达B处时的速度小于或刚好等于传送带的速度v,即零件在从A到B的过程中一直受摩擦力作用,则摩擦力对零件所做的功(2)、零件在到达B处之前已经达到传送带的速度v,则零件只是在达到速度v之前的一段时间内受摩擦力作用,此后零件与传送带以相同的速度v运动。
零件就不受摩擦力作用,即无滑动摩擦力存在,也无静摩擦力存在,则摩擦力对零件所做的功3、如图所示,物体沿弧线形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是()(A)始终不做功(B)先做负功后做正功(C)先做正功后不做功(D)先做负功后不做功解析:物体滑向传送带后,其速度可能大于、等于或小于传送带的速度。
当等于传送带的速度时,无摩擦力,故不做功。
当大于传送带的速vBA度时,物体所受摩擦力向左,故做负功,最终速度相等后,不做功。
故选D 同理C 也有可能。
4、如图所示,一子弹以水平速度射入放置在光滑水平面上原来静止的木块,并留在木块中,在此过程中,子弹钻入木块的深度为d ,木块的位移为L ,木块对子弹的摩擦力大小为f ,则木块对子弹的摩擦力做的功为 ,子弹对木块的摩擦力做的功为 。
[解析] 受力分析,如图所示。
(1)子弹相对地面的位移为,所以木块对子弹的摩擦力做的功为()(2)木块相对地面的位移为L ,所以子弹对木块的摩擦力做的功为 答案()5、在粗糙的桌面上运动的小木块,小木块m 受到桌面对它的摩擦力,桌面也受到小木块对桌面的摩擦力f ,但是由于桌面没有发生位移,所以摩擦力f 对桌面不做功6、例:试分析人走路时,若鞋与地面间不打滑,人与地面间的静摩擦力做功吗?这一个常识性的问题,看起来不值得讨论,但不仔细去分析,则很容易出错。