大学物理II练习册答案10

合集下载

大学物理(二)练习册答案

大学物理(二)练习册答案

1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。

大学物理II练习册答案

大学物理II练习册答案

大学物理练习 十五一.选择题:1.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2 ,n 2>n 3,1λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的位相差为 [ C ](A) )/(2112λπn e n (B) πλπ+)/(4121n e n (C) πλπ+)/(4112n e n (D) )/(4112λπn e n解: n 1<n 2 ,n 2>n 3 有半波损失.2.在双缝干涉实验中,屏幕E 上的P 点处是明条纹。

若将缝S 2盖住,并在S 1S 2连线的垂直平分面处放一反射镜M ,如图所示,则此时 (A) P 点处仍为明条纹。

(B) P 点处为暗条纹。

(C) 不能确定P 点处是明条纹还是暗条纹。

(D) 无干涉条纹。

[B ]解: 反射镜M 有半波损失. (屏幕E 上的P 点处原是明条纹。

)3.如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢地向上移动时(只遮住S 2),屏C 上的干涉条纹 (A) 间隔变大,向下移动。

(B) 间隔变小,向上移动。

(C) 间隔不变,向下移动。

(D) 间隔不变,向上移动.。

[C ]解:当劈尖b 缓慢地向上移动时,改n 13λ1S屏λ4.如图,用单色光垂直照射在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹 [B ](A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动. (E) 向左平移.解: 当平凸透镜垂直向上缓慢平移,薄膜厚增加. 环状干涉条纹向中心收缩.5. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ D ] (A) 2λ (B) ()n 2λ (C) n λ (D) )1(2-n λ解: λ=-=-=∆d n d nd )1(2226.如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。

大学物理2习题参考答案

大学物理2习题参考答案

题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。

(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。

(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。

A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。

3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。

(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。

5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。

一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。

不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。

10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。

221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。

大物2练习册答案22页PPT

大物2练习册答案22页PPT
大物2练习册答案

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

大学物理2课后习题答案.docx

大学物理2课后习题答案.docx

解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。

为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。

大学物理(二)答案

大学物理(二)答案

大学物理(二)练习册 参考解答第12章 真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ; (7). -2³103V ; (8).⎪⎪⎭⎫ ⎝⎛-πb a r r q q 11400ε(9). 0,pE sin α ; (10). ()()j y x i xy40122482+-+-- (SI) ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i R E +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i R E +π=034ελ由场强叠加原理,O 点合场强为: ()j i RE E E E +π=++=03214ελBA∞O BA∞∞2. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85³10-12 C 2²N -1²m -2)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E²S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴() E E h1201-=ερ=4.43³10-13C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理⎰⎰E²S d =∑i1qε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9³10-10C/m 33. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RRE y 000208d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E y x008ελ-=+=(2)2(1)4. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E它沿x 、y 轴上的二个分量为: d E x =-d E cos φ =φφεσd s co 220π-d E y =-d E sin φ =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =2εσ0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==5. 一半径为R 的带电球体,其电荷体密度分布为4πRqr =ρ (r ≤R ) (q 为一正的常量)ρ = 0 (r >R )试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r Rq V Q rV===⎰⎰34d /4d ρ(2) 在球内作一半径为r 1的高斯球面,按高斯定理有4041241211d 414Rqr r r Rqr E r r εε=π⋅π=π⎰得402114R qr E επ=(r 1≤R),1E方向沿半径向外.在球体外作半径为r 2的高斯球面,按高斯定理有 0222/4εq E r =π得22024r q E επ=(r 2 >R ),2E方向沿半径向外.(3) 球内电势⎰⎰∞⋅+⋅=RR r r E r E U d d 2111⎰⎰∞π+π=RRr r rq r Rqrd 4d 4204021εε40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R qε ()R r ≤1 球外电势 2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεk S b x d x kSSE E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ='圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR xE E E 220212+=+=εσ该点电势为 ()220222d 2xR R xR x x U x+-=+=⎰εσεσ8.一真空二极管,其主要构件是一个半径R 1=5³10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-= 得到()120/ln 2R R UUAB-=πελ, 所以 ()rR R UUE AB1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U e R eE F A B ⋅-===4.37³10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 241rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

精选-大学物理II练习册答案10

精选-大学物理II练习册答案10

大学物理练习十一.选择题:1.C 1和C 2两空气电容器串联起来接上电源充电。

然后将电源断开,再把一电介质板插入C 1中,则(A) C 1上电势差减小,C 2上电势差增大。

(B) C 1上电势差减小,C 2上电势差不变。

(C) C 1上电势差增大,C 2上电势差减小。

(D) C 1上电势差增大,C 2上电势差不变。

解∶电源断开意味着电量不变。

由于C 1 放入介质,C 1电容增大, 则电势差减小。

[ B ] 2.两只电容器,F C F C μμ2,821==,分别把它们充电到1000V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0V (B) 200V(C) 600V (D) 1000V [C ]解∶311108-⨯==V C Q 库 ,322102-⨯==V C Q 库。

将它们反接321106-⨯=-=Q Q Q 库,3.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,平衡在极板间的空气区域中。

此后,若把电介质抽去,则该质点 (A) 保持不动 (B) 向上运动 (C) 向下运动 (D) 是否运动不能确定 [ B ] 解∶原来+q 的质点平衡在极板间的空气区域中,qE mg =故电势差增大,场强E 增大。

电场力大于重力。

4.一球形导体,带电量q ,置于一任意形状的空腔导体中。

当用导线将两者连接后,则与未连接前相比系统静电场能将 (A) 增大 (B ) 减小(C) 不变 (D) 如何变化无法确定 [ B ]+Q解∶任意形状的空腔导体中,球形导体带电量q 不变 未连接前腔内、腔外均有电场存在。

只不过连接后电量q 跑到空腔的外表面上,则腔外电场不变。

但腔内电场则为 零了。

故与未连接前相比系统静电场能将减小。

5.用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将 (A) 都增加。

大学物理(下册)课后部分习题答案

大学物理(下册)课后部分习题答案



11畅13( a)
11畅13( b)
(2) 设该异线应放在 y = - d 处 ,显然 ,该异线在轴线处产生的磁成应强度应
与原来的半圆柱面产生的磁感应强度相同 ,即
μ0 I 2π d

μ0 I π2 R
所以
d=
πR 2
因面 ,另一导线应放在 y = - π2R处 .
12唱7 均匀磁场 B 被限制在半径 R = 0 .10 m 的无限长圆柱空间内 ,方向垂
同理 ,空腔轴线上的磁感应强度
因 R2 = 0 ,B0′2 = 0 ,故
B0′ = B0′1 + B0′2
B0′1

μ0 Ia 2π( R21 - R22 )

2 × 10 -4 T
11畅13 如图11畅13( a)所示 ,一半径为 R 的无限长半圆柱面导体 ,其上电流与其
轴线上一无限长直导线的电流等值反向 ,电流 I 在半圆柱面上均匀分布 .试求 :
当 r < R1 时 ,有
促 E · d S = E · 4π r2 = 0

E =0
当 R1 < r < R2 时 ,有
促S
E · d S = E · 4π r2 =
1 ε0



1 4π ε0
q r2
当 r > R2 时 ,有
促S
E · d S = E · 4π r2 =
1 ε0
ab · h
= 1600π - 4 3 × 10 -2 V 式中 h 为由 O 到ab的垂直距离 ,感应电流沿顺时针方向 .
∮ 此题也可用 Ei = Ev · d l 公式直接积分求解 .
图 12 唱7

大学物理2练习册答案

大学物理2练习册答案

大学物理2练习册答案问题1:简谐振子的周期公式是什么?答案:简谐振子的周期 \( T \) 可以通过公式 \( T =2\pi\sqrt{\frac{m}{k}} \) 来计算,其中 \( m \) 是振子的质量,\( k \) 是弹簧的劲度系数。

问题2:描述牛顿第二定律的表达式,并给出一个应用实例。

答案:牛顿第二定律的表达式是 \( F = ma \),其中 \( F \) 是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。

应用实例:当一个质量为2kg的物体受到10N的力作用时,它的加速度将是 \( 5 m/s^2 \)。

问题3:解释什么是角动量守恒定律,并给出一个例子。

答案:角动量守恒定律指的是,如果没有外力矩作用于一个系统,那么这个系统的总角动量保持不变。

例如,一个旋转的冰上舞者在收缩手臂时,由于半径减小,角速度会增加,以保持角动量守恒。

问题4:解释什么是电场强度,并给出其计算公式。

答案:电场强度是一个矢量量,表示在电场中某一点单位正电荷所受到的电场力。

其计算公式是 \( E = \frac{F}{q} \),其中 \( E \) 是电场强度,\( F \) 是电荷 \( q \) 所受的电场力。

问题5:什么是电流的微观表达式?答案:电流的微观表达式是 \( I = nqAv \),其中 \( I \) 是电流,\( n \) 是单位体积内的电荷数,\( q \) 是单个电荷的电荷量,\( A \) 是导体的横截面积,\( v \) 是电荷的漂移速度。

问题6:解释什么是磁感应强度,并给出其单位。

答案:磁感应强度是一个矢量量,表示磁场在空间某点的强度和方向。

其单位是特斯拉(T)。

问题7:什么是电磁波?描述其基本特性。

答案:电磁波是由变化的电场和磁场相互作用产生的波动现象。

电磁波的基本特性包括:它们可以在真空中传播,具有波长、频率和速度,且电磁波的速度在真空中等于光速 \( c \)。

大学物理2习题册(含答案)

大学物理2习题册(含答案)

题1第⼀一章流体⼒力力学1、基本概念(3)理理想流体:完全不不可压缩,没有粘滞性的流体。

(4)连续性原理理:流管上⼀一节流速与截⾯面积的乘积是⼀一个常量量,截⾯面⼤大的流速⼩小,反之⼤大(6)伯努利利⽅方程:P 1+12ρv 12+ρg h 1=P 2+12ρv 22+ρg h 2=c(7)泊肃叶公式:2、从⽔水⻰龙头徐徐流出的⽔水流,下落时逐渐变细,其原因是(A )。

A.压强不不变,速度变⼤大; B.压强不不变,速度变⼩小;C.压强变⼩小,流速变⼤大;D.压强变⼤大,速度变⼤大。

3、如图所示,⼟土壤中的悬着⽔水,其上下两个液⾯面都与⼤大⽓气相同,如果两个⻚页⾯面的曲率半径分别为R A 和R B (R A <R B ),⽔水的表⾯面张⼒力力系数为α,密度为ρ,则悬着⽔水的⾼高度h 为_____。

4、已知动物的某根动脉的半径为R,⾎血管中通过的⾎血液流量量为Q ,单位⻓长度⾎血管两端的压强差为ΔP ,则在单位⻓长度的⾎血管中维持上述流量量需要的功率为ΔPQ 。

5、城市⾃自来⽔水管⽹网的供⽔水⽅方式为:⾃自来⽔水从主管道到⽚片区⽀支管道再到居⺠民家的进户管道。

⼀一般说来,进户管道的总横截⾯面积⼤大于⽚片区⽀支管的总横截⾯面积,主⽔水管道的横截⾯面积最⼩小。

不不考虑各类管道的海海拔⾼高差(即假设所有管道处于同⽔水平⾯面),假设所有管道均有⽔水流,则主⽔水管道中的⽔水流速度⼤大,进户管道中的⽔水流速度⼩小。

6、如图所示,虹吸管的粗细均匀,略略去⽔水的粘滞性,求⽔水流速度及A 、B 、C 三处的压强。

题1-10图解:在管外液⾯面上任选⼀一点D ,CD 两点:BC两点:AC两点:7、⼀一开⼝口容器器截⾯面积为S1,底部开⼀一截⾯面积为S2的孔。

当容器器内装的液体⾼高度为h时,液体从孔中喷出的速度为多⼤大?设液体为理理想流体且作定常流动。

解:由于液体为理理想流体且作定常流动,根据连续性原理理,有根据伯努利利⽅方程,有从上两式联⽴立解得8、⼀一圆筒中的⽔水深为H=0.70m,底⾯面积S1=0.06m2,桶底部有⼀一⾯面积为1.0×10-4m2的⼩小孔。

大学物理(二)习题参考答案

大学物理(二)习题参考答案

大学物理(二)习题参考答案14-2、 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为普适气体常量,则该理想气体的分子数为多少? 解:由理想气体状态方程 N p nkT kT V== 得理想气体的分子数 pV N kT=14-8、温度为0ºC 和100ºC 时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1e V ,气体的温度需是多少?解:(1)232111331.3810273 5.651022w kT J J --==⨯⨯⨯=⨯ (2)23212233 1.3810(273100)7.721022w kT J J --==⨯⨯⨯+=⨯(3)193323322 1.60107.73107.4610233 1.3810w w kT T K K k --⨯⨯=⇒===⨯≈⨯⨯⨯℃ 14-9、某些恒星的温度可达到约1.0×108K ,这是发生聚变反应(也称热核反应)所需的温度。

通常在此温度下恒星可视为由质子组成。

求: (1)质子的平均动能是多大? (2)质子的方均根速率是多大? 解:(1)质子的平均动能为 23815331.3810 1.0102.071022w kT J J --==⨯⨯⨯⨯=⨯ (2) 质子的方均根速率是2161121.5710rps w mv v s m s --===⋅=⨯⋅或1611.5710rpsv s m s --==⋅=⨯⋅ 14-12、解: (1)KK E E N w w N=⇒=A molMN N M =⋅ 5321234.141032108.27102.66 6.0210k mol A E M w J J MN --⨯⨯⨯∴===⨯⨯⨯(2) 21233228.2710400233 1.3810w w kT T K K k --⨯⨯=⇒==≈⨯⨯ 14-17、解:(1)253122522 6.7510 1.35105 2.010mol mol mol M M PV RT P RT M V M E E P M i iV V E RT M P Pa Pa -⎫=⇒=⎪⎪⇒==⎬⎪=⎪⎭⨯⨯==⨯⨯⨯(2)221223333 6.751027.51055 5.4102w kT E E w J J E i i N N kT N ε-⎫=⎪⨯⨯⎪⇒=⋅===⨯⎬⨯⨯⎪==⎪⎭21223227.510 3.621033 1.3810w T K K k --⨯⨯===⨯⨯⨯ 14-18、解:已知,V ,P ,i22mol mol M i E RT M i E PV M PV RT M ⎫=⎪⎪⇒=⎬⎪=⎪⎭15-2解:已知Q,E ∆由,5552.6610 4.1810 1.5210Q E W W Q E J J J =∆+⇒=-∆=⨯-⨯=-⨯,外界对系统做功。

大学物理2习题参考答案

大学物理2习题参考答案

题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。

(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。

(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。

A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。

3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。

(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。

5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。

一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。

不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。

10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。

221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十章 习题10答案

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册  第十章 习题10答案

习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。

[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。

[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。

[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。

[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。

[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。

电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。

[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。

大学物理二练习册答案

大学物理二练习册答案


3. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为 a,外筒半径为 b,筒长都是 L,中间充满相对介电常量为r 的各向同性均匀电介质. 内、 外筒分别带有等量异号电荷+Q 和-Q.设 (b- a) << a,L >> b,可以忽略边缘效应,求: (1) 圆柱形电容器的电容; (2) 电容器贮存的能量.
思考题 3:有一上下极板成 θ 角的非平行板电容器(长为 a ,宽为 b) ,其电 容如何计算?
参考解答: 设 一 平 行 板 电 容 器 是 由 长 为 a , 宽 为 b 的 两 导 体板 构 成 , 板 间 距 为 d , 则 电 容 为
ab , 若该电容器沿两极板的长度同一方向有 d x的长度增 d a (b d x ) a d x 量,则电容为 C C0 , 在此基础上推广到 d d
L b a
解:由题给条件 ( b a) a 和 L b ,忽略边缘效应, 应用高斯定理可求出两 筒之间的场强为: 两筒间的电势差 电容器的电容 电容器贮存的能量
E Q /(2 0 r Lr )
b
U
Q dr Q b ln 2 0 r L r 2 0 r L a a
3
参考解答: 由极性分子组成的电介质(极性电介质)放在外电场中时,极性分子的固有电矩将沿外 电场的方向取向而使电介质极化。 由于极性分子还有无规则热运动存在, 这种取向不可能完 全整齐。 当电介质的温度升高时,极性分子的无规则热运动更加剧烈,取向更加不整齐,极化的 pi 效果更差。此情形下,电极化强度 P 将会比温度升高前减小。 V 在电介质中的电场 E 不太强时,各向同性电介质的 P 和 E 间的关系为 P 0 ( r 1) E . 很明显,在同样的电场下,当温度升高后,相对介电常量 εr 要减小。

大学物理2-2第十章课后答案

大学物理2-2第十章课后答案

习 题 十10-1 卢瑟福实验证明:两个原子核之间的距离小到1510-m 时,它们之间的斥力仍遵守库仑定律。

已知金原子核中有79个质子,α粒子中有2个质子,每个质子的带电量为C 19106.1-⨯,α粒子的质量为6.682710-⨯kg 。

当α粒子与金原子核相距6.91210-⨯m 时,试求:(1) α粒子所受的力;(2) α粒于的加速度。

[解] (1) α粒子电量2e ,金核电量为79e 。

两点间的库仑力为N .ree F 22010*******⨯=⋅=πε (2) α粒子的加速度22927210141106861067sm ...m F a ⨯=⨯⨯==-10-2 如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。

[解] 在带电直导线上取电荷元dx Lqdq =,它在P 点产生的电场强度为 ()()dx x d L Lq x d L dqdE 20204141-+=-+=πεπε则整个带电直导线在P 点产生的电场强度为()()d L d qdx x d L Lq E L+=-+=⎰00204141πεπε故()i E ˆd L d q +=04πε10-3 两根相同均匀带电细棒,长为L ,电荷线密度为λ,沿同一直线放置,两细棒间最近距离也是L ,如图所示。

设棒上的电荷不能自由移动,试求两棒间的静电相互作用力。

[解一] 先按左棒为场源电荷,而右棒为受力电荷。

计算左棒场强再求右棒所受电场力。

取坐标如图所示,左棒在x '处的场强为()⎪⎭⎫⎝⎛'--'=-'=⎰x L x x x dxE l11440020πελπελ 右棒x '处电荷元x d 'λ受的电场力为x d x L x E x d dF '⎪⎭⎫⎝⎛'--'=⋅'=11402πελλ 右棒受的总电场力为λdx'x x'0l 2l 3l λdx344232341140202320232ln L L ln LL LL ln x d x L x dF F L L L L πελπελπελ=⎪⎭⎫ ⎝⎛---='⎪⎭⎫ ⎝⎛'--'==⎰⎰ [解二] 求电荷元dx λ与x d 'λ的库仑力叠加。

大学物理第二册习题答案详解 (修复的)

大学物理第二册习题答案详解 (修复的)

习题八8-1 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强E →∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-2 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-3 一个点电荷q 放在球形高斯面的中心,试问在下列情况下,穿过这高斯面的E 通量是否改变?高斯面上各点的场强E 是否改变?(1) 另放一点电荷在高斯球面外附近. (2) 另放一点电荷在高斯球面内某处.(3) 将原来的点电荷q 移离高斯面的球心,但仍在高斯面内.(4) 将原来的点电荷q 移到高斯面外.答:根据高斯定理,穿过高斯面的电通量仅取决于面内电量的代数和,而与面内电荷的分布情况及面外电荷无关,但各点的场强E 与空间所有分布电荷有关,故:(1) 电通量不变, Φ1=q 1 / ε0,高斯面上各点的场强E 改变(2) 电通量改变,由Φ1变为Φ2=(q 1+q 2 ) /ε 0,高斯面上各点的场强E 也变(3) 电通量不变,仍为Φ1.但高斯面上的场强E 会变 。

(4) 电通量变为0,高斯面上的场强E 会变.8-4 以下各种说法是否正确,并说明理由.(1) 场强为零的地方,电势一定为零;电势为零的地方,场强也一定为零.(2) 在电势不变的空间内,场强一定为零.(3) 电势较高的地方,场强一定较大;场强较小的地方,电势也一定较低.(4) 场强大小相等的地方,电势相同;电势相同的地方,场强大小也一定相等.(5) 带正电的带电体,电势一定为正;带负电的带电体,电势一定为负.(6) 不带电的物体,电势一定为零;电势为零的物体,一定不带电.答:场强与电势的微分关系是, U E -∇=.场强的大小为电势沿等势面法线方向的变化率,方向为电势降落的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理练习十
一.选择题:
1.C 1和C 2两空气电容器串联起来接上电源充电。

然后将电源断开,再把一电介
质板插入C 1中,则
(A) C 1上电势差减小,C 2上电势差增大。

(B) C 1上电势差减小,C 2上电势差不变。

(C) C 1上电势差增大,C 2上电势差减小。

(D) C 1上电势差增大,C 2上电势差不变。

解∶电源断开意味着电量不变。

由于C 1 放入介质,C 1电容增大,
则电势差减小。

[ B ]
2.两只电容器,F C F C μμ2,821==,分别把它们充电到1000V ,
然后将它们反接(如图所示),此时两极板间的电势差为: (A) 0V (B) 200V
(C) 600V (D) 1000V [C ]
解∶311108-⨯==V C Q 库 ,322102-⨯==V C Q 库。

将它们反接321106-⨯=-=Q Q Q 库, 3.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图。

当两极板带上恒定的等量异
号电荷时,有一个质量为m 、带电量为+q 的质点,平衡在极板间的空气区域中。

此后,若把电介质抽去,则该质点 (A) 保持不动 (B) 向上运动 (C) 向下运动 (D) 是否运动不能确定 [ B ]
解∶
原来+q 的质点平衡在极板间的空气区域中,qE mg =
故电势差增大,场强E 增大。

电场力大于重力。

4.一球形导体,带电量q ,置于一任意形状的空腔导体中。

当用
导线将两者连接后,则与未连接前相比系统静电场能将
(A) 增大 (B ) 减小
(C) 不变 (D) 如何变化无法确定 [ B ]
+Q
解∶任意形状的空腔导体中,球形导体带电量q 不变
未连接前腔内、腔外均有电场存在。

只不过连接后电量q
跑到空腔的外表面上,则腔外电场不变。

但腔内电场则为
零了。

故与未连接前相比系统静电场能将减小。

5.用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将
(A) 都增加。

(B) 都减少。

(C) (a)增加,(b)减少。

(D) (a)减少,(b)增加。

[D ]
解∶图(a)
抽去介质,则电容减小,故e W 减小。

图(b)
抽去介质,则电容减小,故e W 增加。

6.两个薄金属同心球壳,半径各为R 1和R 2 (R 2 > R 1),分别带有电荷q 1和q 2,二者电势分别为U 1和U 2 (设无穷远处为电势零点),现用导线将二球壳联起来,则它们的电势为
(A) U 1 (B) U 2
(C) U 1 + U 2 (D) (U 1 + U 2) / 2 [ B ]
7.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,相对介电常数为r ε,壳外是真空。

则在介质球壳中的P 点处(设r OP =)的场强和电位移的大小分别
为 [ C ]
(A)).4/(),4/(22r Q D r Q E r ππε== (B)).4/(),4/(202r Q D r Q E r πεπε==
(C)).4/(),4/(220r Q D r Q E r πεπε== (D)).4/(),4/(2020r Q D r Q E r πεεπε==
充电后仍与电源连接 充电后与电源断开
解∶E D r εε0=
二.填空题: 1.如图所示,两同心导体球壳,内球壳带电量+q ,外球壳带电量-2 q 。

静电平衡时,外球壳的电荷分布为:内表面 -q ;外表
面 -q 。

2.分子的正负电荷中心重合的电介质叫做___无极分子__电介质 .在外电场
作用下,分子的正负电荷中心发生相对位移,形成__电偶极子____。

3.半径分别为R 1和R 2(12R R >)的两个同心导体薄球壳,分别带电量Q 1和Q 2,今将内球壳用细导线与远处的半径为r 的导体球相连,
导体球原来不带电,则相连后导体球所带电量
q 为 。

解∶ 设相连后导体球所带电量q ,导体球的电势
r q
U 04πε=
内球壳的电势202101144R Q R q Q U πεπε+-=
两电势相等,则 )()(122112r R R Q R Q R r q ++=
4.两根平行“无限长”均匀带电直导线,导线半径都是R (R 《d )。

两导线中心相距为d ,导线上电荷线密度分别为λ+和λ-。

则两导线间的电势差
U = ;该导体组单位长度的电容C = 。

解∶
两导线间的任一点(X)处的场强:
)(2200x d x E -+=πελπελ
O +q
O R 2R 1r
两导线之间的电势差:
所以单位长度的电容。

相关文档
最新文档