自动控制原理课程设计(室温控制系统校正装置设计)讲课稿
室内温度自动调节控制系统课程设计
串口原理图如图6所示.主要作用是进行电平转换,提高信号传输地速度.
图6串口原理图
串口电路是由一个MAX232芯片、5个0.1UF地电容和一个串口组成.电路中地MAX232芯片是美信公司专门为电脑地RS-232标准串口设计地单电源电平转换芯片,使用+5v单电源供电,在电路中地C1~C4是必不可少地,缺一不可,具有调节电压值地作用.由图可知,当数据线接上串口DB9时数据经过3号引脚送给MAX232地13号引脚,在经过12号引脚输出将电平转换送往单片机芯片中,在经过一系列单片机讲信号送给11号引脚经过芯片电平转换由14号引脚送给串口地2号引脚,已达到电平转换地作用.
PWM音频输出:直接驱动扬声器地方式,扬声器两端接PWM+和PWM-,此状态输出时,PWM+/PWM-两端不可短路、不可接电容电阻到地.如需采用此状态外接功放,可用差分方式输出到功放.
DAC音频输出:外接功放驱动扬声器方式,不可直接驱动扬声器.PWM+/DAC端做音频输出,PWM-端腾空.DAC端需接一个1.2K电阻和104电容到地,再把音频输出给功放.
图2 LCD1602液晶显示屏
1.4
温度传感器DS18B20结构图如图3所示,引脚左负右正,一旦接反就会立刻发热,有可能烧毁.同时,接反也是导致该传感器总是显示85℃地原因.正确接法:面对着扁平地那一面,左负右正.
DS18B20地性能特点如下[1]:
a.独特地单线接口仅需要一个端口引脚进行通信;
b.多个DS18B20可以并联在惟一地三线上,实现多点组网功能;
高速暂存RAM地第6、7、8字节保留未用,表现为全逻辑1.第9字节读出前面所有8字节地CRC码,可用来检验数据,从而保证通信数据地正确性.
当DS18B20接收到温度转换命令后,开始启动转换.转换完成后地温度值就以16位带符号扩展地二进制补码形式存储在高速暂存存储器地第1、2字节.单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示.
自动控制原理课程设计课件
如模型参考自适应控制、自适应PID控制等,用于不确定系统的控制。
智能控制算法
如模糊控制、神经网络控制等,用于复杂系统的控制。
控制算法的仿真和验证
建立数学模型
根据实际系统建立数学模型,包括连续时间 系统、离散时间系统等。
仿真软件选择
选择合适的仿真软件,如Simulink、 Matlab等。
促进创新
课程设计能够培养学生的系统分 析、设计和调试能力,提高解决 实际问题的能力。
通过实践探索,激发学生的创新 思维,为未来的研究和开发奠定 基础。
课程设计的任务和要求
设计任务
01
学生需根据给定的控制要求,设计一个实际的控制系统,包括
系统建模、分析和优化等环节。
设计要求
02
设计方案需满足稳定性、快速性和准确性的要求,同时考虑实
控制器设计
基于系统模型,设计合适的控 制器,以满足控制要求。
实验测试
搭建实际控制系统,进行实验 测试,验证设计的可行性和有 效性。
02
控制系统基础知识
控制系统的基本概念
控制系统的定义
控制系统是由控制器、受控对象 和反馈通路组成的一种闭环系统, 用于实现特定的控制目标。
控制系统的组成
控制系统通常包括输入、输出、 控制对象、传感器、控制器和执 行器等组成部分。
选择合适的控制策略
根据设计要求选择合适的控制算法和控制 策略。
控制器设计
基于被控对象的模型,设计合适的控制器 ,以满足性能要求。
系统建模
建立被控对象的数学模型,为后续设计提 供依据。
控制系统设计的实例分析
温度控制系统设计
以温度为被控对象,设计一个自动控制系统,实现温度的自动调 节。
自动控制原理课程设计
自动控制原理课程设计一、引言自动控制原理课程设计是为了帮助学生深入理解自动控制原理的基本概念、原理和方法,通过实际项目的设计与实现,培养学生的工程实践能力和创新思维。
本文将详细介绍自动控制原理课程设计的标准格式,包括任务目标、设计要求、设计方案、实施步骤、实验结果及分析等内容。
二、任务目标本次自动控制原理课程设计的目标是设计一个基于PID控制算法的温度控制系统。
通过该设计,学生将能够掌握PID控制算法的基本原理和应用,了解温度传感器的工作原理,掌握温度控制系统的设计和实现方法。
三、设计要求1. 设计一个温度控制系统,能够自动调节温度在设定范围内波动。
2. 使用PID控制算法进行温度调节,实现温度的精确控制。
3. 使用温度传感器实时监测温度值,并将其反馈给控制系统。
4. 设计一个人机交互界面,能够实时显示温度变化和控制系统的工作状态。
5. 设计一个报警系统,当温度超出设定范围时能够及时发出警报。
四、设计方案1. 硬件设计方案:a. 使用温度传感器模块实时监测温度值,并将其转换为电信号输入到控制系统中。
b. 控制系统使用单片机作为主控制器,通过PID控制算法计算控制信号。
c. 控制信号通过电路板连接到执行器,实现温度的调节。
d. 设计一个报警电路,当温度超出设定范围时能够触发警报。
2. 软件设计方案:a. 使用C语言编写单片机的控制程序,实现PID控制算法。
b. 设计一个人机交互界面,使用图形化界面显示温度变化和控制系统的工作状态。
c. 通过串口通信将温度数据传输到电脑上进行实时监控和记录。
五、实施步骤1. 硬件实施步骤:a. 搭建温度控制系统的硬件平台,包括温度传感器、控制系统和执行器的连接。
b. 设计并制作电路板,将传感器、控制系统和执行器连接在一起。
c. 进行硬件连接调试,确保各个模块正常工作。
2. 软件实施步骤:a. 编写单片机的控制程序,实现PID控制算法。
b. 设计并编写人机交互界面的程序,实现温度变化和控制系统状态的实时显示。
自动控制原理课程设计关于系统校正
自动控制原理课程设计报告专业:自动化班级:12403011学号:***************1. 已知一个二阶系统其闭环传递函数如下Φ=ks s ++25.0k 求k=0.2,0.5,1,2,5时,系统的阶跃响应和频率响应。
绘出系统的阶跃响应和频率响应曲线。
程序如下: 一.阶跃响应i=0;for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];sys=tf(num,den);i=i+1;step(sys,25)hold onendgridhold offtitle('k 不同时的阶跃响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')二.频率响应for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];bode(num,den)[mag,phase,w]=bode(num,den);mr=max(mag)wr=spline(mag,w,mr)hold onendgridhold offtitle('k不同时的频率响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')2.被控对象传递函数为)20030()(2++=s s s K s G 设计超前校正环节,使系统性能指标得到满足如下要求:1) 速度误差常数=102) γ=45°由速度误差常数=10,k v =10=)20030(lim 20s ++→s s s k s , 得k=2000 程序如下:num=[2000];den=[1,30,200,0];g0=tf(num,den);figure(1);margin(g0);hold onfigure(2);sys=feedback(g0,1);step(sys)w=0.1:0.1:2000;[gm,pm,wcg,wcp]=margin(g0);[mag,phase]=bode(g0,w);magdb=20*log10(mag);phim1=45;data=18;phim=phim1-pm+data;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));n=find(magdb+10*log10(alpha)<=0.0001);wc=w(n(1));w1=wc/sqrt(alpha);w2=wc*sqrt(alpha);numc=[1/w1,1];denc=[1/w2,1];gc=tf(numc,denc);g=gc*g0;[gmc,pmc,wcgc,wcpc]=margin(g);gmcdb=20*log10(gmc);disp('校正装置传递函数和校正后系统开环传递函数'),gc,g,disp('校正系统的频域性能指标KG,V,WC'),[gmc,pmc,wcpc], disp('校正装置的参数T 和a 值:'),t=1/w2;[t,alpha],bode(g0,g);hold on ,margin(g)校正装置传递函数和校正后系统开环传递函数gc =0.1647 s + 1-------------0.05404 s + 1Continuous-time transfer function.g =329.4 s + 2000-------------------------------------------0.05404 s^4 + 2.621 s^3 + 40.81 s^2 + 200 sContinuous-time transfer function.校正系统的频域性能指标KG ,V ,WCans =3.4126 45.8576 10.5873校正装置的参数T 和a 值:ans =0.0540 3.04723.被控对象传递函数为)5()(+=s s K s G 设计滞后校正环节,使系统性能指标满足如下要求:1)单位斜坡稳态误差小于5%2)闭环阻尼比ζ=0.707,ωn =1.5 rad/s由单位斜坡稳态误差小于5%,ε=v k 1=5%,得v k =20,又由v k =)5(lim 0s +→s s k s ,得k=100.由闭环阻尼比ζ=0.707,ωn =1.5 rad/s ,可算出相角裕度ν=65.5°,穿越频率c w =0.965程序如下:num=100;den=[1,5,0];go=tf(num,den);margin(go);gammao=65.5;delta=6;gamma=gammao+delta;w=0.01:0.01:1000;[mag,phase]=bode(go,w);n=find(180+phase-gamma<=0.1);wgamma=w(n(1)); [mag,phase]=bode(go,wgamma);lhc=20*log10(mag);beta=10^(lhc/20);w2=wgamma/10;w1=w2/beta;numc=[1/w2,1];denc=[1/w1,1];gc=tf(numc,denc) g=go*gcbode(go,g),hold on,margin(g),betaTransfer function:gc =5.988 s + 1-----------68.02 s + 1Continuous-time transfer function.g =598.8 s + 100---------------------------68.02 s^3 + 341.1 s^2 + 5 sContinuous-time transfer function.beta =11.35924.设已知单位负反馈系统其开环传递函数为())1125.0)(15.0(s ++=s s s k G 要求系统具有的性能指标是:1 ) 控制输入为单位速度信号(T RAD/S )时,其稳态误差E<0.15RAD2 ) 控制输入为单位阶跃信号时,其超调量σ<35%,调整时间s t <10秒3) 控制输入为单位阶跃信号时,其超调量σ<25%,调整时间s t <4秒 由 1)可求出6.67<k<10,取k=82) 由题意σ=0.16+0.4(vsin 1-1)<0.35, t s =]1)sinv12.5(1)- sinv 11.5(2[2-++c w pi <10,得相角裕度v>42.68°, 穿越频率 w c >0.96,取v=45°rad/s ,得w c =1.22 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);margin(g0);gammao=45;delta=5;gamma=gammao+delta;w=0.01:0.01:1000;[mag,phase]=bode(g0,w);n=find(180+phase-gamma<=0.1);wgamma=w(n(1));[mag,phase]=bode(g0,wgamma);lhc=20*log10(mag);beta=10^(lhc/20);w2=wgamma/10;w1=w2/beta;numc=[1/w2,1];denc=[1/w1,1];gc=tf(numc,denc)g=g0*gcbode(g0,g),hold on ,margin(g),betaTransfer function:gc =8.197 s + 1-----------45.36 s + 1Continuous-time transfer function.g =65.57 s + 8-------------------------------------2.835 s^4 + 28.41 s^3 + 45.99 s^2 + s Continuous-time transfer function. beta =5.53413 )由题意σ=0.16+0.4(v sin 1-1)<0.25 t s =]1)sinv12.5(1)- sinv 11.5(2[2-++c w pi <4,得相角裕度v>54.7°,穿越频率w c >1.935 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);[kg,gamma,wg,wc]=margin(g0);kgdb=20*log10(kg);w=0.001:0.001:100;[mag,phase]=bode(g0,w);disp('未校正系统参数:20LGKG,WC,');[kgdb,wc,gamma], gamma1=54.7;delta=5;phim=gamma1-gamma+delta;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));wcc=2.5;w3=wcc/sqrt(alpha);w4=sqrt(alpha)*wcc;numc1=[1/w3,1];denc1=[1/w4,1];gc1=tf(numc1,denc1);g01=g0*gc1;[mag1,phase1]=bode(g01,wc);lhc=20*log10(mag1);beta=10^(lhc/20);w2=wcc/10;w1=w2/beta;numc2=[1/w2,1];denc2=[1/w1,1];gc2=tf(numc2,denc2);gc=gc1*gc2;g=gc*g0;[gmc,pmc,wcgc,wcpc]=margin(g);gmcdb=20*log10(gmc); disp('超前校正部分的传递函数'),gc1,disp('滞后校正部分的传递函数'),gc2,disp('串联超前—滞后校正传递函数'),gc,disp('校正后整个系统的传递函数'),gdisp('校正后系统参数:20LGKG,WC,R 及A 值'),[gmcdb,wcpc,pmc,alpha],bode(g0,g),hold on ,margin(g),beta未校正系统参数:20LGKG,WC, ans =1.9382 3.5703 5.2057 超前校正部分的传递函数gc1 =1.249 s + 1------------0.1281 s + 1Continuous-time transfer function. 滞后校正部分的传递函数gc2 =4 s + 1-----------16.63 s + 1Continuous-time transfer function.串联超前—滞后校正传递函数gc =4.998 s^2 +5.249 s + 1-----------------------2.13 s^2 + 16.76 s + 1Continuous-time transfer function.校正后整个系统的传递函数g =39.98 s^2 + 42 s + 8--------------------------------------------------0.1331 s^5 + 2.378 s^4 + 12.67 s^3 + 17.38 s^2 + s Continuous-time transfer function.校正后系统参数:20LGKG,WC,R及A值ans =12.4993 3.5771 54.8601 9.7561beta =4.1575。
自动控制原理课程设计
自动控制原理课程设计
在本次自动控制原理课程设计中,我们将设计一个基于微处理器的温度控制系统。
该系统的目标是通过测量并控制一个封闭环境中的温度,使其始终保持在设定的范围内。
在该系统中,我们将使用一种温度传感器来获取环境的当前温度,并通过微处理器进行处理和控制。
首先,我们需要利用模拟电路将传感器的输出转换为数字量,以便微处理器进行处理。
这可以通过使用模数转换器来实现,该转换器将模拟信号转换为数字信号。
在微处理器中,我们将设计一个控制算法,通过与设定值进行比较来确定温度是否在设定范围内。
如果温度超出了设定范围,控制算法将生成一个控制信号,用于调节环境中的加热器或冷却器。
为了避免温度波动过大,我们可以设计一个比例控制算法,该算法根据温度偏差的大小调整控制信号的大小。
除了控制算法外,我们还需要设计一个用户界面,以便用户可以监视和调整系统的设置。
用户界面将使用显示器和按键来实现,显示器将显示当前温度和设定值,按键用于调整设定值。
为了保证系统的稳定性和安全性,我们还需要设计一些保护措施。
例如,当温度超出安全范围时,系统应该能够自动停止加热或冷却操作,并发出警报作为提醒。
最后,我们需要进行系统的测试和调试。
我们将使用模拟环境和实际环境进行测试,以确保系统在各种情况下都能正常运行。
通过这个设计项目,我们将能够深入了解自动控制原理的应用,并学习如何设计和实现一个实际的控制系统。
同时,我们还将培养系统设计和调试的技能,以及团队合作和沟通能力。
最新室内温度自动调节控制系统课程设计
室内温度自动调节控制系统课程设计室内温度自动调节控制系统摘要在人们日常生产及生活过程中,经常要用到温度的检测和控制。
随着微型计算机和传感器技术的迅速发展,自动检测领域发生了巨大变化,室内温度自动检测控制方面的研究有了很大进展。
同时现代电子产品性能进一步提高,产品更新换代的节奏越来越快。
本次课程设计是基于STC89C52单片机基础板所做的温度检测调节系统,不仅对于学习单片机技术等专业知识有实际意义,而且还可以增强动手能力。
这次设计的系统,硬件电路主要包括单片机最小系统电路,温度采集电路,显示电路,语音播报电路,按键电路,继电器电路等。
软件程序主要包括主程序,读出温度子程序,计算温度子程序,显示温度刷新子程序,语音播报程序等。
我们利用DS18B20温度传感器采集温度通过STC89C5单片机系统在应用板上利用LCD1602液晶显示屏显示实时测得的温度,通过程序进行语音播报;当温度超过设定的上限时,继电器闭合,并驱动动机工作,以实现降温。
经过调试,结果显示LCD屏准确显示了室温,并能进行语音播报。
当温度超过设定上限时,继电器闭合,风扇工作,开始降温;实现了系统设计要求的功能。
关键词:室内温度,自动控制,STC89C52单片机,语音播报。
目录0 前言 01总体方案设计 (1)1.1设计方案论证 (1)1.2 主控制器 (2)1.3 LCD液晶显示 (2)1.4 温度传感器 (3)2硬件电路设计 (5)2.1.主控制器 (5)2.1.1 电源部分 (6)2.1.2 串口电路 (7)2.1.3晶振电路 (8)2.1.4复位电路 (8)2.2 显示电路 (8) (9)2.3 数据采集电路 (9)2.4语音电路 (10)2.5按键电路 (11)3 软件设计 (11)3.1 主程序设计 (11)3.2 温度转换程序 (13)读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。
自动控制原理课程设计(温度控制系统的分析与校正)最终版本
学号:0120911360302课程设计题目温度控制系统的分析与校正学院自动化学院专业自动化班级姓名指导教师2012 年 1 月 2 日课程设计任务书学生姓名: 专业班级:指导教师: 工作单位: 自动化学院题 目: 温度控制系统的分析与校正初始条件:某温箱的开环传递函数为2()(51)sp e G s s s -=+要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 试用Matlab 绘制其波特图和奈奎斯特图,计算相角裕度和幅值裕度;2、 试设计超前校正装置,使系统的相角裕度增加10度;3、 用Matlab 对校正后的系统进行仿真,画出阶跃响应曲线。
时间安排:指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日目录引言 (1)1 系统开环传递函数分析 (2)1.1比例环节--1 (2)1.2积分环节--1/S (2)1.3惯性环节--1/(5s+1) (3)1.4延迟环节--e-2s (3)1.5开环传递函数--G p(s) (3)2 利用Matlab分析传递函数 (4)2.1绘制波特图 (4)2.2绘制奈奎斯特图 (6)2.3计算相角裕度 (7)2.4计算幅值裕度 (7)3设计超前校正装置 (8)3.1无源超前校正装置 (8)3.2确定校正函数 (9)3.2.1估算校正函数 (9)3.2.2检验相角裕度 (9)3.2.3增大补偿角后确定校正函数 (10)3.3校正装置参数设置 (12)4校正后系统的仿真以及其阶跃响应曲线 (13)4.1仿真校正后的系统 (13)4.2阶跃响应曲线的绘制 (13)结束语 (15)参考文献 (16)引言本次课程设计要求运用所学的理论知识去分析并设计校正温度控制系统的开环传递函数,并通过软件Matlab辅助设计。
自动控制原理如今已经运用到我们的各个领域了,如温度控制、气压控制、水位控制、航天控制等等,通过自动控制原理的运用极大的改变着我们的生活,使我们的生活变得简单而又丰富多样。
自动控制原理校正课程设计--控制系统设计与校正
题目控制系统设计与校正课程名称自动控制原理课程设计院部名称机电工程学院专业电气工程及其自动化班级10电气工程及其自动化(单)学生姓名学号课程设计地点 C306课程设计学时1周指导教师目录一、绪论1.1、相关背景知识 (3)1.2、课程设计任务 (3)二、设计过程 (4)2.1、确定校正传递函数 (4)2.2、利用MATLAB绘画未校正系统的bode图 (4)三、三种响应曲线 (8)3.1、校正前的三种响应曲线 (8)3.2、校正后三种响应曲线 (11)四、特征根 (13)4.1、校正前的特征根 (13)4.2、系统校正后的特征根 (14)五、系统的动态性能指标 (14)5.1、校正前动态性能指标σ%、tr、tp、ts (14)5.2、校正后的动态性能指标 (15)5.3、系统的稳态误差 (17)六、根轨迹 (17)6.1、校正前的根轨迹 (17)6.2、校正后的根轨迹 (19)七、系统的Nyquist图 (21)7.1、求系统校正前的Nyquist图 (21)7.2、求系统校正后的Nyquist图 (22)八、参考文献 (24)一、绪论1.1、相关背景知识所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,从而满足给定的各项性能指标。
系统校正的常用方法是附加校正装置。
按校正装置在系统中的位置不同,系统校正分为串联校正、反馈校正和复合校正。
按校正装置的特性不同,又可分为超前校正、滞后校正和滞后-超前校正、PID 校正。
这里我们主要讨论串联校正。
串联超前校正是利用超前网络或PD 控制器进行串联校正的基本原理,是利用超前网络或PD 控制器的相角超前特性实现的,使开环系统截止频率增大,从而闭环系统带宽也增大,使响应速度加快。
1.2、课程设计任务(1)、要求:a 、掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。
《自动控制原理》课程设计_温度控制系统的滞后校正
目录引言 (1)1 无源滞后校正的原理 (2)2 系统校正前的图像 (4)2.1 系统校正前的波特图 (4)2.2 系统校正前奈氏图的绘制 (5)3 校正环节参数计算 (6)4 系统校正后的图像 (6)4.1 系统校正后的波特图 (6)4.2系统校正后的奈氏图 (7)4.3系统校正前后的波德图对比 (8)5 校正前后系统的阶跃响应曲线 (9)6 心得体会 (12)7 参考文献 (13)引言在现代的科学技术的众多领域中,自动控制技术起着越来越重要的作用。
自动控制技术是能够在没有人直接参与的情况下,利用附加装置(自动控制装置)使生产过程或生产机械(被控对象)自动地按照某种规律(控制目标)运行,使被控对象的一个或几个物理量(如温度、压力、流量、位移和转速等)或加工工艺按照预定要求变化的技术。
它包含了自动控制系统中所有元器件的构造原理和性能,以及控制对象或被控过程的特性等方面的知识,自动控制系统的分析与综合,控制用计算机(能作数字运算和逻辑运算的控制机)的构造原理和实现方法。
自动控制技术是当代发展迅速,应用广泛,最引人瞩目的高技术之一,是推动新的技术革命和新的产业革命的核心技术,是自动化领域的重要组成部分。
自控控制理论是以传递函数为基础的经典控制理论,它主要研究单输出入—单输出,线性定常系统的分析和设计问题。
在线性控制系统中,常用的无源校正装置有无源超前网络和无源滞后网络,通过校正来改善系统的动态性能指标。
系统的动态性能的改变可以由校正前后的奈奎斯特曲线和波特图看出。
1 无源滞后校正的原理无源滞后网路电路图如下:1R C图1-1无源滞后网络电路图如果信号源的内部阻抗为零,负载阻抗为无穷大,则滞后网络的传递函数为分度系数时间常数在设计中力求避免最大滞后角发生在已校系统开环截止频率''c ω附近。
如图1-2所示,选择滞后网络参数时,通常使网络的交接频率T α1远小于''c ω一般取=Tα1''c ω/10 Ts T s Ts Ts s U s U s G c 1111)()()(12++⋅=++==αααC R R T R R R )(121212+=<+=α图1-2校正装置的波特图由于滞后校正网络具有低通滤波器的特性,因而当它与系统的不可变部分串联相连时,会使系统开环频率特性的中频和高频段增益降低和截止频率减小,从而有可能使系统获得足够大的相位裕度,它不影响频率特性的低频段。
《自动控制原理》课程设计
名称:《自动控制原理》课程设计题目:基于自动控制原理的性能分析设计与校正院系:建筑环境与能源工程系班级:学生姓名:指导教师:目录一、课程设计的目的与要求------------------------------3二、设计内容2.1控制系统的数学建模----------------------------42.2控制系统的时域分析----------------------------62.3控制系统的根轨迹分析--------------------------82.4控制系统的频域分析---------------------------102.5控制系统的校正-------------------------------12三、课程设计总结------------------------------------17四、参考文献----------------------------------------18一、课程设计的目的与要求本课程为《自动控制原理》的课程设计,是课堂的深化。
设置《自动控制原理》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。
使相关专业的本科学生学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。
通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。
通过此次计算机辅助设计,学生应达到以下的基本要求:1.能用MATLAB软件分析复杂和实际的控制系统。
2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。
3.能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。
自动控制原理课程设计报告材料
自动控制原理课程设计报告材料一、引言自动控制原理是现代工程领域中一门重要的学科,它涉及到控制系统的设计、分析和优化。
本课程设计报告旨在介绍我所完成的自动控制原理课程设计,并详细阐述设计过程、实验结果及分析。
二、设计目标本次课程设计的目标是设计一个能够实现温度控制的自动控制系统。
通过该系统,能够实时监测温度变化并根据设定的温度范围自动调节加热器的工作状态,以保持温度在设定范围内稳定。
三、设计原理1. 系统框架设计的自动控制系统由传感器、控制器和执行器组成。
传感器负责实时监测温度变化,控制器根据传感器的反馈信号进行判断和控制决策,执行器则根据控制器的指令调节加热器的工作状态。
2. 控制算法本次设计采用了经典的比例-积分-微分(PID)控制算法。
PID控制器通过计算误差的比例、积分和微分部分的权重,来调节执行器的输出信号,以实现对温度的精确控制。
3. 系统建模为了进行系统控制算法的设计和分析,我们需要对系统进行建模。
本次设计中,我们采用了一阶惯性环节模型来描述加热器和温度传感器之间的关系。
四、实验步骤1. 硬件搭建首先,我们搭建了一个实验平台,包括加热器、温度传感器、控制器和执行器等硬件设备。
确保各个设备之间的连接正确并稳定。
2. 参数调节接下来,我们通过对PID控制器的参数进行调节,使得系统能够快速响应、稳定控制。
通过试验和调整,我们得到了最优的PID参数。
3. 实验数据采集在实验过程中,我们采集了一系列的温度数据,包括初始温度、设定温度和实际温度等。
同时,记录了控制器的输出信号和执行器的工作状态。
4. 数据分析与结果验证通过对实验数据的分析,我们验证了设计的自动控制系统的性能。
分析结果表明,该系统能够准确地控制温度在设定范围内波动,并具有良好的稳定性和鲁棒性。
五、实验结果与讨论1. 温度控制精度经过多次实验,我们得到了控制系统的温度控制精度。
结果表明,系统能够将温度控制在设定范围内,误差较小。
2. 响应时间实验结果显示,系统对温度变化的响应时间较短,能够快速调节加热器的工作状态以保持温度稳定。
自动控制原理课程设计(室温控制系统校正装置设计)讲课稿
室温控制系统校正装置设计一 、设计目的通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB 实现系统的仿真与调试。
二、设计要求收集和查阅有关技术资料,独立完成所承担的设计课题的全部内容,初步掌握设计原则、设计方法、设计步骤和设计规范的应用;对工程设计方案进行选择和分析;绘制设计图;撰写说明书。
要求如下: 1、根据所学控制理论知识(频率法、根轨迹法等)进行人工设计校正装置,初步设计出校正装置传递函数形式及参数;2、使用MATLAB 和Simulink ,对加入的校正装置的系统进行动态仿真,并在计算机上对人工设计系统进行仿真调试,使其满足技术要求;3、确定校正装置的电路形式及电路参数(选作);4、完成设计报告。
三、设计任务已知某室温控制系统为单位负反馈,某开环传递函数为:)12.0)(11.0()(0++=S S S KG S ,试用Bode 图设计法对系统进行滞后串联校正设计,使系统满足;① 系统在斜坡信号作用下,系统的速度误差系数K V ≥301-s② 系统校正后的剪切频率ωc ≥2.31-s ③ 系统校正后,系统的相角裕量40≥γ2.2设计要求① 分析设计要求,说明校正的设计思路(滞后校正分析② 详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校正装置的Bode 图,校正后系统的Bode 图)③ 用MATLAB 编程代码及运行结果(包括图形、运算结果) ④ 校正前后系统的单位阶跃响应图。
三、设计方法步骤及设计校正构图3.1校正前系统分析校正前系统的开环传递函数为:)12.0)(11.0()(0++=S S S KG S设计校正要求: K V ≥301-s ,ωc ≥2.31-s,400≥γ因为K V =K S S S Kss s S s G =++=→→)12.0)(11.0(lim lim 0)(00,所以30==K K V所以,原系统开环传递函数变为: )12.0)(11.0(30)(0++=S S S G S利用MATLAB 绘画未校正系统的Bode 图,见图1 在MATLAB 中编写如下程序: num = 30;f1 = [1,0];f2 =[0.1,1]; f3 = [0.2,1];den = conv(f1,conv(f2,f3)); bode(num,den) 原系统Bode 图图1利用MATLAB绘制未校正系统的单位阶跃响应曲线,见图2 在MATLAB中编写如下程序:num=30;f1=[1,0];f2=[0.1,1];f3=[0.2,1];G=tf(f1,conv(f2,f3));G1=feedback(G,1);t=0:0.1:10;step(G1,t); gridxlabel('t');ylabel('c(t)');title('原系统单位阶跃响应');阶跃响应曲线为:图2由图1可以看出,相角欲度170-=γ,此时系统的相角裕度不符合要求,故该系统需要校正。
自动控制原理课程设计关于系统校正完整篇.doc
自动控制原理课程设计关于系统校正1自动控制原理课程设计报告专业:自动化班级:12403011学号:1240301112姓名:高松1. 已知一个二阶系统其闭环传递函数如下Φ=ks s ++25.0k 求k=0.2,0.5,1,2,5时,系统的阶跃响应和频率响应。
绘出系统的阶跃响应和频率响应曲线。
程序如下:一.阶跃响应i=0;for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];sys=tf(num,den);i=i+1;step(sys,25)hold onendgridhold offtitle('k 不同时的阶跃响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')二.频率响应for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];bode(num,den)[mag,phase,w]=bode(num,den);mr=max(mag)wr=spline(mag,w,mr)hold onendgridhold offtitle('k不同时的频率响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),gtext('k=5')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),gtext('k=5')2.被控对象传递函数为)20030()(2++=s s s K s G 设计超前校正环节,使系统性能指标得到满足如下要求:1)速度误差常数=102)γ=45°由速度误差常数=10,k v =10=)20030(lim 20s ++→s s s k s , 得k=2000 程序如下:num=[2000];den=[1,30,200,0];g0=tf(num,den);figure(1);margin(g0);hold on figure(2);sys=feedback(g0,1);step(sys)w=0.1:0.1:2000;[gm,pm,wcg,wcp]=margin(g0);[mag,phase]=bode(g0,w);magdb=20*log10(mag);phim1=45;data=18;phim=phim1-pm+data;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));n=find(magdb+10*log10(alpha)wc=w(n(1));w1=wc/sqrt(alpha);w2= wc*sqrt(alpha); numc=[1/w1,1];denc=[1/w2,1];gc=tf(numc,denc); g=gc*g0;[gmc,pmc,wcgc,wcpc]=margin(g);gmcdb=20*log10(gmc);disp('校正装置传递函数和校正后系统开环传递函数'),gc,g, disp('校正系统的频域性能指标KG,V,WC'),[gmc,pmc,wcpc], disp('校正装置的参数T 和 a 值:'),t=1/w2;[t,alpha], bode(g0,g);hold on ,margin(g)自动控制原理课程设计关于系统校正1第2页校正装置传递函数和校正后系统开环传递函数gc =0.1647 s + 1-------------0.05404 s + 1Continuous-time transfer function.g =329.4 s + 2000-------------------------------------------0.05404 s + 2.621 s + 40.81 s + 200 sContinuous-time transfer function.校正系统的频域性能指标KG ,V ,WCans =3.4126 45.8576 10.5873校正装置的参数T 和a 值:ans =0.0540 3.04723.被控对象传递函数为)5()(+=s s K s G 设计滞后校正环节,使系统性能指标满足如下要求:1)单位斜坡稳态误差小于5%2)闭环阻尼比ζ=0.707,ωn =1.5 rad/s由单位斜坡稳态误差小于5%,ε=vk 1=5%,得v k =20,又由v k =)5(lim 0s +→s s k s ,得k=100.由闭环阻尼比ζ=0.707,ωn =1.5 rad/s ,可算出相角裕度ν=65.5°,穿越频率c w =0.965nc=[1/w1,1];gc=tf(numc,denc) g=go*gcbode(go,g),hold on,margin(g),betaTransfer function:gc =5.988 s + 1-----------68.02 s + 1Continuous-time transfer function.g =598.8 s + 100---------------------------68.02 s + 341.1 s + 5 sContinuous-time transfer function.beta =11.35924.设已知单位负反馈系统其开环传递函数为())1125.0)(15.0(s ++=s s s k G 要求系统具有的性能指标是:1 ) 控制输入为单位速度信号(T RAD/S )时,其稳态误差E2 ) 控制输入为单位阶跃信号时,其超调量σ3) 控制输入为单位阶跃信号时,其超调量σ2) 由题意σ=0.16+0.4(vsin 1-1)12.5(1)- sinv 11.5(2[2-++c w pi 42.68°, 穿越频率w c >0.96,取v=45°rad/s ,得w c =1.22 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);margin(g0);gammao=45;delta=5;gamma=gammao+delta;w=0.01:0.01:1000;[mag,phase]=bod8.197 s + 1-----------45.36 s + 1Continuous-time transfer function.g =65.57 s + 8-------------------------------------2.835 s + 28.41 s + 45.99 s + s Continuous-time transfer function. beta =5.53413 )由题意σ=0.16+0.4(v sin 1-1)12.5(1)- sinv 11.5(2[2-++c w pi 54.7°,穿越频率w c >1.935 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);[kg,gamma,wg,wc]=margin(g0);kgdb=20*log10(kg);w=0.001:0.001:100;[mag,phase]=bode(g0,w);disp('未校正系统参数:20LGKG,WC,');[kgdb,wc,gamma], gamma1=54.7;delta=5;phim=gamma1-gamma+delta;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));wcc=2.5;w3=wcc/sqrt(alpha);w4=sqrt(alpha)*wcc;numc1=[1/w3,1];denc1=[1/w4,1];gc1=tf(numc1,denc1);g01=g0*gc11,disp('滞后校正部分的传递函数'),gc2,disp('串联超前—滞后校正传递函数'),gc,disp('校正后整个系统的传递函数'),gdisp('校正后系统参数:20LGKG,WC,R 及A 值'),[gmcdb,wcpc,pmc,alpha],bode(g0,g),hold on ,margin(g),beta。
控制系统校正课程设计自动控制课程设计
控制系统校正课程设计第一章设计目的1、了解控制系统设计的一般方法和步骤2、掌握对系统进行稳定性分析、稳态误差分析及动态特性分析的方法3、掌握利用MATLAB对控制理论内容进行分析和研究的技能4、提高分析问题解决问题的能力第二章设计内容和要求设计内容:1、阅读有关资料2、对系统进行稳定性分析、稳态误差分析及动态特性分析3、绘制根轨迹图、bode图、nyquist图4、设计校正系统,满足工作要求设计条件:1、被控制对象的传递函数是G(s)= b0s m+b1s m-1+b2s m-2+…+b ma0s n+a1sn-1+a2s n-2+…+a n(n>=m)2、参数a0,a1,a2,...an和b0,b1,b2,...bm因小组而异。
设计要求:1. 能用MATLAB解复杂自动控制理论题目。
2. 能用MATLAB设计控制系统以满足具体性能指标。
3. 能灵活应用MATLAB的CONTROLSYSTEM工具箱和SIMUINK仿真软件,分析系统的性能。
设计题目:已知单位负反馈系统的开环传递函数: 0K G(S)S(S 2)(S 40)=++试用频率法设计串联滞后——超前校正装置,使系统的相角裕量040γ≥,静态速度误差系数1v K 25s -=。
第三章 校正函数的分析与设计1,根据稳态误差系数的要求:100lim ()lim 25(2)(40)Ov s s K K sW s s s s s s -→→===++用MATLAB 求极限:Clear; syms k0 s;y=(s*k0)/(s*(s+2)*(s+40)); kv=limit(y,s,0)得到系统的开环增益为:2000OK =。
即该系统的开环传递函数为:3220002000()(2)(40)4280G S s s s s s s==++++ 2,利用已经确定的开环增益k,画出未校正的系统的Bode 图,求出相位裕度和幅值裕度。
在MATLAB 中输入:G=tf([0 0 0 2000],[1 42 80 0]); [kg,r]=margin(G);figure(1); margin(G);hold on;figure(2); sys=feedback(G,1);step(sys)该程序执行后,得系统的Bode 图及性能指标 r = 6.45即模稳定裕度:= .51dB 4穿越频率:=s rad 94.8相稳定裕度:45.6=γ 剪切频率:=6.88由于计算的相稳定裕度:45.6=γ,达不到题目中系统的相角裕量040γ≥的要求,这样系统工作不能稳定,系统需要校正。
课程设计自动控制原理
课程设计自动控制原理一、教学目标本节课的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握自动控制原理的基本概念、原理和应用;技能目标要求学生能够运用自动控制原理分析和解决实际问题;情感态度价值观目标要求学生培养对自动控制原理的兴趣和好奇心,提高学生学习的积极性和主动性。
通过本节课的学习,学生将能够:1.理解自动控制原理的基本概念和原理;2.掌握自动控制系统的分析和设计方法;3.能够运用自动控制原理解决实际问题;4.培养对自动控制原理的兴趣和好奇心,提高学习的积极性和主动性。
二、教学内容本节课的教学内容主要包括自动控制原理的基本概念、原理和应用。
具体包括以下几个方面:1.自动控制原理的定义和发展历程;2.自动控制系统的分类和基本原理;3.控制器的设计方法和应用;4.自动控制原理在实际工程中的应用案例。
教学内容的安排和进度如下:1.第一课时:介绍自动控制原理的定义和发展历程;2.第二课时:讲解自动控制系统的分类和基本原理;3.第三课时:介绍控制器的设计方法和应用;4.第四课时:分析自动控制原理在实际工程中的应用案例。
三、教学方法为了激发学生的学习兴趣和主动性,本节课采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,向学生传授自动控制原理的基本概念和原理;2.讨论法:引导学生参与课堂讨论,培养学生的思考能力和团队合作精神;3.案例分析法:分析实际工程中的应用案例,让学生更好地理解和掌握自动控制原理;4.实验法:安排实验环节,让学生动手实践,提高学生的实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本节课选择和准备以下教学资源:1.教材:选用《自动控制原理》教材,作为学生学习的主要参考资料;2.参考书:推荐学生阅读《现代自动控制原理》等参考书籍,加深对自动控制原理的理解;3.多媒体资料:制作PPT课件,通过图片、动画等形式展示自动控制原理的相关概念和原理;4.实验设备:准备自动控制系统实验设备,让学生进行实际操作和观察。
《自动控制原理课程设计》教学大纲
自动控制原理课程设计教学大纲1. 引言自动控制原理课程设计是自动控制原理课程的重要组成部分,通过课程设计,能够帮助学生将理论知识与实际应用相结合,提高学生对自动控制原理的理解和运用能力。
2. 课程设计目的自动控制原理课程设计的目的是培养学生分析和解决实际工程问题的能力,以及运用自动控制原理知识进行系统设计和建模的能力。
通过课程设计,学生应能够熟练运用自动控制原理的基本理论知识,了解控制系统的设计方法,并能够独立完成控制系统的设计与调试。
3. 课程设计内容(1)理论学习:包括PID控制器的原理、校正与调节,控制系统的稳定性分析和设计,频域分析与设计,以及状态空间分析与设计等内容。
(2)实际应用:通过案例分析,让学生了解自动控制在现实生活中的应用,如温度控制系统、液位控制系统等。
(3)仿真实验:利用仿真软件进行控制系统设计与仿真实验,加深学生对理论知识的理解,以及对控制系统实际应用的认识。
4. 课程设计要求(1)掌握理论知识:学生应在课程设计中深入理解自动控制原理的基本理论知识,包括控制系统的稳定性分析、频域分析与设计等。
(2)熟练运用软件:学生应能够熟练运用MATLAB等仿真软件进行控制系统的设计与仿真实验。
(3)独立完成设计:学生应能够独立完成一个控制系统的设计与调试,并能够对系统性能进行评估和优化。
5. 总结回顾自动控制原理课程设计是一门理论与实践相结合的课程,通过课程设计,学生能够深入理解自动控制原理的基本理论知识,熟练运用相关仿真软件进行控制系统的设计与仿真实验,提高学生的工程实践能力和创新意识。
在今后的工程实践中,学生能够将所学知识与技能有效地运用于相关领域,为自动控制领域的发展做出贡献。
6. 个人观点与理解作为自动控制原理课程设计的教学大纲撰写者,我深感自动控制原理课程设计的重要性。
通过课程设计,学生能够更直观地理解自动控制原理的应用,提高自己的实践能力和创新意识。
希望学生能够在课程设计中认真学习,积极思考,不断完善自己的设计方案,提升自己的工程实践能力。
自动控制原理课程设计
自动控制原理课程设计一、设计目的。
自动控制原理是现代工程技术中的重要基础课程,通过本课程设计,旨在帮助学生深入理解自动控制原理的基本概念和方法,掌握自动控制系统的设计和分析技能,提高学生的工程实践能力。
二、设计内容。
1. 选取合适的控制对象,通过调研和分析,选取一个合适的控制对象,例如温度、液位等,作为本课程设计的控制对象。
2. 建立数学模型,根据选取的控制对象,建立其数学模型,包括传递函数、状态空间方程等,为后续的控制器设计奠定基础。
3. 控制器设计,根据控制对象的数学模型,设计合适的控制器,可以选择比例积分微分(PID)控制器或者其他先进的控制算法。
4. 系统仿真与分析,利用仿真软件对设计的控制系统进行仿真,分析系统的稳定性、动态响应等性能指标。
5. 实际搭建与调试,在实际的控制对象上搭建控制系统,进行调试和实验验证,观察系统的实际性能。
6. 总结与展望,总结课程设计的过程和结果,对控制系统的性能进行评价,并展望未来的改进方向。
三、设计要求。
1. 设计过程要符合自动控制原理的基本原理和方法,确保设计的科学性和合理性。
2. 数学模型的建立和控制器设计要准确,仿真与实验结果要可靠。
3. 设计报告要清晰、完整、准确,包括设计思路、理论分析、仿真结果、实验数据等。
4. 设计报告要求能够体现出学生的独立思考和创新能力,具有一定的工程实践价值。
四、设计步骤。
1. 确定控制对象,根据实际情况,选择合适的控制对象,例如温度控制系统。
2. 建立数学模型,根据选取的控制对象,建立其数学模型,包括传递函数、状态空间方程等。
3. 控制器设计,根据控制对象的数学模型,设计合适的控制器,例如PID控制器。
4. 系统仿真与分析,利用仿真软件对设计的控制系统进行仿真,分析系统的性能指标。
5. 实际搭建与调试,在实际的控制对象上搭建控制系统,进行调试和实验验证。
6. 总结与展望,总结课程设计的过程和结果,对控制系统的性能进行评价,并展望未来的改进方向。
自动控制原理课程设计
自动控制原理课程设计.1. 课程设计问题描述:设计一个基于PID控制器的温度控制系统,该系统可以对加热器进行控制,使得加热器在正常工作温度范围内,能够稳定工作,并且能够自动调节加热器的加热功率,以确保系统能够快速、准确、稳定地达到所需的目标温度。
2. 设计目标:- 设计一个功能完整的温度控制系统,该系统可以通过PID控制器实现自动调节加热器的电力输出,以确保系统能够稳定工作。
- 设计一个能够迅速、准确地响应输入变化的系统,该系统对于任何输入变化都能够快速进行反应,以确保系统能够在最短时间内恢复到目标状态。
- 设计一个可靠的系统,该系统能够稳定工作,并且能够应对过度负载等异常情况,防止系统发生过载或损坏。
3. 计划实施步骤:- 步骤一:确定系统的物理参数与数学模型,以确定系统的特性和性能。
- 步骤二:精确计算系统的PID参数,以确保系统能够稳定工作并具有良好的响应性能。
- 步骤三:开发系统的硬件,包括传感器、控制器和执行器等组件。
- 步骤四:开发系统的软件,包括PID算法的实现和系统控制逻辑的实现等。
- 步骤五:进行系统的测试与验证,并对系统进行性能分析与评估。
- 步骤六:进行系统的优化,以进一步提高系统的性能和稳定性,并满足实际使用的需求。
- 步骤七:对系统进行部署,并进行实际使用与维护。
4. 关键技术问题:- 确定PID控制器的参数,并进行优化和调整,以实现系统的稳定性和性能。
- 设计和开发系统的硬件和软件,包括传感器、控制器和执行器等组件,以实现系统的功能和要求。
- 进行基于问题求解的综合性实验,将课堂学习的理论知识运用到实际中。
- 进行系统性能分析和评估,并进行系统可靠性评估与优化,以保证系统具有良好的稳定性和性能。
- 进行实验数据采集和处理,并进行数据可视化与分析,以获得更为细致、准确的数据信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
室温控制系统校正装置设计一、设计目的通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB 实现系统的仿真与调试。
二、设计要求收集和查阅有关技术资料,独立完成所承担的设计课题的全部内容,初步掌握设计原则、设计方法、设计步骤和设计规范的应用;对工程设计方案进行选择和分析;绘制设计图;撰写说明书。
要求如下:1、根据所学控制理论知识(频率法、根轨迹法等)进行人工设计校正装置,初步设计出校正装置传递函数形式及参数;2、使用MATLAB 和Simulink ,对加入的校正装置的系统进行动态仿真,并在计算机上对人工设计系统进行仿真调试,使其满足技术要求;3、确定校正装置的电路形式及电路参数(选作);4、完成设计报告。
三、设计任务已知某室温控制系统为单位负反馈,某开环传递函数为:)12.0)(11.0()(0S S S KGS ,试用Bode 图设计法对系统进行滞后串联校正设计,使系统满足;①系统在斜坡信号作用下,系统的速度误差系数KV≥301s②系统校正后的剪切频率c≥2.31s③系统校正后,系统的相角裕量402.2设计要求①分析设计要求,说明校正的设计思路(滞后校正分析②详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校正装置的Bode 图,校正后系统的Bode 图)③用MATLAB 编程代码及运行结果(包括图形、运算结果)④校正前后系统的单位阶跃响应图。
三、设计方法步骤及设计校正构图3.1校正前系统分析校正前系统的开环传递函数为:)12.0)(11.0()(0S S S KGS 设计校正要求:KV≥301s,c≥2.31s,40因为KV=K S SS Ks s sS sG )12.0)(11.0(lim lim 0)(00,所以30K KV所以,原系统开环传递函数变为:)12.0)(11.0(30)(0S S S GS 利用MATLAB 绘画未校正系统的Bode 图,见图1 在MATLAB 中编写如下程序:num = 30;f1 = [1,0];f2 =[0.1,1]; f3 = [0.2,1];den = conv(f1,conv(f2,f3)); bode(num,den) 原系统Bode 图图1利用MATLAB绘制未校正系统的单位阶跃响应曲线,见图 2 在MATLAB中编写如下程序:num=30;f1=[1,0];f2=[0.1,1];f3=[0.2,1];G=tf(f1,conv(f2,f3));G1=feedback(G,1);t=0:0.1:10;step(G1,t); gridxlabel('t');ylabel('c(t)');title('原系统单位阶跃响应');阶跃响应曲线为:图2由图1可以看出,相角欲度17,此时系统的相角裕度不符合要求,故该系统需要校正。
由于校正前系统已有一定的相角欲度,因此可以考虑引入串联滞后校正装置以满足相角欲度的要;由图2系统在阶跃输入下是不能稳定的输出,系统的动态性能不佳。
3.2校正方法根据系统的性能,决定采用串联滞后校正。
在MATLAB 中设计滞后网络的步骤如下:(1)根据稳态误差要求确定开环增益K因为KV=K S S S Kss sS sG )12.0)(11.0(limlim 0)(00,所以30K KV(2)利用确定的开环增益并在MATLAB 中绘制原系统Bode 图(见图1),读出原系统的相角裕度1719718000)(。
(3)确定校正后的系统剪切频率c。
在此频率上开环传递函数的相位裕量应等于要求的相位裕量40再加上(12500~)——补偿滞后校正网络本身在c处的相位滞后。
现要求校正后系统的相位裕量40,为了补偿滞后校正网络本身的相位滞后,需要再加上125~的补偿角,所以取5212540)((补偿角取12)在Bode 图(图1)上可找得,在s c/3.2附近的相位角等于1280(即相位裕量为520),故取此频率为校正后系统的增益剪切频率。
即:sc/3.2(4)求值。
确定原系统频率特性在c处的幅值下降到0dB 时所必需的衰减量L =20Lg ,求取值。
由图1得原系统在c处的频率增益为21.2dB ,为了保证系统的增益剪切频率c处,滞后校正装置应产生21.2dB 的衰减量:L =21.2dB ,即20=20Lg12(5)选取T 值。
为了使滞后校正装置产生的相位滞后对校正后系统的增益剪切频率c处的影响足够小,应满足,一般取c =10/T取T=10/c=4.35(6)确定滞后校正装置的传递函数11235.4135.4)(S S GS c 利用MATLAB 绘画校正装置的bode 图,见图3 在MATLAB 中编写如下程序:G=tf([4.35 1],[52.2 1]); figure(1) margin(G); grid[gm,pm,wg,wp]=margin(G); title('校正装置');校正装置Bode 图如下:图33.3校正装置采用RC 网络构成无源滞后校正装置如下图:R1R2CR (s)C (s)其传递函数为:111)1212)()()((s s CsCs R R R RC Gs s s c 其中,RR R 221(1),CR 2由校正装置传递函数得如下关系:RR R 221=12,即RR 1121———————①C R2=4.35———————————————②选取适当的C R R 、、21且满足①②两关系式的参数值即可确定校正装置。
3.4校正后系统分析经超前校正后,系统开环传递函数为:)11235.4)(12.0)(11.0()135.4(30)()(0)(S S S S S GGGS c S S (1) 利用MATLAB 绘画系统校正前、后的bode 图(见图4)及校正前、后系统对单位阶跃响应(见图5)的对比在MATLAB 中编写如下程序:num = 627; f1 = [1,0];f2 =[0.1,1]; f3 = [0.2,1];den = conv(f1,conv(f2,f3)); g0 = tf(num,den); pm = 627; dpm = pm+5;[mag,phase,w] = bode(g0); magdb = 20*log10(mag); wcg=2.4gr = -spline(w',magdb(1,:),wcg); alpha = 10^(gr/20); T = 10/(alpha*wcg); gc = tf([alpha* T 1],[T 1]); F0 = feedback(g0,1); F = feedback(g0*gc,1); figure(1); bode(g0,g0*gc); figure(2);step(F0,F);校正前、后系统的Bode图对比:图4校正前、后系统对单位阶跃响应对比:, 图5四、在MATLAB下,用Simulink进行动态仿真在Simulink仿真环境下采用串联滞后校正,校正前结构图(见图6),对原系统仿真,得系统的单位阶跃响应曲线(见图7)见图6校正前系统的单位阶跃响应曲线:图7由图7可看出,系统对单位阶跃响应的输出极不稳定,系统不能满足设计要求,需要对系统进行校正。
在原系统结构图上串加上11235.4135.4)(S S GS c 环节进行滞后校正,校正后系统结构图(见图8),对校正后系统仿真,得系统的单位阶跃响应曲线(见图9)图8校正后系统的单位阶跃响应曲线:图9由图9可看出,系统对单位阶跃响能够稳定的应输出,系统的最大超调量M P在25%左右,过渡时间t s在2.5s附近,对于本温度控制系统以上参数是满足要求的。
五、总结由上分析可知:在滞后校正中,利用的是滞后校正网络在高频段的衰减特性。
对系统滞后校正后:①改善了系统的稳态性能滞后校正网络实质上是一个低通滤波器,对低频信号有较高的增益,从而减小了系统的稳态误差。
同时由于滞后校正在高频段的衰减作用,使增益剪切频率移到较低的频率上,提高系统的稳定性。
②响应速度变慢滞后校正装置使系统的频带变窄,导致动态相应时间增大。