初中数学数据分析基础测试题及答案解析(1)

合集下载

初中数学数据分析单元汇编含答案(1)

初中数学数据分析单元汇编含答案(1)

初中数学数据分析单元汇编含答案(1)一、选择题1.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.2.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:品种甲乙丙平均产量/(千克/棵)9090若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.3.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()A.队员1 B.队员2 C.队员3 D.队员4【答案】B【解析】【分析】根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.故选B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.5.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【答案】B【解析】【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.7.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:平均每月阅读本数45678人数26543这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.11.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形” 这一事件是不可能事件,正确, 故选:D. 【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.13.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C 不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2] =15×(0.01+0+0.01+0+0) =15×0.02 =0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.14.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.16.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B C D.2【答案】D【解析】【分析】【详解】∵3、a、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5,解得,a=5S2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.17.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.19.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.20.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义依次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.。

【单元卷】浙教版八年级数学下册:第3章 数据分析初步 单元质量检测卷(一)含答案与解析

【单元卷】浙教版八年级数学下册:第3章 数据分析初步 单元质量检测卷(一)含答案与解析

浙教版八年级数学下册单元质量检测卷(一)第3章数据分析初步姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,76.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 816.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?21.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):甲班乙班1分钟投篮测试成绩统计表甲班乙班平均数 6.5 a中位数b 6方差 3.45 4.65优秀率30% c根据以上信息,解答下列问题:(1)直接写出a,b,c的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分100 93.5 100% 70% 100 80分数段统计(学生成绩记为x)分数段0≤x<80 80≤x<85 85≤x<90 90≤x<95 95≤x≤100频数0 5 25 30 40 请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.小知识难度系数的计算公式为:L=,其中L为难度系数,X为样本平均数,W为试题满分值.《考试说明》指出:L在0.7以上的题为容易题;在0.4﹣0.7之间的题为中档题;L在0.2﹣0.4之间的题为较难题.解答下列问题:(1)m=,n=,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?24.2019年9月,在祖国母亲70华诞即将来临之际,某校团委组织全校2000名学生参加“中国共产党党史”知识大赛.大赛结束后,为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x取整数,最低分50分,满分100分)作为样本进行统计,制成如图不完整的统计图和如下不完整的频数分布表:频数分布表成绩x(分)频数(人)50≤x<60 1060≤x<70 3070≤x<80 4080≤x<90 n90≤x≤100 50根据所给信息,解答下列问题:(1)n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数落在哪个分数段?(4)若成绩在80分或80分以上为“优”,请你估计该校参加本次比赛的2000名学生中成绩为“优”的学生有多少人?25.我乡某校举行全体学生“定点投篮”比赛,每位学生投40个,随机抽取了部分学生的投篮结果,并绘制成如下统计图表.组别投进个数人数A0≤x<8 10B8≤x<16 15C16≤x<24 30D24≤x<32 mE32≤x<40 n根据以上信息完成下列问题.①本次抽取的学生人数为多少?②统计表中的m=.③扇形统计图中E组所占的百分比;④补全频数分布直方图.⑤扇形统计图中“C组”所对应的圆心角的度数.⑥本次比赛中投篮个数的中位数落在哪一组.⑦已知该校共有900名学生,如投进个数少于24个定为不合格,请你估计该校本次投篮比赛不合格的学生人数.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是()A.44幅B.45幅C.46幅D.47幅【答案】C【分析】根据平均数的定义列式计算即可.【解答】解:(42+48+45+46+49)÷5=46(幅).即这组数据的平均数是46幅.故选:C.【知识点】算术平均数2.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3%,96.1%,94.3%,91.7%,93.5%.关于这组数据,下列说法正确的是()A.平均数是93.96% B.方差是0C.中位数是93.5% D.众数是94.3%【答案】D【分析】求出该组数据的平均数、中位数、众数、方差,再进行判断即可.【解答】解:平均数为:(94.3%+96.1%+94.3%+91.7%+93.5%)=93.98%.因此选项A不符合题意;这组数据有波动,因此方差不为0,因此选项B不符合题意;这组数据的中位数是94.3%,因此选项C不符合题意;这组数据出现次数最多的数是94.3%,所以众数是94.3%,因此选项D符合题意;故选:D.【知识点】算术平均数、中位数、众数、方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,则成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】A【分析】直接利用方差的意义求解可得答案.【解答】解:∵S甲2=0.48,S乙2=0.52,S丙2=0.56,S丁2=0.58,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.【知识点】算术平均数、方差4.一组数据6,7,9,9,9,0,3,若去掉一个数据9,则下列统计量不发生变化的是()A.平均数B.众数C.中位数D.方差【答案】B【分析】根据众数,中位数,平均数,方差的定义判断即可.【解答】解:∵数据6,7,9,9,9,0,3中,9出现了3次,∴这组数据的众数为9,去了一个9后,这组数据中,9出现了2次,众数仍然是9,∴众数没有变化,平均数,中位数,方差都发生了变化,故选:B.【知识点】算术平均数、统计量的选择、众数、中位数、方差5.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数 6 11 8 8 7A.8,7 B.8,8 C.8.5,8 D.8.5,7【答案】A【分析】根据中位数、众数的意义即可求出答案.【解答】解:学生一周课外阅读时间的出现次数最多的是7小时,因此众数是7;将40名学生的读书时间从小到大排列后处在中间位置的两个数都是8小时,因此中位数是8,故选:A.【知识点】众数、中位数6.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5 请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁【答案】D【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故选:D.【知识点】方差、算术平均数7.下列说法正确的是()A.为了解长沙市中学生的睡眠情况,应该采用全面调查的方式B.一组数据1,5,3,2,3,4,8的众数和中位数都是3C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定【答案】B【分析】利用概率的意义,全面调查与抽样调查,中位数,众数,以及方差的定义判断即可.【解答】解:A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;C、某种彩票的中奖机会是1%,则买100张这种彩票可能会中奖,不符合题意;D、若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则甲组数据比乙组数据稳定,不符合题意;故选:B.【知识点】概率的意义、方差、全面调查与抽样调查、众数、中位数8.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②【答案】C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【解答】解:①根据频数分布直方图,可得众数为60﹣80元范围,故每人乘坐地铁的月均花费最集中的区域在60﹣80元范围内,故①错误;②每人乘坐地铁的月均花费的平均数==87.6元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.【知识点】加权平均数、中位数、频数(率)分布直方图9.众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④【答案】B【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①这7名同学所捐的零花钱的平均数是,错误;②这7名同学所捐的零花钱的中位数是100,正确;③这7名同学所捐的零花钱的众数是100,正确;④由这7名同学所捐的零花钱的中位数是100,不能推断该校全体同学所捐的零花钱的中位数一定是100,错误;故选:B.【知识点】众数、算术平均数、中位数10.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3【答案】C【分析】本题直接按照定义计算应该可以求得结果,但是计算较为麻烦,故从选择题的角度出发,可以采用代值验证,并结合排除法来求解.【解答】解:观察选项,发现3个有2,故先令x=2,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,4,4}=4故x=2符合题意,排除D;令x=,则M{4,x2,x+2}==<4故x=不符合题意,排除A;令x=﹣3,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,9,﹣1}=94<9,故x=﹣3不符合题意,排除B;综上,故选:C.【知识点】算术平均数二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是.【答案】4.5【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:×(1+3+x+5+4+6)=4,x=5,将这组数据按小到大排列:1,3,4,5,5,6,故中位数=4.5,故答案为4.5.【知识点】中位数、算术平均数12.数学期末总评成绩是将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学期末总评成绩是分.【答案】91【分析】利用加权平均数的定义列式计算即可.【解答】解:根据题意得:小红一学期的数学期末总评成绩是=91(分),故答案为:91.【知识点】加权平均数13.男子跳高的10名运动员成绩如表所示:成绩/m 1.50 1.60 1.65 1.70人数 2 4 2 2根据表中信息可以获知这些运动员的平均成绩为m.【答案】1.61【分析】直接利用加权平均数的定义列式计算可得.【解答】解:这些运动员的平均成绩为=1.61(m),故答案为:1.61.【知识点】加权平均数14.在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为S甲2,S乙2,则S甲2S乙2(填“>”或“<”).【答案】<【分析】根据方差的意义,直观判断即可,【解答】解:从统计图中可以直观得出,射击手甲的成绩比较稳定,离散程度较小,而射击手乙的成绩离散程度较大,不稳定,所有甲的方差小于乙的方差,故答案为:<.【知识点】方差、折线统计图15.某次射击练习,甲、乙二人各射靶5次,命中的环数如表,通过计算可知==7,S=0.8,S=2,所以射击成绩比较稳定的是.甲射靶环数7 8 6 8 6乙射靶环数9 5 6 7 8【答案】甲【分析】根据方差的意义即可得出答案.【解答】解:∵S甲2<S乙2,∴本题中成绩比较稳定的是甲.故答案为:甲.【知识点】方差、算术平均数16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.【分析】根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.【解答】解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故答案为:.【知识点】算术平均数、方差、众数17.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.【答案】【第1空】6.8【第2空】6.5【第3空】6.5【分析】根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;【解答】解:观察条形图,可知这组样本数据的平均数是:=6.8,即这组样本数据的平均数为6.8(t).在这组样本数据中,6.5出现了4次,出现的次数最多,这组数据的众数是6.5(t).将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有=6.5,即这组数据的中位数是6.5(t).故答案为:6.8,6.5,6.5.【知识点】众数、中位数、加权平均数、条形统计图18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.【分析】(1)根据平均数的定义计算即可.(2)根据题意列出一元一次不等式组解决问题即可.【解答】解:(1)M{(﹣2)2,22,﹣22}==;(2)∵min{3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4.故x的取值范围为﹣2≤x≤4.故答案为:;﹣2≤x≤4.【知识点】解一元一次不等式组、实数大小比较、算术平均数三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为了增强学生的防疫意识,某校团委组织了一次“防疫知识”考试,考题共10题.考试结束后,学校团委随机抽查了20名考生的考卷,对考生的答题情况进行分析统计,发现所抽查的考卷中答对题量最少为7题,并绘制成如图所示的不完整的条形统计图,回答下列问题:(1)这20名考生每人答对题数的众数:,中位数:;(2)通过计算补全条形统计图.【答案】【第1空】8【第2空】8【分析】(1)根据中位数、众数的意义,找出出现次数最多的数,即为众数;排序后处在中间位置的两个数的平均数是中位数.【解答】解:(1)“答对10道题”的人数为20﹣4﹣8﹣6=2(人),答对8道题出现的次数最多,因此答对题目的众数是8;将20名学生的成绩从小到大排列后,处在第10、11位的两个数都是8,因此中位数是8,故答案为:8,8;(2)“答对10道题”的人数为2人,补全统计图如图所示:【知识点】条形统计图、众数、中位数20.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体。

新初中数学数据分析基础测试题附答案(1)

新初中数学数据分析基础测试题附答案(1)

新初中数学数据分析基础测试题附答案(1)一、选择题1.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定【答案】A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s2甲=0.002<s2乙=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352+=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.4.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.6.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.7.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.11.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.12.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.13.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,15【答案】D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .14.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】D 【解析】 【详解】解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符; B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符; C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25, 故方差发生了变化. 故选D .15.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4, 23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.16.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( )A .10 BCD .2【答案】D 【解析】 【分析】 【详解】∵3、a 、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5,解得,a=5S2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.17.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.18.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。

(必考题)初中八年级数学下册第二十章《数据的分析》经典测试题(含答案解析)(1)

(必考题)初中八年级数学下册第二十章《数据的分析》经典测试题(含答案解析)(1)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数B解析:B 【分析】根据方差的意义即可判断. 【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 故选:B . 【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3 B .4C .5D .9C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.3.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.4.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (46)

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (46)

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案)某学校准备给教职工发放端午节福利,现随机对学校的一些教职工进行了粽子口味喜好的统计,并将统计结果绘制成如下图所示不完整的统计图,已知鲜肉粽15元/包,蛋黄粽12元/包,小枣粽和豆沙粽均为9元/包,调查中发现,每100人中,有40人喜欢蛋黄粽.(1)求出喜欢小枣粽的人数,并补全条形统计图;(2)假设此学校有教职工1000人,估计全校喜欢蛋黄粽的人数;(3)在(2)的基础上,学校预算1000元钱是否够买此次的福利粽;若不够,还差多少钱?【答案】(1)喜欢小枣粽的人数为120人,补全条形统计图如解图所示;见解析;(2)估计喜欢蛋黄粽的人数为400人;(3)学校预算的10000元不够,还需要2000元.【解析】【分析】(1)根据每100人中,有40人喜欢蛋黄粽,可以求出喜欢蛋黄粽的比例为40%,统计图中喜欢蛋黄粽的有240人,用上面所得比例估计总人数中喜欢蛋黄粽的人数比例,求出总人数,用总人数分别减去喜欢那三种粽子的人数即可解答;(2)用1000×蛋黄粽的人数占总比40%即可解答;(3)根据600人中喜欢每种粽子的人数所占比例,一次估算出1000人中,喜欢每种粽子的人数,从而求出每种粽子的数量,分别乘以各自单价,从而求出各自总价,进而解答.【详解】(1)由题知,抽查的总人数为:24040%600÷=(人)∴喜欢小枣粽的人数为60018060240120---=(人).∴补全条形统计图如解图所示;(2)根据题意,喜欢蛋黄粽的人数占总比为40%,估计喜欢蛋黄粽的人数为100040%400⨯=(人);(3)由(2)知,全校有1000名教职工,则喜欢鲜肉粽的人数有:1801000300600⨯=(人),喜欢蛋黄粽的有:100040%400⨯=(人),喜欢小枣粽的有:1201000200600⨯= (人),喜欢豆沙粽的有:601000100600⨯=(人),∴学校购买各类粽子所需要的费用为:30015400121009200912000⨯+⨯+⨯+⨯=元,∴学校预算的10000元不够,还需要12000100002000-=元.【点睛】本题考查条形统计图,突破此类问题的关键是数据统计图(表)的分析.错因分析:对统计图表中的数量关系理解不清,属于中等题..92.水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚.对市场最为关注的产量和产量的稳定性进行了抽样调査,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 7374 81 54 6241 33 54 43 34 51 63 64 73 6454 33乙27 35 46 55 48 36 47 68 8248 57 66 7527 36 57 57 66 58 61 71 38 4746 71整理数据按如下分组整理、描述这两组样本数据:(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据组样本数据的平均数、众数和方差如下表所示:得出结论a.估计甲大棚产量良好的秧苗数为________株;b.可以推断出________大棚的小西红柿秧苗品种更适应市场需求,理由为________________.(至少从两个不同的角度说明推断的合理性)【答案】120,乙;乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一)【解析】【分析】a.先完善两组样本数据表格,然后用样本数据中甲大棚产量良好的小西红柿株数÷25×300即得答案;b.从众数和方差两个方面进行比较即得答案.【详解】解:整理数据按如下分组整理、描述这两组样本数据:得出结论:a .估计甲大棚产量良好的秧苗数为5530012025+⨯=; b . ∵乙大棚里的秧苗众数产量是57,甲大棚里的秧苗众数产量是54,57>54;乙大棚里的秧苗产量方差是:215.04,甲大棚里的秧苗产量方差是:236.24,215.04<236.24;∴可以推断出乙大棚的小西红柿秧苗品种更适应市场需求;理由是:乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一).故答案为:a .120;b .乙,乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一).【点睛】错因分析:1.整理数据时记数错误;2.得出结论时没有掌握平均数、众数和方差的意义,没有掌握用样本估计总体.本题考查了平均数、众数、方差和用样本估计总体等知识,属于常考题型,熟练掌握基本知识是解题关键.93.甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:81且x乙=8,S乙2=1.8,S甲2=1.2,根据上述信息完成下列问题:(1)乙运动员射击训练成绩的众数是________,中位数是________.(2)求甲运动员射击成绩的平均数,并判断甲、乙两人在本次射击成绩的稳定性.【答案】(1)7;7.5;(2)甲在本次射击成绩的较稳定.【解析】试题分析:(1)根据出现次数最多的数为众数求出众数,然后从小到大排列这组数,取中间一个(共有奇数个)或两个的平均数(共有偶数个),即可得到中位数;(2)利用平均数的公式求出平均数,然后根据方差越小数据越稳定,可判断.试题解析:(1)乙运动员的成绩按照从小到大顺序排列为6,7,7,7,7,8,9,9,10,10,则乙运动员射击训练成绩的众数是7,中位数是(7+8)÷2=7.5;故答案为7;7.5;(2)甲运动员成绩的平均数为1×(8+9+7+9+8+6+7+8+10+8)=8.210(发);∵S乙2=1.8>S甲2=1.2,∴甲在本次射击成绩的较稳定.94.联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某实验中学课外活动小组对全校师生开展了“爱好环境,从我做起”为主题的问卷调查,并将调查结果分析整理后完成了下面的两个统计图.其中:A.能将垃圾放到规定的地方,而且还会考虑垃圾的分类;B.能将垃圾放到规定的地方,但不会考虑垃圾的分类;C.偶尔将垃圾放在规定的地方;D.随手乱扔垃圾.根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全条形统计图;(2)如果该校共有师生3060人,那么随手乱扔垃圾的约有多少人?【答案】(1)30人;详见解析;(2)随手乱扔垃圾的约有306人.【解析】【分析】(1)由条形统计图知,B种情况的有150人,由扇形统计图可知,B种情况的占总人数的50%,从而求出该校课外活动小组共调查的总人数.由统计图可求得D种情况的人数.(2)由(1)可知,D种情况的人数为300-(150+30+90)=30(人),从而求得D种情况的占总人数的百分比.已知该校共有师生3060人,便可求出随手乱扔垃圾的人数.【详解】解:(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人)D种情况的人数为300﹣(150+30+90)=30人;(2)因为该校共有师生3060人.所以随手乱扔垃圾的人约为:3060×30÷300=306(人).答:随手乱扔垃圾的约有306人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.95.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?【答案】该单位这次参加旅游的共有30人.【解析】【分析】设该单位这次参加旅游的共有x人.因为100×25=2500<2700,所以x >25,根据题意可列方程得,[100-2(x-25)]x=2700,解方程即可求解。

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》检测(包含答案解析)(1)

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》检测(包含答案解析)(1)

一、选择题1.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h ).则估计本班大多数同学一周写数学作业的时间约为( ) A .4hB .5hC .6hD .7h2.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42,则射击成绩比较稳定的是( ) A .甲B .乙C .丙D .丁3.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>4.抽样调查了某年级30名女生所穿鞋子的尺码,数据如下(单位:码)A .34,35B .34.5,35C .35,35D .35,375.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7.已知这组数据的平均数是 5?,则这组数据的众数和中位数分别是( ) A .4,4 B .4,5 C .5,4D .5,56.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( ) A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,47.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.59.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35678人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6 C.5,5,6 D.5,6,510.某青年排球队12名队员的年龄情况如下表所示,则这12名队员的平均年龄是()年龄1819202122人数14322A.18岁B.19岁C.20岁D.21岁11.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对12.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树()A.7棵B.9棵C.10棵D.12棵二、填空题13.某校八年级(1)班共有人数分别为4、5、5、5、5、4六个学习小组,某次数学测试,六个学习小组的平均成绩依次是70分、72分、70分、75分、70分、72分、那么以此计算此班这次数学测试的全班平均成绩的计算式子是__________________.cm名女生的平均身14.某学校八年级3班有50名同学,30名男生的平均身高为170,20高160cm,则全班学生的平均身高是__________cm.15.马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)16.若一组数据6,x,2,3,4的平均数是4,则这组数据的方差为______.17.我市某中学举行“校园好声音”歌手大赛,甲、乙两班根据初赛成绩各选出5名选手组成甲班代表队和乙班代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:平均数(分)中位数(分)众数(分)方差甲班a85c70乙班85b100160号选手的预赛成绩是分,乙班号选手的预赛成绩是分,班的预赛成绩更平衡,更稳定;(2)求出表格中a=,b=,c=;(3)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的区级比赛,这5人预赛成绩的平均分数为.18.甲、乙两地9月份连续五天的日平均气温统计如下表(单位:C︒)甲地气温2224282523乙地气温2425252424则甲、乙两地这5天日平均气温的方差大小关系为:s甲_____________s乙.(填“>”“<”或“=”)19.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,则数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是______.20.某班6名同学参加体能测试的成绩(单位:分)分别为:75,95,75,75,80,80,则这组数据的众数是_______.三、解答题21.某校为了培养学生的劳动观念和能力,鼓励学生积极承担家务劳动.政教处想了解七年级学生周末参与家务劳动的情况,在七年级随机抽取了18名男生和18名女生,对他们周末参与家务劳动的时间进行调查,并收集到以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72整理数据,得到如下统计表:时间x 0x 30 3060x < 6090x < 90x <男生 2 a b 4 女生1593分析数据:根据以上数据,得到以下各种统计量.平均数 中位数 众数方差 男生 66.7 c 70617.3女生 69.770.569和88 547.2a =,b =________,c =_________; (2)根据以上信息,政教处老师认为:从时长来看,七年级女生周末参与家务劳动的情况比男生好.你是否同意老师的判断?请结合两种统计量分析并说明理由.22.某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)a =_______,并写出该扇形所对圆心角的度数为______,请补全条形统计图. (2)在这次抽样调查中,众数为________,中位数为_________.(3)如果该县共有八年级学生2500人,请你估计“活动时间不少于7天”的学生人数大约有多少人?23.小强帮助母亲预算家庭一年煤气开支,他连续7个月估计了每个月的煤气使用数据,并记录如表:日期 6月1日 7月1日 8月1日 9月1日 10月1日 11月1日 12月1日 使用量(方)9.5110.129.479.6310.1210.1211.03(2)若煤气每方3元,估计小强家一年的煤气费为多少元.24.某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生.图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整;平均数中位数方差优秀率甲班 6.5 3.4530%乙班6 4.6525.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图;(2)学生参加户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C组中的数据是:94,94,90.根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)计算d的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由;(3)该中学七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(x≥95)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.2.D解析:D【分析】直接利用方差的意义求解即可.【详解】解:∵S甲2=0.61,S乙2=0.52,S丙2=0.53,S丁2=0.42,∴S丁2<S乙2<S丙2<S甲2,∴射击成绩比较稳定的是丁,故选:D.【点睛】本题考查方差的意义,理解和掌握方差是描述数据波动情况的量,方差越小,波动越小是解题关键.3.B解析:B【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【详解】解:由题意可得,去掉一个最低分,平均分为x,此时x的值最大;若去掉一个最高分,平均分为y,则此时的y一定小于同时去掉一个最高分和一个最低分后的平均分为z,>>,故x z y故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.4.A解析:A【分析】根据众数与中位数的意义分别进行解答即可.【详解】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是第15、16个数的平均数,这组数据的第15、16个数都是34,∴这组数据的中位数是34;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:A.【点睛】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.5.B解析:B【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【详解】解:∵这组数据的平均数是5,∴4455677x++++++=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:B.【点睛】本题考查了众数、算术平均数、中位数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.A解析:A【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.70,1.70,1.70,1.75,1.75,1.75,1.80,1.80,众数为:1.65;中位数为:1.70.故选:A.【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.7.B解析:B【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.C解析:C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20252+=22.5,故选C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.A解析:A【分析】根据众数、中位数、平均数的概念以及求解方法逐一进行求解即可.【详解】在这一组数据中5是出现次数最多的,故众数是5;处于中间位置的两个数的平均数是(66)26+÷=,那么由中位数的定义可知,这组数据的中位数是6;平均数是:(353627282)106+⨯+⨯+⨯+⨯÷=,所以答案为:5、6、6,故选A.【点睛】本题考查了加权平均数、中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.10.C解析:C【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.依此解答即可求解.【详解】(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这12名队员的平均年龄是20岁.故选:C.【点睛】考查了加权平均数,正确理解加权平均数的概念是解题的关键.11.B解析:B【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.12.D解析:D【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案.【详解】5109129812⨯----=(棵)故选:D.【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.二、填空题13.【分析】根据加权平均数的计算公式进行计算即可【详解】解:由题意知此班这次数学测试的全班平均成绩的计算式子是故答案为:【点睛】本题考查了加权平均数的计算方法关键是熟练把握加权平均数的定义解析:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++【分析】根据加权平均数的计算公式进行计算即可.【详解】 解:由题意知,此班这次数学测试的全班平均成绩的计算式子是704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++, 故答案为:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++. 【点睛】本题考查了加权平均数的计算方法.关键是熟练把握加权平均数的定义. 14.【分析】只要运用求平均数公式:即可求得全班学生的平均身高【详解】全班学生的平均身高是:故答案为:166【点睛】本题考查的是样本平均数的求法熟记公式是解决本题的关键解析:166【分析】 只要运用求平均数公式:12n x n x x x ++⋯+=即可求得全班学生的平均身高. 【详解】 全班学生的平均身高是:()301702016016650x cm ⨯+⨯==. 故答案为:166.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键. 15.乙【分析】根据方差的意义判断即可方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】∵甲乙的方差分别为025021∴成绩比较稳定的是乙故 解析:乙【分析】根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲乙的方差分别为0.25,0.21∴成绩比较稳定的是乙故答案为:乙【点睛】运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.2【分析】先由平均数的公式计算出x 的值再根据方差的公式计算即可【详解】解:∵数据6x234的平均数是4∴(6+x+2+3+4)÷5=4解得:x=5∴这组数据的方差是(6-4)2+(5-4)2+(2-解析:2【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算即可.【详解】解:∵数据6,x ,2,3,4的平均数是4,∴(6+x+2+3+4)÷5=4,解得:x=5,∴这组数据的方差是15[(6-4)2+(5-4)2+(2-4)2+(3-4)2+(4-4))2]=2; 故答案为:2.【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数和方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数. 17.(1)80;100;甲;(2)858085;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数众数平均数的计算公式计算即可;(3)先判断出好的5人的成绩在进行计算即可;【详解】(解析:(1)80;100;甲;(2)85,80,85;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数、众数、平均数的计算公式计算即可;(3)先判断出好的5人的成绩,在进行计算即可;【详解】(1)根据树状图可知甲班2号选手的成绩为80分,乙班3号选手的成绩为100分; ∵甲班方差小于乙班方差,∴甲班成绩更稳定;故答案是:80;100;甲;(2)甲的平均分为()75808585100585÷++++=分,乙的数据从小到大排列:70,75,80,100,100,∴乙的中位数是80;由数据可知甲的众数是85分;∴85a ,80b =,85c =;(3)这5人的分数为:100,100,100,85,85,∴()1003852594⨯+⨯÷=分;故答案是94分;【点睛】本题主要考查了数据分析的考查,结合中位数、众数、平均数的计算是解题的关键. 18.【分析】先求出甲乙地的平均气温再根据方差公式求出甲和乙的方差然后进行比较即可得出答案【详解】解:甲地的平均气温:;乙地的平均气温:;∵甲地的方差是:;乙地的方差是:;∴S 甲2>S 乙2;故答案为:>【 解析:>【分析】先求出甲、乙地的平均气温,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案.【详解】 解:甲地的平均气温:1(2224282523)24.45C ︒++++=; 乙地的平均气温:1(2425252424)24.45C ︒++++=;∵甲地的方差是:222221(2224.4)(2424.4)(2824.4)(2524.4)(2324.4) 4.245⎡⎤-+-+-+-+-=⎣⎦; 乙地的方差是:222221(2424.4)(2524.4)(2524.4)(2424.4)(2424.4)0.245⎡⎤-+-+-+-+-=⎣⎦; ∴S 甲2>S 乙2;故答案为:>.【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121()()()n S x x x x x x n⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 19.9【分析】先求出数据的平均数再根据平均数公式与方差公式即可求解【详解】解:∵数据x1x2x3x4x5的平均数是2∴x1+x2+x3+x4+x5=2×5=10∴∵数据x1x2x3x4x5的方差是1∴(解析:9【分析】先求出数据的平均数,再根据平均数公式与方差公式即可求解.【详解】解:∵数据x 1,x 2,x 3,x 4,x 5的平均数是2,∴x 1+x 2+x 3+x 4+x 5=2×5=10, ∴12345323232323231010455x x x x x -+-+-+-+-⨯-==, ∵数据x 1,x 2,x 3,x 4,x 5的方差是1, ∴15[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2+(x 5-2)2]=1,∴15[(3x1-2-4)2+(3x2-2-4)2+(3x3-2-4)2+(3x4-2-4)2+(3x5-2-4)2]=15[9(x1-2)2+9(x2-2)2+9(x3-2)2+9(x4-2)2+9(x5-2)2]=9×1=9,故答案为:9.【点睛】本题考查了平均数的计算公式和方差的定义,熟练运用公式是本题的关键.20.75分【分析】利用众数的定义求解找出数据中出现次数最多的数即可【详解】解:数据75出现了三次次数最多故75分为众数故答案为:75分【点睛】考查了众数的定义一组数据中出现次数最多的数据叫做众数它反映了解析:75分【分析】利用众数的定义求解.找出数据中出现次数最多的数即可.【详解】解:数据75出现了三次,次数最多,故75分为众数.故答案为:75分.【点睛】考查了众数的定义,一组数据中出现次数最多的数据叫做众数.它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.三、解答题21.(1)5,7,68.5;(2)同意老师的判断,理由见解析.【分析】(1)利用唱票的方法得到a、b的值,然后把18个数据按从小到大排列,利用中位数的定义确定c的值;(2)可以通过比较平均数和方差的大小判断女生周末参与家务劳动的情况比男生好.【详解】解:(1)男生在30<x≤60范围内的时间有:32,39,46,57,58,所以a=5;男生在60<x≤90范围内的时间有:66,68,69,70,70,80,88,所以b=7;按从小到大排列为28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105,最中间的两个数为68,69,所以c=68692+=68.5;故答案为:5,7,68.5;(2)同意老师的判断.理由如下:比较统计量可知,女生的平均数较大,女生的中位数较大,女生的方差较小.以上分析说明,女生周末参与家务劳动的时间更多,且数据的稳定性更好.所以从时长来看,七年级女生周末参与家务劳动的情况比男生好.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.22.(1)10%,36°;(2)5;6;(3)1000人【分析】(1)根据各部分所占的百分比的和等于1列式计算即可求出a,再用360°乘以所占的百分比求出所对圆心角的度数,然后用被抽查的学生人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)用众数和中位数的定义解答;(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【详解】解:(1)a=1-(40%+20%+25%+5%)=1-90%=10%,所对的圆心角度数=360°×10%=36°,被抽查的学生人数:240÷40%=600人,8天的人数:600×10%=60人,补全统计图如图所示:故答案为:10%,36°;(2)参加社会实践活动5天的人数最多,所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;故答案为:5;6;(3)2500×(25%+10%+5%)=2500×40%=1000(人).故“活动时间不少于7天”的学生人数大约有1000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的定义以及用样本估计总体的思想.23.(1)这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为10方;(2)估计小强家一年的煤气费为360元.【分析】(1)将数据重新排列,再根据众数、中位数和平均数的定义求解即可;(2)用每方的费用乘以12个月,再乘以平均每月的使用量,据此可得答案.【详解】解:(1)将这7个数据重新排列为:9.47,9.51,9.63,10.12,10.12,10.12,11.03, 则这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为9.479.519.6310.1210.1210.1211.037++++++=10(方); (2)估计小强家一年的煤气费为3×12×10=360(元).【点睛】本题考查了众数、中位数、平均数、用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的.24.(1)见解析;(2)甲班,理由见解析【分析】(1)根据表格中的数据,可以分别求得甲班的中位数和乙班的平均数、优秀率;(2)先说明把冠军奖发给哪个班,再根据表格中的数据说明理由即可,本题是一道开放性题目,说的只要合理即可.【详解】解:(1)由图可得,甲班的中位数是(6+7)÷2=6.5,乙班的平均数是:(3+4+5+6+6+6+7+9+9+10)÷10=6.5,优秀率是:310×100%=30%, 填表如下: 平均数 中位数 方差 优秀率甲班 6.56.5 3.45 30% 乙班6.5 6 4.65 30% 理由:由表格可知,甲乙两班的平均数一样,优秀率一样,从方差看,甲班方差小,波动小,学生发挥稳定,故选甲班为冠军.【点睛】本题考查条形统计图、算术平均数、中位数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)答案见解析;(2)众数是1小时,中位数为1小时;(3)符合要求,理由见解析.【分析】(1)根据锻炼时间为1小时的人数及其百分比求得总人数,再乘以0.5小时的百分比可得其人数,即可补全图形;(2)根据众数和中位数的定义解答可得;(3)求出本次调查中学生参加户外活动的平均时间即可判断.【详解】(1)被调查的学生总数为32÷40%=80(人),∴0.5小时的人数为80×20%=16(人),补全图形如下:(2)户外活动时间的众数是1小时,达到32人,中位数为第40、41个数据的平均数,即1112+=(小时); (3)本次调查中学生参加户外活动的平均时间是0.516132 1.520212 1.17580⨯+⨯+⨯+⨯=(小时), ∴符合要求.【点睛】 本题考查频数分布直方图、扇形统计图、众数和中位数的知识,解答本题的关键在于掌握众数和中位数的概念,以及从频数分布直方图和扇形统计图中获取相关信息并加以运用. 26.(1)a =40,b =94,c =99;(2)52,八年级的成绩较稳定,见解析;(3)估计参加此次竞赛活动获得成绩优秀的学生有972人【分析】(1)根据扇形统计图的制作方法可求出“D 组”所占的百分比,即可求出a 的值,根据中位数、众数的意义可求出b 、c 的值;(2)先求出七年级的方差,再根据方差进行分析得出答案;(3)求出样本中的优秀率,进而得到总体的优秀率,再求出总体中的优秀人数.【详解】解:(1)∵八年级成绩在“C 组”的有3人,占3÷10=30%,∴“D 组”所占的百分比为1﹣10%﹣20%﹣30%=40%,∴a =40,∵八年级10名同学成绩从小到大排列后,处在中间位置的两个数都是94,∴中位数是94,即b =94,∵七年级10名学生成绩出现次数最多的是99,∴众数是99,即c =99 ,∴a =40,b =94,c =99;(2)()()()2222180-9286-92399-9210S ⎡⎤=⨯+++⨯⎣⎦七 =52 ,即:d=52, ∵50.4<52,∴八年级的成绩较稳定;(3)抽取的10名八年级学生中,成绩优秀的有 10×40%=4(人),抽取的10名七年级学生中,成绩优秀的有5人,∴抽取的20名学生中,成绩优秀的共有9人∴2160×920=972(人) 答:估计参加此次竞赛活动获得成绩优秀的学生有972人.【点睛】本题考查扇形统计图、中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数、方差的意义和计算方法是正确解答的关键.。

最新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(含答案解析)(1)

最新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(含答案解析)(1)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定3.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( ) 年龄 13 14 15 16 人数2341A .15,15B .14,15C .14,14.5D .15,14.54.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”5.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,856.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( )A .平均数是-2B .中位数是-2C .众数是-2D .方差是57.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .88.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定 B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较9.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101D .方差是9310.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,9511.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大12.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表: 锻炼时间(时) 3 4 5 6 7 人数(人)6131452这40名居民一周体育锻炼时间的众数和中位数是( ) A .14,5B .14,6C .5,5D .5,6第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.15.若这8个数据-3, 2,-1,0,1,2,3,x 的极差是11,则这组数据的平均数是______.16.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是(2)试用平均数估计该单位员工一周内使用共享单车的总次数.17.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.18.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S 甲=2.8,2S 乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)19.已知一组数据为:5,3,3,6,3则这组数据的方差是______.20.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的方差是___.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B 8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.23.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.24.学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:平均数 中位数 方差 张明13.30.004 李亮13.30.02(1)张明第2次的成绩为: 秒;(2)张明成绩的平均数为: ;李亮成绩的中位数为: ;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.25.某区正在积极创建国家模范卫生城市,学校为了普及学生卫生健康知识,提高学生创卫意识,举办了创卫知识竞赛,以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:75 88 93 65 78 94 89 68 95 50 89 88 89 89 77 95 87 88 92 91 初二:74 96 96 89 97 74 69 76 72 78 99 72 97 85 98 74 89 73 98 74 (1)整理、描述数据: 成绩x 5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤ 90100x ≤≤初一(频数) 1 2 3 m6 初二(频数)1937(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下不合格) 分析数据:平均数 中位数 众数 初一 84 a89初二8481.5b请根据上述的数据,填空:m =______;a =______;b =______;(2)得出结论:你认为哪个年级掌握创卫知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).26.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级: 79,85,73,80, 75,76,87, 70, 75,94,75,79,81,71, 75,80,86,59, 83, 77.八年级: 92,74, 87,82,72,81, 94,83,77, 83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断.【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.D解析:D【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.A解析:A 【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.6.D解析:D 【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断. 【详解】解:A 、平均数是-2,结论正确,故A 不符合题意; B 、中位数是-2,结论正确,故B 不符合题意; C 、众数是-2,结论正确,故C 不符合题意; D 、方差是203,结论错误,故D 符合题意; 故选:D . 【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.7.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.8.B解析:B 【解析】 【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a ,b ,c 中至少有两个是8,而平均数是6,则可以得到a ,b ,c 三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果. 【详解】∵这组数中的众数是8, ∴a ,b ,c 中至少有两个是8, ∵平均数是6,∴a ,b ,c 三个数其中一个是2, ∴(4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定. 故选:B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.10.B解析:B 【解析】 【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可. 【详解】把这组数据从小到大排列:84,89,90,90,90,91,96, 最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90; 故选B . 【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.D解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.12.C解析:C【解析】【分析】众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【详解】由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C .【点睛】本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x1,x2,x3,x4,x5的平均数是5,则4x1-3,4x2-3,4x3-3,4x4-3,4x5-3的平均数是15[4(x1+x2+x3+x4+x5)-15]=17,∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=();当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.(1)1617;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列计算出中间两个数的平均数即是中位数出现次数最多的即为众数;(2)根据平均数的概念将所有数解析:(1)16,17;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;【详解】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.17.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.18.乙【解析】【分析】直接利用方差的意义方差越小越稳定进而分析得出答案【详解】∵方差=1515<28∴射击成绩较稳定的是:乙故答案为:乙【点睛】此题主要考查了方差正确把握方差的意义是解题关键解析:乙【解析】【分析】直接利用方差的意义,方差越小越稳定,进而分析得出答案.【详解】∵方差222.8,S S=甲乙=1.5,1.5<2.8,∴射击成绩较稳定的是:乙.故答案为:乙.【点睛】此题主要考查了方差,正确把握方差的意义是解题关键.19.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6.【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 20.0【解析】【分析】先确定出abc 后根据方差的公式计算abc 的方差【详解】解:平均数;中位数;众数;bc 的方差故答案是:0【点睛】考查了平均数中位数众数和方差的意义解题的关键是正确理解各概念的含义解析:0.【解析】【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差.【详解】解:平均数()123242a =+++÷=;中位数()2222b =+÷=;众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:0.【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义. 三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25%5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.23.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.24.(1)13.4;(2)13.3秒,13.3秒;(3)选择张明,理由见解析.【分析】(1)根据统计图给出的数据可直接得出答案;(2)利用平均数的计算公式可得出张明成绩的平均数;先将李亮的成绩按照从小到大排列,然后即可得到这组数据的中位数;(3)在平均数、中位数相同的情况下,再根据方差越小数据越稳定,即可得出答案.【详解】解:(1)根据统计图可知,张明第2次的成绩为13.4秒,故答案为:13.4;(2)张明成绩的平均数为:13.313.413.313.213.35++++=13.3(秒);李亮的成绩是:13.2,13.4,13.1,13.5,13.3,把这些数从小到大排列为:13.1,13.2,13.3,13.4,13.5,则李亮成绩的中位数是:13.3秒;故答案为:13.3秒,13.3秒;(3)选择张明参加比赛,因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明成绩比李亮成绩稳定.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.25.(1)8,88.5,74;(2)初一的水平较好,理由见解析.【分析】(1)根据所给数据可得出m的值,根据中位数和众数的定义可得a,b的值;(2)从中位数和众数的角度分析可知初一的水平较好.【详解】解:(1)由初一的成绩可知,m=8,将初一的成绩按从低到高排列,第10、11名的成绩分别为:88,89,故初一的中位数a=888988.52;初二的成绩中74分的人数最多,故初二的众数b=74,故答案为:8,88.5,74;(2)初一的水平较好,理由:因为初一和初二的平均数都是84分,但是初一的中位数是88.5分,众数是89分,而初二的中位数是81.5分,众数是74分,即初一年级学生成绩的中位数和众数明显高于初二年级的学生成绩的中位数和众数,故初一的水平较好.【点睛】本题考查了频数分布表、中位数和众数的意义,掌握中位数和众数的求法是解题的关键.26.(1)11,10,78,81;(2)90人;(3)八年级学生对经典文化知识掌握的总体水平较好,理由是八年级学生成绩的中位数较高【分析】(1)根据已知数据及中位数和众数的概念求解即可.(2)利用样本估计总体思想求解可得.(3)答案不唯一,合理即可.【详解】(1)a=11,b=10,c=78,d=81(2)312009040⨯=(人)答:估计七八年级90分以上的学生共90人(3)八年级学生对经典文化知识掌握的总体水平较好,理由:八年级学生成绩的中位数较高【点睛】。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。

最新初中数学数据分析真题汇编含答案解析(1)

最新初中数学数据分析真题汇编含答案解析(1)

最新初中数学数据分析真题汇编含答案解析(1)一、选择题1.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A .3,2 B .3,4C .5,2D .5,4【答案】B 【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.2.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45,∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.4.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1++++++=,(26282826242122)257故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.7.回忆位中数和众数的概念;8.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.11.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x,2s,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( ) A .5,5 B .6,6C .5,6D .6,5【答案】D 【解析】 【分析】根据中位数和众数的定义分别进行解答即可. 【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6; 5出现了6次,出现的次数最多,则众数是5. 故选D .【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.13.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.14.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.15.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .22,x x S S =<乙丁乙丁B .22,x x S S =>乙丁乙丁 C .22,x x S S >>乙丁乙丁D .22,x x S S <<乙丁乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】x 乙45635552605++++==55,则215S =⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁51535856575++++==55,则215S =⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22S S >乙丁,故选:B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4, 23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.下列说法中正确的是( ).A .“打开电视,正在播放《新闻联播》”是必然事件B .一组数据的波动越大,方差越小C .数据1,1,2,2,3的众数是3D .想了解某种饮料中含色素的情况,宜采用抽样调查 【答案】D 【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B 、一组数据的波动越大,方差越大,故本选项错误;C 、数据1,1,2,2,3的众数是1和2,故本选项错误;D 、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D .考点:全面调查与抽样调查;众数;方差;随机事件.18.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.19.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.20.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.。

新初中数学数据分析经典测试题附答案(1)

新初中数学数据分析经典测试题附答案(1)

新初中数学数据分析经典测试题附答案(1)一、选择题1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.2.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.3.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;7.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.8.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.9.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()位:℃):7,4,2,1,2,2A .平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( ) A .小明的成绩比小强稳定 B .小明、小强两人成绩一样稳定 C .小强的成绩比小明稳定D .无法确定小明、小强的成绩谁更稳定 【答案】A 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8. 平均成绩一样,小明的方差小,成绩稳定, 故选A . 【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题. 错因分析 容易题.失分原因是方差的意义掌握不牢.13.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.14.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.15.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.17.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.18.一组数据-2,3,0,2,3的中位数和众数分别是()A.0,3 B.2,2 C.3,3 D.2,3【答案】D【解析】【分析】根据中位数和众数的定义解答即可.【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3.故选D.【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.。

人教版苏科版初中数学—数据的分析(经典例题含答案)

人教版苏科版初中数学—数据的分析(经典例题含答案)

一、平均数(一)算数平均数据分析例题答案数例1.一组12个数据的平均数为28,其中一个数据为25.8,那么另外11个数据的平均数是.28.2例1.变式1.有m 个数的平均值是x ,n 个数的平均值是y ,则这m n +个数的平均值是.mx ny m n++例1.变式2.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是(C )A.30吨B.31吨C.32吨D.33吨例1.变式3.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是(C)A .2B .2.8C .3D .3.3(二)加权平均数例2.某汽车配件厂在一个月(30天)中的零件产量如下:有2天是51件,3天是52件,5天是53件,9天是54件,6天是55件,4天是56件,1天是57件.则平均日产量是件.54例2.变式1.某班有50名学生,数学期中考试成绩为90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(保留小数点后第一位)()()190984127310651356245473.750x =⨯+⨯+⨯+⨯+⨯+⨯=分例2.变式2.再一次数学测试中,某班25名男生的平均成绩是86分,23名女生的平均成绩是82分,求这些学生的平均成绩。

(结果精确到0.01分)()8625822384.082523x ⨯+⨯=≈+分例2.变式3.某公司欲招聘一名推销员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下:(百分制)候选人面试笔试甲9087乙8494(1)如果公司认为面试和笔试成绩同等重要,谁将被录取?()()90+872=88.5=84+942=89.x x =÷÷∴甲乙,乙会被录取(2)如果公司认为,作为推销员,面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权.计算甲、乙两人各自的平均成绩,看看谁将被录取.()()906+87410=88.8=846+94410=88.x x =⨯⨯÷⨯⨯÷∴甲乙,甲会被录取(三)一组数据经过一定变化得到的一组新数据的平均数例3.已知数据1210,,x x x 的平均数为a ,111230,,x x x 的平均数为b ,那么1230,,x x x 的平均数为.102030a b+例3.变式1.有3个数据的平均数为6,有7个数据的平均数是9,则这10个数的平均数是.例3.变式2.已知数据12345,,,,x x x x x 的平均数为a ,则数据123454,4,4,4,4x x x x x 的平均数为;1234542,42,42,42,42x x x x x -----的平均数为.8.1例3.变式3.已知数据x 1,x 2,x 3的平均数为a ,数据y 1,y 2,y 3的平均数是b ,则数据3x 1+y 1,3x 2+y 2,3x 3+y 3的平均数为(D )A .3+a +bB .3(a +b )C .a +bD .3a +b二、中位数与众数(一)中位数例4.学校团委组织“阳光助残”捐款活动,九年级(1)班学生捐款情况如下表:捐款金额/元5102050人数/人10131215则学生捐款金额的中位数是(D )A.13元B.12元C.10元D.20元例4.变式1.已知一组数据23,27,20,18,x ,12,若它们的中位数是21,那么数据x 是(B )A.23B.22C.21D.20例4.变式2.已知一组数据20,20,x ,15的中位数与平均数相等,那么这组数据的中位数是(D )A.15 B.17.5C.20D.20或17.5例4.变式3.已知数据a ,a ,b ,c ,d ,b ,c ,c ,且a <b <c <d ,则这组数据的中位数、平均数分别为(A )A .223,28b c a b c d++++B .223,28a c a b c d++++C .222,8a b c d c +++D .233,8a b c d a +++(二)众数例5.下列说法中错误的是(C )A.一组数据的平均数、众数和中位数可能是同一个数B.一组数据的众数可能有多个C.数据中的中位数可能不唯一D.众数、中位数和平均数是从不同的角度描述了一组数据的集中趋势例5.变式1.某青年排球队12名队员的年龄情况如下表,则12名队员年龄的(D)年龄(岁)1819202122人数14322A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁例5.变式2.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是(A )A .180度,160度B .160度,180度C .160度,160度D .180度,180度例5.变式3.为了丰富课外活动,班委会准备利用周日组织全班同学去观看一场球类比赛,为了吸引更多的同学参与,事先做了“你最喜欢的球类活动”问卷调查,获得的信息如图所示,假如你是这个班级的体育委员,你会组织观看的比赛是(C)A.足球比赛B.篮球比赛C.排球比赛D.乒乓球比赛(三)平均数、中位数及众数的特征例6.某男子篮球队在10场比赛中,投球所得的分数分别为80,86,95,86,79,65,98,86,90,81,则该球队10场比赛得分数的众数为,中位数为.8686例6.变式1.一名射击运动员连续射靶10次,其中3次射中10环,5次射中9环,1次射中8环,1次射中7环,则平均每次射中环数为环,这次射击中环数的众数为环,这次射击中环数的中位数是环.999例6.变式2.为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是,中位数是,众数是,鞋厂最感兴趣的是数.22.5522.523众例6.变式3.下表是食品营养成分表的一部分:(每100克食品中可食部分营养成分的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是克,平均数是克.44(四)平均数、中位数及众数的综合例7.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是(A)A.21B.22C.23D.24例7.变式1.10位学生分别购买如下尺码的鞋子:20,20,21,22,22,22,22,23,23,24(单位:cm),这组数据的平均数、中位数、众数三个指标中鞋店老板最喜欢的是.众数例7.变式2.已知一组数据:-2,-2,3,-2,x,-1.若这组数据的平均数是0.5,则这组数据的中位数是.-1.5例7.变式3.如下图,反映了某校初中三年级甲、乙两班学生的体育中考成绩.(1)不用计算,根据统计图,请判断哪个班级学生的体育成绩好一些.(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?请写出来.(3)如果依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,请分别计算甲、乙两班学生体育成绩的平均值.(1)甲班;(2)中,中;(3)()()155+1065+207511858957850555+1065+207510855957550x x ⨯⨯⨯+⨯+⨯==⨯⨯⨯+⨯+⨯==甲乙分分三、从统计图分析数据的集中趋势(一)根据统计图中的数据求平均数、中位数和众数例8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和平均数分别是(C )A.7,7B.8,7.55C.7,7.55D.8,6例8.变式1.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(C)A.2.25B.2.5C.2.95D.3例8.变式2.如图是我市某景点6月份1-10日每天的最高气温折线统计图,由图中信息可知该景点这10天的最高气温的中位数是℃.26例8.变式3.同学们对戒烟方式进行调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整(3)求以上五种戒烟方式人数的众数.(1)这次调查中同学们调查的总人数为20÷10%=200(人).(2)统计图如图(扇形统计图与条形统计图).(3)以上五种戒烟方式人数的众数是20.四、数据的离散程度(一)极差、方差、标准差例9.数据2,3,3,5,7的极差是(D)A.2B.3C.4D.5 2.例9.变式1.数据90,91,92,93的标准差是.5 2例9.变式2.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是环,方差为.82例9.变式3.甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据(单位:mm)如下:甲机床:99,100,98,100,100,103;乙机床:99,100,102,99,100,100.(1)分别求出上述数据的平均数及方差;甲平均数为100mm,方差为7 3.乙平均数为100mm,方差为1.(2)根据(1)计算结果,说明哪一台机床加工这种零件更符合要求.因为甲乙平均数相同,乙的方差更小,所以乙机床加工这批零件更符合要求.(二)运用平均数、中位数、众数、方差进行综合评价例10.为了从甲、乙、丙三位同学中选一位或两位选手参加数学竞赛,下表是甲、乙、丙三位同学前五次数学测验的成绩(成绩满分100分):测验(次)12345甲(分)70819896100乙(分)6585858798丙(分)6070959798(1)请你填写甲、乙、丙三位同学前五次的数学成绩统计表(下表)平均数中位数方差甲89135.2乙8485丙95251.6平均数:84,中位数:96,方差:113.6.(2)如果只选派一名学生参加数学竞赛,你认为应该派谁?请说明理由;略.提示:根据甲、乙两学生的射击环数的平均数、众数、方差来进行合理评价,只要有道理即可例10.变式1.一次科技知识竞赛,两组学生的成绩如下表所示:已经算得两个组的平均分都是80分,请根据学过的统计知识,进一步判断两个组在这次竞赛中的成绩谁优谁次,并说明理由.解:甲组成绩的众数90分,乙组成的众数为70分,从成绩的众数看,甲组成绩好些.s 2甲=1251013146+++++×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172,s 2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256,因为s 2甲<s 2乙,所以甲组成绩较好.甲、乙两组成绩的中位数、平均分都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,所以从这一角度看,甲组成绩较好.甲组成绩高于90(含90分)的有14+6=20(人),乙组成绩高于90(含90分)的有12+12=24(人),因为乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组成绩较好.例10.变式2.为了从甲、乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了10次测验,成绩如下(单位:分)(1)请填写下表:(2)利用(1)的信息,请你对甲、乙两个同学的成绩进行分析.解:(1)第二行从左到右依次填:84:14.4,第三行从左到右依次填:90;0.5.(2)甲、乙成绩的中位数、平均数都是84.①甲成绩的众数是84,乙成绩的众数是90,从成绩的众数看,乙的成绩好;②甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;③甲成绩85分以上(不含85分)的频率为0.3,乙成绩85分以上(不含85分)的频率为0.5,从85分以上的频率看,乙的成绩好.例10.变式3.随着某市社会经济的发展和交通状况的改善,该市的旅游业得到了高速发展.某旅游公司对该市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的统计表和统计图(如图).组别个人年消费金额x /元频数(人数)A x ≤200018B 2000<x ≤4000aC 4000<x ≤6000bD 6000<x ≤800024E x >800012合计120根据以上信息解答下列问题:(1)a =________,b =________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3000名员工,请你估计个人旅游年消费金额在6000元以上的人数.解:(1)36;30补全条形统计图如图:(2)C (3)因为24120=0.2,12120=0.1,所以估计个人旅游年消费金额在6000以上的人数为3000×(0.2+0.1)=900(人)。

初中数学数据分析基础测试题及答案

初中数学数据分析基础测试题及答案
3.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()
A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较
【答案】A
【解析】
【分析】
根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.
A.22B.24C.25D.26
【答案】C
【解析】
【分析】
把7个数相加再除以7即可求得其平均数.
【详解】
由题意得,九年级七科老师在线答疑问题总个数的平均数是 ,
故选:C
【点睛】
此题考查了平均数的计算,掌握计算方法是解答此题的关键.
7.回忆位中数和众数的概念;
8.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )
【详解】
解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,
∵甲班的中位数是104,乙班的中位数是106,
∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,
∴甲优<乙优,
故选:A.
【点睛】
本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.
4.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是 ,乙组数据的方差是 ,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()
衬衫尺码
39
40
41
42
43
平均每天销售件数
10
12

(易错题精选)初中数学数据分析经典测试题含答案解析(1)

(易错题精选)初中数学数据分析经典测试题含答案解析(1)

(易错题精选)初中数学数据分析经典测试题含答案解析(1)一、选择题1.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.3.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.某青年排球队12名队员的年龄情况如下:则12名队员的年龄( ) A .众数是20岁,中位数是19岁 B .众数是19岁,中位数是19岁 C .众数是19岁,中位数是20.5岁 D .众数是19岁,中位数是20岁【答案】D 【解析】 【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数 ;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个). 【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D. 【点睛】理解中位数和众数的定义是解题的关键.5.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93【答案】D 【解析】 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦≈≠;故选:D.94.393【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.6.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;7.回忆位中数和众数的概念;8.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65【答案】A【解析】【分析】9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C .这些运动员的平均成绩是 2.25D .这些运动员成绩的方差是 0.0725 【答案】B 【解析】 【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】由表格中数据可得:A 、这些运动员成绩的众数是2.35,错误;B 、这些运动员成绩的中位数是2.30,正确;C 、这些运动员的平均成绩是 2.30,错误;D 、这些运动员成绩的方差不是0.0725,错误; 故选B . 【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.13.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26C .众数为2D .平均数为0【答案】B 【解析】 【分析】 【详解】A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B .4121205x -++-+== ,()()()()222224010102022655s --+--+-+-⨯==,故不正确;C .∵众数是2,故正确;D .4121205x -++-+==,故正确;故选B.14.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A.10 B.23 C.50 D.100【答案】A【解析】【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.15.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A .1.70,1.75B .1.70,1.70C .1.65,1.75D .1.65,1.70【答案】A 【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m ,故中位数为1.70;跳高成绩为1.75m 的人数最多,故跳高成绩的众数为1.75; 故选A .点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.17.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分 9.5 9.6 9.7 9.8 9.9 参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是( ) A .9.7,9.5 B .9.7,9.9C .9.6,9.5D .9.6,9.6【答案】C 【解析】 【分析】根据众数和中位数的定义求解可得. 【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C . 【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25C .25,24.5D .24.5,24.5【答案】A 【解析】 【分析】 【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26, 数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25. 故选:A .。

徐州市初中数学数据分析经典测试题含解析

徐州市初中数学数据分析经典测试题含解析
B、∵一共有50个数据,
∴按从小到大排列,第25,26个数据的平均值是中位数,
∴中位数是6.5,故此选项正确,不合题意;
C、因为7出现了20次,出现的次数最多,所以众数为:7,故此选项正确,不合题意;
D、由图可知锻炼时间超过6小时的有20+5=25人,故平均每周锻炼超过6小时的人占总数的一半,故此选项正确,不合题意;

比较 , 发现两式子分子相同,因此 > (两个正数分子相同,分母大的反而小),
故答案为A.
【点睛】
本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.
11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:
【答案】A
【解析】
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;
跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;
队员1
队员2
队员3
队员4
平均数
51
50
51
50
方差S2
3.5
3.5
7.5
8.5
A.队员1B.队员2C.队员3D.队员4
【答案】B
【解析】
【分析】
根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.
【详解】
解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,

(压轴题)初中数学八年级数学上册第六单元《数据的分析》测试(答案解析)(1)

(压轴题)初中数学八年级数学上册第六单元《数据的分析》测试(答案解析)(1)
一、选择题
1.某天 名学生在进入校门时测得体温(单位℃)分别为: , , , , , , ,对这组数据描述正确的是()
A.众数是 B.中位数是 C.平均数是 D.方差是
2.在学校数学竞赛中,某校 名学生参赛成绩统计如图所示,对于这 名学生的参赛成绩,下列说法中错误的是( )
A.众数是 B.中位数是 C.平均数是 D.极差是
A.中位数B.众数C.平均数D.不能确定
7.一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是()
A.极差B.方差C.中位数D.众数
8.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )
A.极差是6B.众数是7C.中位数是5D.方差是8
23.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:
选手
演讲内容
演讲能力
演讲效果
85
95
95
95
85
95
若按如图的比例计算选手的综合成绩(百分制),请说明哪位选手成绩更优秀.
24.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:
一、选择题
1.C
解析:C
【分析】
按照众数,中位数,平均数,方差的定义计算判断即可.
【详解】
∵这组数据为 , , , , , , ,
∴平均数 =36.4,
∴选项C正确;
∵36.3,36.4都出现了2次,
∴数据的众数为36.3和36.4,
∴选项A错误;
∵按从小到大进行排序为36.2,36.3,36.3,36.4,36.4, , ,

人教版初中数学八年级数学下册第五单元《数据的分析》测试(含答案解析)(1)

人教版初中数学八年级数学下册第五单元《数据的分析》测试(含答案解析)(1)

一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃2.若数据 4,x ,2,8 ,的平均数是 4,则这组数据的中位数和众数是( ) A .3 和 2B .2 和 3C .2 和 2D .2 和43.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是( ) A .平均数是92 B .中位数是90 C .众数是92 D .极差是7 4.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( )A .8B .5C .6D .35.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁B .丙C .乙D .甲6.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数7.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.今年上半年,我市某俱乐部举行山地越野车大赛,其中8名选手某项得分如下表:得分 82 85 88 90 人数1232则这8名选手得分的平均数是( ) A .88B .87C .86D .859.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表: 成绩(分) 24 25 26 27 28 29 30 人数(人)6558774根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分10.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数11.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数B .平均数C .方差D .极差12.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大二、填空题13.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.14.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.15.已知点(x 1,y 1),(x 2,y 2),(x 3,y 3)都在函数y=-2x +7的图象上,若数据x 1,x 2,x 3的方差为5,则另一组数据y 1,y 2,y 3的方差为_________.16.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.17.已知一个样本的方差s 2=113[(x 1﹣8)2+(x 2﹣8)2+…+(x 13﹣8)2],那么这个样本的平均数是_____,样本中数据的个数是_____.18.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.19.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,6,9,8,8,则这组数据的方差是______________________ .20.已知5个数据的平均数是7,另外还有3个数据的平均数是k , 则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100; 乙组:50,60,60,60,70,70,70,70,80,90. (1)以上成绩统计分析表如表:则表中a = ,b = ,c = .(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.22.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照04x ≤<,48x ≤<,…,2832x ≤<分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.24.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10988109乙101081079根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分).甲9582888193798478乙8375808090859295(1)请你计算这两组数据的平均数、中位数.(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.26.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8 4.2(1)写出表格中a,b的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8, 中位数为:6+72=6.5, 故选B . 【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2.A解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数和众数的概念进行求解即可. 【详解】∵数据2,x ,4,8的平均数是4,∴这组数的平均数为2484x +++=4,解得:x =2; 所以这组数据是:2,2,4,8,则中位数是242+=3. ∵2在这组数据中出现2次,出现的次数最多,∴众数是2. 故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.3.C解析:C 【分析】根据平均数、中位数、众数以及极差的定义、计算公式对各选项进行判断. 【详解】解:A .这组数据的平均分15×(85+90+92+92+96)=91分,所以A 选项错误; B 、这组数据按从小到大排列为:85、90、92、92、96,所以这组数据的中位数为92(分),所以B 选项错误;C 、这组数据的众数为92(分),所以C 选项正确;D .这组数据极差是96﹣85=11,所以D 选项错误; 故选C . 【点睛】本题查平均数,中位数,众数以及极差,解题关键是正确熟练运用公式.4.A【分析】先由平均数的公式计算出a 的值,再根据方差的公式计算即可. 【详解】∵数据6、4、a 、3、2平均数为5, ∴(6+4+2+3+a )÷5=5, 解得:a=10, ∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8. 故选:A . 【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.B解析:B 【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛. 【详解】∵甲、丙的平均数比乙、丁大, ∴甲和丙成绩较好, ∵丙的方差比甲的小, ∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙, 故选:B . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.6.A解析:A 【分析】根据方差的计算公式可直接得出结果. 【详解】()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦∴5是数据的个数,7是平均数, 故选:A本题考查方差的定义.熟记方差公式是解题的关键.7.C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.8.B解析:B【分析】由表可知,得分82的有1人,得分85的有2人,得分88的有3人,得分90的有2人.再根据平均数概念求解;【详解】解:(82×1+85×2+88×3+90×2)÷8= 87(分),所以平均数是87分.故选:B.【点睛】本题考查加权平均数的概念和计算方法,解题关键是熟练掌握加权平均数的计算公式. 9.B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.10.B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.11.A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.12.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题13.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12 【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可. 【详解】∵x 1、x 2、…x n 的平均数为2, ∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9,∵原平均数为2,新数据的平均数变为9, 则原来的方差S 12=1n[(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n[(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12. 故答案为:9,12.【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键.14.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3. 【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可. 【详解】原数据的1、3、3、5的平均数为13354+++ =3,中位数为332+=3,众数为3;添加的数为3后,新数据1、3、3、3、5的平均数为133355++++ =3,中位数为3,众数为3; 故答案为:3. 【点睛】此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.15.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20.【解析】【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】 设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13 [(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13[4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2=4×5=20,故答案为:20.【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.16.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy 中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴ 解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.17.813【解析】【分析】样本方差其中n 是这个样本的容量是样本的平均数根据方差公式直接求解【详解】因为一个样本的方差s2=(x1﹣8)2+(x2﹣8)2+…+(x13﹣8)2所以本题样本的平均数是8样本解析:8, 13.【解析】【分析】 样本方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,其中n 是这个样本的容量, x 是样本的平均数.根据方差公式直接求解.【详解】因为一个样本的方差s 2=113[(x 1﹣8)2+(x 2﹣8)2+…+(x 13﹣8)2], 所以本题样本的平均数是8,样本数据的个数是13.故填8,13.【点睛】一般地设n 个数据,x 1、x 2、…x n 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.19.【解析】分析:先计算出这组数据的平均数再根据方差公式进行计算即可详解:故答案为:点睛:此题考查了方差用到的知识点是方差公式一般地设n 个数据x1x2…xn 的平均数为则方差它反映了一组数据的波动大小方差 解析:87【解析】分析:先计算出这组数据的平均数,再根据方差公式进行计算即可. 详解:1(7996988)87x =++++++=, 2222218[(78)3(98)(68)2(88)]77S =-+-+-+-=. 故答案为:87点睛:此题考查了方差,用到的知识点是方差公式,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121[()()...()]n S x x x x x x n=-+-++-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k ,因此这8个数的和为35+3k ,因此其平均数为(35+3k )÷8,即35+38k . 故答案为:35+38k .21.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70; 故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.22.(1)100,14.72;(2)不合理,见解析【分析】(1)先确定a 的值,然后求这些数据的加权平均数即可;(2)由14.72在1216x ≤<内,然后确定小于16t 的户数,再求出小于16t 的户数占样本的百分比,最后用这个百分比和70%相比即可说明.【详解】解:(1)依题意得a=(1000-40-180-280-220-60-20)÷2=100.这1000户家庭月均用水量的平均数为: 2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ∴估计这1000户家庭月均用水量的平均数是14.72.(2)不合理.理由如下:由(1)可得14.72在1216x ≤<内,∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户),∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600100%60%⨯=,1000∴月均用水量不超过14.72t的户数小于60%.∵该市政府希望70%的家庭的月均用水量不超过标准m,<,而60%70%∴用14.72作为标准m不合理.【点睛】本题考查了频数分布直方图、用样本估计总体、加权平均数,正确求得加权平均数是解答本题的关键.23.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义. 24.(1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 【分析】(1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲【点睛】 本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25.(1)甲、乙两组数据的平均数都是85分,中位数分别为83分、84分;(2)派乙参赛更合适.理由见解析.【分析】(1)根据平均数、中位数的计算方法分别计算即可;(2)从平均数、中位数、方差以及数据的变化趋势分析.【详解】()1()19582888193798478858x =+++++++=甲(分), ()18375808090859295858x =+++++++=乙 将甲工人的测试成绩从小到大排序,处在第45、位的平均数为()8284283+÷=(分), 因此甲工人测试成绩的中位数是83分,将乙工人的测试成绩从小到大排序,处在第45、位的平均数为()8385284+÷=(分), 因此乙工人测试成绩的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.()2(答案不唯一,合理即可)()()()2222195858285...788535.58S =-+-+⎤⎣⎦=⎡+-甲(分2) ()()()2222183857585...9585418S =-+-+-⎡⎤⎣⎦+=乙(分2) ①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为22S S <甲乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以派乙参赛更合适.【点睛】考查平均数、中位数、方差的意义及计算方法,从多角度分析数据的发展趋势是一项基本的能力.26.(1)7,7.5;(2)甲,理由略.【分析】(1)利用加权平均数的计算公式、中位数的概念解答即可;(2)根据方差的性质判断即可.【详解】解:∵甲队员的射击成绩为:5,6,6,7,7,7,7,8,8,9,∴甲队员的射击成绩平均数为:a=(5+6×2+7×4+8×2+9)÷10=7∵乙队员的射击成绩为:3,6,4,8,7,8,7,8,10,9,从小数到大数依次排列为:3,4,6,7,7,8,8,8,9,10,∴乙队员射击成绩的中位数为:b=7.5∴a=7, b=7.5(2)从方差的角度看,选派甲队员去参赛,理由是:从表中可知:S 甲2=1.2,S 乙2=4.2,∴S 甲2<S 乙2∴甲队员的射击成绩较稳定,∴选甲队员去参赛【点睛】本题考查的是加权平均数、中位数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.。

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(答案解析)(1)

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(答案解析)(1)

一、选择题1.反映一组数据变化范围的是( ) A .极差 B .方差C .众数D .平均数2.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或63.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( ) A .10,12B .12,11C .11,12D .12,124.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( ) A .70分,80分 B .80分,80分 C .90分,80分 D .80分,90分 5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .06.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 7.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( )A .平均数改变,方差不变B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变8.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分 B .中位数C .极差D .平均数9.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4个 10.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x ( ) A .2B .3C .5D .711.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126A .15B .20C .21D .2512.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题13.北京市 7月某日 10 个区县的最高气温如表(单位:C ):34343234323431333234区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温则这 10 个区县该日最高气温的众数是__________,中位数是__________.14.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.15.已知一组数据:3,3,x ,5,5的平均数是4,则这组数据的方差是___________. 16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.17.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.18.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.19.某组数据按从小到大的顺序如下:2、4、8、x 、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.20.已知5个数据的平均数是7,另外还有3个数据的平均数是k , 则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次 第2次 第3次 第4次 第5次 甲成绩 80 40 70 50 60 乙成绩705070a70= ,甲同学成绩的极差为 ;(2)小颖计算了甲同学的成绩平均数为60,方差是S 甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差; (3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下: 学部 平均数 中位数最高分 众数 初一 88 a98 98初二8886100ba =(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?23.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.24.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100; 乙组:50,60,60,60,70,70,70,70,80,90. (1)以上成绩统计分析表如表:则表中a = ,b = ,c = .(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.25.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照04x ≤<,48x ≤<,…,2832x ≤<分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.26.甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲1089108乙109a b9()1若甲、乙射击平均成绩一样,求+a b的值;()2在()1条件下,若,a b是两个连续整数,试问谁发挥的更稳定?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.3.C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.4.B解析:B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.5.A解析:A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,6.B解析:B 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.8.B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B .9.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确; ④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°,∴三角形的这个内角为180°÷2=90°则这个三角形是直角三角形,故正确.综上:正确的有2个故选B.【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.10.C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x,它们的众数为5,∴5出现的次数最多,故5x=,故选C.【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.11.C解析:C【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键12.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.34335【分析】找中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数众数是一组数据中出现次数最多的数据注意众数可以不止一个【详解】解:将10个区的气温数据进行从小到大重排解析:34 33.5 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:将10个区的气温数据进行从小到大重排: 31,32,32,32,33,34,34,34,34,34,则中位数为:333433.52+=, 众数为:34,故答案为:34,33.5. 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,按要求将重新排列,是找中位数的关键.14.82【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x ∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少得82分解析:82 【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案. 【详解】设第三次考试成绩为x ,∵三次考试的平均成绩不少于80分,∴7286803x++≥, 解得:82x ≥,∴他第三次数学考试至少得82分, 故答案为:82本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.15.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0 解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差. 【详解】 根据题意得: 3+3+x+5+5=4×5, 解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8. 【点睛】考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 16.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙 【分析】通过图示波动的幅度即可推出. 【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙 【点睛】考查数据统计的知识点17.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30 【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. 【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据,∴x 1+x 2+x 3+…+x 10=10×3=30.故答案为30.【点睛】 本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.18.2【分析】先用平均数是3可得x 的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)210=2故解析:2【分析】先用平均数是3可得x 的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x +5),解得:x =4, ∴方差是S 215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2. 故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大. 19.10【解析】分析:根据中位数为9可求出x 的值继而可判断出众数详解:由题意得:(8+x )÷2=9解得:x=10则这组数据中出现次数最多的是10故众数为10故答案为10点睛:本题考查了中位数及众数的知识解析:10【解析】分析:根据中位数为9,可求出x 的值,继而可判断出众数.详解:由题意得:(8+x )÷2=9,解得:x =10,则这组数据中出现次数最多的是10,故众数为10.故答案为10.点睛:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k,因此这8个数的和为35+3k,因此其平均数为(35+3k)÷8,即35+3 8k.故答案为:35+3 8k.三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.【分析】(1)由“他们5次考试的总成绩相同”可求得a的值,利用极差的定义求解可得;(2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a=(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S甲2>S乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人.【分析】(1)根据条形图排序中位数在C组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可;(2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可.【详解】解:(1)A与B组共有6个,D组有6个为此中位数落在C组,而C组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上,第8个数据为85,中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100, 100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】 本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.23.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278, 排序后位于中间位置的数为180,故中位数180,数据90出现了4次,出现次数最多,故众数为90;(2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.24.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70; 故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116, 因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.25.(1)100,14.72;(2)不合理,见解析【分析】(1)先确定a 的值,然后求这些数据的加权平均数即可;(2)由14.72在1216x ≤<内,然后确定小于16t 的户数,再求出小于16t 的户数占样本的百分比,最后用这个百分比和70%相比即可说明.【详解】解:(1)依题意得a=(1000-40-180-280-220-60-20)÷2=100.这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ∴估计这1000户家庭月均用水量的平均数是14.72.(2)不合理.理由如下:由(1)可得14.72在1216x ≤<内,∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户),∴这1000户家庭中月均用水量小于16t 的家庭所占的百分比是600100%60%1000⨯=, ∴月均用水量不超过14.72t 的户数小于60%.∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%70%<,∴用14.72作为标准m 不合理.【点睛】本题考查了频数分布直方图、用样本估计总体、加权平均数,正确求得加权平均数是解答本题的关键.26.(1)17a b +=;(2)乙更稳定【分析】(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出+a b 的值;(2)根据题意令8,9a b ==,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1) 108910895x ++++==甲(环) 109995a b x ++++==乙(环) 17a b ∴+=(2)17a b +=且,a b 为连续的整数∴令8,9a b ==()()()()()22222211098999109890.85S ⎡⎤=-+-+-+-+-=⎣⎦甲, ()()()()()2222221109999989990.45S ⎡⎤=-+-+-+-+-=⎣⎦乙, 22S S >甲乙∴乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.。

人教版八年级下《第章数据分析》基础练习考试(含答案解析)

人教版八年级下《第章数据分析》基础练习考试(含答案解析)

人教版八年级下《第章数据分析》基础练习考试(含答案解析)1/17————————————————————————————————作者:————————————————————————————————日期:2018-2019学年初二下学期数学第20章数据分析基础练习试卷一、单选题(每小题3分)1.随着智能手机的普及,抢微信红包成了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图,如图.根据图中提供的信息,红包金额的众数和中位数分别是()A.20元、20元B.30元、20元C.30元、30元D.20元、30元2.若一组数据3,x,4,5,6的众数为6,则这组数据的中位数为A.3B.4C.5D.63.为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是()A.众数是80千米/时,中位数是60千米/时B.众数是70千米/时,中位数是70千米/时C.众数是60千米/时,中位数是60千米/时D.众数是70千米/时,中位数是60千米/时4.甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.100分B.95分C.90分D.85分5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲平均数(cm)185乙180丙185丁180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.如果一组数据x1,x2,…,xn的方差是4,则另一组数据x1+3,x2+3,…,xn+3的方差是()A.4B.7C.8D.19: 7.一组数据的方差为 9,将这组数据中的每个数据都扩大到原来的 2 倍,则得到的一组新数据的方差是()A. 9B. 18C. 36D. 818.一组数据 x1,x2,x3,x4,x5,x 的平均数是 2,方差是 5,则 2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3 的平均数和方差分别是()A. 2 和 5B. 7 和 5C. 2 和 13D. 7 和 20二、填空题(每小题 4 分)9.一组数据 10,13,9,16,13,10,13 的众数是__________,中位数是__________,平均数是__________.10.在一次测验中,某学习小组的 5 名同学的成绩(单位:分)分别为 68,75,67,66,99,则这组成绩的平均数 __________,中位数 M =__________,去掉一个最高分后的平均数 __________.所求的 ,M ,这三个数据中,你认为能描述该小组学生这次测验成绩的一般水平的数据是__________.11.若一组数据 2,-1,0,2,-1,a 的众数为 2,则这组数据的平均数为__________.12.一组数据 3,4,6,8,x 的中位数是 x ,且 x 是满足不等式组 的整数,则这组数据的平均数是.13.某中学随机地调查了 50 名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(时) 5 6 7 8人数10 15 20 5则这 50 名学生这一周在校的平均体育锻炼时间是__________小时.14.已知一组数据为 1,2,3,4,5,则这组数据的方差为______.15.数据 3,4,5,a ,8 的平均数为 5,则这组数据的中位数为__________,众数为__________.三、主观题(第 16 题 6 分,第 17 题-22 题每题 7 分)16.某县为了解初中生对安全知识的掌握情况,抽取了 50 名初中生进行安全知识测试,并将测试成绩进行统 计分析,绘制了如下的频数分布表和频数分布直方图(未完成) 安全知识测试成绩频数分布表组别 成绩 x (分) 组中值 频数(人数)12390≤x<10080≤x<900≤x<80958575102512.4个人收集整理,勿做商业用途60≤x<70 65 3(1)完成频数分布直方图;(2)这个样本数据的中位数在第__________组;(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为__________;(4)若将 90 分以上(含 90 分)定为“优秀”等级,则估计该县 10000 名初中生中,获“优秀”等级的学生 约有多少人?17.在一次男子马拉松长跑比赛中,随机抽得 12 名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148 (1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是 147 分钟,请你依据样本数据中位数,推断他的成绩如何?18.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100 分.前六名选手的 得分如下:选手序号 笔试成绩/分 面试成绩/分1 2 3 4 5 685 92 84 90 84 8090 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100 分). (1)这 6 名选手笔试成绩的中位数是__________分,众数是__________分;(2)现得知 1 号选手的综合成绩为 88 分,求笔试成绩和面试成绩各占的百分比;(3)在(2)的基础上,求出其余 5 名选手的综合成绩,并以综合成绩排序确定前两名人选.19.为了估计鱼塘中成品鱼(个体质量在 0.5kg 及以上,下同)的总质量,先从鱼塘中捕捞 50 条成品鱼,称 得它们的质量如表:质量/kg0.5数量/条 10.68 0.715 1.018 1.25 1.61 1.92然后做上记号再放回水库中,过几天又捕捞了 100 条成品鱼,发现其中 2 条带有记号. (1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点)个人收集整理,勿做商业用途(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg).20.已知一组数据x1,x2,…,x6的平均数为1,方差为.(1)求:;(2)若在这组数据中加入另一个数据x,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).21.A组数据是7位同学的数学成绩(单位:分):60,a,70,90,78,70,82.若去掉数据a后得到B组的6个数据,已知A,B两组数据的平均数相同.根据题意填写下表:统计量平均数众数中位数A组数据B组数据并回答:哪一组数据的方差大?(不必说明理由)22.一次科技知识竞赛中,两组学生的成绩统计如下:成绩/分个人收集整理,勿做商业用途5060708090100人数甲组2乙组45410161321412612已经算得两个组的平均分都是80分,请你根据所学过的统计知识,进一步判断这两个组在这次竞赛中谁的成绩较好,并说明理由.参考答案与解析一、单选题(每小题3分)1.C试题解析:本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.解:30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.2.C试题解析:本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.根据众数和中位数的概念求解.解:∵这组数据的众数为6,∴x=6,则这组数据按照从小到大的顺序排列为:3,4,5,6,6,中位数为:5.故选C.3.D试题解析:车速出现最多的是70千米/时,共有42辆,故众数是70千米/时;共统计了127辆车的车速,把车速从小到大排列,第64辆车的速度60千米/时是中位数.故选D.4.C试题解析:当众数是90时,∵众数与平均数相等,∴(90+90+x+80)=90,解得x=100.这组数据为:80,90,90,100,∴中位数为90.当众数是80时,∵众数与平均数相等,∴(90+90+x+80)=80,解得x=60,故不可能.所以这组数据中的中位数是90.故选C.5.A试题解析:解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.首先比较平均数,平均数相同时选择方差较小的运动员参加.此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.6.A试题解析:解:根据题意得:数据x1,x2,…,xn的平均数设为a,则数据x1+3,x2+3,…,xn+3的平均数为a+3,根据方差公式:S2=[(x1-a)2+(x2-a)2+…(xn-a)2]=4.则S2={[(x1+3)-(a+3)]2+[(x2+3)-(a+3)]2+…(xn+3)-(a+3)]}2=[(x1-a)2+(x2-a)2+…(xn-a)2=4.故选:A.根据题意得:数据x1,x2,…,xn的平均数设为a,则数据x1+3,x2+3,…,xn+3的平均数为a+3,再根据方差公式进行计算:S2=[(x1-)2+(x2-)2+…(xn-)2]即可得到答案.此题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.7.C试题解析:本题考查了算术平均值的求解以及方差的求解公式,利用公式重新计算即可得到新数据的方差是原方差的多少倍.解:设原平均数为,原数据为x1、…、xn,后平均数为,后数据为x1′、…、xn′.9=[(x1-)2+…+(xn-)2],s′2=因为[(2x1-)2+…+(2xn-=(2x1+2x2+…+2xn)÷n)2],=2(x1+x2+…+xn)÷n=2,所以s′2=故选C.8.D[4(x1-)2+…+4(xn-)2]=4s2=36.试题解析:此题主要考查了平均数的含义和求法,以及方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],要熟练掌握.数据2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3的平均数比数据x1,x2,x3,x4,x5,x6的平均数的2倍多3;数据2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3的方差是数据x1,x2,x3,x4,x5,x6的方差的4倍,据此求解即可.解:∵数据x1,x2,x3,x4,x5,x6的平均数是2,∴数据2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3的平均数是:2×2+3=7;∵数据x1,x2,x3,x4,x5,x6的方差是5,∴×[(x1-2)2+(x2-2)2+…+(x6-2)2]=5,∴数据2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3的方差是:×[(2x1+3-7)2+(2x2+3-7)2+…+(2x6+3-7)2= =×[4(x1-2)2+4(x2-2)2+…+4(x6-2)2×[(x1-2)2+(x2-2)2+…+(x6-2)2]×4=54=20∴另一组数据2x1+3,2x2+3,2x3+3,2x4+3,2x5+3,2x6+3的平均数和方差分别是7,20.故选D.二、填空题(每小题4分)9.13;13;12.试题解析:主要考查了众数和中位数的概念和平均数的计算.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)叫做这组数据的中位数.平均数是所有数据的和除以数据的个数.根据众数和中位数的概念和平均数的计算方法解答.解:13出现的次数最多,故众数是13;中位数是13;平均数==12,故答案为13;13;12.10.75分;68分;69分;.试题解析:本题考查了数据的代表--平均数和中位数,中位数不受极端值的影响而平均数易受极端值的影响.(1)求出各数的和,再除以总数即可得到该组数据的平均数;(2)将该组数据按从小到大或从大到小依次排列,处于中间位置的数即为中位数;(3)将该组数据中的99去掉,依据(1)计算即可解:(1)=(68+75+67+66+99)=75分;(2)将68、75、67、66、99按从小到大依次排列可得66、67、68、75、99;68位于中间位置,即为中位数;(3)去掉99后可得,=(68+75+67+66)=69分.由三个数据可知,69与多数数据接近,具有代表性,能描述该小组学生这次测验成绩的一般水平的数据是.故答案为75分;68分;69分;.11.试题解析:解:数据2,-1,0,2,-1,a的众数为2,即2的次数最多;即a=2.则其平均数为(2-1+0+2-1+2)÷6=.故答案为:.本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.12.5试题解析:试题分析:先求出不等式组的整数解,再根据中位数是x,求出x的值,最后根据平均数的计算公式即可求出答案.解不等式组得:3≤x<5,∵x是整数,∴x=3或4,当x=3时,3,4,6,8,x的中位数是4(不合题意舍去),当x=4时,3,4,6,8,x的中位数是4,符合题意,则这组数据的平均数可能是(3+4+6+8+4)÷5=5;故答案为:5.13.6.4试题解析:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.解:=6.4,( 故答案为 6.4.14.2试题解析:解:平均数为=(1+2+3+4+5)÷5=3,S2= [(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.故答案为:2.先求出这 5 个数的平均数,然后利用方差公式求解即可.本题考查了方差的知识,牢记方差的计算公式是解答本题的关键,难度不大.15.5 5试题解析:此题考查了平均数、众数与中位数,众数是一组数据出现次数最多的数,中位数是将一组数据从小到大(或从 大到小)重新排列后,最中间的那个数(最中间两个数的平均数) 叫做这组数据的中位数,关键是求出 x 的 值.先根据平均数的定义求出 a 的值,然后根据中位数和众数的定义求解.解: 由题意可知,(a+4+3+5+8)÷5=5,a=5,这组数据从小到大排列 3,4,5,5,8,∴中位数是 5,众数为 5,故答案为 5,5.三、主观题(第 16 题 6 分,第 17 题-22 题每题 7 分)16.解:(1)完成图形如下:(2)2;(3)83.4;(4)该县 10000 名初中生中,获“优秀”等级的学生约为10000×=2000 人.试题解析:本题考查了频数分布表及频率分布直方图的知识,解题的关键是能够了解频率、频数及样本总数的关系,难度 不大.(1)确定第四小组的频数后即可补全频数分布直方图;(2)根据总人数确定中位数是那两个数据的平均数,然后结合各小组的频数求解即可;(3)用加权平均数计算平均成绩即可;(4)首先确定优秀率,然后确定优秀的人数.解:(1)见答案;(2)∵共 50 个人,∴中位数应该是第 25 和第 26 个数据的平均数,∵第 25 和第 26 个数据均落在第 2 小组,∴中位数落在第 2 小组;(3)平均数==83.4;故答案为 2,83.4;(4)见答案.17.解: 1)将这组数据按照从小到大的顺序排列为:125,134,140,143,146,148,152,155,162,164, 168,175,则中位数为:=150,平均数为:=151;(2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.试题解析:(1)根据中位数和平均数的概念求解;(2)根据(1)求得的中位数,与147进行比较,然后推断该选手的成绩.本题考查了中位数和平均数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.18.解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5分,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.故答案为84.5,84.试题解析:此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.19.解:(1)由函数图象可以得出1.1-1.4的有5条,补全图形,得:(2)由题意,得0.5-0.8的频率为:24÷50=0.48,0.8-1.1的频率为:18÷50=0.36,1.1-1.4的频率为:5÷50=0.1,1.4-1.7的频率为:1÷50=0.02,1.7-2.0的频率为:2÷50=0.04.∵0.48>0.36>0.1>0.04>0.02.∴估计从鱼塘中随机捕一条成品鱼,其质量落在0.5-0.8的可能性最大;(3)这组数据的个数为50,就可以得出第25个和第26个数分别是1.0,1.0,∴(1.0+1.0)÷2=1.0,鱼塘里质量中等的成品鱼,其质量落在0.8-1.1内;(4)设鱼塘中成品鱼的条数为x,由题意,得:50:x=2:100,解得:x=2500.2500×=2260kg.试题解析:(1)由函数图象可以得出1.1-1.4的有5条,就可以补全直方图;(2)分别求出各组的频率,就可以得出结论;(3)由这组数据的个数为50,就可以得出第25个和第26个数的平均数就可以得出结论;(4)设鱼塘中成品鱼的条数为x,根据作记号的鱼50:x=2:100建立方程求出其解即可.本题考查了频数分布直方图的运用,比较频率大小的运用,中位数的运用,平均数的运用,由样本数据估计总体数据的运用,解答时认真分析统计表和统计图的数据是关键.20.解:(1)∵数据x1,x2,…x6的平均数为1,∴x1+x2+…+x6=1×6=6,又∵方差为,∴S2=[(x1-1)2+(x2-1)2+…+(x6-1)2= =[x12+x22+…+x62-2(x1+x2+…+x6)+6(x12+x22+…+x62-2×6+6)2 2 = (x12+x22+…+x62)-1= ,∴x12+x22+…+x62=16;(2)∵数据 x1,x2,…x 的平均数为 1,∴x1+x2+…+x=1×7=7,∵x1+x2+…+x6=6,∴x=1,∵ [(x1-1)2+(x2-1)2+…+(x6-1)2]=∴(x1-1)2+(x2-1)2+…+(x6-1)2=10, ,∴S 2= [(x1-1)2+(x2-1)2+…+(x-1)2==[10+(1-1)2].试题解析:本题考查了平均数与方差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.计算公式是:s2=(xn- )2]. [(x1- ) +(x2- )+…+(1)先由数据 x1,x2,…x6 的平均数为 1,得出 x1+x2+…+x6=1×6=6,再根据方差为 ,得到 S 2= [(x1-1)2 +(x2-1)2+…+(x6-1)2]= ,利用完全平方公式求出 (x12+x22+…+x62-2×6+6)= ,进而求解即可;(2)先由数据 x1,x2,…x 的平均数为 1,得出 x1+x2+…+x=1×7=7,而 x1+x2+…+x6=6,所以 x=1;再根据[(x1-1)2+(x2-1)2+…+(x6-1)2]= ,得出(x1-1)2+(x2-1)2+…+(x6-1)2=10,然后根据方差的计 算公式即可求出这 7 个数据的方差.21.解:∵去掉数据 a 后得到 B 组的 6 个数据且 A ,B 两组的平均数相同,∴A,B 的平均数=,∴ ,解得 a=75,∴A 组数据的众数为 70,B 组数据的众数为 70;∴A 组数据的中位数为 75,B 组数据的中位数为 74;∴S A 2=[(60-75)2+(75-75)2+…(82-75)2 =79.714;S B 2= [(60-75)2+(70-75)2+…(82-75)2=93;∵S A 2<S B 2,∴B组的方差大.试题解析:本题考查平均数、众数、中位数以及方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.先根据平均数的计算公式求得平均数,再求得a的值,众数和中位数,最后根据方差的公式计算即可.22.解:(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些;(2)s甲2=172,s乙2=256,∵s甲2<s乙2∴所以甲组成绩比乙组好;(3)甲、乙两组成绩的中位数、平均数分别都是80分,其中,甲组成绩在80分以上(包括80分)的有33人,乙组有26人,从这一角度看,甲组的成绩总体较好;(4)从成绩统计表看,甲组成绩高于90分(包括90分)的人数20人,乙组24人且满分比甲组多6人,从这一角度看,乙组的成绩较好.试题解析:本题考查了算术平均数、众数、方差、中位数的公式以及意义,利用公式求解出相应的数据,根据意义进行比较即可。

初中数学数据分析练习题和答案

初中数学数据分析练习题和答案

初中数学数据分析练习题和答案1. 某班级共有40名学生,他们参加了一次数学考试。

以下是每个学生的得分情况(满分100分):75, 83, 92, 68, 77, 85, 90, 73, 89, 78, 82, 87, 95, 62, 80, 84, 91, 79, 72, 88, 76, 81, 86, 94, 70,69, 74, 93, 71, 67, 75, 83, 92, 68, 77, 85, 90, 73, 89, 78, 82请根据以上数据回答以下问题:解答:1) 求全班学生的平均分数。

解析:要求全班学生的平均分数,需要将每个学生的得分相加,再除以学生总数。

75 + 83 + 92 + 68 + 77 + 85 + 90 + 73 + 89 + 78 + 82 + 87 + 95 + 62 + 80 + 84 + 91 + 79 + 72 + 88 + 76 + 81 + 86 + 94 + 70 +69 + 74 + 93 + 71 + 67 + 75 + 83 + 92 + 68 + 77 + 85 + 90 + 73 + 89 + 78 + 82 = 3024全班学生的平均分数为:3024 / 40 = 75.6分2) 求全班学生中的最高分和最低分。

解析:要求全班学生中的最高分和最低分,需要找出最大值和最小值。

最高分为:95分最低分为:62分3) 求全班学生中得分在80分以上的人数。

解析:要求得分在80分以上的人数,需要统计得分大于等于80分的学生人数。

得分大于等于80分的学生有:83, 92, 85, 90, 89, 82, 87, 95, 80, 84, 91, 88, 81, 86, 94, 83, 92, 85, 90, 89, 82。

得分在80分以上的人数为:21人4) 绘制全班学生成绩的频率分布直方图。

解析:为更好地展示全班学生成绩的分布情况,可以通过绘制频率分布直方图来呈现。

(典型题)初中数学八年级数学上册第六单元《数据的分析》测试卷(包含答案解析)(1)

(典型题)初中数学八年级数学上册第六单元《数据的分析》测试卷(包含答案解析)(1)

一、选择题1.若样本1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为10,方差为4,则对于样本13x -,23x -,33x -,⋅⋅⋅,3n x -,下列结论正确的是( )A .平均数为10,方差为2B .众数不变,方差为4C .平均数为7,方差为2D .中位数变小,方差不变2.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:A .25,25B .24.5,25C .25,24.5D .24.5,24.53.某天7名学生在进入校门时测得体温(单位℃)分别为:36.5,36.7,36.4,36.3,36.4,36.2,36.3,对这组数据描述正确的是( )A .众数是36.4B .中位数是36.3C .平均数是36.4D .方差是1.94.下表是某地援鄂医疗人员的年龄分布A .众数、中位数B .众数、方差C .平均数、方差D .平均数、中位数5.抽样调查了某校30位女生所穿鞋子的尺码,数据如下表A .33B .34C .35D .366.某果园随机从甲、乙、丙、丁四个品种的苹果树中各采摘了15棵,产量的平均数x (单位:千克)及方差2s 如下表所示:)A .甲B .乙C .丙D .丁7.环保小组抽样调查了某社区10户家庭1周内使用环保方便袋的数量,结果为(单位:只):6,5,7,8,7,5,8,10,5,9.试估计该社区500户家庭1周内使用环保方便袋约为( ) A .2500只B .3000只C .3500只D .4000只8.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是509.某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如下:则这35名学生在校一周体育锻炼时间的中位数和众数分别为( ) A .6h ,6hB .6h ,15hC .6.5h ,6hD .6.5h ,15h10.在学校的一次年级数学统考中,八(1)的平均分为110 分,八(2)的平均分为90分,若两个班的总分相同,则两个班的平均分是( ) A .80分B .99分C .100分D .110分11.已知数据1x 、2x 、3x 、、100x 是龙岩市某企业普通职工的2019年的年收入,设这100个数据的平均数为a ,中位数为b ,方差为c ,如果再加上中国首富马化腾的年收入101x ,则在这101个数据中,a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变12.已知123,,x x x 的方差是1,数据12323,23,23x x x +++的方差是( ) A .1B .2C .4D .8二、填空题13.已知一组数据1,3,x ,x +2,6的平均数为4,则这组数据的众数为_____. 14.已知一组数据a ,b ,c 的方差为4,那么数据32a -,32b -,32c -的方差是_________.15.小明在“生活劳动技能大赛之今天我当厨”项目比赛中,六位评委给他的分数如下表:这组分数的中位数是__________,众数是___________. 16.数据-3、-1、0、4、5的方差是_________.17.某班一组七名同学的毕业升学体育成绩(满分30分)依次为25,23,25,23,27,27,25.这组数据的方差是_______.18.(1)、(2)两个班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表所示,则成绩较稳定的班级是___________班.班级参赛人数平均数方差(1)508582(2)508512619.某班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲队789710109101010乙队10879810109109已知甲队成绩的方差是1.4,则成绩较为整齐的是__________队.20.一组数据2,4,8,5,4的中位数是a,则a的值是____.三、解答题21.某学校倡导全校1200名学生进行经典诗词背诵活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之后,随机抽取部分学生调查“一周诗词背诵数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词背诵数量”,绘制成统计表:一周诗词背诵数量3首4首5首6首7首8首人数101015☆2520(1)求本次调查抽取的学生人数,并补全上面的条形统计图;(2)活动启动之初学生“一周诗词背诵数量”的中位数是__________首;(3)估计大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了多少人?22.某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)a _______,并写出该扇形所对圆心角的度数为______,请补全条形统计图.(2)在这次抽样调查中,众数为________,中位数为_________.(3)如果该县共有八年级学生2500人,请你估计“活动时间不少于7天”的学生人数大约有多少人?23.20位同学暑假参加义工活动的天数的统计如下:天数(天)02356810人数1248221位同学暑期参加义工活动的天数的众数是天,极差是天;(2)中位数是天;(3)若小明同学把天数中的数据“8”看成了“7”,那么中位数、众数、方差,极差四个指标中受影响的是.24.为了解学生掌握垃圾分类知识的情况,某学校举行了一次“垃圾分类”的知小测试,现随机抽取20名学生的测试成绩(满分10分,学生成绩均为整数)进行整理,绘制成统计图.根据以上信息,解答下列问题:(1)请直接写出该组数据的中位数分,众数分,并计算这组数据的平均数;(2)你认为(1)中的三个统计量,更能反映学生测试成绩的“平均水平”;(3)该校共2000名学生参加了本次测试,试估计参加此次测试成绩不低于“平均水平”的学生人数约有多少人?25.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为了让老师们更好地了解国家的宏观政策及具体措施,某学校领导组织全体教师利用“学习强国APP ”对相关知识进行学习并组织定时测试(总分为100分).现从该校中随机抽取20名教师的测试成绩进行分析,过程如下:收集数据20名教师的测试成绩如下(单位:分)76,83,71,100,81,100,82,88,95,90,100,86,89,93,86,100,96,100,92,90整理数据 请你按如下表格分组整理、描述样本数据,并把下列表格补充完整. 成绩(个) 060x ≤< 6070x ≤< 7080x ≤< 8090x ≤< 90100x ≤<等级 ABC D E 人数平均数 中位数 满分率91.9 25%(1)用样本中的统计量估计全校教师的测试成绩等级为 ;(2)若该校共有教师210人,请估计该校教师的测试成绩等级为D ,E 的总人数. 26.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用平均数、中位数、众数和方差的意义进行判断. 【详解】解:∵样本x 1,x 2,x 3,…,x n 的平均数为10,方差为4, ∴样本x 1﹣3,x 2﹣3,x 3﹣3,…,x n ﹣3 的平均数为12312333333nn x x x x x n x n n x x n+++⋯+⋯+++=-﹣﹣+﹣﹣ =7,原众数和中位数减小了3,方差为各数据偏离平均数的平方,各数都减小了3,平均数也减小了3,但偏离平均数的程度不变,故方差不变. 故选:D . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数.2.C解析:C 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、25.5, 数据25出现了五次最多为众数.24.5处在第6位为中位数.所以众数是25,中位数是24.5. 故选:C . 【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.C解析:C【分析】按照众数,中位数,平均数,方差的定义计算判断即可. 【详解】∵这组数据为36.5,36.7,36.4,36.3,36.4,36.2,36.3, ∴平均数0.10.300.100.20.136.47x ++-+--=+=36.4,∴选项C 正确;∵36.3,36.4都出现了2次, ∴数据的众数为36.3和36.4, ∴选项A 错误;∵按从小到大进行排序为36.2,36.3,36.3,36.4,36.4,36.5,36.7, ∴数据的中位数为36.4, ∴选项B 错误;∵方差为2222220.10.300.100.10.247175S ++++++==, ∴选项D 错误; 故选:C . 【点睛】本题考查了数据的集中趋势特征量的计算和离散度特征量的计算,熟记定义和公式是解题的关键.4.A解析:A 【分析】由频数分布表可知后两组的频数和为18,即可得知总人数,结合前两组的频数知出现次数最多的数据及中位数,进而可得答案. 【详解】解:由表可知,年龄为31岁与年龄为32岁的频数和为m +18−m =18, 则总人数为:15+20+18=53,故该组数据的众数为30岁,中位数为:30岁,即对于不同的m ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:A . 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.5.C解析:C 【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数. 【详解】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.35出现次数最多,故众数是35故选:C.【点睛】本题考查学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用.6.C解析:C【分析】先比较平均数得到丙和甲的产量较好,然后比较方差得到丙品种既高产又稳定.【详解】解:在四个品种中甲、丙的平均数大于乙、丁,且丙的方差小于甲的方差,∴丙品种的苹果树的产量高又稳定.故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.C解析:C【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答.【详解】解:110(6+5+7+8+7+5+8+10+5+9)×500=3500(只),故选:C.【点睛】本题考查的是通过样本去估计总体,求出样本平均数,再用样本平均数求总体是解题关键.8.B解析:B【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.9.A解析:A 【分析】直接利用众数和中位数的概念求解即可得到答案. 【详解】解:∵锻炼6h 的人人数最多, ∴这组数据的众数为6h , 又∵调查总人数为35人,中位数为第18个数据,即中位数为6h , 故选:A . 【点睛】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的概念.10.B解析:B 【分析】设一班总人数为m ,二班总人数为n ,总成绩为y ,根据已知条件列式即可; 【详解】设一班总人数为m ,二班总人数为n ,总成绩为y , 则110y m =,90y n =, ∴11090m n =,得到911m n =, ∴两个班的平均分9110901109018011999201111n n m nn m nn n n ⨯++====++. 故答案是B . 【点睛】本题主要考查了平均数的知识点,准确分析是解题的关键.11.B解析:B 【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x 201后,数据的变化特征,易得到答案. 【详解】解:∵数据x 1,x 2,x 3,…,x 200是龙岩市某企业普通职工的2019年的年收入, 而x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200, 故这201个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x 201比较大的影响,而更加离散,则方差变大 故选:B . 【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200也是解答本题的关键.12.C解析:C 【分析】根据平均数与方差的概念,求出数据2x 1+3,2x 2+3,2x 3+3的平均数与方差即可. 【详解】设数据1x ,2x ,3x 的平均数是x ,方差是2s , ∴()12313x x x x =++, ()()()2222123113s x x x x x x ⎡⎤=-+-+-=⎣⎦,∴数据21x +3,22x +3,23x +3的平均数为:()()()()12312311232323232333x x x x x x x x ⎡⎤=+++++=⨯+++=+⎣⎦', 方差为()()()222212312323232323233s x x x x x x ⎡⎤=+--++--++--⎣'⎦ ()()()222123143x x x x x x ⎡⎤=⨯-+-+-⎣⎦414=⨯=.故选:C . 【点睛】本题考查了求数据的平均数与方差的应用问题,灵活运算是解题的关键.二、填空题13.6【分析】根据题意可以求得x 的值从而可以求的这组数据的众数【详解】∵一组数据13xx+26的平均数是4∴解得x =4∴这组数据是13466∴这组数据的众数是6故答案为6【点睛】本题考查众数算术平均数解【分析】根据题意可以求得x 的值,从而可以求的这组数据的众数.【详解】∵一组数据1,3,x ,x +2,6的平均数是4, ∴132645x x +++++=, 解得,x =4, ∴这组数据是1,3,4,6,6,∴这组数据的众数是6,故答案为6.【点睛】本题考查众数、算术平均数,解答本题的关键是明确题意,利用众数的知识解答. 14.36【分析】根据方差的公式进行计算即可【详解】设甲组数据的平均数为则的平均数为∵∴故答案为:【点睛】本题考查了方差的计算关键是熟悉计算公式会将所求式子变形再整体代入解析:36【分析】根据方差的公式进行计算即可.【详解】设甲组数据a b c 、、的平均数为x ,则32a -,32b -,32c -的平均数为32x -, ∵(222211 [()())43S a x b x c x ⎤=-+-+-=⎦, ∴(222221[(3232)(3232)3232)3S a x b x c x ⎤=--++--++--+⎦ (2221 [(33)(33)33)3a x b x c x ⎤=-+-+-⎦ (2221 [9()9()9)3a x b x c x ⎤=-+-+-⎦ 49=⨯36=.故答案为:36.【点睛】本题考查了方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入. 15.90【分析】把所给出的数据按从小到大的顺序排列处于中间的数是中位数根据众数的意义知道在此组数据中出现次数最多的数就是该组数据的众数【详解】把此数据按从小到大的顺序排列为:808090909095;中解析:90把所给出的数据按从小到大的顺序排列,处于中间的数是中位数,根据众数的意义知道,在此组数据中出现次数最多的数就是该组数据的众数.【详解】把此数据按从小到大的顺序排列为:80,80,90,90,90,95;中间的数是:90,90,所以这组数据的中位数是90,因为在此组数据中出现次数最多的数是90,所以,该组数据的众数是90,故答案为:90,90.【点睛】此题主要考查了中位数与众数的意义及计算方法.16.2【分析】根据公式求出这组数据的平均数与方差【详解】这组数据的平均数是:方差是故答案为:92【点睛】本题考查了求数据的平均数与方差的问题解题时利用平均数与方差的公式进行计算即可解析:2.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:(3)(1)04515x -+-+++== 方差是2222221[(31)(11)(01)(41)(51)]9.25s =--+--+-+-+-=.故答案为:9.2.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可. 17.【分析】先求出这组数据的平均数再利用方差公式求解即可【详解】解:这组数据的平均数为:这组数据的方差为:故答案为:【点睛】本题考查的知识点是求数据的方差掌握方差的计算公式是解此题的关键 解析:167【分析】先求出这组数据的平均数,再利用方差公式求解即可.【详解】解:这组数据的平均数为:25232523272725257++++++=,这组数据的方差为:2223(2525)2(2325)2(2725)1677⨯-+⨯-+⨯-=.故答案为:167.【点睛】本题考查的知识点是求数据的方差,掌握方差的计算公式是解此题的关键.18.(1)【分析】根据方差的定义方差越小数据越稳定即可求解【详解】解:∵(1)(2)两个班举行数学知识竞赛参赛学生的竞赛得分的平均数相同S (1)班2=82<S(2)班2=126方差小的为(1)班所以本题解析:(1)【分析】根据方差的定义,方差越小数据越稳定即可求解.【详解】解:∵(1)、(2)两个班举行数学知识竞赛,参赛学生的竞赛得分的平均数相同,S(1)班2=82<S(2)班2=126,方差小的为(1)班,所以本题中成绩比较稳定的班级是(1)班.故答案为:(1).【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1 n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.乙【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差根据甲队与乙队的方差进行比较即可得答案【详解】甲队的平均数=(7+8+9+7+10+10+9+10+10+10)=9甲队的方差S甲2=解析:乙【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差,根据甲队与乙队的方差进行比较即可得答案.【详解】甲队的平均数=110(7+8+9+7+10+10+9+10+10+10)=9,甲队的方差S甲2=110[(7-9)2+(8-9)2+(9-9)2+……+(10-9)2]=1.4,乙队的平均数=110(10+8+7+9+8+10+10+9+10+9)=9,乙队的方差S乙2=110[(10-9)2+(8-9)2+(7-9)2+……+(9-9)2]=1,∵甲队的平均数=乙队的平均数,S甲2>S乙2,∴成绩较为整齐的是乙队,故答案为:乙【点睛】此题主要考查平均数与方差,方差是刻画波动大小的重要数据,方差越小,波动越小,稳定性也越好,反之也成立;熟知平均数与方差的求解公式及方差的性质是解题关键.20.4【分析】将数据重新排列再根据中位数的定义列式计算可得【详解】解:将数据重新排列为24458所以这组数据的中位数a=4故答案为:4【点睛】本题主要考查中位数将一组数据按照从小到大(或从大到小)的顺序解析:4【分析】将数据重新排列,再根据中位数的定义列式计算可得.【详解】解:将数据重新排列为2,4,4,5,8,所以这组数据的中位数a=4,故答案为:4.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.三、解答题21.(1)45,图见解析;(2)4.5首;(3)450人【分析】(1)根据5首的人数和在扇形统计图中所对圆心角的度数,可以求得本次抽取的学生人数,然后可以计算出4首的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到中位数;(3)根据统计图中的数据,可以计算出大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数.【详解】解:(1)20÷60360=120人,背诵4首的学生有:120×135360=45(人),补全的条形统计图如图所示;(2)活动启动之初学生“一周诗词背诵数量”的中位数是(4+5)÷2=4.5(3)☆=120-10-10-15-25-20=40人,1200×(402520161311120120++++-)=450(人)所以,大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了450人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)10%,36°;(2)5;6;(3)1000人【分析】(1)根据各部分所占的百分比的和等于1列式计算即可求出a,再用360°乘以所占的百分比求出所对圆心角的度数,然后用被抽查的学生人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)用众数和中位数的定义解答;(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【详解】解:(1)a=1-(40%+20%+25%+5%)=1-90%=10%,所对的圆心角度数=360°×10%=36°,被抽查的学生人数:240÷40%=600人,8天的人数:600×10%=60人,补全统计图如图所示:故答案为:10%,36°;(2)参加社会实践活动5天的人数最多,所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;故答案为:5;6;(3)2500×(25%+10%+5%)=2500×40%=1000(人).故“活动时间不少于7天”的学生人数大约有1000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的定义以及用样本估计总体的思想.23.(1)5,10;(2)5;(3)方差.【分析】(1)根据提供的数据直接判断或计算即可;(2)按照中位数的定义判断即可;(3)根据哪些量没变,说明哪个量受到影响即可.【详解】解:(1)由统计表可知,5天人数最多,故众数是5天;极差为:10-0=10(天);故答案为:5,10;(2)一共有20个数据,从小到大排列后,第10个数据是5天和第11个数据也是5天,它们的平均数就是中位数:5552+=(天);故答案为:5;(3)数据“8”看成了“7”,众数还是5天,中位数还是5天,极差还是10天,平均数会变小,随着方差也会变化;故答案为:方差.【点睛】本题考查了数据的分析,解题关键是理解众数、中位数、方差、极差的意义,准确进行计算.24.(1)7.5;8;7.5;(2)平均数(或中位数);(3)1000人【分析】(1)由中位数,众数,平均数的定义可求解;(2)平均数(或中位数)更能反映学生测试成绩的“平均水平”;(3)由总的学生数×样本中测试成绩不低于“平均水平”的学生的百分比,即可求解.【详解】解:(1)由题意可得:20名学生的测试成绩为:5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,9,9,10,10,10,∴中位数为782+=7.5, 众数为8, 平均数=5566667777888889910101020+++++++++++++++++++=7.5; 故答案为:7.5,8;(2)平均数(或中位数)更能反映学生测试成绩的“平均水平”,故答案为平均数(或中位数); (3)2000×52320++=1000(人), 答:估计参加此次测试成绩不低于“平均水平”的学生人数约有1000人.【点睛】本题考查了中位数,众数,平均数的定义,掌握中位数,众数,平均数的定义是本题的关键.25.整理数据:见解析;分析数据:见解析;(1)E ;(2)189人【分析】(1)先将数据排序,求出中位数,再完成表格,根据平均数与中位数作决策即可; (2)利用样本中D 级以上人数所占比例乘以该校教师人数计算即可.【详解】解:将数据排序得71,76,81,82,83,86,86,88,89,90 , 90,92,93, 95,96,100, 100, 100, 100, 100,根据中位数定义第10与11两数据都是90,为此中位数是90分,整理数据,补充表格如下:为E ,故答案为:E .(2)该校共有教师210人, 抽样20人中D 级以上的人数为18人,估计该校教师的测试成绩等级为D 级以上的人数为1821018920⨯=人. 【点睛】 本题考查数据统计,中位数,平均数,利用样本估计总体,掌握数据统计方法,中位数计算方法,平均数公式,会利用样本估计总体是解题关键.26.(1)抽取的学生测试成绩的平均数为7.5分;众数为8分;中位数为7.5分;(2)参加此次测试活动成绩合格的学生有540人.【分析】(1)横轴表示数据,纵轴表示权数,用加权平均数公式计算;权数最大的对应数据为众数;排序后,第10个,第11个数据的平均数为中位数;(2)计算样本的合格率,依此估计总体即可.【详解】(1)仔细观察条形图,知:抽取的学生测试成绩的平均数为:52647485921037.520⨯+⨯+⨯+⨯+⨯+⨯=(分); 抽取的学生测试成绩的众数为8分;第10个,第11个数据分别为7,8,故抽取的学生测试成绩的中位数为787.52+=分. (2)八年级抽取的学生有2人的成绩不合格,20260054020-∴⨯=(人), 即参加此次测试活动成绩合格的学生有540人.【点睛】本题考查了加权平均数,众数,中位数的计算,及其用样本估计总体的思想,灵活选择平均数的计算公式,熟记中位数计算的方法是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学数据分析基础测试题及答案解析(1)一、选择题1.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义依次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键. 2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()A.队员1 B.队员2 C.队员3 D.队员4【答案】B【解析】【分析】根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.故选B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.6.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)25++++++=,7故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.7.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是()A.20分,22分B.20分,18分C.20分,22分D.20分,20分【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】数据排列为18,20,20,20,22,23,25,则这组数据的众数为20,中位数为20.故选:D.【点睛】此题考查众数和中位数,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,众数与中位数分别是1.75,1.70.故选A.【点睛】本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.9.已知一组数据:6,2,8,x ,7,它们的平均数是6.则这组数据的中位数是( ) A .7 B .6C .5D .4【答案】A 【解析】分析:首先根据平均数为6求出x 的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x +7=6×5,解得:x =7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7. 故选A .点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同 D .数据A 的波动小一些【答案】B 【解析】试题解析:方差越小,波动越小.22,A B s s >Q数据B 的波动小一些. 故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是( )A .25,25B .24.5,25C .25,24.5D .24.5,24.5【答案】A 【解析】试题分析:根据众数和中位数的定义求解可得. 解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.12.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.13.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:课外名著阅读量(本)89101112学生人数33464关于这20名学生课外阅读名著的情况,下列说法错误的是( )A.中位数是10 B.平均数是10.25 C.众数是11 D.阅读量不低于10本的同学点70%【答案】A【解析】【分析】根据中位数、平均数、众数的定义解答即可.【详解】解:A、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是=10.5,故本选项错误;B 、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;C 、众数是11,此选项不符合题意;D 、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A . 【点睛】本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.14.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.15.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C 不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2] =15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.16.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.17.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间..的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【答案】A【解析】 【分析】根据中位数和众数的定义进行解答即可. 【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8. 【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.18.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .19.下列说法正确的是( ) A .对角线相等的四边形一定是矩形B .任意掷一枚质地均匀的硬币10次,一定有5次正面向上C .如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温36.136.236.336.436.536.6(℃)人数48810x2(人)A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.。

相关文档
最新文档