平行向量-相等向量和共线向量的区别和联系
高中数学向量知识点总结大全
一、向量的基本概念向量:既有大小又有方向的量叫做向量。
物理学中又叫做矢量,如力、速度、加速度、位移就是向量。
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。
向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)。
向量的表示方法:几何表示法、字母表示法。
模的概念:向量的大小(长度)称为向量的模。
记作:|ab|。
零向量:长度(模)为0的向量叫做零向量,记作0。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量或共线向量。
若向量a,b平行,记作a∥b。
规定0与任一向量平行。
相等向量:长度相等且方向相同的向量叫做相等向量。
向量a,b相等记作a=b。
零向量都相等。
任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段起点、终点位置无关。
二、向量的运算向量的加法:两个向量相加的结果是以这两个向量为邻边的平行四边形的对角线(注意起点和方向)。
也可以先作出其中一个向量,然后将另一个向量的起点平移到第一个向量的终点上,最后以第一个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种加法称为三角形法则。
向量的减法:两个向量相减的结果是将第一个向量的起点平移到第二个向量的终点上,然后以第二个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种减法称为三角形法则的逆运算。
向量的数乘:实数与向量的乘积是一个新的向量,其模等于原向量的模乘以实数的绝对值,其方向与原向量的方向相同或相反(取决于实数的正负)。
向量的点乘:两个向量的点乘结果是一个实数,等于这两个向量的模的乘积再乘以它们之间的夹角的余弦值。
如果两个向量的夹角为90度,则它们的点乘结果为0;如果两个向量的夹角为0度或180度,则它们的点乘结果分别为它们模的乘积的正值和负值。
向量的叉乘:两个三维向量的叉乘结果是一个新的三维向量,其模等于这两个向量的模的乘积再乘以它们之间的夹角的正弦值,其方向垂直于这两个向量所构成的平面,符合右手定则。
向量基本概念及坐标表示
向量基本概念及坐标表示1、向量:既有大小,又有方向的量.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.2、 (1)向量既有大小又有方向的量。
(2)向量的模一一有向线段的长度,|a|(3)单位向量|a o| 1, a o —|a|(4)零向量0 , |0| 0在此规定下向量可以在平面(或空间)平行移动而不改变3、共线向量(平行向量) 方向相同或相反的向量。
规定零向量与任意向量平行。
(5)相等的向量长度相等方向相同b // a (b 0) 存在唯一实数,使b aOA OB OC OA OB BA3.与向量 d (12,5)平行的单位向量为 ()12 A.占,5) 13 C( 12 5、十 / 12 5 C.(一,)或(,B.D ・( 12 513' 1312 513' 13 5、平面向量基本定理(向量的分解定理)e i , e 2是平面内的两个不共线向量,a 为该平面任一向量,则存在唯一实数对1、 2,使得a 1e i2e 2 , e i 、e 2叫做表示这一平面内所有向量的一组基底。
6向量的坐标表示i ,j 是一对互相垂直的单位向量,则有且只有一对实数 x ,y ,使得a x i y j ,称(x , y )为向量a 的坐标,记作:a x ,y ,即为向量的坐标 表示。
设 a x 1, y 1, b X 2, y 2贝 y a b x 1,y 1y 1, y 2 x1y 1, X 2 y 2aX" y 1X 1, y 1若A x 1,y 1,B x 2,y 2则 AB X 2 X 1,y Y 1练习题:1.将—[2(2 a 8b) 4(4 a12A. 2a bB.C. a b D .2.如图 1所示,向量OA,OB,C )C 的终点A, B ,C 在一条直线上,且nnOAp ,mu OBq ,O C r ,则以下等式中成立的是(A. r3 312q B.r p 2qc. r尹 2qD.2p2b )]化简成最简式为(2b ab a f图IuurACUUU 3CB ,设4. 已知向量a (2,3),b(1,2),若ma nb 与a 2b 共线,则m等于()n11A. 1B.2C.丄 D.-2225 •已知非零向量 u 和e 2不共线,欲使te i e 2和◎ t e ?共线,则实数t 的值为 _______ •6•平行四边形ABCD 中,M 为DC 中点,N 为BC 的中点•设AB a , AD b ,,BJUD则MN _____________ (用a , b 表示).7. 已知向量 a (3,1),b (1,3),c (k,7),若(a c)//b,则k _____________ 8. 设向量a (1,2),b (2,3),若向量 a b 与向量C (4,7)共线,则 = ______9. 两个非零向量厲,e 2不共线.ujuuur ium,「「八(1) 若 AB ee 2,BC2e 1 8e 2,CD3(©e 2),求证:A B ,D 三点共线;(2) 求实数k ,使k e 1 e 2与2e k e :共线.uuu10 .已知Y ABCD 的对角线AC 和BD 相交于O ,且OAUUU UUU UULTUUUb 分别表示向量OC ,OD ,DC ,BC .错误!未找到引用源若A 、B 、D 三点共线,求k 的值.11、设0(2是两个不共线的向量,AB 2ei ke 2 ,CB e 13e 2, CD 2e 1e 2,uuua ,OBb ,用向量a ,12.已知向量 a ( 3,2),b (2,1),c (3, 1),t R.若a tb与c共线,求实数t.。
向量的概念及表示
向量的概念及表示一、知识、能力聚焦1、向量的概念(1)向量:既有方向,又有大小的量叫做向量。
【注:和量与数量的区别,表示向量的大小称为向量的模(也就是用来表示向量的有向线段的长度)】 向量 的大小称为向量的长度(或称为模),记作│ │。
(2)零向量:长度为零的向量叫做零向量,记作 。
(3)单位向量:长度等于1的向量叫单位向量。
(5)相等向量:长度相等且方向相同的两个向量叫做相等向量,若向量 和 相等,则记作 = 。
2、共线向量共线向量(也称平行向量),应注意两个向量共线但不一定相等,而两个向量相等是一定共线。
平面几何的三点共线与两个向量共线不同:首先共线向量不考虑起点,其次明确共线向量分为如下五种情况:(1)方向相同、模相等;(2)方向相同、模不等。
(3)方向相反、模相等;(4)方向相反、模不等;(5)零向量和任何向量共线。
例:把平面一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是什么? 解:因任一单位向量的始点移到同一点O 时,终点一定落在以O 为圆心,半径为1的单位圆上,反过来,单位圆上的任一点P 都对应一个单位向量 ,故构成的图形为一单位圆。
(4)平行向量:方向相同或相反的非零向量叫做平行向量。
例: 向量 、 平行,记作// 。
向量 、 、 平行,记作// // 。
(6)零向量与任一向量平行(7)相反向量:与向量 长度相等且方向相反的向量叫做 的相反向量。
记为- , 与- 互为相反向量,且规定:零向量的相反向仍是零向量。
例: 在平行四边形ABCD 中,向量 和向量 方向相同O AB a b a b OP a b a b a b c a b c a a a a a AB DC AB且长度相等; = 。
向量 和向量 长度相等但方向相反,是一对相反向量; =- 。
3、向量的表示 几何法:用有向线段来表示,即用有向线段的起点、终点来表示,如 用| |表示长度。
例: 如图,四边形ABCD 与ABDE 都是平行四边形;①用有向线段表示与向量 相等的向量; ②用有向线段表示与向量 共线的向量;解:①与 相等的向量是 、 、 。
向量的概念
×
(5)平行的向量,若起点不同,则终点一定不同 ×
(6)共线向量A一定在B同一直线上;
C×
知识应用
例1、如图设O是正六边形ABCDEF的中心,写出图中 与向量OA相等的向量。
例2.在如图所示的向量 a ,b ,c ,d ,e 中(小
正方形的边长为1),是否存在:
(1)共线向量?
(2)相反向量?
(3)相等向量?
它们的终点构成的集合是什么图形?
(2) 代数表示:
A(起点)
i)用有向线段的起点与终点字母来表示;
如:上述向量可表示为 AB
ii)用小写字母来表示;
如:a,b, c……
思考:向量 AB或 a 的长度(即大小)如何用符号来
表示?
有向线段的概念
一般地,在线段AB的两个端点 中,规定一个顺序,假设A为起
B(终点)
点,B为终点,我们就说线段
目标
位移是有大小和方向的量
质量
力
速度
(1)
(2)
(3)
问题:请指出与位移具有同样特征的量。
力、速度也是有大小和方向的量
知识建构
一.向量的概念及表示 1.定义:既有大小又有方向的量称为向量 2.表示方法: 1)几何方法——如何画
2)代数方法——如何写
3.向量的长度:即向量的大小(或称为模)
记作 | AB | 或 | a |
d
规定A :零向量和零D向量相等。
3.相反向量:长度相等且方向相反a 的向量叫做
思考:单位B 向相量反和单向位量向。C量记一作定:相 a 等 吗b? c
AB DC
c
d
a
b c
d
知识建构
4.共线向量与平行向量的关系
向量复习知识归纳
向量 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+ ;②结合律:()()a b c a b c ++=++ ;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ的方向与a的方向相反;当0λ=时,0a λ=.1、实数与向量的积的运算律 : 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 2、向量的数量积的运算律:(1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 3、平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.4、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .5、向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.b aCBAa b C -=A -AB =B6、 a 与b 的数量积(或内积) : a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.性质:①0a b a b ⊥⇔⋅= .②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时, a b a b ⋅=- ;22a a a a ⋅== 或a a a =⋅.③a b a b ⋅≤ .7、平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.8、两向量的夹角公式121222221122cos x x y y x y x y θ+=+⋅+(a =11(,)x y ,b =22(,)x y ).9、平面两点间的距离公式,A B d =||AB AB AB =⋅222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 11、线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 12、三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 13、点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .14、“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 15、 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.练习题 1、(2012·浙江)设a ,b 是两个非零向量( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |2、(2012·辽宁)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .|a |=|b |D .a +b =a -b3、已知△ABC 的三个顶点A 、B 、C 及其所在平面内一点P ,满足PA +PB +PC =AB ,则点P 与△ABC 的关系为:A. P 在△ABC 内部B. P 在△ABC 外部C. P 在边AB 所在的直线上D. P 是AC 边的一个三等分点4、已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,5、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00∙≥∙.则( )A 、090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =6、在四边形ABCD 中,(1,2)AC = ,(4,2)BD =-,则四边形的面积为( )A .5B .25C .5D .107、在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集{}|,1,,P OP OA OB R λμλμλμ=++≤∈所表示的区域的面积是( )A .22B .23C .42D .438、已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是 ( )A .2-1,2+1⎡⎤⎣⎦,B .2-1,2+2⎡⎤⎣⎦,C .1,2+1⎡⎤⎣⎦,D .1,2+2⎡⎤⎣⎦,9、已知向量()()1,1,2,2m n λλ=+=+ ,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .-110、已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB 在CD方向上的投影为( )A .322 B .3152 C .322-D .3152-11、已知平面上不共线的四点O ,A ,B ,C .若OA +2OC =3OB ,则|BC||AB |的值为( ) A.12 B.13 C.14D.1612、已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =_______13、已知向量AB 与AC的夹角为120°,且3AB = ,2AC = ,若AP AB AC λ=+ ,且AP BC ⊥,则实数λ的值为__________.14、已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____. 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R),则λμ=_________.15、设21,e e 为单位向量,非零向量R y x e y e x b ∈+=,,21,若21,e e 的夹角为6π,则||||b x 的最大值等于________bca16、设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为__________17、在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________18、设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 __________19、在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB的长为_____20、△ABC 中,∠C =90°,且CA =CB =3,点M 满足BM =2AM ,则CM ·CA =________.21、设OA =(1,-2),OB =(a ,-1),OC=(-b,0),a >0,b >0,O 为坐标原点,若A 、B 、C 三点共线,则1a +2b的最小值是________22、P ={a |a =(-1,1)+m (1,2),m ∈R},Q ={b |b =(1,-2)+n (2,3),n ∈R}是两个向量集合,则P ∩Q 等于________23、如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,AB=a ,AC =b .(1)用a ,b 表示向量AD ,AE ,AF ,BE ,BF;(2)求证:B ,E ,F 三点共线.24、已知向量a =(cos23x ,sin 23x ),b =(cos 2x ,—sin 2x ),且x ∈[2π,23π].(1) 求b a ⋅及|a +b |;(II )求函数f(x)=b a ⋅-b a +的最小值。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
向量的概念及表示(1)
| 0 | 0
单位向量: 长度为1个单位长度的向量.
3.向量之间的关系:
平行向量 : 方向相同或相反的 非零向量.
a
b c
记作:a // b // c
我们规定, 零向量 与任一向量 平行. 共线向量 : 任一组平行向量 都可平移到同一直线上. 即平行向量 也叫做共线向量 .
(注:若 ,则与起点位置无关.) 记作: a b a b
猫能捉住老鼠吗?
老鼠由A向东北方向以每秒6米的 速度逃窜,而猫由B向东南方向每 秒10米的速度追. 问猫能否抓到 老鼠?
速度是既有大小又有方向的
量!
学习目标
1 了解向量的实际背景,会用字母表示向量,理解 向量的几何表示. 2 理解零向量,单位向量,平行向量,共线向量,相 等向量等概念.
自学指导
二.向量的表示
1. 几何法:用有向线段表示 A B 其中有向线段的长度表示向量的大小,
箭头所指的方向表示向量的方向
2. 代数法:用字母表示
AB,
或 aBiblioteka 三. 向量的有关概念1.向量的长度(模): 向量
AB 的大小
记作:| AB |
2.两个基本向量:
零向量: 长度为零的向量(方向任意).
记作: 0,
1 位移和距离有什么不同? 2 什么是向量?向量的表示方法有哪些? 3 零向量,单位向量,平行向量,共线向量,相等向量 是怎样定义的?
自主检测
P 59
练习
1
2
问题1.判断下列命题的真假 : ( 假 )(1)两个非零向量长度相等 则这两个向量相等. , ( 假 )(2)若两个向量共线, 则这两个向量相等. ( 真 )(3)若两个向量相等, 则这两个向量平行. ( 真 )(4)零向量与任一个非零向 量共线. ( 假 )(5)任意两个单位向量相等 . ( 假 )(6)若两个向量方向相同 且有相同的起点, 则这 , 两个向量的终点相同 . ( 真 )(7 )若两个向量相等, 且有相同的起点, 则这两个 向量的终点相同.
共线向量的定义是什么
简析高校经济责任审计风险的成因及防控对策2022年7月,国家在综合实践经验的基础上,为适应十八大以来形势发展的需要,中央纪委机关牵头七部门联合发布《党政主要领导干部和国有企业领导人员经济责任审计规定实施细则》,此举表明我国经济责任审计工作推进到了新的阶段。
新发布的细则明确并完善了经济责任审计的对象、内容、评价、报告、结果运用和组织领导与实施等内容。
这为高校经济责任审计工作指明了方向,也对高校有关领导者和审计人员提高审计质量、防控审计风险提出了新的要求。
一、高校经济责任审计风险的特点高校经济责任审计风险,是指高校审计人员在实施审计行为的过程中,基于各类因素影响而漏判或者误判了责任人应负的责任,发表了与真实状况不一致的审计评价,致使被审计方产生损失,并引起审计部门及人员承担相应责任的可能性。
该风险具有如下几个特点:一是客观性。
在政策变化、业务复杂、相关责任人道德水平等因素的影响下,容易产生审计结果与事实不相符的状况。
虽然有的风险没有造成十分严重的后果,或者审计人员尚未发生实际的损失,但是风险总是存在于审计活动之中。
因此,相关人员易于了解并防控审计风险,也往往能于时空制约下控制风险滋生及发展的条件,但对彻底消除风险却无能为力。
二是不确定性。
审计风险来自于客观因素抑或审计人员的主观认识。
风险发生的环节、所属的性质、产生的后果和影响在审计之前较难判断。
同时,由于高校经济责任范围的广泛性,当前的审计方法无法实现全方位覆盖,这也加大了风险的偶然性与不确定性。
三是敏感性。
若经济责任审计评价无法真实反映客观实际,不但会对经济责任人所在部门或单位的决策造成影响,也会限制责任人的任用,甚至导致湮灭审计信誉,降低群众信任度。
因而,该类误判所导致的后果比其他类型审计更严重,人们所能接受的误差也小得多,审计风险更高。
四是可控性。
审计风险的客观性增加了经济责任审计的难度,但是经过经验积累与主观努力,随着法规、制度的完善,利用改进的审计手段,能够实现把审计风险控制在合理范围内,最大限度减少失误。
2.1.3相等向量与共线向量
(3)与零向量相等的向量是什么向量? 零向量 与零向量相等的向量是什么向量?
× 不相等的向量一定不平行. (2)不相等的向量一定不平行. 不一定 ×
(1)平行向量的方向一定相同. 不一定 平行向量的方向一定相同.
模相等且方向相同
(7)共线向量一定在同一直线上. 不一定 共线向量一定在同一直线上.
×
是正六边形ABCDEF的中 例2.如图,设O是正六边形 .如图, 是正六边形 的中 OB OC 心, 分别写出图中与向量OA 、 、 相 等的向量。
向量的概念; 向量的概念; 本 节 内 容 向量的表示方法; 向量的表示方法; 表示方法 向量的模 向量的模, 零向量、单位向量 零向量、单位向量; 平行向量、共线向量、相等向量。 平行向量、共线向量、相等向量。
作业: 作业: P77 A组3、5 组 、 作业本
D
)
3、判断下列命题是否正 确 (1 ×)两个向量相等,则它们 的起点相同,终点相同 ; (2 ×)若 | a |=| b |, 则a = b; ×)若 AB = DC,则四边形 ABCD 是平行四边形 ; (3 ( 4)平行四边形 ABCD 中,一定有 AB = DC ; √ (5)若a = b, b = c, 则a = c; √
b
a c
C O
B A
a = OA, b = OB, c = OC
任一组平行向量都可以移动到同一直线上, 任一组平行向量都可以移动到同一直线上, 因此,平行向量也叫做共线向量 因此,平行向量也叫做共线向量
向量的平行、共线与平面几何中线段的平行、 向量的平行、共线与平面几何中线段的平行、共 线是不同的概念,平行向量(共线向量) 线是不同的概念,平行向量(共线向量)对应的 有向线段 既可以平行也可以共线 .
高中数学平面向量知识点总结及常见题型
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
向量的概念 课件 高中数学人教A版(2019)必修第二册
且|
的区别及联系:0是一个实数, 是一个向量,并
|=0,书写时 0 表示零向量,一定不能忘记上面的箭头.
②单位向量有无数个,它们大小相等,但是方向不一定相同.
③在平面内,将表示所有单位向量的有向线段的起点平移到
同一点,则它们的终点就会构成一个半径为1的圆.
牛刀小试
问题:“向量就是有向线段,有向线段就是向量”的说法对吗?
定的,而向量是可以自由移动的;向量可以用有向线段表示,但并不能
说向量就是有向线段
3.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一
条直线上.当然,同一直线上的向量也是平行向量
4.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,
单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一
个单位圆
得正确选项.
测验
【例2】(2020·全国高一专题练习)某人从A点出发向东走了5米到达B点,然后改
变方向沿东北方向走了10 2 米到达C点,到达C点后又改变方向向西走了10米到达
D点.
(1)作出向量AB,BC,CD ;
(2)求AD 的模.
(1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量
(速度为10海里/小时).如果只是给出指令:
“由A地航行15 海里”,小船能否到达B地?
• 如果不指明“向东南方向”航行,小船不一定到达B地
• 给出指令:“向东南方向航行”呢?
• 方向和距离缺一不可
新知探究
(1)向量的实际背景与概念
• 物理中我们学习了位移、速度、力等既有大小、又有方向的量,
在物理中被称为“矢量”,
B.②④⑥是数量,①③⑤是向量
第01讲 空间向量与立体几何-2023年高二数学(人教A版2019选择性必修第一册)(原卷版)
第01讲 空间向量与立体几何知识点1 空间向量的有关概念1.在空间,把具有方向和大小的量叫做空间向量,空间向量的大小叫做空间向量的长度或模.注:数学中讨论的向量与向量的起点无关,只与大小和方向有关,只要不改变大小和方向,空间向量可在空间内任意平移,故我们称之为自由向量。
2. 表示法:(1)几何表示法:空间向量用有向线段表示,有向线段的长度表示空间向量的模(2)字母表示法:用字母表示,若向量a 的起点是A ,终点是B ,则a 也可记作AB →,其模记为|a |或|AB →|. 3.几类特殊的空间向量 名称 定义表示法 零向量 规定长度为0的向量叫做零向量 记为0 单位模为1的向量叫做单位向量|a|=1或【考点目录】【知识梳理】知识点2 空间向量的线性运算(一)空间向量的加减运算共起点的两边为邻边作平行四边形,共起点对角线为和共起点,连终点,方向指向被减向量a+b=b+aλa的长度是a的长度的|λ|倍μa)=(λμ)a知识点3 共线向量与共面向量1.共线向量与共面向量的区别 //0a b b ≠()使得a b λ=;(2)存在唯一实数λ,使得0a b b λ≠=(),则//a b .注意:0b ≠不可丢掉,否则实数就不唯一.―→―→―→1、空间一点实数对→数对(,,)x y z ,使得对空间中任意一点(OP xOA yOB zOC x+=++其中共面向量定理的用途:⇒λ利用向量的线性运算即可,但一定要注意所表示的向量必须有一个公共点。
2.直线l 的方向向量如图O ∥l ,在直线l 上取非零向量a ,设P 为l 上的任意一点,则∥λ∥R 使得OP ―→=λa. 定义:把与a 平行的非零向量称为直线l 的方向向量.知识点4 空间向量的夹角定义如图,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∥AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉范围 0≤〈a ,b 〉≤π向量垂直 如果〈a ,b 〉=π2,那么向量a ,b 互相垂直,记作a ∥b知识点5 空间向量的数量积运算1.(1)空间向量的数量积已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |·cos 〈a ,b 〉.零向量与任意向量的数量积为0,即0·a =0.注:a b ⋅等于a 的长度a 与b 在a 的方向上的投影b cos a,b 〈〉的乘积.(2)运算律数乘向量与数量积的结合律(λa )·b =λ(a ·b ),λ∥R交换律 a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·c2.投影向量及直线与平面所成的角(1)如图∥,在空间,向量a 向向量b 投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a 向直线l 投影(如图∥).(2)如图∥,向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′——→,向量A ′B ′——→称为向量a 在平面β上的投影向量.这时,向量a ,A ′B ′——→的夹角就是向量a 所在直线与平面β所成的角.知识点6 空间向量数量积运算律及性质1、数量乘积的运算律:()1a b b a ⋅=⋅; ()2()()()a b a b a b λλλ⋅=⋅=⋅; ()3()a b c a c b c +⋅=⋅+⋅.2、若a ,b 为非零向量,e 为单位向量,则有()1e a a e a cos a,e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅;()4a b cos a,b a b ⋅〈〉=;()5a b a b ⋅≤.知识点7 空间向量基本定理1.定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =xa+yb+zc .其中{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.如果p =xa+yb+zc ,则称xa+yb+zc 为p 在基底{a ,b ,c }下的分解式. 2.空间向量的正交分解(1)单位正交基底:空间的一个基底中的三个基向量两两垂直,且长度都为1,常用{i ,j ,k }表示. (2)正交分解:由空间向量基本定理可知,对空间中的任意向量a ,均可以分解为三个向量xi ,yj ,zk ,使a =xi +yj +zk .像这样,把一个空间向量分解为三个两两垂直的向量,叫做把空间向量正交分解.知识点8 空间向量基本定理应用1、证明平行、共面问题(1)对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb .(2) 如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =xa +yb .(3)直线平行和点共线都可以转化为向量共线问题;点线共面可以转化为向量共面问题.2、求夹角、证明垂直问题 (1)θ为a ,b 的夹角,则cos θ=a ·b|a ||b |. (2)若a ,b 是非零向量,则a ∥b ∥a ·b =0. 3、求距离(长度)问题 ||a =a ·a ( ||AB →=AB →·AB→ ).知识点9 空间直角坐标系1.空间直角坐标系(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{i ,j ,k },以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两条坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分. 注意点:(1)基向量:|i |=|j |=|k |=1,i ·j =i ·k =j ·k =0.(2)画空间直角坐标系Oxyz 时,一般使∥xOy =135°(或45°),∥yOz =90°.(3)建立的坐标系均为右手直角坐标系.在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 2.空间一点的坐标、向量的坐标 (1)空间点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=xi +yj +zk .在单位正交基底{i ,j ,k }下与向量OA →对应的有序实数组(x ,y ,z ),叫做点A 在空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.注:空间直角坐标系中坐标轴、坐标平面上的点的坐标特点(2)空间点的对称问题∥空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.∥对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论. (3)空间向量的坐标向量的坐标:在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a ,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =xi +yj +zk .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,可简记作a =(x ,y ,z ).知识点10 空间向量的坐标运算1.空间向量的坐标运算法则设向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),λ∥R ,那么(1)空间向量运算的坐标表示与平面向量的坐标表示完全一致.(2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=(x 2-x 1,y 2-y 1,z 2-z 1).即一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.(3)运用公式可以简化运算:(a ±b )2=a 2±2a ·b +b 2;(a +b )·(a -b )=a 2-b 2. (4)向量线性运算的结果仍是向量,用坐标表示;数量积的结果为数量.2.空间向量相关结论的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则有(1)平行关系:当b ≠0时,a ∥b ∥a =λb ∥a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∥R); (2)垂直关系:a ∥b ∥a ·b =0∥a 1b 1+a 2b 2+a 3b 3=0.(3)|a|=a ·a =a 21+a 22+a 23.(4)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 3.空间两点间的距离公式在空间直角坐标系中,设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2). (1)P 1P 2――→=(x 2-x 1,y 2-y 1,z 2-z 1).(2)P 1P 2=|P 1P 2――→|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2. (3)若O (0,0,0),P (x ,y ,z ),则|OP →|=x 2+y 2+z 2.知识点11 空间中点、直线和平面的向量表示1.空间直线的向量表示式设A 是直线上一点,a 是直线l 的方向向量,在直线l 上取AB →=a ,设P 是直线l 上任意一点, (1)点P 在直线l 上的充要条件是存在实数t ,使AP →=ta ,即AP →=tAB →.(2)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t .使OP →=OA →+ta . (3)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+tAB →.2.空间平面的向量表示式∥如图,设两条直线相交于点O ,它们的方向向量分别为a 和b ,P 为平面α内任意一点,由平面向量基本定理可知,存在唯一的有序实数对(x ,y ),使得OP →=xa +yb .∥如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP →=OA →+xAB →+yAC →.我们把这个式子称为空间平面ABC 的向量表示式.∥由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.如图,直线l ∥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合{P |a ·AP →=0}.知识点12 空间平行、垂直关系的向量表示知识点13 空间距离及向量求法设u 为直线l 的单位方向向量,A ∥l ,P ∉l ,AP―→=a ,向量AP ―→在直线l 上的投影向量为AQ ―→(AQ ―→=(a ·u )u .), 则PQ =|AP ―→|2-|AQ ―→|2=a 2-a ·u2―→知识点14 空间角及向量求法成锐角的余角.两平面的夹角平面α与平面β相交,形成四个二面角,把不大于π2的二面角称为这两个平面的夹角.设平面α与平面β的夹角为θ,两平面α,β的法向量分别为n 1,n 2,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|(1)两个平面的夹角的范围是⎣⎡⎦⎤0,π2(2)两平面的夹角是两法向量的夹角或其补角.考点一 空间向量及其线性运算1.(2022·重庆·高二期末)在长方体1111ABCD A B C D -中,1BA BC CC ++=( ) A .11D BB .1D BC .1DBD .1BD2.(2022·湖南益阳·高二期末)在四面体OABC 中,,,,OA a OB b OC c M ===为OA 的中点,N 为棱BC 上的点,且2BN NC =,则MN =( )A .112233a b c -++B .112233a b c --C .121233a b c -++D .111222a b c -++3.(2022·陕西商洛·高二期末(理))在平行六面体1111ABCD A B C D -中,点P 在1A C 上,且1114A P AC =,若1AP xAA yAB zAD =++,则x y z ++=( )A .34B .1C .54D .744.(2022·福建师大附中高二期末)如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).【考点剖析】A .1122-++a b cB .1122a b c ++C .1122a b c --+D .1122a b c -+考点二 共线问题5.(2022·全国·高二期末)已知空间向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ) A .、、A B CB .BCD 、、C .A BD 、、D .A C D 、、6.(2022·山西吕梁·高二期末)在平行六面体1111ABCD A B C D -中,点P 在1A C 上,若1311444AP AA AB AD =++,则11A PAC =( ) A .13B .34C .14D .237.(2022·上海松江·高二期末)设O ABC -是正三棱锥,1G 是ABC 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++,则(),,x y z 为( )A .111,,444⎛⎫ ⎪⎝⎭B .333,,444⎛⎫ ⎪⎝⎭C .111,,333⎛⎫ ⎪⎝⎭D .222,,333⎛⎫ ⎪⎝⎭考点三 共面问题8.【多选】(2022·广东江门·高二期末)若{,,}a b c 构成空间的一个基底,则下列向量共面的是( ) A .,,a b a a b -+ B .,,b c b b c -+ C .,,a b c a b -+D .,,a b a b c c +++9.(2022·山东·巨野县第一中学高二期末)对于空间一点O 和不共线三点A ,B ,C ,且有623OP OA OB OC =++,则( )A .O ,A ,B ,C 四点共面 B .P ,A ,B ,C 四点共面 C .O ,P ,B ,C 四点共面D .O ,P ,A ,B ,C 五点共面10.(2022·上海市建平中学高二期末)已知A 、B 、C 、D 、E 是空间中的五个点,其中点A 、B 、C 不共线,则“DE 平面ABC ”是“存在实数x 、y ,使得DE x AB y AC =+的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件11.(2022·福建厦门·高二期末)已知{},,a b c 是空间的一个基底,AB a b =+,AC a c =+,AD b c λ=+,若,,,A B C D 四点共面.则实数λ的值为( )A .1-B .0C .1D .212.(2022·江西·临川一中高二期末(理))已知空间向量()2,1,a m =-,()1,1,2b =-,()1,2,2c t =-,若a ,b ,c 共面,则m +2t =( )A .-1B .0C .1D .-613.(2022·全国·高二期末)已知(2,1,3)PA =-,(1,2,3)PB =-,(7,6,)PC λ=,若P ,A ,B ,C 四点共面,则λ=___________.考点四 空间向量基本定理14.(2022·重庆长寿·高二期末)如图,在斜棱柱1111ABCD A B C D -中,AC 与BD 的交点为点M ,AB a =,AD b =,1AA c =,则1MC =( )A .1122a b c ++B .1122---a b cC .1122-++a b cD .1122a b c --+15.(2022·天津市第九十五中学益中学校高二期末)在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,若PA a =,PB b =,PC c =,则BE =( )A .131222a b c ++B .111222a b c --C .131222a b c -+D .131222a b c +-16.(2022·河南郑州·高二期末(理))已知三棱锥O —ABC ,点M ,N 分别为线段AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN 等于( )A .()12c a b -- B .()12b ac -- C .()12a cb -- D .()12c a b ++ 17.(2022·江苏无锡·高二期末)定义:设{}123,,a a a 是空间的一个基底,若向量123p xa ya za =++,则称有序实数组(),,x y z 为向量p 在基底{}123,,a a a 下的坐标.已知{},,a b c 是空间的单位正交基底,{},,2a b a b a c +-+是空间的另一个基底,若向量p 在基底{},,2a b a b a c +-+下的坐标为()1,2,3.(1)求向量p 在基底{},,a b c 下的坐标; (2)求向量p 在基底{},,a b c 下的模.考点五 空间向量的数量积及其性质的应用18.(2022·广西钦州·高二期末(理))如图,正四棱柱是由四个棱长为1的小正方体组成的,AB 是它的一条侧棱,128,,P P P ⋯是它的上底面上其余的八个点,则集合{},1,2,,8i x x AB AP i =⋅=⋯的元素个数( )A .1B .2C .4D .819.(2022·福建省华安县第一中学高二期末)三棱锥A BCD -中,2AB AC AD ===,2BAD π∠=,3BAC π∠=,则AB CD ⋅=______.20.(2022·河南焦作·高二期末(理))已知在四面体ABCD 中,236AB AC AD ===,3BAC CAD DAB π∠=∠=∠=,则BC BD ⋅=______.21.(2022·河南新乡·高二期末(理))已知空间向量()0,1,2AB =-,2AC =,2,3AB AC π=,则AB BC ⋅=( )A .5B 5C .5D 522.(2022·北京昌平·高二期末)已知正三棱锥-P ABC 的底面ABC 的边长为2,M 是空间中任意一点,则()MA MB MC ⋅+的最小值为( )A .32-B .1-C .D .12-23.(2022·江苏省扬州市教育局高二期末)如图,平行六面体1111ABCD A B C D -的底面ABCD 是边长为1的正方形,且1160A AD A AB ∠=∠=︒,12AA =,则线段1AC 的长为( )AB C D .24.(2022·江苏宿迁·高二期末)四面体ABCD 中,2,90,2===∠=︒⋅=-AB AC AD BAD AB CD ,则BAC ∠=( )A .30︒B .45︒C .60︒D .90︒25.(2022·福建厦门·高二期末)在四面体OABC 中,OA OB OC ==,60AOB AOC ∠==︒,90BOC ∠=︒,则OB 与AC 所成角的大小为( ) A .30°B .60°C .120°D .150°26.(2022·全国·高二期末)已知()0,0,0O ,()1,2,3A ,()2,1,2B ,()1,1,2P ,点Q 在直线OP 上运动,当QA QB ⋅取最小值时,点Q 的坐标是______27.【多选】(2022·湖北黄冈·高二期末)棱长为2的正方体1111ABCD A B C D -的侧面11ABB A (含边界)内有一动点P ,则( )A .若1111,1B P mB B nB A m n =++=,则 1110B P B D ⋅= B .若11(01)A P A B λλ=<<,则110C P BD ⋅= C .若()11111111,22B P PA A E AC AD ==+,则 1123E B P A⋅=- D .若()1111112A E AC A D =+,则存在非零向量1B P 使111B P A E ⋅=-考点六 空间向量的运算的坐标表示(一)空间向量坐标的基本运算28.(2022·内蒙古乌兰察布·高二期末(理))已知向量()()2,1,3,1,1,2a b =-=-,则2a b +=( )A .B .()4,1,1-C .()5,1,4-D29.(2022·重庆九龙坡·高二期末)在空间直角坐标系中,若(1,1,0)A ,1(2,0,1)2AB =--,则点B 的坐标为( ) A .(3,1,﹣2)B .(-3,1,2)C .(-3,1,-2)D .(3,-1,2)30.(2022·福建宁德·高二期末)已知()1,2,3A ,()4,5,9B ,13AC AB =,则AC 的坐标为______. 31.(2020·陕西·绥德中学高二期末(理))若(1,1,0)a =,(1,0,2)b =- ,则与a b +同方向的单位向量是_______. 32.【多选】(2022·福建三明·高二期末)已知正方体1111ABCD A B C D -的棱长为2,建立如图所示的空间直角坐标系Dxyz ,则( )A .点1C 的坐标为(2,0,2)B .()12,2,2C A =--C .1BD 的中点坐标为(1,1,1) D .点1B 关于y 轴的对称点为(-2,2,-2)(二)空间向量平行的坐标运算33.(2022·河南焦作·高二期末(理))已知向量()2,1,1a x =---,()2,,2b x x =-,且//a b ,则x 的值为( ) A .2-B .1C .1-或2D .1或2-34.(2022·浙江·杭州四中高二期末)已知向量()1,1,0a =-,()1,0,2b =,且ka b +与2a b -互相平行,则k =( ) A .114-B .15C .35D .12-35.(2022·北京昌平·高二期末)已知(,2,6)a x =-是直线1l 的方向向量,(1,,3)b y =-是直线2l 的方向向量.若直线12l l ∥,则x y +=________.36.(2022·重庆长寿·高二期末)已知()1,2,1u =是直线l 的方向向量,()2,,2v y =为平面α的法向量,若l α⊥,则y 的值为( )A .2-B .12-C .14D .4(三)空间向量垂直的坐标运算37.(2022·广东广州·高二期末)已知向量(1,3,2)a →=-,(2,,4)b m →=--,若a b →→⊥,则实数m 的值是___________. 38.【多选】(2022·福建福州·高二期末)已知空间向量()()1,,2,2,1,2a k k b =+-=-,且a b ⊥,则 ( ) A .6k =-B .6k =C .3b =D .9b =39.(2022·河北保定·高二期末)已知()2,1,3a =-,()1,2,1b =-,若()b a b λ⊥+,则实数λ=______.40.(2022·黑龙江·哈尔滨工业大学附属中学校高二期末(文))已知向量a →=(1,1,k),b →=(−1,0,−1),c →=(0,2,1),且向量2a b -与c 互相垂直,则k 的值是( ) A .1 B .2- C .3- D .4-(四)空间向量模长的坐标运算41.(2021·湖北·黄石市有色第一中学高二期末)若点(1,1,2)A -,(0,3,0)B ,(1,0,1)C -点D 在z 轴上,且AD BC ⊥则||=AD ______.42.(2022·天津市滨海新区塘沽第一中学高二期末)已知向量()2,1,3a →=-,()1,1,b x =-,若a →与b →垂直,则2a b →→+=___________.43.(2022·江苏·南京市大厂高级中学高二期末)向量(),1,1a x =,()1,,1b y =,()2,4,2c =-,且a c ⊥,//b c ,则2a b +=______.44.(2022·江苏·沭阳如东中学高二期末)已知(1,21,0),(3,,)a t t b t t =--=,则||b a -的最小值( )A B C .143D (五)空间向量夹角的坐标运算45.(2022·吉林辽源·高二期末)已知空间向量(3,22)a =-,b 是单位向量,1213a b -=,则向量a 与b 的夹角为______.46.(2022·全国·高二期末)若向量(1,,)a λλ=,(2,1,1)b =-,a ,b 夹角为钝角,则λ的取值范围是______. 47.(2022·江苏淮安·高二期末)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,P A ⊥平面ABCD ,PA AB =,M 为PC 上一动点,PM tPC =,若⊥BMD 为钝角,则实数t 可能为( )A .15B .14 C .13D .1248.(2022·广东江门·高二期末)若两个单位向量(,,0),(,0,)OA m n OB n p ==与向量(1,1,1)OC =的夹角都等于π4,则cos AOB ∠=__________.(六)空间向量投影的坐标运算49.(2022·上海金山·高二期末)在空间直角坐标系O xyz - 中,已知向量()1,0,3a =,则a 在x 轴上的投影向量为________.50.(2022·天津天津·高二期末)已知空间向量()1,0,1=a ,()2,1,2b =-,则向量a 在向量b 上的投影向量的坐标是__________.51.(2022·广东惠州·高二期末)已知()0,1,1a =,()0,1,0b =,则a 在b 上的投影向量为( )A .1B C .()0,1,0D .110,,22⎛⎫ ⎪⎝⎭考点七 空间向量在立体几何平行、垂直问题中的应用(一)平行问题52.(2022·黑龙江·哈尔滨工业大学附属中学校高二期末(文))如图,已知四棱锥V ABCD -的底面是矩形,VD ⊥平面,222,,,ABCD AB AD VD E F G ===分别是棱,,AB VC CD 的中点.(1)求证:EF ⊥平面VAD ;(2)求平面AVE 与平面VEG 夹角的大小.53.(2022·安徽滁州·高二期末)如图,在多面体ABCDEF 中,AD ⊥平面ABC ,AD //BE //CF ,且AD =1,BE =5,CF =3,⊥ABC 是边长为2的正三角形,G 是AB 的中点.(1)求证:CG //平面DEF ;(2)求二面角E DF A --的余弦值.(二)垂直问题54.(2022·安徽省宿州市第二中学高二期末)如图,边长为2的等边PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =M 为BC 的中点.(1)证明:AM PM ⊥;(2)求平面P AM 与平面ABCD 的夹角的大小;(3)求点D 到平面AMP 的距离.55.(2022·福建福州·高二期末)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.56.(2022·湖北恩施·高二期末)在三棱台ABC -A 1B 1C 1中,C 1C ⊥平面ABC ,AB ⊥BC ,且AB =BC =C 1C =2A 1B 1,O 为AC 的中点,P 是C 1C 的中点.(1)证明:平面A 1BC ⊥平面POB ;(2)求二面角B 1-A 1B -C 的余弦值.(三)综合问题57.(2022·浙江·杭州四中高二期末)已知平面β法向量为()3,1,5m =-,直线l 的方向向量为()6,2,10n =--,则( )A .l 与β平行B .l 与β垂直C .l 与β相交但不垂直D .以上都不对58.【多选】(2022·广东深圳·高二期末)直三棱柱111ABC A B C 中,1,,,,CA CB CA CB CC D E M ⊥==分别为11B C ,11,CC AB 的中点,点N 是棱AC 上一动点,则( )A .对于棱AC 上任意点N ,有1MN BC ⊥B .棱AC 上存在点N ,使得MN ⊥面1BC NC .对于棱AC 上任意点N ,有MN 面1A DED .棱AC 上存在点N ,使得MN DE ∥59.(2022·北京房山·高二期末)如图,正方体1111ABCD A B C D -中,P 是1A D 的中点,则下列说法正确的是( )A .直线PB 与直线1A D 垂直,直线PB ∥平面11B D CB .直线PB 与直线1DC 平行,直线PB ⊥平面11AC DC .直线PB 与直线AC 异面,直线PB ⊥平面11ADC BD .直线PB 与直线11B D 相交,直线PB ⊂平面1ABC考点八 空间角的计算60.(2022·广东江门·高二期末)在直三棱柱111ABC A B C 中,1190,,BCA D F ∠=︒分別是1111,A B AC 的中点,1BC CA CC ==,则1BD 与1AF 所成角的正弦值是( )A B .12 C D 61.(2022·贵州六盘水·高二期末(理))如图是正方体的平面展开图,则在这个正方体中:⊥BM 与ED 平行⊥BM 与CE 垂直⊥CE 与平面ABCD ⊥CN 与BM 所成角为60︒以上四个命题中,正确命题的序号是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥62.(2022·黑龙江·双鸭山一中高二期末)如图,在四棱锥S ABCD -中,底面ABCD 为等腰梯形,AD BC ∥,60DAB ∠=,SA ⊥面ABCD ,22SA AD BC ===,点F 为线段SD 中点(1)求证:CF 面SAB ;(2)求异面直线FC 与BD 所成角的大小.63.【多选】(2022·山东·巨野县第一中学高二期末)已知在直三棱柱111ABC A B C 中,底面是一个等腰直角三角形,且1AB BC BB ==,E 、F 、G 、M 分别为1111B C A B AB BC ,,,的中点.则( )A .1GB 与平面11ACC A B .1AB 与1BC 所成角为3π C .1//A M 平面EFBD .平面1AB C ⊥平面1A MC64.(2022·河南南阳·高二期末(理))如图,四边形ABEF 为直角梯形,//AF BE 且BE EF ⊥,CDFE 为正方形,且平面CEFD ⊥平面ABEF ,22EF AF BE ===,13AP AB =,23DQ DC =,则PQ =______,直线PQ 与平面ACD 所成角的正弦值为______.65.(2022·福建省仙游县度尾中学高二期末)如图,在三棱锥-P ABC 中,PAC △是正三角形,AC BC ⊥,2,AC BC PB ===D 是AB 的中点.(1)证明:AC PD ⊥;(2)求直线BC 与平面PAB 所成角的正弦值.66.(2022·甘肃·测试·编辑教研五高二期末(理))如图,在直三棱柱111ABC A B C 中,AC BC ⊥,2AC BC ==,13CC =,点D ,E 分别在棱1AA ,1CC 上,且1AD =,2CE =,M 为棱11A B 的中点.(1)求证:11C M B D ⊥;(2)求直线AB 与平面1DB E 所成角的正弦值.67.(2022·四川绵阳·高二期末(理))如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,//BC AD ,2PA AB BC ===,4=AD ,E 为棱PD 的中点,F 是线段PC 上一动点.(1)求证:平面PBC ⊥平面PAB ;(2)若直线BF 与平面ABCD F EA D --的余弦值.(三)平面与平面所成的角(二面角)68.(2022·青海玉树·高二期末(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA AB =,正方形ABCD 的对角线交于点O .(1)求证:BD ⊥平面P AC ;(2)求二面角P BD C --的余弦值.69.(2022·云南曲靖·高二期末)如图所示,AE ⊥平面ABCD ,四边形AEFB 为矩形,,BC AD BA AD ⊥,224AE AD AB BC ====.(1)求证:CF ⊥平面ADE ;(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值.70.(2022·广东中山·高二期末)如图,在四棱锥P ABCD -中,底面四边形ABCD 为直角梯形,π2DAB ∠=,π3ABC ∠=,22AB DC ==,PD PA =CD PD ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)求平面APB 和平面PBC 的夹角大小.71.(2022·浙江省杭州第九中学高二期末)如图,在三棱锥-P ABC 中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,BM BC λ=,且二面角M PA C --为30°,求λ的值.考点九 空间距离的计算(一)点到直线的距离72.(2022·吉林白山·高二期末)已知(3,1,0)A ,(5,2,2)B ,(2,0,3)C ,则点C 到直线AB 的距离为( )A .3BC .D73.(2022·安徽省宿州市第二中学高二期末)已知直线l 经过点()211A ,,,且()101n =,,是l 的方向向量,则点()432P ,,到l 的距离为( )A .12BCD 74.(2022·青海海东·高二期末(理))在正方体1111ABCD A B C D -中,6,3,,AB AB AE PF ==分别是线段11,A C BB 的中点,则点P 到直线EF 的距离是( )A B .125 C D .185(二)点到平面的距离、直线到平面的距离、平面到平面的距离75.(2022·上海市奉贤中学高二期末)经过原点的平面α的一个法向量为(3,1,2)n =,点A 坐标为(0,1,0),则点A 到平面α的距离为______.76.(2022·青海·海南藏族自治州高级中学高二期末(理))设正方体1111ABCD A B C D -的棱长为4,则点1C 到平面1A BD 的距离是( )A B C D77.(2022·江苏·南京师大附中高二期末)在矩形ABCD 中,2==AD AB E 是线段AD 的中点,将⊥ABE 沿BE 折起到⊥PBE 位置(如图),点F 是线段CP 的中点.(1)求证:DF ⊥平面PBE :(2)若二面角P BE C --的大小为2π,求点A 到平面PCD 的距离. 78.(2022·浙江省杭州第九中学高二期末)若两平行平面α、β分别经过坐标原点O 和点()2,1,1A ,且两平面的一个法向量为()1,0,1n =-,则两平面间的距离是______.(三)异面直线的距离79.(2022·福建·厦门外国语学校高二期末)如图,在正方体1111ABCD A B C D -中,AB =1,M ,N 分别是棱AB ,1CC 的中点,E 是BD 的中点,则异面直线1D M ,EN 间的距离为______.80.(2022·浙江宁波·高二期末)如图,正四棱锥P ABCD -的棱长均为2,点E 为侧棱PD 的中点.若点M ,N 分别为直线AB ,CE 上的动点,则MN 的最小值为______.81.(2022·全国·高二期末)在如图所示实验装置中,正方形框架的边长都是1,且平面ABCD ⊥平面ABEF ,活动弹子,M N 分别在正方形对角线AC ,BF 上移动,则MN 长度的最小值是___________.考点十 空间向量与立体几何的综合问题82.【多选】(2022·广东茂名·高二期末)(多选)如图,在长方体1111ABCD A B C D -中,11AA =,AB AD ==E 是侧面11AA D D 的中心,F 是底面ABCD 的中心,以A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则( )A .EF 是单位向量B .三棱锥1A BCD -外接球的表面积为7πC .直线EF 与1A CD .//EF 平面1A BC83.【多选】(2022·辽宁辽阳·高二期末)在空间直角坐标系O xyz -中,(1,0,0),(1,2,2),(0,0,2)---A B C ,则( )A .3⋅=OC ABB .点B 到平面AOC 的距离是2C .异面直线OC 与ABD .点O 到直线AB 84.【多选】(2022·江苏南通·高二期末)在平行六面体1111ABCD A B C D -中,1AB AD AA ==,1160A AB A AD DAB ∠∠∠===,点P 在线段1BC 上,则( ) A .1AP B C ⊥B .P 到11A B 和CD 的距离相等C .AP 与11A BD .AP 与平面ABCD所成角的正弦值最大为13 一、单选题 1.(2022·江苏扬州·高二期中)如图,在平行六面体1111ABCD A B C D -中,M 为AC 和BD 的交点,若AB a =,AD b =,1AA c =,则下列式子中与1MB 相等的是( )A .1122-+a b cB .1122a b c +- C .1122a b c -++ D .1122--+a b c 2.(2022·河北·石家庄二十三中高二阶段练习)设直线1l 、2l 的方向向量分别为a ,b ,能得到12l l ⊥的是( ) A .(1,2,2)a =-,(2,4,4)b =-B .(2,2,1)a =-,(3,2,10)b =-C .(1,0,0)a =,(3,0,0)b =-D .(2,3,5)a =-,(2,3,5)b =3.(2022·全国·高二专题练习)如图所示,空间四边形ABCD 中,点G 为BCD △的重心,E ,F ,H 分别为边CD ,AD 和BC 的中点,则1132AG BE CA ++的化简结果为( )A .AFB .AHC .AED .CF4.(2021·全国·高考真题(理))在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角【过关检测】为( )A .π2B .π3C .π4D .π65.(2022·湖北·武汉市第十七中学高二期中)在正四面体D ABC -中,点E 在棱AB 上,满足2AE EB =,点F 为线段AC 上的动点,则( )A .存在某个位置,使得DE BF ⊥B .存在某个位置,使得π4FDB ∠= C .存在某个位置,使得直线DE 与平面DBFD .存在某个位置,使得平面DEF 与平面DAC二、多选题 6.(2022·广东·普宁市华侨中学高二阶段练习)如图所示,平行六面体1111ABCD A B C D -中,11111A C B D O ⋂=,以顶点A 为端点的三条棱长都为1,且1160BAD DAA BAA ∠=∠=∠=︒,则下列结论正确的是( )A.1BD B .1//CO 平面1BDA C .1AA 与平面ABCDD .四棱锥1B ABCD -7.(2022·全国·高二专题练习)已知直三棱柱111ABC A B C 中,AB BC ⊥,1AB BC BB ==,O 为1A C 的中点.点P 满足1BP BC λ=,其中[0,1]λ∈,则( )A .对[0,1]λ∀∈时,都有11A P OB ⊥B .当13λ=时,直线1A P 与AB 所成的角是30° C .当12λ=时,直线1A P 与平面111A B CD .当12λ=时,直线1A P 与1OB 相交于一点Q ,则112PQ QA = 三、填空题8.(2022·重庆·四川外国语大学附属外国语学校高二阶段练习)在平行六面体1111ABCD A B C D -中,用向量AB ,AD ,1AA 表示1D B =______.9.(2022·江西南昌·高二期末(理))已知正四面体ABCD 中,E ,F 分别是线段BC ,AD 的中点,点G 是线段CD 上靠近D 的四等分点,则直线EF 与AG 所成角的余弦值为______.四、解答题10.(2022·全国·高二课时练习)如图,在三棱柱111ABC A B C 中,AB ⊥平面11BB C C ,122AB BB BC ===,1BC E 为11A C 的中点.(1)求证:1C B ⊥平面ABC ;(2)求点A 到平面BCE 的距离.11.(2022·辽宁实验中学高二阶段练习)如图,在平行六面体1111ABCD A B C D -中,1160A AD A AB BAD ∠=∠=∠=︒,2AB AD ==,11AA =,点P 为线段BC 中点.(1)求1D P ;(2)求直线1AB 与1D P 所成角的余弦值.12.(2022·广东·顺德一中高二阶段练习)如图,在三棱柱111ABC A B C 中,1CC ⊥平面ABC ,,,D E F 分别为111,,AA AC A C 的中点,AB BC ==12AC AA ==.(1)求证:AC ⊥平面BEF ;(2)求二面角1B CD C 的余弦值; 13.(2022·天津·静海一中高二阶段练习)如图,⊥AE 平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,2AE BC ==,1AB AD ==,87CF =,则(1)求BD 与EC 所成角的余弦值;(2)求直线CE 与平面BDE 所成角的正弦值; (3)求平面EBD 与平面BDF 的夹角的余弦值.。
平行向量、共线向量、相等向量的识别与应用
平行向量、共线向量、相等向量的识别与应用由于三者联系较为紧密,所以不少同学经常将三者混为一谈,给解题带来了一些不必要的麻烦,但如果我们能准确识别三者及其关系并应用其知识进行解题,也会给解题带来很大的方便,下面让我们来作一识别、比较和应用.1.平行向量①概念:方向相同或相反的非零向量叫做平行向量.②表示方法:如果a 、b 、c 是非零向量且方向相同或相反(向量所在的直线平行或重合),则可记为////a b c .③注意点:任一向量都与它自身是平行向量,并且规定:零向量与任一向量是平行向量. 2.共线向量①概念:共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,其所在直线可以平行也可以重合.②含义:“共线”的含义不是平面几何中“共线”的含义.实际上,共线向量有以下四种情况:方向相同且模相等;方向相同且模不等;方向相反且模相等;方向相反且模不等.因此,任意一组共线向量都可以移到同一条直线上.3.相等向量①概念:长度相等且方向相同的向量叫做相等向量.②识别依据:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等.如=a b ,就意味着||||=a b ,且a 与b 的方向相同.③理解拓展:由向量相等的定义可以知道,对于一个向量,只要不改变它的大小和方向,是可以平行移动的,都可以用同一条有向线段表示,因此,用有向线段表示向量时,可以任意选取有向线段的起点.4. 平行向量、共线向量、相等向量三者的异同点 ①共线向量即为平行向量;②共线向量不一定是相等向量,但相等向量一定是共线向量. 5.共线向量、相等向量知识的应用 ①应用共线向量、相等向量的定义解题例1如图,两个全等的正三角形ABC ∆与'''A B C ∆,如图放置,使得D E F G H I 、、、、、分别是两个三角形各边的三等分点.设ABC ∆的边长为a ,在所有以'''A B C A B C D E F H I 、、、、、、、、、、中任意两点为端点,长度为13a 的向量中: (1)哪些向量与BF 相等? (2)与BF 共线的向量有多少个?(3)与BF 模相等的向量有多少个?分析:由平面几何知识,两三角形对应边所在的直线都平行,向量的长度又全相等,所以只需考虑向量的方向即可判断向量是共线或是相等.解:(1)与BF 相等的向量有: ' 'FG GC C D DI IB 、、、、共5个. (2)与BF 共线的向量有11个.(3)与BF 模相等的向量有35个.评注:向量共线只考虑向量的方向,向量的模相等只考虑向量的长度,向量相等既要考虑向量的方向又要考虑向量的长度.在考虑与BF 共线或模相等的时候,别漏了向量FB .②应用相等向量的意义解题'BCC例2利用向量方法证明:对角线互相平分的四边形是平行四边形.分析:欲证四边形是平行四边形,只需证一组对边平行且相等,根据相等向量的意义,只需证一组对边对应的向量相等即可.已知:如图,四边形ABCD ,对角线AC 与BD 相交于O ,且OA OC =,OD OB =. 求证:四边形ABCD 为平行四边形.证明:设OA =a ,OB =b ,则OC =-a ,OD =-b .∴AD OD OA =-=--b a ,BC OC OB =-=--a b .∴AD BC =.∴AD 与BC 平行且相等.∴四边形ABCD 为平行四边形.评注:题目中涉及的向量较多时,可选取两个基本向量,然后将其他向量用这两个基本向量表示.③应用向量共线的充要条件解题例3E 是ABCD 的对角线BD 的内分点,且E 内分BD 的比为2:3 ,直线CE 与AB 交于F ,求AF :FB 的值.分析:利用向量共线的充要条件,采用待定系数法求解.解:设BA =a ,BC =b ,则BD =+a b . ∵E 内分BD 的比为2:3,∴2235BE BD ==()+a b . 设BF BA λλ==a ,又BF FC CB ++=0,BE EC CB ++=0,∴CF BF BC =-=λ-a b ,CE BE BC =-=2355-a b .∵CF CE μ=,∴23()55λμ-=-a b a b ,∴2,531,5λμμ⎧=⎪⎪⎨⎪-=-⎪⎩∴2,35.3λμ⎧=⎪⎪⎨⎪=⎪⎩∴23BF BA =.∴BF :FA =2:1,即AF :FB =1:2.评注:利用向量的方法处理有关的分点问题,不需添加辅助线,只需找准封闭图形,利用向量共线的充要条件采用待定系数法即可求出.A。
平面向量知识点总结(精华)
平面向量一、向量的基本概念1.向量的概念2.零向量:3.单位向量:长度为一个单位长度的向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b , 规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线 AB AC ⇔、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -.二、向量的表示方法1.几何表示:2.符号表示:3.坐标表示三、平面向量的基本定理定理 设12,e e 同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+.(1)定理核心:1122a λe λe =+;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a 的合成.(3)向量的正交分解:当21e e ⊥时,就说1122a λe λe =+为对向量a 的正交分解. 举例3 (1)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =,2(1,2)e =- B.1(1,2)e =-,2(5,7)e = C.1(3,5)e =,2(6,10)e = D.1(2,3)e =-,213,24e⎛⎫=- ⎪⎝⎭(2)已知,AD BE 分别是ABC △的边BC ,AC上的中线,且AD a=,BE b =,则BC 可用向量,a b 表示为 . 结果:2433a b +. (3)已知ABC △中,点D 在BC 边上,且2CD DB =,CD rAB sAC =+,则r s +=的值是 . 结果:0.四、实数与向量的积实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅;(2)方向:当0λ>时,a λ的方向与a 的方向相同,当0λ<时,a λ的方向与a 的方向相反,当0λ=时,0a λ=,注意:0a λ≠.五、平面向量的数量积1.两个向量的夹角:对于非零向量a ,b ,作OA a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a ,b 的夹角.当0θ=时,a ,b 同向;当θπ=时,a ,b 反向;当2πθ=时,a ,b 垂直.2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ⋅,即||||cos a b a b θ⋅=⋅.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =,||4AC =,||5BC =,则AB BC ⋅=_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭,10,2b ⎛⎫=- ⎪⎝⎭,c a kb =+,d a b =-,c 与d 的夹角为4π,则k = ____. 结果:1. (3)已知||2a =,||5b =,3a b ⋅=-,则||a b +=____.(4)已知,a b 是两个非零向量,且||||||a b a b ==-,则a 与a b +的夹角为____. 结果:30. 3.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.举例5 已知||3a =,||5b =,且12a b ⋅=,则向量a 在向量b 上的投影为______. 结果:125. 4.a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积. 5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: (1)0a b a b ⊥⇔⋅=;(2)当a 、b 同向时,||||a b a b ⋅=⋅,特别地,222||||a a a a a a =⋅=⇔=; ||||a b a b ⋅=⋅是a 、b 同向的充要分条件;当a 、b 反向时,||||a b a b ⋅=-⋅,||||a b a b ⋅=-⋅是a 、b 反向的充要分条件;当θ为锐角时,0a b ⋅>,且a 、b 不同向,0a b ⋅>是θ为锐角的必要不充分条件; 当θ为钝角时,0a b ⋅<,且a 、b 不反向;0a b ⋅<是θ为钝角的必要不充分条件. (3)非零向量a ,b 夹角θ的计算公式:cos ||||a b a b θ⋅=;④||||a b a b ⋅≤.举例 6 (1)已知(,2)a λλ=,(3,2)b λ=,如果a 与b 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=,若12S <,则OF ,FQ 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭; (3)已知(cos ,sin )a x x =,(cos ,sin )b y y =,且满足||3||ka b a kb +=-(其中0k >).①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小. 结果:①21(0)4k a b k k+⋅=>;②最小值为12,60θ=. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =,BC b =,则向量AC 叫做a 与b 的和,即a b AB BC AC +=+=; 作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =,AC b =,则a b AB AC CA -=-=,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同. 举例7 (1)化简:①AB BC CD ++= ;②AB AD DC --= ;③()()AB CD AC BD ---= . 结果:①AD ;②CB ;③0;(2)若正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c ++= . 结果: (3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为 . 结果:2;(5)若点O 是ABC △的外心,且0O A O B CO ++=,则ABC △的内角C 为 . 结果:120. 2.坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--.举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R ,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =,2(2,5)F =-,3(3,1)F =,则合力123F F F F =++的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =,3AD AB =,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+.举例10 已知向量(sin ,cos )a x x =,(sin ,sin )b x x =,(1,0)c =-. (1)若3x π=,求向量a 、c 的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅的最大值为12,求λ的值.结果:(1)150;(2)12或1.(5)向量的模:222222||||a a x y a x y ==+⇔=+.举例11 已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +== .结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y ,则||AB 举例12 如图,在平面斜坐标系xOy 中,60xOy ∠=一点P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+其中12,e e 分别为与x 轴、y 轴同方向的单位向量,则P 点斜坐标为(,)x y . (1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅;2.结合律:()a b c a b c ++=++,()a b c a b c --=-+,()()()a b a b a b λλλ=⋅=⋅;3.分配律:()a a a λμλμ+=+,()a b a b λλλ+=+,()a b c a c b c +⋅=⋅+⋅.举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅;② ()()a b c a b c ⋅⋅=⋅⋅;③ 222()||2||||||a b a a b b -=-+; ④ 若0a b ⋅=,则0a =或0b =;⑤若a b c b ⋅=⋅则a c =;⑥22||a a =;⑦2a b b a a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+.其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=.60举例14 (1)若向量(,1)a x =,(4,)b x =,当x =_____时,a 与b 共线且方向相同. 结果:2.(2)已知(1,1)a =,(4,)b x =,2u a b =+,2v a b =+,且//u v ,则x = . 结果:4. (3)设(,12)PA k =,(4,5)PB =,(10,)PC k =,则k = _____时,,,A B C 共线. 结果:2-或11. 九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=.特别地||||||||ABAC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭. 举例15 (1)已知(1,2)OA =-,(3,)OB m =,若O A O B ⊥,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =向量n m ⊥,且||||n m =,则m =的坐标是 .结果:(,)b a -或(,)b a -. 十、线段的定比分点1.定义:设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=,则实数λ叫做点P 分有向线段12P P 所成的比λ,P 点叫做有向线段12P P 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P ,即点P 在线段12P P 上0λ⇔>;(2)P 外分线段12P P 时,①点P 在线段12P P 的延长线上1λ⇔<-,②点P 在线段12P P 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12P P 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ.举例16 若点P 分AB 所成的比为34,则A 分BP 所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P 所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12P P 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =,则a = . 结果:2或4-. 十一、平移公式如果点(,)P x y 按向量(,)a h k =平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =平移得曲线(,)0f x h y k --=.举例18 (1)按向量a 把(2,3)-平移到(1,2)-,则按向量a 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin2y x =的图象按向量a 平移后,所得函数的解析式是cos21y x =+,则a =________. 结果:(,1)4π-. 十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+.(1)右边等号成立条件: a b 、同向或 a b 、中有0||||||a b a b ⇔+=+; (2)左边等号成立条件: a b 、反向或 a b 、中有0||||||a b a b ⇔-=+;(3)当 a b 、不共线||||||||||a b a b a b ⇔-<+<+. 3.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++.举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔为△ABC 的重心,特别地0PA PB PC G ++=⇔为△ABC 的重心. (2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭所在直线过△ABC 的内心.6.点P 分有向线段12P P 所成的比λ向量形式设点P 分有向线段12P P 所成的比为λ,若M 为平面内的任一点,则121MP MP MP λλ+=+,特别地P 为有向线段12P P 的中点122MP MP MP +⇔=.7. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .知识应用1.(2018•卷Ⅰ)在中,AD 为BC 边上的中线,E 为AD 的中点,则( )A. B. C. D.2.(2018•浙江)已知a , b , e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为 ,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( )A. −1B. +1C. 2D. 2−3.如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为()A. B. C. D.4.(2018•卷Ⅱ)已知向量,满足=1, ⋅=−1 ,则·(2-)=()A.4B.3C.2D.05.过点()0,2-且斜率为的直线与抛物线:交于,两点,若的焦点为,则()A. B. C. D.6.已知,且,则向量在方向上的投影为()A. B. C. D.7.抛物线的焦点为 ,过点的直线交抛物线于、两点,点为轴正半轴上任意一点,则()A. B. C. D.AAABDCB8.已知向量,,则________.9.(2018•江苏)在平面直角坐标系中,为直线上在第一象限内的点,以为直径的圆与直线交于另一点,若,则点的横坐标为________ 310.(2018•卷Ⅲ)已知向量,,,若,则________。
向量相等与共线向量学案
必修4 2.1.2相等向量、平行向量与共线向量【学习目标】1.能举例说明相等向量和共线向量的含义;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,使同学们初步认识现实生活中的向量和数量的本质区别;培养同学们认识客观事物的数学本质的能力.【学习重点】理解并掌握相等向量、共线向量的概念.【难点提示】平行向量、相等向量和共线向量的区别和联系.【学法提示】1.请同学们课前将学案与教材7479P 结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备前面我们学习了向量相关概念,请同学们回顾后完成下列填空:1.向量的定义 ;2.数量与向量的区别 ;3.向量的模 ;4.向量的几何表示 ;5.零向量是 ;6.单位向量是: ;7.平行向量的定义二、学习探究既然我们学习了向量的概念,我们自然就要想一些问题,如:向量有相等吗?向量能比较大小吗?等,下面我们就来做一些探究吧!1.相等向量请同学们观察图2.1.2-1的三组向量中a 与b 各有怎样的关系与特征? ●归纳概括 相等向量:挖掘拓展 (1)向量由其模和方向所确定.对于两个向量a 、b ,就其模等与不等,方向同与不同而言,有哪几种可能情形?(2)两个向量有相等、不相等,那么能比较大小吗?为什么?请举例说明?(链接1)(3)相等向量是否指起点和终点都相同的向量?2.共线向量阅读思考(1)如果两个向量所在的直线互相平行,那么这两个向量的方向有什么关系?(2)方向相同或相反的非零向量叫做平行向量,向量a 与b 平行记作a ∥b ,那么平行向量所在的直线一定互相平行吗?3.任一组平行向量是否都可以移动到同一直线上?那么,几个互相的平行向量也叫做 向量.●归纳概括 共线向量: ●快乐体验 判断下列各命题是否正确(1)若|a |=|b |,则a =b ; (2)若a =b ,b =c ,则a =c(3)若A 、B 、C 、D 是不共线的四点,则AB =DC 是四边形ABCD 是平行四边形的等价条件.(4) 平行向量就是指互相平行的直线上的向量.(5)AB =CD 的等价条件是A 与C 重合,B 与D 重合.同学们通过探究与体验后,对向量共线有哪些感悟,能对此进行挖掘拓展吗?挖掘拓展(1)如果非零向量 AB 与CD 是共线向量,那么点A 、B 、C 、D 是否一定共线?(2)平行向量与共线向量有怎样的关系?(链接2)(3)在直角坐标系中,任意一个向量a ,可以平移到以原点o 为起点的向量吗? 平移后的向量与原来的向量有何关系?有没有不同的地方?(链接3)三、典例赏析例1.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB =DC ;⑤共线的向量,若起点不同,则终点一定不同.解后反思 求解该题用到哪些知识?前面学习的相关知识中哪些是易混淆的?变式练习 下列命题正确的是( )A .a 与b 共线,b 与c 共线,则a 与c 也共线B .任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C .向量a 与b 不共线,则a 与b 都是非零向量D .有相同起点的两个非零向量不平行例2 (课本76页例2)如图2.1.2-2,设O 是正六边形ABCDEF 的中心,分别写出图 中与向量OA 、OB 、OC 相等的向量思路启迪:既要考虑模相等,还要考虑方向相同哦.解:解后反思 该题的题型怎样?求解时用到哪些知识与方法?●变式练习 在图2.1.2-2中例3.某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 个;长度相等的向量有与向量_______)1(OA ;向量长度相等且方向相反的写出与向量_______)2(OA .______________________)3(共线的向量有与向量OA 图2.1.2-2到达C 点,最后又改变方向,向东走了200m 到达D 点.(1)作出向量AB 、BC 、CD (1 c m 表示200 m);(2)求DA 的模.变式练习 已知|AB |=1,| AC |=2,若∠BAC=60°,则|BC |= .解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,你的任务完成了吗?你讲的怎样? 你提问了吗?我们的学习目标达到了吗?如:相等向量、共线向量的概念都理解与掌握了吗?平行向量、相等向量和共线向量的区别和联系都弄明白了吗?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学与课堂美在哪里吗?【学习评价】1.在△ABC 中,AB=AC,D 、E 分别是AB 、AC 的中点,则( )A . AB 与AC 共线 B . DE 与CB 共线C . 1sin AD θ-与AE 相等 D . AD 与BD 相等2.下列命题正确的是( )A .向量AB 与BA 是两平行向量; B .若a 、b 都是单位向量,则a =b ;C .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;D .两向量相等的充要条件是它们的始点、终点相同.3.在下列结论中,正确的结论为( )(1)a ∥b 且|a |=|b |则a =b;(2) a =b 则a ∥b 且|a |=|b | ; (3)a 与b 方向相同且|a |=|b |则a =b ; (4) 若a ≠b 则a 与b 方向相反或|a |≠|b |.A .(1)(3)B .(2)(3)C .(3)(4)D .(1)(3)(4)4.在四边形ABCD 中, AB =DC ,且|AB |=|AD |,则四边形ABCD 是 .5.设在平面上给定了一个四边形ABCD,点K 、L 、M 、N 分别是AB 、BC 、CD 、DA 的中点, 求证:KL =NM .6.如图2.1.2-3,已知四边形ABCD 是矩形,设点集M={A 、B 、C 、D},求集合 {}|,T PQ P M Q M =∈∈且P 、Q 不重合.图2.1.2-37.教材P77页练习2、4;77页习题2.1A组2、3、4、5、6;B组1,2.◆承前启后本节课我们学习了向量相等、共线向量等关概念,那么与向量还有哪些知识呢?向量怎样运算呢?【学习链接】链接1.两个向量不能比较大小,只有“相等”与“不相等”的区别.链接2.平行向量就是共线向量;共线向量不一定就是平行向量.链接3. 平移后的向量与原向量相等,但后面的向量的起点已固定,二向量a是自由的,所以前面向量a也叫自由向量.课外阅读向量知识在中学有着非常重要的地位和教育价值,它的工具性特点在数学的许多分支中都有体现,尤其在高等数学与解析几何中,向量的思想渗透的很广泛!将向量引入高中数学教材,并做为一种基础理论和基本方法要求学生掌握。
新教材2020人教B版数学必修第二册教师用书:第6章 6.1.1 向量的概念
6.1 平面向量及其线性运算 6.1.1 向量的概念1.向量及其几何表示 (1)向量的定义一般地,像位移这样既有大小又有方向的量称为向量(也称为矢量),向量的大小也称为向量的模(或长度);只有大小的量称为标量,如长度、面积等.(2)向量的表示①有向线段:具有方向的线段.②向量可以用有向线段表示,向量AB →的大小,也就是向量AB →的长度,记作|AB →|,向量也可以用加粗的斜体小写字母a ,b ,c ,…表示,书写时,写为a →,b →,c →,…也可以用有向线段的起点和终点字母表示,如:AB →,CD →.③同向且等长的有向线段表示同一向量,或相等的向量. 2.向量的有关概念 (1)零向量与非零向量始点和终点相同的向量称为零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写时,可写为0→.模不为0的向量称为非零向量.(2)单位向量模等于1的向量称为单位向量,如果e 为单位向量,则|e |=1. (3)相等向量一般地,把大小相等、方向相同的向量称为相等的向量.向量a 和b 相等,记作a =b .(4)平行向量(共线向量)如果两个非零向量的方向相同或者相反,则称这两个向量平行(或共线).向量a 与b 平行,记作a ∥b .规定零向量与任意向量平行.1.下列说法中正确的个数是( ) ①身高是一个向量;②∠AOB 的两条边都是向量;③温度含零上和零下温度,所以温度是向量; ④物理学中的加速度是向量.A .0B .1C .2D .3B [只有④中物理学中的加速度既有大小又有方向是向量,①②③错误,④正确.]2.下列说法正确的是( ) A .若|a |=0,则a =0 B .若|a |=|b |,则a =bC .若|a |=|b |,则a 与b 是平行向量D .若a ∥b ,则a =bA [|a |=0,则a 是零向量,故A 项正确.]3.如图,在⊙O 中,向量OB →,OC →,AO →是( )A .有相同起点的向量B .共线向量C .模相等的向量D .相等的向量C [由题知OB →,OC →,AO →对应的有向线段都是圆的半径,因此它们的模相等.]4.如图所示,四边形ABCD 和ABDE 都是平行四边形.(1)与向量ED →相等的向量为________; (2)若|AB →|=3,则向量EC →的模等于________.(1)AB →,DC →(2)6 [(1)在平行四边形ABCD 和ABDE 中, ∵AB →=ED →,AB →=DC →, ∴ED →=DC →.(2)由(1)知ED →=DC →,∴E ,D ,C 三点共线,|EC →|=|ED →|+|DC →|=2|AB →|=6.]【例1】 (1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若向量|a|=|b|,则a与b的长度相等且方向相同或相反;(3)对于任意向量|a|=|b|,若a与b的方向相同,则a=b;(4)由于0方向不确定,故0不与任意向量平行;(5)向量a与向量b平行,则向量a与b方向相同或相反.[思路探究]解答本题应根据向量的有关概念,注意向量的大小、方向两个要素.[解](1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们的方向关系.(3)正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.(4)不正确.依据规定:0与任意向量平行.(5)不正确.因为向量a与向量b若有一个是零向量,则其方向不定.对于命题判断正误题,应熟记有关概念,看清、理解各命题,逐一进行判断,对错误命题的判断只需举一反例即可.(1)零向量、单位向量的定义都只是限制了大小,它们的方向是任意的,因为它们方向的不确定性,所以在解题过程中要注意.(2)注意0与0的含义与书写的区别,前一个表示实数,后一个表示向量.(3)平行向量不一定方向相同或相反,因为0与任一向量平行,0的方向是任意的.1.给出下列命题:①若|a|=|b|,则a=b或a=-b;②向量的模一定是正数;③起点不同,但方向相同且模相等的几个向量是相等向量;④向量AB →与CD →是共线向量,则A ,B ,C ,D 四点必在同一直线上. 其中正确命题的序号是________.③ [①错误.由|a |=|b |仅说明a 与b 模相等,但不能说明它们方向的关系. ②错误.如|0|=0.③正确.对于一个向量只要不改变其大小和方向,是可以任意移动的. ④错误.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB →,CD →必须在同一直线上.]【例2】 向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求AD →的模.[思路探究] 可先选定向量的起点及方向,并根据其长度作出相关向量.可把AD →放在直角三角形中求得|AD →|.[解] (1)作出向量AB →,BC →,CD →,如图所示:(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米),所以|AD →|=55米.1.向量的两种表示方法(1)几何表示法:先确定向量的起点,再确定向量的方向,最后根据向量的长度确定向量的终点.(2)字母表示法:为了便于运算可用字母a ,b ,c 表示,为了联系平面几何中的图形性质,可用表示向量的有向线段的起点与终点表示向量,如AB →,CD →,EF →等.2.两种向量表示方法的作用(1)用几何表示法表示向量,便于用几何方法研究向量运算,为用向量处理几何问题打下了基础.(2)用字母表示法表示向量,便于向量的运算.2.某次军事演习中,红方一支装甲分队为完成对蓝军的穿插包围,先从A 处出发向西迂回了100 km 到达B 地,然后又改变方向向北偏西40°走了200 km 到达C 地,最后又改变方向,向东突进100 km 到达D 处,完成了对蓝军的包围.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.[解] (1)向量AB →,BC →,CD →,如图所示.(2)由题意,易知AB →与CD →方向相反, 故AB →与CD →共线.又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD , ∴四边形ABCD 为平行四边形. ∴AD →=BC →,|AD →|=|BC →|=200 km.[1.向量a ,b 共线,向量b ,c 共线,向量a 与c 是否共线?[提示] 向量a 与c 不一定共线,因为零向量与任意向量都共线,若b =0,则向量a 与c 不一定共线.2.两个相等的非零向量的起点与终点是否都分别重合?[提示] 不一定.因为向量都是自由向量,只要大小相等,方向相同就是相等向量,与起点和终点位置无关.【例3】 如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些? (3)与a 共线的向量有哪些?(4)请一一列出与a ,b ,c 相等的向量.[思路探究] 抓住向量的两个要素:长度和方向,对图中向量进行一一判断. [解] (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →.(3)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. (4)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.相等向量与共线向量需注意的四个问题(1)相等向量一定是共线向量,但共线向量不一定是相等向量.(2)两个向量平行与两条直线平行是两个不同的概念;两个向量平行包含两个向量有相同基线,但两条直线平行不包含两条直线重合.(3)平行(共线)向量无传递性(因为有0). (4)三点A ,B ,C 共线⇔AB →,AC →共线.3.如图,四边形ABCD 为正方形,△BCE 为等腰直角三角形.(1)图中所标出的向量与AB →共线的有________; (2)图中所标出的向量与AB →相等的有________; (3)图中所标出的向量与AB →模相等的有________; (4)图中所标出的向量与EC →相等的有________.[答案] (1)BE →,CD → (2)BE → (3)BC →,CD →,DA →,BE → (4)BD →(教师独具)1.本节课的重点是向量的有关概念,难点是共线向量与相等向量的应用. 2.本节课要掌握的问题(1)判断一个量是否为向量,向量的大小与方向. (2)向量的表示方法.(3)共线向量、相等向量的判断.3.本节课的易错点是向量平行中,零向量的特殊性易出错.1.思考辨析(1)有向线段就是向量.( ) (2)两个向量的模能比较大小.( ) (3)有向线段可以用来表示向量.( ) (4)若a =b ,b =c ,则a =c .( )(5)若a ∥b ,则a 与b 的方向一定相同或相反.( ) (6)若非零向量AB →∥CD →,那么AB ∥CD .( ) (7)单位向量的模都相等.( )[详细分析] (5)0与任何向量共线,但0方向任意,故(5)错误. (6)AB →∥CD →,A ,B ,C ,D 可能共线,故(6)错误. [答案] (1)× (2)√ (3)√ (4)√ (5)× (6)× (7)√2.在同一平面内,把平行于某一直线的一切向量的始点放在同一点,那么这些向量的终点所构成的图形是( )A .一条线段B .一条直线C .圆上一群孤立的点D .一个半径为1的圆B [因为它们是平行向量,当始点相同时,终点位置在这条直线上,故这些向量的终点构成的图形是一条直线.]3.在下列命题中:①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线; ⑤长度相等的向量是相等向量;⑥平行于同一个非零向量的两个向量是共线向量.正确的命题是________.(填序号)④⑥ [由向量的相关概念可知④⑥正确.]4.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°; (2)AB →,使|AB →|=4,点B 在点A 正东; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°.[解] (1)由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.(2)由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.(3)由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得:在坐标11 纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行向量、相等向量和共线向量的区别和联系
山东胡彬
平行向量、相等向量和共线向量的区别和联系是平面向量的基本概念一节中的难点问题,需要我们特别关注与重视.为了帮助同学们掌握这一难点问题,下面我们从六个方面加以区分、解读.
一、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;
(2)向量a、b、c平行,记作a∥b∥c.
二、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;
(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起
.......
点无关
....
三、共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的
......AB与BA也是一对平行向量.
起点无关)
...... 例如
由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量.例如,若四边形ABCD是平行四边形,则向量AB与CD是一组共线向量;向量AD与BC也是一组共线向量.
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
四. 平行向量与相等向量的关系
相等的向量一定平行,但是平行的向量并不一定相等.两个向量相等并不一定这两个向量一定要重合. 只用这两个向量长度相等且方向相同即可. 其中“方向相同”就包含着向量平行的含义.
五. 相等向量的判断解析
例1.判断下列各命题是否正确
(1)若|a|=|b|,则a=b
(2)若A、B、C、D是不共线的四点,则AB=DC是四边形ABCD是平行四边形的等价条件.
(3)若a=b,b=c,则a=c
(4) AB=CD的等价条件是A与C重合,B与D重合.
解:(1)不正确,两个向量的长度相等,但它们的方向不一定相同.
(2)正确.∵AB=DC,∴|AB|=|DC|且AB∥DC.
又A、B、C、D是不共线的四点.
∴四边形ABCD是平行四边形,反之,若四边形ABCD是平行四边形则AB∥DC,且AB
与DC方向相同,因此AB=DC.
(3)正确.∵a=b∴a,b的长度相等且方向相同;
又∵b=c∴b,c的长度相等且方向相同.
∴a,c的长度相等且方向相同,故a =c
(4)不正确.这是因为AB=CD时,应有:|AB|=|CD|及由A到B与由C到D 的方向相同,但不一定要有A与C重合、B与D重合.
说明:①针对上述结论(1)、(4),我们应该清醒的认识到,两非零向a、b相等的等价
条件应是a、b的方向相同且模长相等.
②针对结论(3),我们应该理解向量相等是可传递的.
③结论(4)不正确,告诉我们平面向量a与b相等,并不要求它们有相同的起点与终点.当然如果我们将相等的两向量的起点平移到同一点.则这时它们的终点必重合.
六. 向量平行与共线的判断解析
例2.下列命题正确的是()
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
解析:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.。