高频实验报告2

高频实验报告2
高频实验报告2

高频实验报告

信号幅度调制与解调

班级:1402501

学号:130250121

姓名:尹思源

信号的幅度调制与解调

一、实验目的

1.通过实验了解振幅调制的工作原理。

2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。 3.掌握用示波器测量调幅系数的方法。

二、实验内容

1.模拟相乘调幅器的输入失调电压调节。

2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。

3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。

4.用示波器观察调制信号为方波、三角波的调幅波。

一.DSB(抑制载波双边带调幅)波形观察

在载波输入、音频输入端已进行输入失调电压调节(对应于8W02、8W01调节的基础上),可进行DSB的测量。

(1)DSB信号波形观察

将高频信号源输出的载波接入载波输入端(8P01),低频调制信号接入音频输入端(8P02)。

示波器CH1接调制信号(可用带“钩”的探头接到8TP02上),示波器CH2接调幅输出端(8TP03),即可观察到调制信号及其对应的DSB信号波形。其波形如图8-3所示,如果观察到的DSB波形不对称,应微调8W01电位器。

(2)DSB信号反相点观察

为了清楚地观察双边带信号过零点的反相,必须降低载波的频率。本实验可将载波频率降低为100KHZ(如果是DDS高频信号源可直接调制100KHZ;如果是其它信号源,需另配100KHZ的函数发生器),幅度仍为200mv。调制信号仍为1KHZ(幅度300mv)。

增大示波器X轴扫描速率,仔细观察调制信号过零点时刻所对应的DSB信号,过零点时刻的波形应该反相,如图8-4所示。

(3)DSB信号波形与载波波形的相位比较

在实验3(2)的基础上,将示波器CH1改接8TP01点,把调制器的输入载波波形与输出DSB波形的相位进行比较,可发现:在调制信号正半周期间,两者同相;在调制信号负半周期间,两者反相。

二.AM(常规调幅)波形测量

(1)AM正常波形观测

在保持输入失调电压调节的基础上,将开关8K01置“on”(往上拨),即转为正常调幅状态。载波频率仍设置为2MHZ(幅度200mv),调制信号频率1KHZ(幅度300mv)。

示波器CH1接8TP02、CH2接8TP03,即可观察到正常的AM波形.调整电位器8W03,可以改变调幅波的调制度。在观察输出波形时,改变音频调制信号的频率及幅度,输出波形应随之变化。下图为用示波器测出的正常调幅波波形:

(2)不对称调制度的AM 波形观察

在AM 正常波形调整的基础上,改变8W02,可观察到调制度不对称的情形。最后仍调到调制度对称的情形。下图为用示波器测出的不对称调幅波波形:

三.调制度M a 的测试

我们可以通过直接测量调制包络来测出M a 。将被测的调幅信号加到示波器CH1或CH2,并使其同步。调节时间旋钮使荧光屏显示几个周期的调幅波波形,如图8-6所示。根据M a 的定义,测出A 、B ,即可得到M a 。

%100?+-=

B

A B A m a

测得的A=8mv ,B=3mv.M a =45.45%.

四.集成电路(乘法器)构成的同步检波

1.AM 波的解调

将幅度调制电路的输出接到幅度解调电路的调幅输入端(9P02)。解调电路的恢复载波,可用铆孔线直接与调制电路中载波输入相连,即9P01与8P01相连。示波器CH1接调幅信号9TP02,CH2接同步检波器的输出9TP03。分别观察并记录当调制电路输出为a m =30%、a m =100%、a m >100%时三种AM 的解调输出波形,并与调制信号作比较。

实际观察到各种调制度的解调波形如下图:

2.DSB波的解调

采用实验8的五、3中相同的方法来获得DSB波,并加入到幅度解调电路的调幅输入端,而其它连线均保持不变,观察并记录解调输出波形,并与调制信号作比较。改变调制信号的频率及幅度,观察解调信号有何变化。将调制信号改成三角波和方波,再观察解调输出波形。

DSB波解调波形如下图:

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真 姓名: 学号: 班级:

仿真电路图介绍及简单理论分析 电路图: 电路图介绍及分析: 上图为电阻分压式共射极单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。 元件的取值如图所示。 静态工作点分析(bias point): 显示节点: 仿真结果:

静态工作点分析: VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ? 电路的主要性能指标: 理论分析: 设?=80,VBQ =2.8v VEQ=VBQ-VBEQ=2.1v rbe≈2.2kΩ Ri=1.12kΩ,Ro≈8.3 kΩ Au=-βRL’/rbe=56.7 仿真分析: 输入电阻:输出电阻:

Ri=0.86kΩRo≈9.56 kΩ输入电压:输出电压:

则A u=51.2 在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。 失真现象: 1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真

当Re大于等于25 kΩ时,会出现较为明显的截止失真 2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真 3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

信号与系统仿真实验报告

信号与系统仿真实验报告1.实验目的 了解MATLAB的基本使用方法和编程技术,以及Simulink平台的建模与动态仿真方法,进一步加深对课程内容的理解。 2.实验项目 信号的分解与合成,观察Gibbs现象。 信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 信号的频谱分析,观察信号的频谱波形。 系统函数的形式转换。 用Simulink平台对系统进行建模和动态仿真。 3.实验内容及结果 3.1以周期为T,脉冲宽度为2T1的周期性矩形脉冲为例研究Gibbs现象。 已知周期方波信号的相关参数为:x(t)=∑ak*exp(jkω),ω=2*π/T,a0=2*T1/T,ak=sin(kωT1)/kπ。画出x(t)的波形图(分别取m=1,3,7,19,79,T=4T1),观察Gibbs现象。 m=1; T1=4; T=4*T1;k=-m:m; w0=2*pi/T; a0=2*T1/T; ak=sin(k*w0*T1)./(k*pi); ak(m+1)=a0; t=0:0.1:40; x=ak*exp(j*k'*w0*t); plot(t,real(x)); 3.2求卷积并画图 (1)已知:x1(t)=u(t-1)-u(t-2), x2(t)=u(t-2)-u(t-3)求:y(t)=x1(t)*x2(t)并画出其波形。 t1=1:0.01:2; f1=ones(size(t1)); f1(1)=0; f1(101)=0; t2=2:0.01:3; f2=ones(size(t2)); f2(1)=0; f2(101)=0; c=conv(f1,f2)/100;

t3=3:0.01:5; subplot(311); plot(t1,f1);axis([0 6 0 2]); subplot(312); plot(t2,f2);axis([0 6 0 2]); subplot(313); plot(t3,c);axis([0 6 0 2]); (2)已知某离散系统的输入和冲击响应分别为:x[n]=[1,4,3,5,1,2,3,5], h[n]=[4,2,4,0,4,2].求系 统的零状态响应,并绘制系统的响应图。 x=[1 4 3 5 1 2 3 5]; nx=-4:3; h=[4 2 4 0 4 2]; nh=-3:2; y=conv(x,h); ny1=nx(1)+nh(1); ny2=nx(length(nx))+nh(length(nh)); ny=[ny1:ny2]; subplot(311); stem(nx,x); axis([-5 4 0 6]); ylabel('输入') subplot(312); stem(nh,h); axis([-4 3 0 5]); ylabel('冲击效应') subplot(313); stem(ny,y); axis([-9 7 0 70]); ylabel('输出'); xlabel('n'); 3.3 求频谱并画图 (1) 门函数脉冲信号x1(t)=u(t+0.5)-u(t-0.5) N=128;T=1; t=linspace(-T,T,N); x=(t>=-0.5)-(t>=0.5); dt=t(2)-t(1); f=1/dt; X=fft(x); F=X(1:N/2+1); f=f*(0:N/2)/N; plot(f,F)

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

仿真实验报告

大学物理仿真实验报告一一塞曼效应 一、实验简介 塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼(Zeeman)在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。 塞曼效应是法拉第磁致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的 电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解。 塞曼效应另一引人注目的发现是由谱线的变化来确定离子的荷质比的大小、符号。根据 洛仑兹(H.A?Lorentz)的电子论,测得光谱的波长,谱线的增宽及外加磁场强度,即可称得离子的荷质比。由塞曼效应和洛仑兹的电子论计算得到的这个结果极为重要,因为它发表在J、 J汤姆逊(J、J ThomSOn)宣布电子发现之前几个月,J、J汤姆逊正是借助于塞曼效应由洛仑 兹的理论算得的荷质比,与他自己所测得的阴极射线的荷质比进行比较具有相同的数量级,从而得到确实的证据,证明电子的存在。 塞曼效应被誉为继X射线之后物理学最重要的发现之一。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。至今,塞曼效应依然是研究原子内部能级结构的重要方法。 本实验通过观察并拍摄Hg(546.1 nm)谱线在磁场中的分裂情况,研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。 二、实验目的 1?学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2?观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3?利用塞曼分裂的裂距,计算电子的荷质比 e m e数值。 三、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为E0,相应的总角动量量子数、轨道量子数、 自旋量子数分别为J、L、S。当原子处于磁感应强度为B的外磁场中时,这一原子能级将 分裂为2J 1层。各层能量为 E = E o MgJ B B(1) 其中M为磁量子数,它的取值为J , J -1 ,…,-J共2J 1个;g为朗德因子;J B为 hc 玻尔磁矩(A B= );B为磁感应强度。 4兀m 对于L-S耦合

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

系统仿真实验报告

中南大学系统仿真实验报告 指导老师胡杨 实验者 学号 专业班级 实验日期 2014.6.4 学院信息科学与工程学院

目录 实验一MATLAB中矩阵与多项式的基本运算 (3) 实验二MATLAB绘图命令 (7) 实验三MATLAB程序设计 (9) 实验四MATLAB的符号计算与SIMULINK的使用 (13) 实验五MATLAB在控制系统分析中的应用 (17) 实验六连续系统数字仿真的基本算法 (30)

实验一MATLAB中矩阵与多项式的基本运算 一、实验任务 1.了解MATLAB命令窗口和程序文件的调用。 2.熟悉如下MATLAB的基本运算: ①矩阵的产生、数据的输入、相关元素的显示; ②矩阵的加法、乘法、左除、右除; ③特殊矩阵:单位矩阵、“1”矩阵、“0”矩阵、对角阵、随机矩阵的产生和运算; ④多项式的运算:多项式求根、多项式之间的乘除。 二、基本命令训练 1.eye(m) m=3; eye(m) ans = 1 0 0 0 1 0 0 0 1 2.ones(n)、ones(m,n) n=1;m=2; ones(n) ones(m,n) ans = 1 ans = 1 1

3.zeros(m,n) m=1,n=2; zeros(m,n) m = 1 ans = 0 0 4.rand(m,n) m=1;n=2; rand(m,n) ans = 0.8147 0.9058 5.diag(v) v=[1 2 3]; diag(v) ans = 1 0 0 0 2 0 0 0 3 6.A\B 、A/B、inv(A)*B 、B*inv(A) A=[1 2;3 4];B=[5 6;7 8]; a=A\B b=A/B c=inv(A)*B d=B*inv(A) a = -3 -4 4 5 b = 3.0000 -2.0000 2.0000 -1.0000

北邮scilab_通信原理软件实验报告

信息与通信工程学院通信原理软件实验报告

实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间(-无穷,+无穷)上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)按区间[-T/2 ,+T/2 ]截短为按时间间隔dert T均匀取样,得到的取样点数为N=T/dert T. 仿真时用这个样值集合来表示信号s(t)。Dert T反映了仿真系统对信号波形的分辨率,越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,其重复周期是1/t; 。如果信号的最高频率为 那么必须有 才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设 则称为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用 此仿真程序来研究带宽大于这的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*Bs,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。 三、实验步骤 1.将正弦波发生器模块、示波器模块、时钟模块按下图连接:

时钟设置0.01,得到的结果如下: 时钟设置0.3,以后得到的结果如下:

五、思考题 (1)观察分析两图的区别,解释其原因。 答:因为信号周期是1,而第一个图的采样周期是0.01,所以一个周期内能采样100个点,仿真出来的波形能较精确地显示成完整波形,而第二个图采样周期是0.3,所以一个周期内只有三个采样点,故信号失真了。 (2)将示波器的控制时钟的period的参数改为0.5,观察仿真结果,分析其原因。 结果如下:

通信仿真实验报告(高频)

实验一 高频小信号放大器的MULTISIM 仿真 实验目的: 1、了解MULTISIM 的基本功能、窗口界面、元器件库及工具栏等; 2、掌握MULTISIM 的基本仿真分析方法、常用仿真测试仪表等; 3、掌握高频小信号放大器MULTISIM 仿真的建模过程。 实验内容及步骤: (一)单频正弦波小信号放大器的MULTISIM 仿真。 1)根据图一所示高频小信号放大器电路,创建仿真电路原理图。要求输入信号的幅度在2mV---1V 之间、频率在1MHz---20MHz 之间; 2)根据实际情况设置好电路图选项,接入虚拟仪器并设置合适的参数。打开仿真开关,运行所设计好的电路,给出输入输出信号的波形图和频谱图。根据初步仿真结果改变电路元器件的型号和参数,使输出信号波形无失真、幅度放大10倍以上; 1、实验原理图 C3 100nF C1100nF C230pF C4 100uF Q1 2N1711 C5 1nF R2 5.1kΩR3470Ω T1 TS_AUDIO_10_TO_1 R4100Ω 12V VCC V1 2mVpk 10MHz 0° 50% 100kΩKey=A R1 A B T G XSC1 R540kΩ T IN XSA1 2、由示波器观测到的输出波形:

3、此时的输出信号的频谱分析 通过改变输入信号的频率观察到电路谐振频率保持不变. 4、改变输入信号的幅度,用示波器观察输出电压波形,测量出输出波形不失真情 况下输入信号幅度的变化范围为1mV到21mV。 5、改变输入信号的频率,用示波器观察输出电压幅度的变化情况 输入信号Vi(mv) 7.5 0.9 1 2 3 4 5 6 7 8 9 输入信号fs (MHz)

实验一高频小信号调谐放大器实验报告

高频小信号调谐放大器 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

六、数据处理 () f MHz 7 8 9 9.7 9.8 9.9 10 10.1 10. 2 10. 3 () i u mV15 15 15 15 15 15 15 15 15 15 () o u mV19 28 55 120 128 138 143 150 140 130 (/) u o i A u u 1.2 7 1.8 7 3.6 7 8.0 8.5 3 9.2 9.5 3 10.0 9.3 3 8.6 7 () f MHz10. 4 10. 5 10. 6 10. 7 11 12 13 14 15 16 () i u mV15 15 15 15 15 15 15 15 15 15 () o u mV120 100 90 80 64 39 28 24 20 18 (/) u o i A u u8.0 0 6.6 7 6.0 5.3 3 4.2 7 2.6 1.8 7 1.6 1.3 3 1.2

7 8910111213141516 25 50 75 100 125 150 uo(mV) f(MHz) 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下: 使得晶体满足: 1.发射极正偏:b e V V >,且0.6be V V >

交通运输系统仿真实验报告

一、系统描述 1.1.系统背景 本系统将基于下面的卫星屏幕快照创建一个模型。当前道路网区域的两条道路均为双向,每个运动方向包含一条车道。Tapiolavagen路边有一个巴士站,Menninkaisentie路边有一个带五个停车位的小型停车场。 1.2.系统描述 (1)仿真十字路口以及三个方向的道路,巴士站,停车点;添加小汽车、公交车的三维动画,添加红绿灯以及道路网络描述符; (2)创建仿真模型的汽车流程图,三个方向产生小汽车,仿真十字路口交通运行情况。添加滑条对仿真系统中的红绿灯时间进行实时调节。添加分析函数,统计系统内汽车滞留时间,用直方图进行实时展示。 二、仿真目标 1、timeInSystem值:在流程图的结尾模块用函数统计每辆汽车从产生到丢弃的,在系统中留存的时间。 2、p_SN为十字路口SN方向道路的绿灯时间,p_EW为十字路口EW方向道路的绿灯时间。 3、Arrival rate:各方向道路出现车辆的速率(peer hour)。

三、系统仿真概念分析 此交通仿真系统为低抽象层级的物理层模型,采用离散事件建模方法进行建模,利用过程流图构建离散事件模型。 此十字路口交通仿真系统中,实体为小汽车和公交车,可以源源不断地产生;资源为道路网络、红绿灯时间、停车点停车位和巴士站,需要实施分配。系统中小汽车(car)与公共汽车(bus)均为智能体,可设置其产生频率参数,行驶速度,停车点停留时间等。 四、建立系统流程 4.1.绘制道路 使用Road Traffic Library中的Road模块在卫星云图上勾画出所有的道路,绘制交叉口,并在交叉口处确保道路连通。 4.2.建立智能体对象 使用Road Traffic Library中的Car type模快建立小汽车(car)以及公共汽车(bus)的智能体对象。 4.3.建立逻辑 使用Road Traffic Library中的Car source、Car Move To、Car Dispose、

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

Multisim仿真实训报告概要

EDA 工 具 训 练 实 训 报 告 学院:电气与控制工程学院 班级:自动化1201 姓名: 学号:

实验1:三相电路仿真 一.电路设计及功能介绍 三相电路是一种特殊的交流电路,由三相电源、三相负载和三相输电线路组成。世界上电力系统电能生产供电方式大都采用三相制。三相电路由三相交流电源供电,三相交流电源指能够提供3个频率相同而相位不同的电压或电流的电源,三相发电机的各相电压的相位互差120°。三相电路有电源和负载Y连接和△连接等连接方式,本次仿真采用Y--Y连接。 二.三相电路电路分析 1.三相对称负载Y--Y连接。图1-1为其电路仿真。 图1-1.三相电路对称负载仿真 线电流(相电流)/A 相电压/v 负载电压/v 中性线电流/uA 2.2 381.077 220.015 8.277 表1-1 三相电路对称负载仿真各项数据 2.去掉中性线后三相对称负载电路仿真,如图1-2.

图1-2去掉中性线后.三相电路对称负载仿真 线电流(相电流)/A 相电压/v 负载电压/v 2.2 381.077 220.015 表1-2去掉中性线后三相电路对称负载仿真各项数据 3.改变三相对称负载的大小,如图1-3. 图1-3改变三相对称负载后三相电路对称负载仿真各项数据 线电流(相电流)/A 相电压/v 线电压/v 4.4 381.077 220.015 表1-3 改变三相对称负载后三相电路对称负载仿真各项数据 4.三相负载三角形联结的电路仿真

图1-4.三相电路△负载仿真 线电压(相电压)/v 线电流/A相电流/A 381.069 6.6 3.811 表1-4.三相电路△负载仿真各项数据 本实验包括四个部分,一是三相对称负载Y--Y接法,二是去掉一中的中性线,通过一和二的对比可以得出三相电路中中性线的作用,三改变了对称负载的大小,可以得出负载大小对各项数值的影响,四十三相对称负载Y--△接法,通过四与一二三的对比,可以发现△负载与Y负载的不同。 通过对比以上各组实验及数据,可以得到: 1.在Y--Y三相对称负载电路中,中性线上电流几乎为零,中性线不起作用。 2.三相对称负载变化会引起线电流变化,其他不变。 3.负载Y接法中,线电流等于相电流,负载对称,线电压是相电压的1.73倍。 4.负载△接法中,线电压等于相电压,负载对称,线电流是相电流的1.73倍。 三.总结与展望 世界上电力系统电能生产供电方式大都采用三相制。说明三相电路在实际生产生活中具有重要意义。对于我们电类专业的学生,将来如果从事与专业相关的工作,供电是基础,所以我们要研究三相电路,研究它各方面特点,熟练掌握Y 接法和△接法。通过本次试仿真实验,加深了我们对三相电路的了解,为将来研究和运用三相电路打下了基础。 实验二:RLC串联谐振 一.电路设计及功能介绍: 电路原理:当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐

高频实验报告

大连理工大学本科实验报告

2017年11月20日

实验项目列表

大连理工大学实验预习报告 学院(系): 电子信息与电气工程学部 专业: 电子信息工程 班级: 电子 1502 ______ 姓 名: 凌浩洋 ________________ 学号: ______ 201583130 ______ 组: ______ __^_ 实验时间: 2017.10.10 实验室: 创新园大厦C224 _________ 实验台: _________ 指导教师签字: ________________________________________ 成绩: ___________ 实验名称调频接收机模块设计实验 一总体要求: 1设计任务: (1) 根据实验室提供的电子元器件材料、工装焊接工具、测量调试仪器等,在考虑联 调和可联调的基础上,独立设计、搭建、调测高频小信号放大器、晶体振荡器(本地振 荡器)、晶体管混频器、中频信号放大器和正交鉴频器(包括低频放大和滤波)五个功 能模块,使之满足各自的指标要求。 (2) 将五个模块连接起来组成一个调频接收机,完成整机性能调测,达到预定的指标 要求。 (3) 调频接收机安装在测试架上,连接测试架上的辅助资源(基带处理单元、电源管 理单元),接受实验室自制发射台发射的各种调频信号,进一步检测整机和分模块性能< 调频接收机机框图及鉴频前的前端系统的增益分配如图 1所示 25dR 图1调频接收机组成框图 2设计要求 (1) 电源电压 VCC=12V VEE=-8V (2) 接收频率 1 6MHz 左右。 (3) 本振频率九肯14MHz 左右(为了与相邻试验台频率错开,以避免互相之间的干 扰,可考虑采用14MHZ 付近的多个频点中的一个频率值)。 16.455MHz 1,|ir H 2MHz 左右 鉴频 1 .VOLT

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

收音机实验报告

《高频电子线路》课程设计报告 题目SD-105 七管半导体收音机 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 指导教师宋蓓蓓,利骏

目录 一、概括……………………………………页码 二、收音机工作原理……………………………………页码 三、各部分设计及原理分析……………………页码 四、实验仿真及结果……………………………页码 五、结论…………………………………………页码 六、心得体会……………………………………页码 七、参考文献……………………………………页码

调幅半导体收音机原理及其调试 一概述:收音机的发明人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性、通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。 随着广播技术的发展,收音机也在不断更新换代。自1920年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20世纪80年代开始,收音机又朝着电路集成化、显示数字化、声音立体化、功能电脑化、结构小型化等方向发展。 1947年、美国贝尔实验室发明了世界上第一个晶体管,从此以后.开始了收音机的晶体管时代.并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。 调幅收音机:由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成输入回路由天线线圈和可变电容构成,本振回路由本振线圈和可变电容构成,本振信号经内部混频器,与输入信号相混合。混频信号经中周和455kHz陶瓷滤波器构成的中频选择回路得到中频信号。至此,电台的信号就变成了以

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

相关文档
最新文档