复合材料原理总复习
复合材料期末复习资料
复合材料期末复习资料复合材料C 复习第一章概论1. 复合材料的定义?复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
三要素:基体(连续相)增强体(分散相)界面(基体起粘结作用并起传递应力和增韧作用)复合材料的特点:(明显界面、保留各组分固有物化特性、复合效应,可设计性)(嵌段聚合物、接枝共聚物、合金:是不是复合材料??)2、复合材料的命名/Alf(纤维),w(晶须),p(颗粒)比如:TiO2p3. 复合材料的分类:1) 按基体材料类型分为:聚合物基复合材料;金属基复合材料;无机非金属基复合材料(陶瓷基复合材料)。
2)按增强材料分为:玻璃纤维增强复合材料;碳纤维增强复合材料;有机纤维增强复合材料;晶须增强复合材料;陶瓷颗粒增强复合材料。
3) 按用途分为:功能复合材料和结构复合材料。
结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。
功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。
第二章增强体1、增强体定义:结合在基体内、用以改进其力学等综合性能的高强度材料。
要求: 1) 增强体能明显提高基体某种所需性能;2) 增强体具有良好的化学稳定性;3) 与基体有良好润湿性。
分类: f,w,p2、纤维类增强体特点:长径比较大;柔曲性;高强度。
v玻璃纤维主要成分:SiO2性能:拉伸强度高;较强耐腐蚀;绝热性能好。
(玻璃纤维高强的原因(微裂纹)及影响因素(强度提升策略:减小直径、减少长度、降低含碱量,缩短存储时间、降低湿度等))分类:无碱(E玻璃)、有碱(A玻璃)制备:坩埚法(制球和拉丝)、池窑法(熔融拉丝)。
浸润剂作用:(i) 粘结作用,使单丝集束成原纱或丝束;(ii) 防止纤维表面聚集静电荷;(iii)进一步加工提供所需性能;(iv) 防止摩擦、划伤。
复合材料-复习材料及答案
复合材料-复习材料及答案复合材料第⼀章1、材料科技⼯作者的⼯作主要体现在哪些⽅⾯?(简答题)①发现新的物质,测试新物质的结构和性能;②由已知的物质,通过新的制备⼯艺,改善其微观结构,改善材料的性能;③由已知的物质进⾏复合,制备出具有优良特性的复合材料。
2、复合材料的定义(名词解释)复合材料是由两种或两种以上物理和化学性质不同的物质组合⽽成的⼀种多相固体材料。
3、复合材料的分类(填空题)⑴按基体材料分类①聚合物基复合材料;②⾦属基复合材料;③⽆机⾮⾦属基复合材料。
⑵按不同增强材料形式分类①纤维增强复合材料:②颗粒增强复合材料;③⽚材增强复合材料;④叠层复合材料。
4、复合材料的结构设计层次(简答题)⑴⼀次结构:是指由基体和增强材料复合⽽成的单层复合材料,其⼒学性能取决于组分材料的⼒学性能,各相材料的形态、分布和含量及界⾯的性能;⑵⼆次结构:是指由单层材料层合⽽成的层合体,其⼒学性能取决于单层材料的⼒学性能和铺层⼏何(各单层的厚度、铺设⽅向、铺层序列);⑶三次结构:是指⼯程结构或产品结构,其⼒学性能取决于层合体的⼒学性能和结构⼏何。
5、复合材料设计分为三个层次:(填空题)①单层材料设计;②铺层设计;③结构设计。
第⼆章1、复合材料界⾯对其性能起很⼤影响,界⾯的机能可归纳为哪⼏种效应?(简答题)①传递效应:基体可通过界⾯将外⼒传递给增强物,起到基体与增强体之间的桥梁作⽤。
②阻断效应:适当的界⾯有阻⽌裂纹的扩展、中断材料破坏、减缓应⼒集中的作⽤。
③不连续效应:在界⾯上产⽣物理性能的不连续性和界⾯摩擦出现的现象。
④散热和吸收效应:光波、声波、热弹性波、冲击波等在界⾯产⽣散射和吸收。
⑤诱导效应:复合材料中的⼀种组元的表⾯结构使另⼀种与之接触的物质的结构由于诱导作⽤⽽发⽣变化。
2、对于聚合物基复合材料,其界⾯的形成是在材料的成型过程中,可分为两个阶段(填空题)①基体与增强体的接触与浸润;②聚合物的固化。
3、界⾯作⽤机理界⾯作⽤机理是指界⾯发挥作⽤的微观机理。
复合材料原理考试总结整理
复合材料原理考试总结整理复合材料原理第一章1.聚合物基复合材料的性能特点是什么?(1) 密度低;(2) 耐腐蚀;(3) 易氧化、老化;(4) 聚合物的耐热性通常较差;(5) 易燃;(6) 低的摩擦系数;(7) 低的导热性和高的热膨胀性;(8) 极佳的电绝缘性和静电积累;(9) 聚合物可以整体着色而制得带色制品。
(10) 聚合物的一些力学性能随其分子结构的改变而变化。
2.复合材料区别于单一材料的主要特点是什么?1、不仅保持原组分的部分优点,而且具有原组分不具备的特性2、区别于单一材料的另一显著特性是材料的可设计性3、材料与结构的一致性3.增强体和功能体在复合材料中代表性的作用是什么?(1)填充,用廉价的增强体,特别是颗粒状填料可降低成本。
(2)增强,纤维状或片状增强体可提高聚合物基复合材料的力学性能和热性能。
其效果在很大程度上取决于增强体本身的力学性能和形态等。
(3)赋予功能,功能体可赋予聚合物基体本身所没有的特殊功能。
功能体的这种作用主要取决于它的化学组成和结构第二章1.复合效应特点?1.线性效应:平均效应平行效应互补效应相抵效应2.非线性效应:相乘效应诱导效应共振效应系统效应线性效应:线性指量与量之间成正比关系。
非线性效应:非线性指量与量之间成曲线关系。
1.平均效应:是复合材料所显示的最典型的一种复合效应。
2.平行效应:增强体(如纤维)与基体界面结合很弱的复合材料所显示的复合效应,可以看作是平行效应。
3.相补效应:组成复合材料的基体与增强体,在性能上能互补,从而提高了综合性能,则显示出相补效应。
4.相抵效应:基体与增强体组成复合材料时,若组分间性能相互制约,限制了整体性能提高,则复合后显示出相抵效应。
1.相乘效应:两种具有转换效应的材料复合在一起,有可能发生相乘效应。
2.诱导效应:在一定条件下,复合材料中的一组分材料可以通过诱导作用使另一组分材料的结构改变而改变整体性能或产生新的效应。
3.共振效应:两相邻的材料在一定条件下,会产生机械的或电、磁的共振。
材料复合原理复习资料(偏重于概念)
复合材料特点【】按化学组成(或基本组成)分类:1金属材料2. 无机非金属材料3. 高分子材料(聚合物)4. 复合材料【】复合材料的定义:复合材料由两种或两种以上不同性质的单一材料,通过不同复合方法得到的宏观多相材料。
是多相材料,主要包括基体相和增强相。
基体相是连续相材料,作用是把改善性能的增强相材料固结成一体,并传递应力;增强相起承受应力(结构复合材料)和显示功能(功能复合材料)的作用。
复合材料既保持原材料的重要特色,又通过复合效应使各组分的性能互相补充,获得原组分不具备的许多优良性能。
【】复合材料分类 ( 1)基体种类树脂基复合材料、金属基复合材料、陶瓷基复合材料。
(2)增强材料形状:颗粒、晶须、纤维、织物类型: 无机和有机材料(3)用途结构复合材料(增强体主要起承受载荷的作用,而基体起连接增强体,传递载荷,分散载荷的作用)、功能复合材料功能体赋予材料一定的物理化学功能,而基体主要起连接作用)【】复合材料特点:(1)可设计性复合材料的力学、热、电、声、光等物理化学性能都可通过组分材料的选择、界面控制等设计手段达到。
(2)材料与结构的一致性复合材料的构件与材料同时形成。
(3)存在复合效应区别于任意混杂材料复合材料的性能不是其组分材料性能的简单叠加,可以产生新的性能。
【】复合材料性能的优点; 密度低, 高比强度、高比模量,电绝缘性好,透波材料, 耐疲劳性能好,耐化学物质腐蚀 , 缺点:不耐高温,不易回收利用.【】复合效应 1, 线性效应: 平均效应平行效应互补效应相抵效应2, 非线性效应 ;相乘效应诱导效应共振效应系统效应【】材料的复合效果 1 组分效果只把组分的相对组成作为变量,不考虑组分的几何形态、分布状态和尺度等复杂变量影响时产生的效果。
2 结构效果①几何形态(形状)②分布状态③尺度 3 界面效果界面是影响基体与增强体或功能体复合效果的主要因素。
界面结构(物理和化学结构)的变化会引起复合材料性能的明显变化。
复合材料原理复习重点
X/Y × Y/Z
= X/Z
2、对于含有 2 中组分的复合材料,其典型的结构 0-3 型、1-3 型、2-3 型、2-2 型和 3-3 型分 别指什么结构? 见 P8 答:0-3 型指增强体或功能体为弥散、孤立的颗粒状材料,基体为网络体状的连续材料。 1-3 型指增强体或功能体为纤维状材料,基体为网络体状的连续材料。 2-3 型指增强体或功能体为片状材料,基体为网络体状的连续材料。 2-2 型指增强体或功能体、基体均为片状的连续材料。 3-3 型指增强体或功能体、基体为网络体状的连续材料。
化学键理论:偶联剂--架桥剂 内容: 认为: 基体树脂表面的活性官能团与增强体表面的官能团能起化学反应。 因此树脂基体与增强体之间形成化学键的结合, 界面的结合力是主价键力的作用。 偶联剂正 是实现这种化学键结合的架桥剂。 优点: 在偶联剂应用于玻璃纤维复合材料中得到了很好的证明, 也被界面研究 的实验多证实。 不足:聚合物不具备活性基团 不具备与树枝反应的集团,但仍能让偶联剂达到良好处理效果 硅烷偶联剂中双键的作用: 当硅烷偶联剂分子结构带有不饱和双键时, 由于不 饱和双键可与聚酯树脂反应,故提高了聚酯玻璃钢的强度(Br2)---41 页 非树脂基复合材料的基体与界面结构 1.非树脂基复合材料的界面类型 P47 2.非树脂基复合材料的界面结合形式 机械结合 溶解与浸润结合 反应界面结合 为能达到化学相容性,使界面处于稳定状态,可采取的办法: 在复合温度下使其热力学平衡 利用退化反应的化学动能与化学势能相平衡 使特殊表面能的影响最小 控制凝聚作用使总表面能最小 氧化结合 混合结合
复合体系的界面结合特性 1.复合材料界面形成过程: (界面是怎样形成的) 1、.基体与增强材料的接触和浸润过程 2.基体与增强材料通过相互作用使界面固定阶段。 2.按照怎样固化分类:有固化剂引发树脂官能团反应固化 以树脂本身官能团进行反应固化 3.胶束(胶粒) :密度大 4.胶絮:密度小 5.树脂抑制层:在增强体表面形成的有序树脂胶束层 6.界面区的作用:使基体与增强体结合形成材料整体,并在外力场作用下的应力传递 7.以连续纤维为增强体的树脂基复合材料,增强体沿纤维的轴向是连续的,但其界面的微观 结构与非连续纤维为增强体的复合材料仍是一致的 8.树脂基复合材料的界面结合理论 润湿理论:指出:要使树脂对增强体紧密接触,就必须使树脂对增 强体表面很好地 浸润。 前提条件:液态树脂的表面张力必须低于增强体的临界表面张力。 结合方式:属于机械结合与润湿吸附(范德华力) 。 优点:解释了增强体表面粗化、表面积增加有利于提高与基体树脂界面结合力的事实。 不足:不能解释施用偶联剂后使树脂基复合材料界面粘结强度提高的现象。
复合材料专业复习要点整理-经典汇总
⑶牌号表示法 (4)折算断裂强度 b
Pb A
100 f 0 N
Pb
纱强度低于单丝强度的原因 ⑴测量标距不同 单丝:10mm, 纱:200mm ⑵各单丝准直不一,不可能同时断裂即分批断裂 ⑶加捻-扭转力 捻度 300 时,影响才明显
.布的品种与规格 ⑴品种 按织法(侧面图):平纹布、斜纹布、缎纹布 单向布、无捻布、方格布、无纺布(无纬布) ⑵主要规格 表 2-7 经纱、纬纱规格 布的织法:平纹、斜纹、缎纹 布的厚度:反映纤维弯曲程度 布经、纬向纱的排列密度 bL、bT ——指 1cm 宽长度上排了多少根合股纱,反映纱的稀密程度 面密度(织物重量)Gf:单位面积的纤维中重量,g/m2; 拉断力 PB:标距 100mm×25mm 宽度,kg。
冷却速度↑—Tg↑—V↑—密度ρ↓ 4 玻纤性质
力学性能:应力应变关系—直线,脆性特征;强度高,模量低;强度受湿 度影响大 Griffith 微裂缝理论 强度的尺寸效应或体积效应 ① 单丝直径 df 越小,强度越大 ②测试标距 l 愈大,强度愈小 ③纤维强度分散性大
热性能:⑴耐热性(好,但高温下强度下降) ⑵导热系数——低,绝热材 料 电性能:⑴电绝缘性好 ρv= 1011 – 1018 欧.厘米含碱量↑——ρv↓(载流子)
型(IM)、高模型(HM)、超高模型(UHM)
(3) 按碳纤维的制造方法不同分
碳纤维(800-1600℃)、石墨纤维(2000-3000℃)、氧化纤维(预氧化丝
200-300℃)、活性碳纤维和气相沉积碳纤维
. 布的断裂强度
牌号表示法
碳纤维
一、分类:
(1)按先驱体纤维原料的不同
聚丙烯腈基碳纤维 PAN-based
沥青基碳纤维 Pitch-based
复合材料——复习题1(1)
一、判断题1、MMC具有比其基体金属或合金更高的比强度和比模量。
(√)2、原位复合MMC的增强材料/基体界面具有物理与化学稳定性。
(√)3、原位复合法制备MMC的基本思路是为了提高增强材料与基体之间的浸润性和减少界面反应。
(√)4、一般,颗粒及晶须增强MMC的疲劳强度及寿命比基体金属或合金高。
(√)5、陶瓷纤维增强MMC的抗蠕变性能高于基体金属或合金。
(√)6、陶瓷基复合材料的制备过程大多涉及温度,因此仅有可承受上述高温的增强材料才可被用于制备陶瓷基复合材料。
(√)7、Y2O3加入到ZTA(zirconia toughening alumina)中是为了促进相变形成单斜晶体。
(×)/C是目前唯一可用于温度高达2800℃的高温复合材料,但必须是在非氧化8、Cf性气氛下。
(√)9、基体与增强体的界面在高温使用过程中不发生变化。
(×)10、比强度和比模量是材料的强度和模量与其密度之比。
(√)11、浸润性是基体与增强体间粘结的必要条件,但非充分条件。
(√)12、界面间粘结过强的复合材料易发生脆性断裂。
(√)13、脱粘是指纤维与基体完全发生分离的现象。
(×)14、纤维长度l<lc时,纤维上的拉应力达不到纤维的断裂应力。
(√)二、选择题1、金属基复合材料通常(BD)A、以重金属做基体B、延性比金属差C、弹性模量比基体低D、较基体具有更高的高温强度2、材料的比模量和比强度越高(A)A、制作同一零件时自重越小,刚度越大B、制作同一零件时自重越大,刚度越大C、制作同一零件时自重越小,刚度越小D、制作同一零件时自重越大,刚度越小3、偶联剂是这样一种试剂(AC)A、它既能与纤维反应,又能与基体反应B、它能与纤维反应,但不能与基体反应,也不与基体相容C、它能与纤维反应,不与基体反应,但与基体相容D、它不与纤维反应,但与基体反应或相容4、通常MMC(metal matrix composite)(BC)A、采用高熔点、重金属作为基体B、要比基体金属或合金的塑性与韧性差C、要比基体金属或合金的工作温度高D、要比基体金属或合金的弹性模量低5、原位MMC(BD)A、可以通过压铸工艺制备B、可以通过定向凝固工艺制备C、可以通过扩散结合或粉末法制备D、可以通过直接金属氧化法(DIMOX TM)制备6、单向纤维增强MMC的纵向拉伸模量(AD)A、随纤维体积含量的增加而增加B、与纤维体积含量无关,而与纤维和基体的模量有关C、与横向拉伸模量相同D、与基体的模量有关7、在体积含量相同的情况下,SiC晶须与颗粒增强MMC(B)A、具有基本相同的抗拉强度和屈服强度B、具有基本相同的拉伸模量C、具有基本相同的断裂韧性D、具有基本相同的抗蠕变性能8、MMC制备工艺中,固态发和液态法相比(A)A、增强材料与基体浸润性要求可以降低B、增强材料在集体中分布更均匀C、增强材料仅局限于长纤维D、增强材料/基体界面反应更剧烈(如果存在界面反应时)9、为了改善增强材料与基体浸润性,制备MMC时,可以通过(ABD)A、基体合金化,以降低液态基体的表面张力B、基体合金化,以增加液态基体与增强材料的界面能C、涂层,增加增强材料的表面能D、涂层,降低增强材料的表面能10、MMC中,目前典型的增强材料/基体界面包括有(ABC)/AlA、不发生溶解,也不发生界面反应,如BfB、不发生溶解,但发生界面反应,如B/Tif/AlC、极不容易互相浸润,但能发生强烈界面反应,如Cf/AlD、既容易互相浸润,又不发生界面反应,如SiCf11、相变增韧(BC)A、是由于陶瓷基体中加入的氧化锆由单斜相转变为四方相B、是由于陶瓷基体中加入的氧化锆由四方相转变为单斜相C、其增韧机理是陶瓷基体由于氧化锆相变产生了微裂纹D、总是导致陶瓷基复合材料的强度下降12、选择C/C高温抗氧化涂层材料的主要关键是(C)A、涂层材料的熔点高B、涂层材料高温抗氧化性和热膨胀系数C、涂层的氧扩散渗透率极低和与C/C的热膨胀系数匹配性D、涂层材料高温挥发性。
复合材料复习题答案
复合材料复习题答案一、选择题1. 复合材料是由两种或两种以上的材料组成的,其中一种材料通常具有()。
A. 良好的机械性能B. 高熔点C. 良好的化学稳定性D. 良好的电绝缘性答案:A2. 以下哪项不是复合材料的优点?A. 轻质B. 高强度C. 易加工D. 耐腐蚀答案:C3. 复合材料中增强材料的主要作用是()。
A. 提供形状B. 提供韧性C. 提供强度D. 提供耐腐蚀性答案:C4. 复合材料的界面相通常具有以下哪个特性?A. 良好的粘合性B. 良好的导电性C. 良好的导热性D. 良好的透光性答案:A5. 以下哪种材料不属于复合材料?A. 碳纤维增强塑料B. 玻璃纤维增强塑料C. 铝合金D. 陶瓷基复合材料答案:C二、填空题6. 复合材料的分类方法很多,根据增强材料的不同,可以分为________、________和________等。
答案:纤维增强材料、颗粒增强材料、层状增强材料7. 复合材料的制备方法主要有________、________和________等。
答案:热压成型、树脂传递成型、拉挤成型8. 复合材料的界面相是复合材料中增强材料与基体材料之间的________,它对复合材料的性能有重要影响。
答案:过渡层9. 复合材料的力学性能主要取决于增强材料的________、________和________。
答案:类型、含量、排列方式10. 复合材料在航空航天领域的应用非常广泛,例如________、________和________等。
答案:飞机结构、卫星结构、火箭结构三、简答题11. 简述复合材料的一般性能特点。
答案:复合材料通常具有轻质、高强度、高刚度、良好的疲劳性能和耐腐蚀性能等特点。
此外,复合材料的热膨胀系数较低,可以设计成具有特定性能的特定形状。
12. 描述复合材料的界面相在复合材料中的作用。
答案:界面相在复合材料中起着至关重要的作用。
它不仅影响增强材料与基体材料之间的粘合强度,还影响复合材料的整体性能。
复合材料考试复习资料.doc
复合材料考试复习资料1、复合材料的定义:由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。
2、复合材料的特征:可设计性:即通过对原材料的选择、各组分分布设计和工艺条件的保证等,使原组分材料优点互补,因而呈现了出色的综合性能;由基体组元与增强体或功能组元所组成;非均相材料:组分材料间有明显的界面;有三种基本的物理相(基体相、增强相和界面相);组分材料性能差异很大;组成复合材料后的性能不仅改进很大,而且还出现新性能.3、复合材料的分类:按基体材料分类①聚合物基复合材料:以有机聚合物(热固性树脂、热塑性树脂及橡胶等)为基体;② 金属基复合材料:以金属(铝、镁、钛等)为基体;③无机非金屈基复合材料:包括陶瓷基、碳基和水泥基复合材料。
按增强材料形态分类:①纤维增强复合材料:乩连续纤维复合材料:作为分散相的长纤维的两个端点都位于复合材料的边界处;b.非连续纤维复合材料:短纤维、晶须无规则地分散在基体材料屮;②颗粒增强复合材料:微小颗粒状增强材料分散在基体中;③ 板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。
其他增强体:层叠、骨架、涂层、片状、天然增强体按用途分类:①结构复合材料:用于制造受力构件;②功能复合材料:具备各种特殊性能(如阻尼、光、电、磁、摩擦、屏蔽等)③智能复合材料④混杂复合材料4、复合材料的命名:复合材料可根据增强材料和基体材料的名称来命名,通常将增强材料放在前面,基体材料放在后面,再加上“复合材料”而构成。
5、复合材料的结构设计层次:一次结构:单层设计…微观力学方法:取决于增强相、基体相和结合界面的力学性能,增强相的含量、分布方向等;二次结构:层合体设计…宏观力学方法:取决于单层材料的力学性能和铺层方法(厚度、纤维交叉方式、顺序等);三次结构:产品结构设计■-结构力学方法:取决于层合体的力学性能、结构几何、组合与连接方式6、增强体的定义:增强体是结构复合材料屮能提高材料力学性能的组分,在复合材料中起着增加强度、改善性能的作用。
复合材料复习题(全)
1、人类发展史与材料史人类为了谋求生存和发展,企求用理想材料制成新工具的愿望总是随着历史的发展不断探索不断前进。
因此,人类发展的历史就和材料的发展的历史息息相关。
研究人类历史的人们都可以清楚地知道,人类历史上各方面的进步是与新材料的发现、制造和应用分不开的。
2.历史学家对材料史的划分石器时代、陶器时代、青铜器时代、铁器时代。
其后人类又发明了高分子材料、先进复合材料和智能材料。
3.科学中的复合材料 a.复合是自然界的基本规律b.复合是科学的基本思想c. 材料的复合化是材料发展的基本趋势4.复合材料的概念复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
5.复合材料的分类1.复合材料按其组成分为:金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。
2.按其结构特点又分为:纤维复合材料、夹层复合材料、细粒复合材料、混杂复合材料。
3.复合材料按基体材料分类:树脂基,分为热固性和热塑性;金属基;陶瓷基,分为炭基、玻璃基和水泥基。
4.复合材料按功能分类:结构复合材料和功能复合材料6.复合材料的性能特点优点:a .比强度和比模量高b.良好的抗疲劳性能。
c .减振性能好d.高温性能好e.各向异性和性能可设计性f.材料与结构的统一性g.其他特点,过载时安全性好、具有多种功能性、有很好的加工工艺性缺点:稳定性稍差,耐温和老化性差,层间剪切强度低等7.几种新型复合材料的概念热电材料是一种能将热能和电能相互转换的功能材料。
压电材料是受到压力作用时会在两端面间出现电压的晶体材料。
隐身材料是一种新近出现的具有隐蔽自己的功效的材料,隐身材料可以降低被探测率,提高自身的生存率,是隐身技术的重要组成部分。
按频谱可分为声、雷达、红外、可见光、激光隐身材料。
按材料用途可分为隐身涂层材料和隐身结构材料 光致变色材料,是指受到光源激发后能够发生颜色变化的一类材料。
吸声材料,是具有较强的吸收声能、减低噪声性能的材料。
复合材料复习题精选试题
复合材料复习题精选试题复合材料复习题一、判断题1.比强度和比模量是材料的强度和模量与其密度之比√2.混杂复合总是指两种以上的纤维增强体×3.陶瓷复合材料中,连续纤维的增韧效果远高于颗粒的增韧效果√4.层板复合材料主要是指由颗粒增强的复合材料×5.复合材料具有可设计性√6.分散相总是较基体强度和硬度高、刚度大×7.原位复合MMC的增强材料/基体界面具有物理和化学稳定性√8.一般颗粒及晶须增强MMC的疲劳强度及寿命比基体金属/合金高√9.基体与增强体的界面在高温使用过程中不发生变化×10.复合材料是由两个组元以上的材料化合而成×11.界面粘结过强的复合材料容易发生脆性断裂√12.混合法则可用于任何复合材料的性能估算×13.纤维长度l 14.竹、麻、木、骨、皮肤是天然复合材料√15.玻璃陶瓷是含有大量微晶体的陶瓷×16.陶瓷基复合材料的最初失效往往是陶瓷基体的开裂√17.所有天然纤维是有机纤维,所有的合成纤维是无机纤维×18.基体与增强体间界面的模量比增强体和基体高,则复合材料的弹性模量也越高×二、选择题1.短纤维复合材料广泛应用的主要原因是(C:短纤维复合材料总是各相同性)2.金属基复合材料的温度范围为(B:350℃~1100℃)3.玻璃钢是(B:玻璃增强纤维塑料)4.功能复合材料(A:是指由功能体和基体的组成的复合材料)5.材料的比强度和比模量越高(B:制作同一零件时自重越大,刚度越大)6.金属基复合材料通常(D:较基体具有更高的高温强度)7.复合材料界面的作用(B:将整体承受的载荷由基体传送到增强体)8.增强材料与基体的作用是(D:基体起粘结作用并起传递应力和增韧作用)9.混合定律(A:表示复合材料性能随组元材料体积含量呈线性关系)10.通常MMC(B:要比基体金属/合金的塑性和韧性差)11.混杂复合材料(B:是具有混杂纤维或颗粒增强的复合材料)12.浸润性(A:当yc+ys 13.偶联剂是怎样的一种试剂(A:既能与基体反应,又能与纤维反应)14.玻璃纤维(A:由二氧化硅玻璃制成)15.晶须(A:是含有缺陷很少的单晶纤维)三、简答题1.简述复合材料的分类形式。
复合材料复习题
复合材料复习题复合材料复习题复合材料是由两种或两种以上的材料组合而成的一种新型材料。
它具有比单一材料更好的性能,因此在许多领域得到了广泛的应用。
为了更好地理解复合材料的特性和应用,我们来进行一些复习题。
1. 什么是复合材料?它由哪些组成?复合材料是由两种或两种以上的材料组合而成的一种新型材料。
它通常由增强材料和基体材料组成。
增强材料可以是纤维、颗粒或片状材料,而基体材料则用于固定和支撑增强材料。
2. 复合材料相比于单一材料有哪些优势?复合材料相比于单一材料具有许多优势。
首先,它们具有更高的强度和刚度。
增强材料的存在使得复合材料能够承受更大的力量和应力,从而提高了其结构的稳定性和耐久性。
其次,复合材料具有较低的密度,因此可以减轻结构的重量。
此外,复合材料还具有良好的耐腐蚀性和耐热性,使其在恶劣环境下具有更好的性能。
3. 复合材料的应用领域有哪些?复合材料在许多领域得到了广泛的应用。
首先,它们在航空航天领域中被广泛使用。
复合材料的轻量化和高强度使得飞机和航天器能够在空中获得更好的性能。
其次,复合材料在汽车制造、建筑和体育器材等领域也得到了广泛应用。
复合材料的高强度和低密度使得汽车更加节能环保,建筑物更加安全稳定,体育器材更加耐用。
4. 复合材料的制备方法有哪些?复合材料的制备方法有很多种。
常见的方法包括手工层叠法、注塑法、挤出法和自动化层叠法等。
手工层叠法是最简单的制备方法,通过将增强材料和基体材料层叠在一起,然后进行固化来制备复合材料。
注塑法和挤出法则是通过将熔融的复合材料注入模具或挤出机中,然后冷却固化来制备复合材料。
自动化层叠法是一种自动化的制备方法,通过机器将增强材料和基体材料层叠在一起,然后进行固化。
5. 复合材料的性能测试方法有哪些?复合材料的性能测试方法有很多种。
常见的方法包括拉伸测试、弯曲测试、冲击测试和热膨胀测试等。
拉伸测试用于测量复合材料的拉伸强度和断裂伸长率,弯曲测试用于测量复合材料的弯曲强度和弯曲模量,冲击测试用于测量复合材料的抗冲击性能,热膨胀测试用于测量复合材料的热膨胀系数。
复合材料-复习材料及答案
复合材料第一章1、材料科技工作者的工作主要体现在哪些方面?(简答题)①发现新的物质,测试新物质的结构和性能;②由已知的物质,通过新的制备工艺,改善其微观结构,改善材料的性能;③由已知的物质进行复合,制备出具有优良特性的复合材料。
2、复合材料的定义(名词解释)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
3、复合材料的分类(填空题)⑴按基体材料分类①聚合物基复合材料;②金属基复合材料;③无机非金属基复合材料。
⑵按不同增强材料形式分类①纤维增强复合材料:②颗粒增强复合材料;③片材增强复合材料;④叠层复合材料。
4、复合材料的结构设计层次(简答题)⑴一次结构:是指由基体和增强材料复合而成的单层复合材料,其力学性能取决于组分材料的力学性能,各相材料的形态、分布和含量及界面的性能;⑵二次结构:是指由单层材料层合而成的层合体,其力学性能取决于单层材料的力学性能和铺层几何(各单层的厚度、铺设方向、铺层序列);⑶三次结构:是指工程结构或产品结构,其力学性能取决于层合体的力学性能和结构几何。
5、复合材料设计分为三个层次:(填空题)①单层材料设计;②铺层设计;③结构设计。
第二章1、复合材料界面对其性能起很大影响,界面的机能可归纳为哪几种效应?(简答题)①传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用。
②阻断效应:适当的界面有阻止裂纹的扩展、中断材料破坏、减缓应力集中的作用。
③不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象。
④散热和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收。
⑤诱导效应:复合材料中的一种组元的表面结构使另一种与之接触的物质的结构由于诱导作用而发生变化。
2、对于聚合物基复合材料,其界面的形成是在材料的成型过程中,可分为两个阶段(填空题)①基体与增强体的接触与浸润;②聚合物的固化。
3、界面作用机理界面作用机理是指界面发挥作用的微观机理。
复合材料终极复习资料
3.复合材料的命名(1)强调基体时以基体材料的名称为主:树脂基复合材料、金属基复合材料,陶瓷基复合材料。
(2)强调增强体时以增强体材料的名称为主:玻璃纤维增强复合材料、碳纤维增强复合材料、陶瓷颗粒增强复合材料。
(3)基体材料名称与增强材料并用:习惯上把增强材料的名称放在前面,基体材料的名称写在后面,如:玻璃纤维/环氧树脂复合材料。
4.复合材料的分类(按基体材料分类):(1)聚合物基复合材料;(2)金属基复合材料(3)陶瓷基复合材料(4)碳基复合材料按材料作用分类:(1)结构复合材料;(2)功能复合材料。
2.环氧树脂(EP)环氧当量:含有1g当量环氧基的环氧树脂的克数。
环氧树脂的固化剂:(1)多元胺类固化剂。
(2)酸酐类固化剂。
(3)阴离子及阳离子型固化剂。
(4)树脂类固化剂。
1.不饱和聚酯树脂(UP)的固化:在引发剂(如:有机过氧化物类)、光、高能辐射的作用下,乙烯基类单体(St、乙烯基甲苯、二乙烯基笨等)可使树脂室温固化。
固化时加入MMA,可提高树脂的耐候性;若加入固化促进剂(如:叔胺),可使树脂室温固化。
固化原理:自由基共聚合反应机理:链引发、链增长、链终止固化过程及固化特征:a.凝胶阶段:树脂从液态到失去流动性成为半固体凝胶。
b.定型阶段:从凝胶到具有一定的硬度和固定的形状。
(未完全固化)。
c.熟化阶段:从定型阶段到表观上已经变硬并具有一定力学性能,经过后处理后即具有稳定的化学与物理性能并可供使用。
2.聚乙烯的用途:低密度聚乙烯(LDPE):薄膜生产、注塑用品。
线型低密度聚乙烯(LLDPE):薄膜生产、制造扁丝、编织袋。
高密度聚乙烯(HDPE):a.注塑制品:工业容器、家用电器、玩具等。
b.薄膜制品:食品包装。
c.中空吹塑制品:食品、药品、化妆品的包装瓶等。
超高分子量聚乙烯(HUMWPE):可作为工程塑料在汽车、机械、原子能以及宇宙飞行等领域得到重要应用。
聚乙烯管材:生活用水和煤气管道、农业排灌用管道等。
西工大复合材料原理复习题及答案仅供参考
1.为什么Nicalon sic 纤维使用温度低于1100℃?怎样提高使用温度?从热力学上讲,C-SIO 2界面在1000℃时界面气相CO 压力可能很高,相应的O 2浓度也较高。
只有O 2扩散使界面上O 2浓度达到较高水平时,才能反应生成CO 。
但是温度较低时扩散较慢,因此C-SiO 2仍然在1000℃左右共存。
当温度升到1100℃,1200℃时,CO 的压力将会更高,此时O 2的浓度也较高,而扩散速度却加快。
因而,SiC 的氧化速度加快,导致Nicalon 纤维在1100℃,1200℃时性能下降很快。
要提高Nicalon 纤维的使用温度,需降低Nicalon 纤维的游离C 和O 的含量,以防止游离C 继续与界面O 反应。
2.复合材料的界面应力是怎样产生的?对复合材料的性能有何影响?复合材料的界面应力主要是由于从制备温度冷却到室温的温度变化△T 或是使用过程中的温度变化△T 使得复合材料中纤维和基体CTE (coefficient of thermal expansion 热膨胀系数?)不同而导致系统在界面强结合的情况下界面应力与△T 有着对应关系;在界面弱结合的情况下,由于滑移摩擦引起界面应力。
除了热物理不相容外,还有制备过程也能产生很大甚至更大的界面应力。
如:PMC 的固化收缩,MMC 的金属凝固收缩,CMC 的凝固收缩等。
△CTE 限制界面应力将导致基体开裂,留下很多裂纹,裂纹严重时将使复合材料解体,使复合材料制备失败,或是使其性能严重下降,△CTE 不大时,弹塑性作用,不会出现裂纹。
而对于CMC ,即使不会出现明显的裂纹,基体也已经出现了微裂纹。
这些微裂纹对复合材料的性能不会有很的影响,相反,这些微裂纹对CMC 复合材料的增韧有帮助,因为微裂纹在裂纹扩展过程中将会再主裂纹上形成很多与裂纹而消耗能量,从而达到增韧的目的。
3.金属基复合材料界面控制的一般原则是什么?金属基复合材料要求强结合,此时能提高强度但不会发生脆性破坏。
大学复合材料复习题
大学复合材料复习题复合材料是由两种或两种以上的材料组合而成,这些材料在宏观上保持各自的物理和化学特性,但在微观上互相结合,形成具有独特性能的新材料。
以下是大学复合材料课程的复习题,供学生参考:一、选择题1. 复合材料通常由哪些基本部分组成?A. 基体材料B. 增强材料C. 表面涂层D. 所有选项2. 以下哪种不是复合材料的增强材料?A. 碳纤维B. 玻璃纤维C. 金属丝D. 橡胶3. 复合材料的界面结合力主要取决于什么?A. 增强材料的强度B. 基体材料的粘度C. 界面的化学和物理性质D. 复合材料的密度4. 复合材料的力学性能主要受哪些因素影响?A. 增强材料的类型和含量B. 基体材料的类型C. 界面结合力D. 所有选项5. 复合材料的制造工艺包括哪些?A. 手糊成型B. 压缩成型C. 树脂传递模塑D. 所有选项二、填空题6. 复合材料的______是指增强材料与基体材料之间的结合力。
7. 复合材料的______是指复合材料在受到外力作用时,不发生破坏的最大承载能力。
8. 复合材料的______是指在受到外力作用后,材料恢复原状的能力。
9. 复合材料的______是指材料在受到外力作用时,抵抗变形的能力。
10. 复合材料的______是指材料在受到外力作用时,抵抗断裂的能力。
三、简答题11. 简述复合材料的分类及其各自的应用领域。
12. 描述复合材料的界面结合力对复合材料性能的影响。
13. 解释复合材料的疲劳性能及其在工程应用中的重要性。
14. 讨论复合材料在航空航天领域的应用及其优势。
15. 分析复合材料在汽车工业中的应用及其对环境的潜在影响。
四、论述题16. 论述复合材料在现代建筑领域的应用及其与传统材料相比的优势和挑战。
17. 探讨复合材料在海洋工程中的应用,以及如何提高其耐腐蚀性能。
18. 分析复合材料在体育器材中的应用,并讨论其对运动员性能的影响。
19. 论述复合材料在生物医学领域的应用前景及其面临的技术挑战。
复合材料期末复习题库
复合材料期末复习题库一、选择题1. 复合材料是由两种或两种以上不同性质的材料,通过物理或化学方法复合而成的新材料,其主要特点不包括以下哪项?A. 高强度B. 轻质C. 易加工D. 导电性2. 纤维增强复合材料中,纤维主要作用是提供:A. 韧性B. 耐腐蚀性C. 强度D. 绝缘性3. 以下哪种不是常用的树脂基体材料?A. 环氧树脂B. 聚酯树脂C. 聚乙烯D. 酚醛树脂4. 复合材料的层合板结构中,每层材料的铺设角度对材料的性能有重要影响,其中0°铺设主要提供:A. 抗拉强度B. 抗弯强度C. 抗剪强度D. 抗冲击强度5. 复合材料的界面结合力是影响复合材料性能的关键因素之一,以下哪种方法可以增强界面结合力?A. 增加基体材料的粘度B. 提高纤维的表面粗糙度C. 降低纤维与基体的相容性D. 减少纤维的表面处理二、填空题6. 复合材料通常由______和______两部分组成。
7. 复合材料的命名通常遵循“______+基体材料”的规则。
8. 复合材料的力学性能主要取决于______和______的性能以及它们之间的______。
9. 复合材料的制备工艺包括______、______、______等。
10. 复合材料在______、______、______等领域有广泛的应用。
三、简答题11. 简述复合材料的优势和局限性。
12. 解释什么是复合材料的界面相容性和界面结合力,并说明它们对复合材料性能的影响。
13. 描述复合材料的常见制备工艺,并简述每种工艺的特点。
14. 举例说明复合材料在航空航天领域的应用。
15. 讨论复合材料在环境友好和可持续发展方面的优势。
四、计算题16. 假设有一块碳纤维增强环氧树脂基复合材料,其体积分数为60%碳纤维和40%环氧树脂。
已知碳纤维的密度为1.75 g/cm³,环氧树脂的密度为1.15 g/cm³,试计算该复合材料的密度。
五、论述题17. 论述复合材料在现代汽车工业中的应用及其对汽车性能的影响。
复合材料考试复习资料
名词解释1.界面:复合材料中相与相之间的两相交界区称为界面;把物体与空气接触的面称为表面.2.比表面积:单位体积的物质所具有的表面积称比表面积,以As表示.3.复合材料:是指由两种或两种以上不同性质的单一材料通过一定的复合方法所得到的宏观多相材料.4.偶联剂:偶联剂是这样的一类化合物,它们的分子两端通常含有性质不同的基团,一端的基团与增强体表面发生化学作用或物理作用,另一端的基团则能与基体发生化学作用或物理作用,从而使增强体和基体很好地偶联起来,获得良好的界面粘结. 当增强体为玻璃纤维时,偶联剂主要可分为有机铬和有机硅两类:1)、有机酸氯化铬络合物类偶联剂2)、有机硅烷类偶联剂3)、新品种硅烷偶联剂:耐高温型、过氧化物型、阳离子型、水溶性、叠氮型.5.2-2型结构:是一种有两种组分材料呈层状叠合而成的多层结构复合材料.6.诱导效应:在一定条件下,复合材料中的一组分材料可以通过诱导作用使另一组分材料的结构改变而改变整体性能或产生新的效应.7.复合材料界面优化设计:是指对复合材料界面相进行设计及控制,以使整体材料的综合性能达到最优性能,包括以下几个方面:1.材料的应用要求;2.弹性模量的设计;3.界面的残余应力;4.基体与增强体的相容性;5.相间的动力学效果;6.偶联剂的性能.8.组分效果:在复合材料的基体和增强体或功能体的物理机械性能确定的情况下,仅仅把相对组成作为变量,不考虑组分的几何形态、分布状态和尺度等复杂变量影响时产生的效果称为组分效果.9.物理吸附:当固体表面的原子价已被相邻的原子所饱和,表面分子与吸附物之间的作用力是分子间引力,这类吸附称物理吸附.10.化学吸附:当固体表面原子的原子价未完全被原子所饱和,还有剩余的成键能力,在吸附剂及吸附物之间有电子转移生成化学键的吸附称化学吸附.11.表面处理:是在增强体表面涂覆上一种称为表面处理剂的物质,这种表面处理剂包括浸润剂及一系列偶联剂和助剂等物质,它有利于增强体与基体间形成一个良好的粘结界面,从而达到提高复合材料各种性能的目的.填空1.四个相组成的复合体系结构有35中可能存在的连通性.2.复合材料中,增强体与基体间最终界面的获得,一般分为接触或润湿过程和固化过程两个阶段.3.复合材料的复合效应分为线性效应和非线性效应两类.4.按化学组成,偶联剂主要可分为有机铬和有机硅两大类.5.有机硅烷中的R基团可以是双键、是双键、环氧基、氨基、长链烷基等.6.通常的研究中,习惯于把气-液、气-固界面分别称为液相表面、固相表面.7. (RO)mTi-(OX-R’-Y)n是钛酸酯偶联剂的结构通式.8.材料的传递性质是指材料在外作用场作用时,表征某通量通过材料阻力大小的物理量.9.聚合物基磁性复合材料由强磁粉、聚合物粘结剂和加工助剂三大部分组成.10.聚丙烯的改性有共聚、共混与填充增强等方法.11.晶格是表征晶体材料微观结构的基础.12.如果增强体被树脂完全浸润,液态树脂的表面张力必须低于增强体的临界表面张力.13.增强体表面的极性取决于本身的分子结构、物质结构及外场的作用.14.螯合偶联剂有螯合100型和螯合200型两种基本类型.判断题1.三氧化二锑单独使用有很强的阻燃效果.(×三氧化二锑在单独使用时几乎没有阻燃效果,但与有机卤化物并用时却具有明显的阻燃效果)2.共振效应属于线性效应.(×线性效应有平均、平行、相补、相抵;非线性效应有相乘、诱导、共振、系统)3.吸附过程是放热反应.(√)4.同轴圆柱模型主要适用于0-3型复合材料.(×1-3型)5.功能复合材料主要是以其力学性能为工程所应用.(×物理特性)6.显示平行效应的复合材料,其组成复合材料的各组分在复合材料中均保留本身的,既无制约,也无补偿.(√)7.沃兰处理剂是一种硅烷偶联剂.(×是有机酸铬络合物类偶联剂)8.复合材料界面形成过程中,一般是润湿过程完成后在进行固化过程.(×这两个过程往往是连续的,有时几乎是同时发生的)9.组成复合材料的基体与增强体,在性能上能互补,从而提高了综合性能,则显示出相抵效应.(×相补效应)10.钼化物的阻燃效果虽高于三氧化二锑但具有阻燃时发烟的特点.(×钼化物的阻燃效果虽略低于三氧化二锑,但它具有抑制燃烧时发烟的特点)11.当试样断面上被拔出的纤维表面粘附有基体树脂时,表明界面粘结强度高,破坏发生在基体中.(√)12.功能复合材料相对于结构复合材料研制周期长.(√)13.凡是具有可产生不然性气体的填料都有良好的阻燃效果.(×有效的阻燃剂须满足以下条件:产生不燃性气体的温度略低于聚合物热分解温度;在复合材料的混炼、成型温度下不产生不燃性气体)14.氢氧化铝一般不能作为热塑性和热固性聚合物的阻燃填料.(×对大多数热塑性和热固性聚合物,氢氧化铝是最常用的阻燃剂填料之一)15.RnSiX4-n是有机硅烷表面处理剂的一般结构通式,其R基团为有机基团.(√)16.玻璃纤维的处理法中,前处理法较后处理法省去了复杂的处理工艺设备,使用方便,所以是目前普遍采用的一种方法.(×目前普遍采用后处理法)17.功能复合材料主要以其声、光、电、热、磁等物理特性为工程所用.(√)18.比表面积是表面积与体积之比.(√)19.耐高温硅烷偶联剂都含有一个与Si原子直接相连的稳定的芳香环,芳香环上有一个能与树脂基体反应的官能团.(×)简答题1.吸附按作用力的性质可分为物理吸附和化学吸附:物理吸附的一般特点有:1)、物理吸附无选择性;2)、吸附在表面的可以呈单分子层,也可以是多分子层;3)、物理吸附和解吸速度都较快,易达到平衡.化学吸附的一般特点有:1)、化学吸附是有选择性的;2)、只能是单分子吸附,且不易吸附和解吸;3)、化学吸附平衡慢.2.表面张力是物质的一种特性,与表面张力有关的因素有:表面张力与物质结构、性质有关;物质的表面张力与它相接触的另一相物质有关;表面张力随温度不同而不同.3. 玻璃纤维与块状玻璃具有相似的结构,玻璃表面会产生一种表面力,此表面力与表面张力、表面吸湿性有密切关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高FRP(纤维增强塑料)耐水性的方法 (1) 纤维进行偶联剂表面处理 (2) 选用耐水性好的树脂 (3) 表面采用表面毡形成富树脂层 (4) 表面涂层,表面贴附氟薄膜、聚酯薄膜等
X基团与玻璃纤维表面的作用机理: 硅烷偶联剂处理玻璃纤维通常经历四个阶段: ①开始时在偶联剂Si上的三个不稳定的x基团发生水解; ②随后缩合成低聚体 ③这些低聚体与基质表面上的-OH形成氢键; ④最后在干燥或固化过程中与基质表面形成共价键并 伴随着少量的水。
界面的相容性 在复合材料界面上发生两种材料扩散混合时,相容性成为粘接 界面的一个重要因素。 通常,相容性是根据在混合时的吉布斯(Gibbs)的自由 能变化△G来确定。 △G<0, 就相容; △G>0, 就不相容,即不混合。
填料如何增强耐热性 填料的加入一方面引起界面层 聚合物大分子敛集密度 的改变(一般情况下是密度降低),随着大分子敛集密度的改变, 改变了分子间作用力,因而改变分子链段的活动能力,使聚合 物的玻璃化温度随之而发生变化。 另一方面,填料的加入,在界面上由于填料-聚合物分 子间作用力的存在,使聚合物大分子链段运动受到阻碍,因而 使聚合物的玻璃化温度升高。
c
(3) 式(2)代入式(3),得:
由于组分相传递推动力梯度相等,故有:
ห้องสมุดไป่ตู้
I i qc Vi i li 1
i
i
1 I qc ( Vi ) i l i l
1
则α c为:
1
c
1
i
Vi
偶联剂的结构及其作用机理。 答:偶联剂是这样的一类化合物,它们的分子两端通常含有 性质不同的基团,一端的基团 与增强体表面发生化学作用或物 理作用,另一端的基团则能和基体发生化学作用或物理作用, 从而使增强体和基体很好地偶联起来,获得良好的界面粘结, 改善了多方面的性能,并有效地抵抗了水的侵蚀。
吸附特点: 一种物质的原子或分子附着在另一物质表面上的现象 物理吸附: 当固体表面的原子的原子价被相邻的原子所饱和,表面分子 与吸附物之间的作用力是分子间引力(范德华力)。 特点:1.无选择性,吸附量相差较大.2.吸附可呈单分子层或多 分子层.3.物理吸附、解吸速度较快,易平衡 化学吸附 当固体表面的原子的原子价被相邻的原子所饱和,还有剩余 的成键能力,在吸附剂及吸附物之间还有电子转移生成化学键的 吸附。 特点:1.有选择性;2.只能单分子吸附,且不易吸附或解吸; 3.平衡慢。
复合材料界面形成过程 1.润湿过程:基体与增强体在一种组分为液态(或粘流态)时 发生接触或润湿的过程,或是两种组分在一定条件下均呈液态 (或粘流态)的分散、接触及润湿过程;也可以是两种固态组 分在分散情况下以一定的条件发生物理及化学变化形成结合并 看作为一种特殊润湿过程。 2.固化过程:要形成复合材料增强体与基体间稳定的界面结合, 不论是何种材料(金属、非金属、聚合物)均必须通过物理或 化学的固化过程(凝固或化学反应固化)
判断浸润
sv sl cos lv
由此可知: (1)当γ sv<γ sl, cosθ <0,θ >90°,此时固体不为液体浸 润; (2)当γ lv>(γ sv-γ sl)>0,则1>cosθ >0,即0°< θ <90°,此时固体为液体所浸润; (3)若γ sv-γ sl =γ lv,则cosθ =1,θ =0,此时固体 表面可以被液体完全浸润,并获得最大粘附功
rf3 Vf (rm rf ri )3
Vi (ri rf ) 3 rf3 (ri rf rm ) 3
Vm 1 V f Vi
增强体为f,界面相为i,基体相为m。 对于非球形体微粒增强体,rd=(0.75Vf/π)1/3代替rf。 特点:各向同性材料。
9
为什么玻璃纤维表面常常吸附水分子? 玻璃纤维与块状玻璃具有相似的结构,玻璃纤维表面会产 生一种表面力,此表面力与表面张力、表面吸湿性有密切关系。 当玻璃表面处于力的不平衡状态时,就有吸附外界物质的倾向。 大气中存在的水分即是最常遇的物质因此玻璃表面常常吸附一 层水分子。同时,一切硅酸盐玻璃是金属氧化物分散于SiO2网 络结构中的混合物,非SiO2组分是以微观不均相存在,这些非 SiO2成分的存在使玻璃表面状态与性质突出的表现为吸湿性。 由此可知玻璃纤维表面常常吸附一层水分子。
简述非树脂基复合材料界面类型分类 一是材料的界面只有原物质而不含其他任何组成,包括添加 物或物理化学作用产生的新组成物 二是界面为增强体与基体形成的相互交错的溶解扩散面 三是界面上的界面反应层
界面破坏的能量流散 当裂纹受到外因素作用时,裂纹的发展过程将是逐渐通过 树脂最后到达纤维表面。在裂纹扩展过程中,将随着裂纹的发 展逐渐消耗能量,并且由于能量的流散而减缓裂纹的发展。 防止水泥水化物对玻璃纤维的侵蚀 1.改变玻纤的化学组分,在玻纤中加入较多的ZrO2可提高抗 碱性。 2.对玻纤表面进行被覆处理,以隔绝水泥化物对纤维侵蚀 3.使用水化物碱度低的水泥以减缓或防止玻璃纤维的侵蚀。 优先吸附理论认为界面上可能发生增强体表面优先吸附树脂中 的某些组分,这些组分与树脂有良好的相容性,可以大大改善 树脂对增强体的浸润;同时,由于优先吸附作用,在界面上可 以形成所谓的“柔性层”,此柔性层极可能是一种欠固化的树 脂层,它是“可塑的”,可以起到松弛界面上应力集中的作用, 故可以防止界面粘脱。 成功:解释化学键不能解释的现象。
偶联剂官能团对固化体系热效应及内耗峰影响的原因: (1)官能团参与反应;(2)优先吸附引起的现象。
按化学组成,偶联剂主要可分为有机铬和有机硅两大类,此外 还有钛酸酯等
简述增强体表面的物理特性对界面结合性能的影响。 答:①比表面积,对界面的影响:是导致复合材料中的界面 存在并引起界面效应的根本所在。②多孔性,对界面的影响: 部分孔隙能被基体填充,部分由于很难完全浸润,界面结合 不好,成为应力传递的薄弱环节。③增强体表面的极性,极 性的基体与极性的增强体有较强的界面结合,因而也就有较 强的界面结合强度及复合材料强度。④增强体表面的均一性, 影响界面结合效果。⑤增强体表面的结晶特性,影响复合材 料的界面作用和材料性能。
复合材料界面的研究对象: 1.增强体表面有关的问题: ①增强体表面的化学、物理结构与性能. ②增强体与表面处理物质界面层的结构与性质及对增强体表面特 性的影响. ③增强体表面特性与基体之间的相互关系及两者间的相互作用. ④增强体与表面处理物质的界面作用. ⑤增强体表面特性与复合材料特性的相互关系。 2.表面处理物质的有关问题:①最外层的化学、物理结构及内层 的化学、物理结构②表面处理物质与基体之间的相互作用③表面 处理物质对基体的影响④处理条件及处理剂层的特性⑤处理剂层 随时间的变化⑥处理剂层与复合材料性能的相互关系 3.表面处理的最优化技术。 4.粉体材料在基体中的分散:①分散状态的评价 ②分散技术及机理 ③分散状态与复合材料性能。 5.复合技术的优化及其机理.
润湿理论 指出:要使树脂对增强体紧密接触,就必须使树脂对增强体表 面很好地浸润。前提条件:液态树脂的表面张力必须低于增强 体的临界表面张力。 优点:解释了增强体表面粗化、表面积增加有利于提高与基 体树脂界面结合力的事实。 不足:a.不能解释施用偶联剂后使树脂基复合材料界面粘结强 度提高的现象.b.证明偶联剂在玻璃纤维/树脂界面上的 偶联效果一定有部分不是由界面的物理吸附所提供, 而是存在着更为本质的因素在起作用功与不足 化学键理论认为:基体树脂表面的活性官能团与增强体表面的 官能团能起化学反应。因此树脂基体与增强体之间形成 化学键的结合,界面的结合力是主价键力的作用。偶联 剂正是实现这种化学键结合的架桥剂。 成功:在偶联剂应用于玻璃纤维复合材料中得到很好应用, 也被界面研究的实验所证实 局限: a聚合物不具备活性基团 b.不具备与树脂反应的基团
表面张力有关因素 1.表面张力与物质结构性质有关。不同物质性质、结构的分子 间相互作用力不同,分子间作用力大,相应表面张力也大。 2.物质的表面张力与它相接触的另一相物质有关,与不同物质 接触,表面层分子受到的力场不同。 3.表面张力一般随温度升高而下降。
主要针对的是 0-3 型复合材料。增强体或功能体为不 连续相,而基体为连续相。 在该模型中,把材料的微观结构看作是同心球壳组成
碳纤维表面处理机理是什么? 答:清除碳纤维表面杂质,在碳纤维表面刻蚀沟槽或形成微 孔以增大表面积,从类似石墨层面改性成碳状结构以增加碳 纤维表面能,或者引入具有极性或反应性的官能团以形成与 树脂起作用的中间层。
金属氢氧化物的阻燃机理是什么? 答:金属氢氧化物的阻燃作用主要由于它脱水时的吸热效应, 降低了凝聚相的温 度,因而有效地减缓了聚合物的分解速度。 其次,金属氢氧化物脱水放出的水稀释了由聚合物热解所生 成的可燃性气体并减少了烟雾的生成。一般来说,满足以下 条件的才能成为有效的阻燃剂:产生不燃性气体的温度略低 于聚合物热分解温度;在复合塑料的混炼、成型温度下不产 生不燃性气体。
玻璃钢在大气中介质水破坏机理 1.玻璃纤维经多层吸附形成了不易去除的水膜 2.发生水与玻璃纤维和树脂的化学变化,引起界面脱粘,造成 复合材料的破坏 3.进入界面的水将使树脂发生溶胀,初期的溶胀将抵消在室温 下的固化收缩,当溶胀超过固化收缩时,界面上产生拉伸应力 4.当这种应力大于树脂对玻璃纤维的粘结力时,玻璃纤维与树 脂界面遭受破坏,水介质将促使微裂的发展,引起材料破坏
单向复合材料模型的基本假设 1.单元体:宏观均匀无缺陷,增强体与基体性能稳定,线弹性 2.增强体:均质,各向异性,线弹性,定向排列,连续。 3.基体:均质,各向同性,线弹性 4.界面:粘结完好无孔隙、滑移、脱粘等,变形协调
玻璃纤维表面处理方法及影响因素 表面处理就是在玻璃纤维表面涂一层叫“表面处理剂”的物 质,使纤维与树脂牢固地结合,以达到提高玻璃钢性能的目的 ①后处理法:使用纺织型浸润剂的玻璃纤维及制品,在使用前 原则上都采用此法处理。 处理方法分两步:首先除去浸润剂. a洗涤法:在皂水或有机 溶液中清洗,然后烘干 b热处理法:(250℃~450℃) 1h。 第二步用表面处理剂处理,处理步骤为:浸渍-水洗-烘干 ②前处理法:是适当改变浸润剂配方,使之既能满足拉丝、退 并、纺织各道工序的要求,又不妨碍树脂基体对玻璃纤维的浸 润和粘结。将偶联剂加入到上述的浸润剂中,在拉丝过程中表 面处理剂就被覆到玻璃纤维表面上。 与后处理法比较 :1.不需再做任何处理而可以直接应用 2. 可省去复杂的处理工艺及设备,使用方便 3.避免了因热处理而 造成的纤维强度损失,是比较理想的处理方法; 缺点:既要有处理效果,又要同时满足纺织工艺,和树脂 基体要有良好的浸润以及满足制作玻璃钢各道工序的要求,是 一个比较复杂的综合技术问题