53展开与折叠

合集下载

人教版七年级数学上册第四章几何图形复习试题一(含答案) (53)

人教版七年级数学上册第四章几何图形复习试题一(含答案) (53)

人教版七年级数学上册第四章几何图形复习试题一(含答案) 如图是一个正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.-9 B.-8C.-4 D.-7【答案】D【解析】【分析】首先确定出正方体的对面,然后利用加法法则计算即可.【详解】2与6为对面;1与−5为对面;−3与−4为对面.原正方体相对两个面上的数字之和的最小值是=−3+(−4)=−7.故选:D.【点睛】本题主要考查的是正方体相对两个面上的文字,掌握正方体对面的确定方法是解题的关键.22.用一个平面分别去截下列几何体:①正方体②圆柱③长方体④四棱柱.截面可能是三角形的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【详解】①正方体能截出三角形;②圆柱不能截出三角形;③长方体沿体面对角线截几何体可以截出三角形;④四棱柱能截出三角形.故截面可能是三角形的有3个.故选:B.【点睛】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.如图所示的是()的表面展开图()A.三棱柱B.三棱锥C.四棱柱D.四棱锥【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】根据展开图可知,侧面为三个长方形,底边为三角形,∴此表面展开图是三棱柱的展开图.故选A.【点睛】本题考查几何体的展开图,解题的关键是掌握几何体展开图的还原.24.下面图形是棱椎的是( )A.B.C.D.【答案】B【解析】【分析】根据棱椎的性质,进行解答即可.【详解】A.是棱柱,故错误;B.正确;C.是球体,故错误;D.是圆柱,故错误;故选B.【点睛】此题考查立体几何的认识,解题关键在于识别图形.25.下面几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】主视图是从物体正面看所得到的的图形.【详解】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B.【点睛】本题考查了三视图,主视图是从物体的正面看得到的视图,解答时学生易将三种试图混淆而错误地选其它选项.26.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.【详解】解:能折叠成正方体的是故选:C.【点睛】本题主要考查展开图折叠成几何体的知识点,牢记正方体的展开图是解题的关键.27.如图所示几何体从正面看是()A.B.C.D.【答案】D【解析】【分析】此几何体从正面看所得到的图形从左到右小正方形的个数为:2,1,1,1,由此可得到答案.【详解】解:从正面看,从左到右小正方形的个数为:2,1,1,1故选:D.【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.28.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“毒”字相对的字是()A.卫B.防C.讲D.生【答案】B【解析】【分析】根据展开与折叠所学的知识,还原图形即可得到答案.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“讲”与面“生”相对,面“卫”与面“病”相对,面“毒”与面“防”相对.故选B.【点睛】本题考查图形的还原,关键在于空间想象能力还原出正方体.29.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.4个B.3个C.2个D.1个【解析】【分析】对几何体逐个分析判断即可得出答案.【详解】圆的截面不可能是三角形;圆柱的截面不可能是三角形;圆锥的截面可能是三角形;三棱柱的截面可能是三角形;长方体的截面可能是三角形;故截面可能是三角形的几何体共有3个故选B【点睛】本题考查用一个面截几何体,熟练掌握各个几何体的截面的形状是解题关键.30.“礼义仁智信孝”是中华民族的传统美德,小明同学将这六个字分别写在一个正方体的六个表面上,此正方体的表面展开图如图所示,与“义”字所在面相对的面上的字是()A.仁B.智C.信D.孝【答案】D【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“义”相对的字.【详解】解:结合展开图可知,与“义”相对的字是“孝”.故选:D.【点睛】此题主要考查正方体的平面展开图,解题的关键是熟知正方体的平面展开图的特点.。

展开与折叠 PPT课件 2 北师大版

展开与折叠 PPT课件 2 北师大版


76、好习惯成就一生,坏习惯毁人前程。

77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。

78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。

79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。

80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。

47、小事成就大事,细节成就完美。

48、凡真心尝试助人者,没有不帮到自己的。

49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。

50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。

51、对于最有能力的领航人风浪总是格外的汹涌。
各位老师、同学们 下午好!
雍燕
§1.2 展开与折叠
做做看:
下列三图中哪一个可以折叠成多面体?
(1)
(2)
(3) 三棱锥的平面展开图
正方体 四棱锥
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?

18、励志照亮人生,创业改变命运。

19、就算生活让你再蛋疼,也要笑着学会忍。

20、当你能飞的时候就不要放弃飞。

21、所有欺骗中,自欺是最为严重的。

22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。

专题4.2几何体的展开图(举一反三)(人教版)(原卷版)

专题4.2几何体的展开图(举一反三)(人教版)(原卷版)

专题4.2 几何体的展开图【九大题型】【人教版】【题型1 判断正方体展开图的相对面或相邻面】 (1)【题型2 展开图折叠成正方体】 (2)【题型3 正方体的平面展开图】 (4)【题型4 视图与小正方体的个数问题】 (5)【题型5 根据视图确定组成几何体的正方体的个数】 (6)【题型6 根据视图确定正方体最多或最少的个数】 (7)【题型7 棱柱的展开与折叠】 (8)【题型8 圆柱的展开与折叠】 (9)【题型9 圆锥、棱锥的展开与折叠】 (10)【题型1 判断正方体展开图的相对面或相邻面】【例1】(2022•盐城)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高【变式11】(2022•佛山校级三模)如图为正方体的展开图,将标在①②③④的任意一面上,使得还原后的正方体中与是相邻面,则不能标在()A.①B.②C.③D.④【变式12】(2022•南京期末)如图,在一个正方形盒子的六面上写有“祝、母、校、更、美、丽”六个汉字,其中“祝”与“更”,“母”与“美”在相对的面上,则这个盒子的展开图(不考虑文字方向)不可能的是()A.B.C.D.【变式13】(2022•揭阳月考)李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把﹣6,8,10,﹣10,﹣8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)【题型2 展开图折叠成正方体】【例2】(2022•简阳市期末)正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的,下面的图形是由6个大小一样的正方形,拼接而成的,请问这些图形中哪些可以折成正方体?试试看.【变式21】(2022•秦都区期中)如图所示,用标有数字1、2、3、4的四块正方形,以及标有字母A、B、C、D、E、F、H的七块正方形中任意一块,用这5块连在一起的正方形折叠成一个无盖的正方体盒子,一共有几种不同的方法?写出这些方法所用到正方形所标有的数字和字母.【变式22】(2022•张家口一模)如图,是一个正方体的展开图,这个正方体可能是()A.B.C.D.【变式23】(2022•宁波模拟)请你插上想象的翅膀:如图是下列六个正方体中哪个的侧面展开图?你的选择是。

苏科版初中数学教材目录

苏科版初中数学教材目录

七年级上第1章我们与数学同行1.1 生活数学 1.2 活动思考第2章有理数2.1 正数与负数 2.2 有理数与无理数 2.3 数轴 2.4 绝对值与相反数 2.5 有理数的加法与减法 2.6 有理数的乘法与除法 2.7 有理数的乘方 2.8 有理数的混合运算第3章代数式3.1 字母表示数 3.2 代数式 3.3 代数式的值 3.4 合并同类项 3.5 去括号 3.6 整式的加减第4章一元一次方程4.1 从问题到方程 4.2 解一元一次方程 4.3 用一元一次方程解决问题第5章走进图形世界5.1 丰富的图形世界 5.2 图形的运动 5.3 展开与折叠 5.4主视图、左视图、俯视图第6章平面图形的认识(一)6.1 线段、射线、直线 6.2 角 6.3 余角、补角、对顶角 6.4 平行 6.5 垂直七年级下第7章平面图形的认识(二)7.1 探索直线平行的条件 7.2 探索平行线的性质 7.3 图形的平移7.4 认识三角形7.5 多边形的内角和与外角和第8章幂的运算8.1 同底数幂的乘法 8.2 幂的乘方与积的乘方8.3 同底数幂的除法第9章整式乘法与因式分解9.1 单项式乘单项式 9.2 单项式乘多项式 9.3 多项式乘多项式 9.4 乘法公式9.5 多项式的因式分解第10章二元一次方程组10.1 二元一次方程 10.2 二元一次方程组 10.3 解二元一次方程组 10.4 三元一次方程组10.5 用二元一次方程组解决问题第11章一元一次不等式11.1 生活中的不等式11.2 不等式的解集 11.3 不等式的性质11.4 解一元一次不等式11.5 用一元一次不等式解决问题11.6 一元一次不等式组第12章证明12.1 定义与命题12.2 证明 12.3 互逆命题八年级上册第1章全等三角形1.1 全等图形 1.2 全等三角形 1.3 探索三角形全等的条件第2章轴对称图形2.1 轴对称与轴对称图形 2.2 轴对称的性质 2.3 设计轴对称图案 2.4 线段、角的轴对称性 2.5 等腰三角形的轴对称性第3章勾股定理3.1 勾股定理 3.2 勾股定理的逆定理 3.3 勾股定理的简单应用第4章实数4.1 平方根 4.2 立方根 4.3 实数 4.4 近似数第5章平面直接坐标系5.1 物体位置的确定 5.2 平面直角坐标系第6章一次函数6.1 函数 6.2 一次函数 6.3 一次函数的图像 6.4 用一次函数解决问题6.5 一次函数与二元一次方程 6.6 一次函数、一元一次方程和一元一次不等式八年级下第7章数据的收集、整理、描述7.1 普查与抽样调查7.2 统计表、统计图的选用7.3 频数和频率7.4 频数分布表和频数分布直方图第8章认识概率8.1 确定事件与随机事件 8.2 可能性的大小 8.3 频率与概率第9章中心对称图形——平行四边形9.1 图形的旋转9.2 中心对称与中心对称图形 9.3 平行四边形9.4 矩形、菱形、正方形 9.5 三角形的中位线第10章分式10.1 分式10.2 分式的基本性质 10.3 分式的加减 10.4 分式的乘除10.5 分式方程第11章反比例函数11.1 反比例函数11.2 反比例函数的图像与性质11.3用反比例函数解决问题第12章12.1 二次根式12.2 二次根式的乘除 12.3 二次根式的加减九年级上第1章一元二次方程1.1 一元二次方程 1.2 一元二次方程的解法 1.3 一元二次方程的根与系数的关系 1.4 用一元二次方程解决问题第2章对称图形——圆2.1 圆 2.2 圆的对称性 2.3 确定圆的条件 2.4 圆周角2.5 直线与圆的位置关系 2.6 正多边形与圆 2.7 弧长及扇形的面积 2.8 圆锥的侧面积第3章数据的集中趋势和离散程度3.1 平均数 3.2 中位数与众数 3.3 用计算器求平均数3.4 方差 3.5 用计算器求方差第4章等可能条件下的概率4.1 等可能性 4.2 等可能条件下的概率(一) 4.3 等可能条件下的概率(二)九年级下第5章二次函数5.1 二次函数 5.2 二次函数的图像与性质 5.3 用待定系数法确定二次函数表达式 5.3 二次函数与一元二次方程 5.4 用二次函数解决问题第6章图形的相似6.1 图上距离与实际距离 6.2 黄金分割 6.3 相似图形 6.5 探索三角形相似条件 6.6 相似三角形的性质 6.7 图形的位似 6.8 用相似三角形解决问题第7章锐角三角形7.1 正切7.2 正弦、余弦7.3 特殊角的三角函数7.4 由三角函数值求锐角 7.5 解直角三角形7.6 用锐角三角函数解决问题第8章统计和概率的简单应用8.1 中学生的视力情况调查 8.2 货比三家8.3 统计分析帮你做预测 8.4 抽签方法合理吗 8.5 概率帮你做估计8.6 收取多少保险费才合理优质文档,内容可编辑。

案例分析:53展开与折叠

案例分析:53展开与折叠

案例分析:5.3展开与折叠王海燕教材分析:《展开与折叠》是本册书《走进图形世界》的第三节课,继对图形的观察后所开展的活动:展开与折叠。

目的是让学生充分动手实践、动脑探索与动口交流,培养学生的空间观念和语言表达能力。

本课通过展开与折叠的活动,在平面图形与几何体的转换中发展学生的空间观念。

学生分析:此阶段学生年龄多在12~14岁,有比较强烈的自我和自我发展的意识,因此对与自己的直观经验相冲突的现象,对有挑战性的任务很感兴趣。

这使得我们在学习素材的选取与呈现,以及学习活动的安排上除了关注数学的用处之外,也应当设法给学生经历做数学的机会,使他们能够在这些活动中表现自我、发展自我,从而感受到数学学习是很重要的活动,初步形成并学会数学地思考。

此外,学生总爱把自己当成探索者、研究者、发现者,并且往往当自己的观点与集体不一致时,才会产生纠正自己思想的欲望,所以教学内容在创造性上应具有一定的挑战性,这样才能促使学生在学习过程中不断获得成功的体验。

教学目标:1.知识与技能目标:(1)学生通过动手实践操作,认识多面体与它们展开图的关系,培养学生的动手能力及语言表达能力。

(2)能根据展开图判断简单的立体图形,培养学生的想像力。

(3)进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形;通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉。

2.能力目标:以学生的经验为基础(通过观察、操作、想像、交流、比较、描述、综合、归纳等数学活动经验和体验),帮助学生经历和体验图形的变化过程,发展空间概念,养成研究性学习的良好习惯。

3.情感目标:(1)在解决一系列有趣且富有挑战性的问题过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的经验,激发学生的学习热情。

(2) 通过小组合作交流,尝试多角度地思考问题,寻求从不同角度解决问题的方法,并初步学会评价不同方法之间的差异,学会在与他人交流中获益。

5。3展开与折叠(1)

5。3展开与折叠(1)
§5.3展开与折叠(1)
【课前预习】
1.三棱锥的展开图是由个形组成的.
2.圆椎的展开图是由一个和一个形组成的图形.
3.圆柱的展开图是由一个和两个形组成的图形.
4.长方体的展开图是由个形组成的图形.
5.正方体的展开图是由个形组成的图形.
6.在如图所示的图形中,是三棱柱的侧面展开图的是()
【课堂重点】
1.请写出下列图形中,各个几何体的展开图是什么几何体的展开图.
1.下面这些图形经过折叠可以围成一个棱柱吗?先想一想,然后动手折一折.
2.下列图形是正方体的展开图形的是()
A B C D
3.一个无上盖的正方体纸盒,底面标有字母A,沿图中的粗线剪开,在右图中补上四个正方形,使其成为它的展开图.
4.下面两图形分别是哪种多面体的展开图?
⑴⑵
5.个?动手试一试.
2.用纸板做几个正方形模型并把它们沿棱展开成平面图形.
(1)你可以得到下图所示的图形吗?
(2)你还可以得到哪些形状不同的图形?请你尽可能的画出所有可能的图形,并在黑板上进行展示.
3.阅读教材P128做一做和数学实验室,完成“练一练”.
4.本节课学习的主要内容是什么?你是否已经理解并初步学会?
【课后巩固】

第五章走进图形世界

第五章走进图形世界

第五章走进图形世界第50课时编写:唐森林审定:黄建聪课题:5.1丰富的图形世界(一)教学目标:1、通过观察生活中的大量物体,认识简单的几何体;2、通过观察不同的物体,学会比较物体间的不同特征,体会并能用语言描述几何体之间的区别与联系;3、经历从现实世界中抽象出图形的过程,感受图形世界的多姿多彩,发展空间观念,增强用数学的意识.重点:认识棱柱、棱锥、圆柱、圆锥、球并指出它们的特征.教具准备:简单的几何体教学过程一、自学反馈(一)自学检查题(要求学生书写在黑板上)1、书P120--练一练12、书P120--练一练23、书P121--习题5.1第1题4、书P121--习题5.1第2题(二)引入新课,梳理知识本节课内容概念虽多,但大部分在小学有所涉猎。

所以本节课的目标不只是认识棱柱、棱锥、圆柱、圆锥、球等几个几何体,还必须让学生经历从现实世界中抽象出图形的过程,发展空间观念.因此自学检查题的评析与以下活动穿插进行。

不能一个简单的对错了事。

1、结合本章导读图,介绍本章的主要内容,同时揭示课题。

我们生活在丰富多彩的图形世界里,各种图形美化了我们的生活空间,这些漂亮的图形多姿多彩,它们是由一些常见的立体图形组成.引导学生从整体到局部地说出城市、乡村的一些建筑物中有哪些所你熟悉的几何体?观察教室内的物体,生活中的包装盒、词典、排球、易拉罐、冰淇林纸筒等实物.生活中哪些物体与棱柱、棱锥相类似?哪些物体与圆柱、圆锥相类似?哪些物体与球类似?等等.2、展示棱柱、棱锥、圆柱、圆锥、球等实物模型,让学生说出这些几何体的名称。

总结:生活中的立体图形主要有柱体、锥体、台体和球体,其中柱体包括圆柱体和棱柱体,锥体包括圆锥体和棱锥体.二、独立训练1、在乒乓球、橄榄球、足球、羽毛球中,其形状是球体的有______2、把图中的图形与对应的图形名称连起来。

圆锥圆柱棱柱棱锥球3、图形是由______、____、______组成,面有____面和____面之分。

正方形纸的100种折法

正方形纸的100种折法

正方形纸的100种折法折方形纸的折法有很多种,以下是其中的100种常见折法:1. 三折:将正方形纸对角线上的两个顶点对齐,然后将两侧的边向内折叠。

2. 四折:将正方形纸沿中心线对折,然后再次对折成四分之一大小。

3. 六折:将正方形纸按照对角线对折,然后再次对折成六分之一大小。

4. 八折:将正方形纸沿着中心线和对角线分别对折两次,最终得到八分之一大小。

5. 十折:将正方形纸按照对角线对折,然后再次对折成十分之一大小。

6. 十二折:将正方形纸沿中心线和对角线分别对折三次,最终得到十二分之一大小。

7. 十六折:将正方形纸沿着中心线和对角线分别对折四次,最终得到十六分之一大小。

8. 菱形折法:将正方形纸对角线上的两个顶点对折,然后将两侧的边向内折叠,形成一个菱形。

9. 风车折法:将正方形纸按照对角线对折,然后将四个角向内折叠,形成一个风车状的折纸。

10. 长方体折法:将正方形纸沿中心线对折,然后将两侧的边向内折叠,最终形成一个长方体模型。

11. 立方体折法:将正方形纸沿中心线和对角线分别对折两次,然后将两侧的边向内折叠,最终形成一个立方体模型。

12. 蝴蝶结折法:将正方形纸按照对角线对折,然后将四个角向内折叠,形成一个蝴蝶结状的折纸。

13. 纸飞机折法:将正方形纸对角线上的两个顶点对齐,然后将两侧的边向内折叠,形成一个纸飞机的形状。

14. 花朵折法:将正方形纸沿中心线对折,然后将四个角向内折叠,再次对折成八分之一大小,形成一个花朵的形状。

15. 箱子折法:将正方形纸沿着中心线和对角线分别对折两次,然后将两侧的边向内折叠,形成一个盒子的模型。

16. 裙子折法:将正方形纸按照对角线对折,然后将四个角向内折叠,再次对折成八分之一大小,形成一个裙子的形状。

17. 兔子折法:将正方形纸沿着中心线和对角线分别对折两次,然后将两侧的边向内折叠,形成一个兔子的模型。

18. 鱼折法:将正方形纸对角线上的两个顶点对齐,然后将两侧的边向内折叠,形成一个鱼的形状。

江苏省泰兴市洋思中学苏科版七年级数学上册课件:53展开与折叠(1)(共28张PPT)

江苏省泰兴市洋思中学苏科版七年级数学上册课件:53展开与折叠(1)(共28张PPT)

(2)
(3)
练一练
2.如图,第一行的几何体表面展开后得到第二 行的某个平面图形,请用线连一连.
1
2
3
ቤተ መጻሕፍቲ ባይዱ
4
5
A
B
C
D
E
练一练
3.下列三图中哪一个可以折叠成多面体?
(1)
(2)
(3)
练一练
4.下列图形中是某些多面体的展开图?
(1)
长方体
(2)
五棱锥
(3)
三棱柱
练一练
5.下面图形经过折叠能否围成棱柱?


图4
图5
图6

不是
不是
21
下面图形都是正方体的展开图吗?
图(1) 不是
图(2) 不是
图(3) 是
图(4) 不是
图(5) 不是
图(6)
不是
22
如图是一个正方体纸盒的展开图,请在图中 的6个正方形中分别填入1、2、3、-1、-2、-3时, 展开图沿虚线折叠成正方体后相对面上的两个数 互为相反数。
N C BA
M LK
D EF G
IJ H
展 示:
正方体11种不同展开图
第一类,1,4, 1型,共六种.
13
第二类,2,3,1型,共三种.
14
第三类,2,2,2型,只有一种. 第四类,3,3型,只有一种.
15
判 断一下
把一个正方体的表面沿某些棱剪开,展成 一个平面图形,你能得到下面的这些平面图形 吗?
把一个正方体的表面沿某些棱剪开,展成 一个平面图形,你能得到下面的些平面图形吗?
(1)
(2)
(3)
(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.

北师大版七年级数学上册第一章第2节《 展开与折叠》同步练习题

北师大版七年级数学上册第一章第2节《 展开与折叠》同步练习题

北师大版七年级数学上册第一章第2节《展开与折叠》同步练习题一、选择题(本大题共12小题,共36.0分)1.下列各图不是正方体表面展开图的是()A. B. C. D.2.哪个图形经过折叠可以围成一个棱柱()A. B. C. D.3.一个几何体的展开图如图所示,这个几何体是()A.圆锥B.圆柱C.四棱柱D.四棱锥第3题第4题第5题4.如图是下列几何体()的平面展开图.A. B. C. D.5.如图,有一个正方体纸巾盒,它的平面展开图是()A. B. C. D.6.如图,将四棱锥沿某些棱剪开,展成一个平面图形,至少需要剪开()A.4条棱B.5条棱C.6条棱D.7条棱7.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民8.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.9.如图,在正方体的平面展开图中A、B两点间的距离为6,折成正方体后A、B两点是正方体的顶点,则这两个顶点的距离是()A.3B.C.6D.310.下面四个图形都是由相同的六个小正方形纸片组成,小正方形上分别贴有北京2008年奥运会吉祥物五个福娃(贝贝、晶晶、欢欢、迎迎、妮妮)的卡通画和奥运五环标志,如果分别用“贝、晶、欢、迎、妮”五个字来表示五个福娃,那么折叠后能围成如图所示正方体的图形是()A. B. C. D.第10题第11题第12题11.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4B.6C.8D.1212.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确的展开图为()A. B. C. D.二、填空题(本大题共4小题,共6.0分)13.如图所示的平面纸能围成正方体盒子,请把与面A垂直的面用图中字母表示出来是______ .14.如图是某几何体的平面展开图,则这个几何体是______ .第13题第14题第15题15.将如图中的图形剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去哪个小正方形?______ (说出两种即可)16.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是______ .三、解答题(本大题共7小题,共56.0分)17.下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:18.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)19.工人把一个长方形的纸盒展开时不小心多剪了一刀,结果展开后变成了两部分,如图,现在他想把这两部分粘贴成一个整体,使之能折成原来的长方体,请你帮他设计一下,应怎样粘贴?20.由6个大小相同的小正方形连成的一块硬纸板,可折叠成一个正方体纸盒,若把6个小正方形每种不同位置的排列作为一种纸样,你能做出几种这样的纸样(用图表示)?21.如图是一个正方体表面展开图,如果把它重新折成正方体,那么与点G重合的是哪两点?并用字母指出三对相对的面.22.用如图所示的长31.4cm,宽6.28cm的长方形,围成一个圆柱体,求底面圆的面积是多少平方厘米?(π取3.14)23.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______ 条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.《展开与折叠》练习参考答案一、选择题:1. C解:根据分析可得:A、B、D是正方体表面展开图,能够折成一个正方体,而C不是正方体表面展开图,故选C.2. D解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有D是三棱柱的展开图.故选:D.3. A解:因为圆锥的展开图为一个扇形和一个圆形,故这个几何体是圆锥.故选A.4.B解:由题意,可知如图是四棱台的平面展开图.故选B.5. B解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.6. A解:将四棱锥沿某些棱剪开,展成一个平面图形,至少需要剪开4条棱.故选:A.7. A解:由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选:A.8. C解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.9.D解:∵AB=6,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,∴该正方体A、B两点间的距离为3,故选:D.10. C解:由原正方体可知,“妮”、“迎”、“欢”三个字所在的面是相交的,而选项A、B中,“妮”和“欢”所在的面是相对的,故A,B错;D中“妮”、“迎”、“欢”三个字所在的面的位置与原正方体不符,故D错.故选C.11.B解:观察图形可知长方体盒子的长=5-(3-1)=3、宽=3-1=2、高=1,则盒子的容积=3×2×1=6.故选:B.12. B解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.二、填空题:13. 解:因为正方体的表面展开图,相对的面之间一定相隔一个正方形,面“A”与“D”是相对面,它们互相平行,剩下的面都与A面垂直;所以:围成正方体盒子,与面A垂直的面用图中字母表示出来是:B、C、E、F;故答案为:B、C、E、F.14. 解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.15. 解:根据有“田”字格的展开图都不是正方体的表面展开图可知,故应剪去我或喜或学,故答案为:我,喜.16. 解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).三、简答题:17.解:(1)是长方体,(2)是三棱柱.18.解:答案不惟一,如图.19.解:.20.解:如图所示:共计11种.21.解:结合图形可知,围成立方体后A与点A和点C重合;四边形ABMN与四边形FEJI,四边形LMJK与四边形CBED,四边形MJEB与四边形HIFG 相对面.22.解:31.4÷2÷3.14=5(cm),5×5×3.14=78.5(cm2).故底面圆的面积是78.5平方厘米.23. 解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。

53高效课堂演示文稿

53高效课堂演示文稿

构建新型师生关系创建和谐高效课堂凌河镇红沙沟学校张晓玥一、师生关系概述(一)什么是师生关系?师生关系是教育过程中教师和学生为完成共同的教育任务进行交往而产生的相互关系。

(二)师生关系的基本内容1.教育关系师生为完成一定的教育任务而产生的关系。

表现为教师教和学生学。

教育关系的建立首先取决于教师的教育水平,受制于教师的专业知识、教育技能和人格力量等,2. 心理关系是师生为完成共同的教学任务而产生的心理交往和情感交流。

3.伦理关系教师与学生在交往中共同遵守社会道德规范,享有一定的道德权利,承担一定的道德责任的关系。

小结这三者是相互联系、相互依存、相互渗透的,在现实中是浑然一体的彼此交织在一起展开的。

教育关系是其它两者的基础。

它包含了心理关系,心理关系伴随教育关系而生成。

伦理关系保障了教育关系和心理关系的顺利进行。

特点:教师采取放任的作风,却不负任何实际责任,给与学生充分的自由,要他们学习自己所高兴的东西;教师不控制学生的行为,也不指示学生的方法,一切活动由学生自己进行。

特点:教师在教师内采取专制的作风,并担负全部的责任,计划班集体的活动,安排学习的情景,指导学习的方法,控制自己的行为;学生没有自由,只有听从教师的命令,对教师往往是敬而远之。

特点:教师以民主的方式教学,重视集体的作用,与学生共同计划,共同讨论,帮助学生设立目标,指引学生对着目标进行学习。

放任模式教师不在场时,学生的学习反而更加努力,学习成绩更好;且当教师离开之后,学生中有领袖才能者,自动引导大家并获得大家的支持,所以成绩比教师在场时更好。

专制模式当教师在场时学生的学习成绩要高于教师不在场时,说明他们是在教师的威力之下,才努力学习的,似乎把学习当作是为了教师,而不是为了自己。

民主模式学生的学习努力程度比较适中,教师在场与不在场并无区别。

学生认识到学习是自己的责任,要努力完成自己的任务,并部因惧怕教师而敷衍了事,学习成绩较为恒定。

莱温等人对三种不同师生关系模式下学生的学习成绩进行研究,结果如下:乡村教师张美丽土得掉渣的西部乡村教师张美丽,用浓厚的地方话教孩子们识字、造句;用她那铮铮的侠骨给孩子们赢来了资助;一次偶然事故,张美丽永远离开了她深爱的学生,她用自己一双“美丽的大脚”谱写了感人至深的“美丽人生”!临时教师魏敏芝《一个都不能少》严格地说,魏敏芝不算老师,她只是水泉小学的高老师临时找来看管学生的,但就为高老师临走时交代的一句话——“一定要把娃看住,一个都不能少”,她表现出了惊人的执着和认真。

苏教版初中数学教材总目录(打印版)

苏教版初中数学教材总目录(打印版)

苏教版初中数学教材总目录七年级上册第一章我们与数学同行1.1生活数学1.2活动思考第二章有理数2.1比0小的数2.2数轴2.3绝对值与相反数2.4有理数的加法与减法2.5有理数的乘法与除法2.6有理数的乘方2.7有理数的混合运算第三章用字母表示数3.1字母表示数3.2代数式3.3代数式的值3.4合并同类项3.5去括号第四章一元一次方程4.1从问题到方程4.2解一元一次方程4.3用方程解决问题第五章走进图形世界5.1丰富的图形世界5.2图形的变化5.3展开与折叠5.4从三个方向看第六章平面图形的认识(一)6.1线段、射线、直线6.2角6.3余角、补角、对顶角6.4平行6.5垂直七年级下册第七章平面图形的认识(二)7.1探索直线平行的条件7.2探索平行线的性质7.3图形的平移7.4认识三角形7.5三角形的内角和第八章幂的运算8.1同底数幂的乘法8.2幂的乘方与积的乘方8.3同底数幂的除法第九章从面积到乘法公式9.1单项式乘单项式9.2单项式乘多项式9.3多项式乘多项式9.4乘法公式9.5因式分解(一)9.6因式分解(二)第十章二元一次方程组10.1二元一次方程10.2二元一次方程组10.3解二元一次方程组10.4用方程组解决问题第十一章图形的全等11.1全等图形11.2图形的全等11.3探索三角形全等的条件第十二章数据在我们周围12.1普查与抽样调查12.2统计图的选用12.3频数分布表和频数分布直方图第十三章感受概率13.1确定与不确定13.2可能性第一章轴对称图形1.1轴对称与轴对称图形1.2轴对称的性质1.3设计轴对称图案1.4线段、角的轴对称性1.5等腰三角形的轴对称性1.6等腰梯形的轴对称性第二章勾股定理与平方根2.1勾股定理2.2神秘的数组2.3平方根2.4立方根2.5实数2.6近似数与有效数字2.7勾股定理的应用第三章中心对称图形(一) 3.1图形的旋转3.2中心对称与中心对称图形3.3设计中心对称图案3.4平行四边形3.5矩形、菱形、正方形3.6三角形、梯形的中位线第四章数量、位置的变化4.1数量的变化4.2位置的变化4.3平面直角坐标系第五章一次函数5.1函数5.2一次函数5.3一次函数的图象5.4一次函数的应用5.5二元一次方程组的图象解法第六章数据的集中程度6.1平均数6.2中位数与众数6.3用计算器求平均数第七章一元一次不等式7.1生活中的不等式7.2不等式的解集7.3不等式的性质7.4解一元一次不等式7.5用一元一次不等式解决问题7.6一元一次不等式组7.7一元一次不等式与一元一次方程、一次函数第八章分式8.1分式8.2分式的基本性质8.3分式的加减8.4分式的乘除8.5分式方程第九章反比例函数9.1反比例函数9.2反比例函数的图象与性质9.3反比例函数的应用第十章图形的相似10.1图上距离与实际距离10.2黄金分割10.3相似图形10.4探索三角形相似的条件10.5相似三角形的性质10.6图形的位似10.7相似三角形的应用第十一章图形与证明(一)11.1你的判断对吗11.2说理11.3证明11.4 互逆命题第十二章认识概率12.1等可能性12.2等可能条件下的概率(一)12.3等可能条件下的概率(二)第一章图形与证明(二)1.1等腰三角形的性质和判定1.2直角三角形全等的判定1.3 平行四边形、矩形、菱形、正方形的性质和判定1.4等腰梯形的性质和判定1.5中位线第二章数据的离散程度2.1极差2.2方差与标准差2.3用计算器求标准差和方差第三章二次根式3.1二次根式3.2二次根式的乘除3.3二次根式的加减第四章一元二次方程4.1一元二次方程4.2一元二次方程的解法4.3用一元二次方程解决问题第五章中心对称图形(二)5.1圆5.2圆的对称性5.3圆周角5.4确定圆的条件5.5直线与圆的位置关系5.6圆与圆的位置关系5.7正多边形与圆5.8弧长及扇形的面积5.9圆锥的侧面积和全面积第六章二次函数6.1二次函数6.2二次函数的图象和性质6.3二次函数与一元二次方程6.4二次函数的应用第七章锐角三角函数7.1正切7.2正弦、余弦7.3特殊角的三角函数7.4由三角函数值求锐角7.5解直角三角形7.6锐角三角函数的简单应用第八章统计的简单应用8.1货比三家8.2中学生的视力情况调查第九章概率的简单应用9.1抽签方法合理吗9.2概率帮你做估计9.3保险公司怎样才能不亏本。

展开与折叠(提升训练)(原卷版) (1)

 展开与折叠(提升训练)(原卷版) (1)

5.3 展开与折叠【提升训练】一、单选题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A,B,C,D中的()位置拼接正方形.A.A B.B C.C D.D2.下图是一个三棱柱纸盒的示意图,则这个纸盒的平面展开图是()A.B.C.D.3.如图是一个长方体包装盒,则它的表面能展开成的平面图形是()A.B.C.D.4.如图,是一个正方体的表面展开图,则原正方体中“伟”字所在的面相对的面上标的字是()A.大B.梦C.国D.的5.下列图形中,不是正方体表面展开图的是()A.B.C.D.6.下面的图形经过折叠可以围成一个棱柱的是()A.B.C.D.++的值()7.如图,若要使得图中平面展开图折叠成长方体后,相对面上的两个数之和为9,求x y zA.10B.11C.12D.138.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格→第2格→第3格→第4格,这时小正方体朝上的一面的字()A.的B.梦C.我D.中9.防控疫情必须勤洗手、戴口罩,讲究个人卫生.如图是一个正方体展开图,现将其围成一个正方体后,则与“手”相对的是()A.勤B.口C.戴D.罩10.正方体的平面展开图如图所示,则在原正方体中,“万”字的对面的字为()A.溱B.州C.中D.学11.下列图形中可以作为一个正方体的展开图的是()A.B.C.D.+-的值为()12.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b cA.-6B.-2C.2D.413.经过折叠可以得到四棱柱的是()A.B.C.D.14.图1是正方体的平面展开图,六个面的点数分别为1、2、3、4、5、6,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图2所示,若骰子初始位置为图2所示的状态,将骰子向右翻滚90 ,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连续完成2次翻折后,骰子朝下一面的点数是3;则连续完成2020次翻折后,骰子朝下一面的点数是()A.2B.3C.4D.515.如图,是一个正方体纸盒的平面展开图,则写有“为”字的面所对的面上的是()A.汉B.!C.武D.加16.如图,白纸上放有一个表面涂满染料的小正方体.在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次..........,则在白纸上可以形成的图形为()A.①①①B.①①C.①①D.①①17.如图,是一个几何体的表面展开图,则该几何体中写“英”的面相对面上的字是( )A.战B.疫C.情D.颂18.下列图形中,不是立方体表面展开图的是()A.B.C.D.19.下列展开图不能叠合成无盖正方体的是()A.B.C.D.20.长方体纸盒的长、宽、高分别是5cm、4cm、2cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是()A.60B.56C.42D.40个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中21.一枚六个面分别标有16写有“?”一面上的点数是()A.6B.2C.3D.122.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.23.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第70次后,骰子朝下一面的数字是()A.2B.3C.4D.524.下列平面图中不能围成正方体的是()A.B.C.D.25.如图,是正方体的展开图,2号面是前面,那么后面是()号A.3号B.4号C.5号D.6号26.如图,正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开外表面朝上,展开图可能是()A.B.C.D.27.下图为相同的小正方形组成,折叠后能围成正方形的是()A.B.C.D.28.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y等于()A.10B.11C.12D.1329.如图,三个图形是由立体图形展开得到的,相应的立体图形顺序是( )A.圆柱、三棱柱、圆锥B.圆锥、三棱柱、圆柱C.圆柱、三棱锥、圆锥D.圆柱、三棱柱、半球30.2020年,两安市为创建全国文明城市,在街头制作了正方体宣传板进行宣传,它的展开图如图示,请你来找一找“创”字所在面的对面是哪个字()A.明B.文C.北D.城第II卷(非选择题)请点击修改第II卷的文字说明二、填空题31.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),若在图中只添加一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,这样的拼接方式有_____种.32.如图是某几何体的表面展开图,则该几何体的名称是______;侧面积=______(用含π的代数式表示).33.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中“国”字所在面相对的面上的汉字是________.34.一张长50cm,宽40cm的长方形纸板,在其四个角上分别剪去一个小正方形(边长相等且为整厘米数)后,折成一个无盖的长方体形盒子,这个长方体形盒子的容积最大为_____cm3.+=______.35.若要使图中平面展开图折叠成正方体后,使得相对面上的数的和相等,则x y三、解答题36.在期末复习期间,悠悠碰到了这样一道习题:如图所示是一个正方体表面展开图,正方体的每个面上都写着一个整式,且相对两个面上的整式的和都相等.请根据展开图回答下列问题:(1)与A 相对的面是__________;与B 相对的面是____________;(填大写字母)(2)悠悠发现A 面上的整式为:3221x x y ++,B 面上的整式为:2312x y x -+,C 面上的整式为:2313x y x -,D 面上的整式为:()221x y -+,请你计算:F 面上的整式. 37.如图①,是一个边长为10cm 正方形,按要求解答下列问题:(1)如图①,若将该正方形沿粗黑实线剪下4个边长为 cm 的小正方形,拼成一个大正方形作为直四棱柱的一个底面,余下部分按虚线折叠成一个无盖直四棱柱,最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积;(2)若该正方形是一个圆柱的侧面展开图,求该圆柱的体积.(结果保留π)38.一个正方体的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示.(1)A 的对面是 ,B 的对面是 ,C 的对面是 ;(直接用字母表示)(2)若A =﹣2,B =|m ﹣3|,C =m ﹣3n ﹣112,E =(52+n )2,且小正方体各对面上的两个数都互为相反数,请求出F 所表示的数.39.如图是一个正方体的平面展开图,标注了字母M 的是正方体的正面,标注了2-的是正方体的底面,正方体的左面与右面标注的式子相等.(1)求x 的值;(2)求正方体的上面和后面的数字和.40.如图所示,是一个长方体纸盒平面展开图,已知纸盒中相对两个面上的数互为相反数.求a ,b ,c 的值?41.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a =______,b =_________; (2)先化简,再求值:()()2223252ab ab ab a ab ⎡⎤------⎣⎦.42.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数. (1)填空:a =________,b =________,c =________.(2)先化简,再求值:()22253234a b a b abc a b abc ⎡⎤---+⎣⎦43.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如图所示,其中阴影部分为内部粘贴角料.(单位:毫米)(1)此长方体包装盒的体积为 立方毫米;(用含x 、y 的式子表示)(2)此长方体的表面积(不含内部粘贴角料)为平方毫米;(用含x、y的式子表示)(3)若内部粘贴角料的面积占长方体表面纸板面积的16,求当x=40毫米,y=70毫米时,制作这样一个长方体共需要纸板多少平方米.44.下面是一个多面体的表面展开图每个面上都标注了字母,(所有字母都写在这一多面体的外表面)请根据要求回答问题:(1)如果面F在前面,从左边看是B,那么哪一面会在上面?(2)如果从右面看是面C面,面D在后边那么哪一面会在上面?(3)如果面A在多面体的底部,从右边看是B,那么哪一面会在前面.45.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)46.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如图所示,其中阴影部分为内部粘贴角料.(单位:毫米)(1)此长方体包装盒的体积为立方毫米;(用含x、y的式子表示)(2)此长方体的表面积(不含内部粘贴角料)为平方毫米;(用含x、y的式子表示)(3)若内部粘贴角料的面积占长方体表面纸板面积的15,求当x=40毫米,y=70毫米时,制作这样一个长方体共需要纸板多少平方毫米.47.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和①.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的①重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.48.已知:图①、图①、图①均为53的正方形网格,在网格中选择2个空白的正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体表面展开图,且3种方法得到的展开图不完全重合.49.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.50.如图所示,一个无盖的长方体纸盒,其长宽高分别为5cm,4cm,3cm.请你画出一种表面展开图(大概示意图),并计算其表面积.51.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=.(2)求代数式的值:a2﹣|a﹣b|+|b+c|.52.如图是从三个方向看几何体得到的形状图.(1)说出这个几何体的名称; (2)画出它的一种表面展开图;(3)若从正面看到的形状图的宽为4 cm ,长为7 cm ,从左面看到的形状图的宽为3 cm ,从上面看到的形状图中斜边长为5 cm ,求这个几何体所有棱长的和,以及它的表面积和体积. 53.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为cm a 的正方形纸板制作出两种不同方案的长方体盒子(左图为无盖的长方体纸盒,右图为有盖的长方体纸盒).(纸板厚度及接缝处忽略不计)华罗庚小组展示:根据左图方式制作一个无盖的长方体盒子,方法:先在纸板四角剪去四个同样大小边长为cm b 的小正方形,再沿虚线折合起来. 问题解决(1)该长方体纸盒的底面边长为______cm ;(请你用含a ,b 的代数式表示) (2)若12cm a =,3cm b =,则长方体纸盒的底面积为______2cm ; 陈省身小组展示:根据右图方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为cm b 的小正方形和两个同样大小的小长方形,再沿虚线折合起来. 拓展延伸(3)该长方体盒子的A面长为______,宽为______(请你用含a,b的代数式表示)cm;(请你用含a,b的代数式表示)(4)该长方体纸盒的体积为______354.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是_______.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有______(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.55.在一次青少年模型大赛中,小高和小刘各制作了一个模型,小高制作的是棱长为acm的正方体模型,小刘制作的是棱长为acm的正方体右上角割去一个长为3cm,宽为2cm,高为1cm的长方体模型(如图2)(1)用含a的代数式表示,小高制作的模型的各棱长度之和是___________;(2)若小高的模型各棱长之和是小刘的模型各棱长之和的56,求a的值;(3)在(2)的条件下,①图3是小刘制作的模型中正方体六个面的展开图,图中缺失的有一部分已经很用阴影表示,请你用阴影表示出其余缺失部分,并标出边的长度.①如果把小刘的模型中正方体的六个面展开,则展开图的周长是________cm;请你在图方格中画出小刘的模型中正方体六个面的展开图周长最大时的图形.56.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.57.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:(1)剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为;(2)如果设原来这张正方形纸片的边长为acm,所折成的无盖长方体盒子的高为hcm,那么,这个无盖cm;长方体盒子的容积可以表示为3(3)如果原正方形纸片的边长为20cm,剪去的小正方形的边长按整数值依次变化,即分别取cm cm cm cm cm cm cm cm cm cm时,计算折成的无盖长方体盒子的容积得到下表,由1,2,3,4,5,6,7,8,9,10此可以判断,当剪去的小正方形边长为cm时,折成的无盖长方体盒子的容积最大。

人教版七年级数学上册正方体展开与折叠

人教版七年级数学上册正方体展开与折叠

A
B
C
D
3.下列四个展开图形中能够构 成如图所示模型的是( D )
A
B
C
D
1、将正方体沿着某些棱剪开得到展开图需 要剪七条棱
2、正方体有11种展开图3、正来自体展开图中对面呈一字型或Z字型
4、根据对面规律能够准确找出对面及判断 某些平面展开图是否为正方体展开图
作业:课本122页7;123页13
正方体展开与折叠
说一说
正方体的基本特征:
图形 正方体
面数 6
棱数 12
顶点 8
对面数 3
对面分别为上和(下);左和(右);前和(后) 每个面有(一)个对面。
思一思 拿出准备好的正方体展开图思考:
将正方体展成平面图形,你需要剪开几条棱? 答案:必须剪开七条棱.
活动一
以小组为单位一一派小组长和一名小助 手将组内不同的展开图展示在黑板上。
D.8
例2、能否用对面的规律判断下列图形能不能折成正方 体?
(1)
(2)
(3)
(18)
1.下面是六个正方形连在一起的图形,经折叠后能 围成正方体的图形有哪几个?
A
B
C
D
E
F
G
2.下图需再添上一个面,折叠后才能围成一个正方体 ,下面是四位同学补画的情况(图中阴影部分),其
中正确的是C( )
正方体可以得出11种不同的展开图:
活动二
将展开图中每组对面用直线或折线连接,观察
连线呈现什么数字或字母?
(一字型) 前
上 前下 上 后
(Z字型)
前右
左前
下后 下
后右
左前
下 后 上右
(小z) (中z) (大z)

苏科版七年级数学上册5.3《展开与折叠》 课件 (共30张PPT)

苏科版七年级数学上册5.3《展开与折叠》 课件 (共30张PPT)

么哪一面会在上面? C
A
(3)从右面看是面C,面
D在后面,那么哪一面会在
上面? A
E
BC D F
8、(1)填表: 名称 顶点数 面数f 棱数e f+v-e
v 三棱柱 四棱柱 五棱柱 六棱柱 七棱柱
8、(1)填表:
名称 顶点数 面数f 棱数e f+v-e

三棱柱 6



四棱柱 8
6 12

五棱柱 10 7 15
(1)先想一想,再动手折一折,验证你的想法。
1、如图,哪些图形沿虚线折叠可以围成(面 与面之间不重叠)一个棱柱形的包装盒?
(1)先想一想,再动手折一折,验证你的想法。
(2)折叠成的棱柱共有多少条棱?哪些棱的长 度相等?
(3)这个棱柱共有多少个面?它们分别是什么 形状?哪些面的形状、大小完全相同?
先想一想,再动手折一折,并与同学交流。
1、如图所示的纸板上有10个无阴影的正方形。 从中选出1个,与图中5个有阴影的正方形一起 折成一个正方体包装盒。
先想一想,再动手折一折,并与同学交流。
1、如图所示的纸板上有10个无阴影的正方形。 从中选出1个,与图中5个有阴影的正方形一起 折成一个正方体包装盒。
X=5 1
Y=3
23
XY
6、下列平面图形各是哪些几何体的展开图?请 在空格处填上几何体的名称。
圆柱
圆锥
三棱锥
三棱柱
四棱锥
五棱锥
7、如图是一个多面体的表面展开图,每个图面 上都标注了字母,请根据要求回答问题:
(1)如果面A在多面体的底部,那么哪一面 会在上面? F
(2)如果面F在前面,从左面看是面B,那
1、如图所示的纸板上有10个无阴影的正方形。 从中选出1个,与图中5个有阴影的正方形一起 折成一个正方体包装盒。 先想一想,再动手折一折,并与同学交流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A

B
A
这样的路径有几条?
A
考考你
1、如果“你”在前面,那么谁在后面?
了!
太棒
你们
KEY: 棒
2、“坚”在下,“就”在后,胜、利在哪 里?

持就是


牛刀小试 1、下列图形是哪些多面 体的展开图
正方体
长方体
四棱锥
三棱柱
长方体
五棱锥
三棱柱
1、 学会了简单几何体(如三棱锥, 正方体等)的平面展开图,知道按不 同的方式展开会得到不同的展开图。
第四类,两排各三个,只有一种。
将相对的两个面涂上相同的颜色,正 方体的平面展开图共有以下11种:
牛刀小试 下面的图形都是正方体的展开图吗?
下面的图形都是正方体的展开图吗?
三 棱 柱
长 方 体
点击思维
有一只虫子在正方体的一个顶点A, 要爬到距它最远的另一个顶点B去,哪
条路径最短?
B●BFra bibliotek?展开
2、 学会了动手实践,与同学合作。
3、友情提醒:不是所有立体图形都 有平面展开图,比如球体。
展开与折叠(一)
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方 有一只蚊子,壁虎要想尽快吃到蚊子,应 该走哪条路径?
你有何高招 ?
● 蚊子
壁虎 ●
● 蚊子
壁虎 ●
zxxkw
蚊子


壁虎
? 想一想
若给你设计的几何体包上漂亮的彩纸, 该怎样用料最省学呢科网 ?
按照平面展开图裁纸。
小实验( 一)
把你所做的几何体展开,看它的平面 展开图是什么。
圆 柱 圆 锥
三 棱 锥
zxxkw
小实验(二)
请同学们拿出课前准备好的几个 正方体纸盒,按不同的方式展开,画 出你所得到的展开图。
第一类,中间四连方,两侧各一个,共六种。
zxxkw
第二类,中间三连方,两侧各有一、二个,共三 种。
第三类,中间二连方,两侧各有二个,只有一种。
相关文档
最新文档