岩石物理学 讲义
第四讲 岩石的物理及力学性质

第一节岩石的物理力学性质概述
4、岩石硬度的测定
(1)静压入法:以1~5mm2的压 头压入岩样表面,岩石破碎时的载 荷Pmax 除以接触面积S,则为岩石的 硬度值Hy(通常称为压入硬度)。
H
y
P max / S
( Pa )
(2)冲击回弹法:利用重物落在岩 石表面后回弹高度或回弹角度或回弹
次数来确定岩石的硬度。
四、岩石的结构和构造
岩石结构说明岩石的微观组织特征。与矿物颗粒的大小、形 状和表面特征有关,反映岩石的非均质性和孔隙性。 岩浆岩主要具有块状结构,其构造特征对钻掘破碎岩石没有 显著影响。 沉积岩的成因广泛,故其结构也比较复杂。碎屑岩具有碎屑 结构,按碎屑的大小可分为 砾状结构(碎屑直径>2mm)、 粗粒结构(碎屑直径1~2mm)、 中砂结构(碎屑直径0.1~1m m)、 粉砂结构(碎屑直径0.01~0.1mm)。。
第一节岩石的物理力学性质概述
(3)在各向均匀压缩的条件下,岩石的硬度增加。在常压下
硬度越低的岩石,随着围压增大,其硬度值增长越快。 (4)一般而言,随着加载速度增加,将导致岩石的塑性系 数降低,硬度增加。但当冲击速度小于10m/s时,硬度变化不大。 加载速度对低强度、高塑性及多孔隙岩石硬度的影响更显著。
• (5)、岩石的亲水性 • 膨胀性是指某些由黏土矿物组成的岩石浸水后, 因黏土矿物具有较强的亲水性,致使岩石中颗粒间的 水膜增厚,或者水渗入矿物晶体内部,从而引起岩石 的体积或长度膨胀。表征岩石膨胀性的指标有岩石自 由膨胀率、岩石侧向约束膨胀率和岩石膨胀压力等。 • 软化性岩石浸水后强度变低的性质。取决于它的 岩石性质和空隙性。软化性弱说明其抗冻性和抗风化 性强。 K R cw cd • 软化系数: 软化系数越小,软化性越弱。 • 透水性岩石的透水性服从达西定律。它取决于空 隙的数量、大小、方向及连通情况。
岩石力学第2章岩石的基本物理力学性质PPT课件

格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在
岩石力学讲义(岩石的物理性质)

cw)与
岩石中含有较多的亲水性和可溶性矿物,大开空隙 较多,岩石的软化性较强,软化系数较小。
KR>0.75,岩石的软化性弱,工程地质性质较好
1、岩石的密度
2、岩石的孔隙性
(一)、岩石的密度
1、颗粒密度(ρ s):岩石固体部分的质量与
其体积的比值。它不包含孔隙在内,因此 其大小仅取决于组成岩石的矿物密度及其 含量: ρ s= ms/Vs ρ s—为岩石的颗粒密度
ms—为岩石固体部分的质量 Vs—为岩石固体部分的体积
(一)、岩石的密度
2、块体密度(或岩石密度)是指岩石单位体 积内的质量,按岩石的含水状态,又有干 密度(ρ d)、饱和密度(ρ 指岩石的天然密度。 ρ d=ms/V ρ
1. 结构面的成因类型 2. 结构面的规模与分级 3. 结构面特征及其对岩石性质的影响
一)结构面的成因类型
地质成因类型
原生结构面 构造结构面 次生结构面
力学成因类型
张性结构面 剪性结构面
结构面的地质成因类型
1. 原生结构面:在岩石形成过程中形成的软弱面
岩浆岩的流动构造面、冷缩形成的原生裂隙面、侵入
不规则,多呈折线或锯凿状。断面凹凸不平,粗
糙度大,破碎带宽度变化大,且易被岩脉、矿脉
充填,有时并有岩浆沿之入侵。张性破裂面常常
具有含水丰富,导水性强以及剪切强度高等特征
结构面的力学成因类型
剪性破裂面:是由剪应力而形成的,破裂面
两侧岩体沿破裂面切线方向发生有不同程度的
滑错位移。具有擦痕、共轭性、规律的位移方
变形性、渗透性,力学上的连续性及岩体应
力分布等都有显著影响。因此,在很多情况
下,软弱面是岩体力学问题的一个主要控制 因素。从本质上说,软弱面使岩体变得更加 软弱,更易于变形而且表现为高度的各向异 性。
岩石物理学讲义

岩石物理学讲义一、内容简介本课程是地球物理探测专业的一门专业课。
课程目的是通过各种教学环节,使学生正确认识和理解地球中岩石的诸多物理性质(尤其是岩石的弹性性质)与岩石本身特性间的一些基本关系,熟悉基本的岩石物理概念和理论,了解获取岩石物理性质的一些基本方法和岩石物理参数应用方面的知。
为以后从事与地震勘探、资源环境和地质灾害方面的工作和科学研究打下基础。
本课程内容主要针对油气地球物理探测领域,其中包括:岩石物理学的基本概念,基本理论知识,实验过程和技术,岩石的分类和特点、岩石的孔隙和裂隙、岩石中的流体和流动、岩石的弹性和波的传播衰减、岩石的电学和热学性质,以及岩石特性在地震勘探中的应用。
三、课程安排第一章引言(2学时)岩石物理学的概念及发展概况、研究意义和应用方向,本课程的特点和安排。
第二章地球上的岩石(2学时)地球上的岩石和矿物,岩石的分类和特点;油气储层岩石的特点。
第三章储层岩石的多孔特性(4学时)岩石的骨架、密度,孔隙、裂隙和孔洞,孔隙率、裂隙的基本概念,孔隙和裂隙的几何形态,相关的介质模型。
孔隙中的流体,流体的流动,饱和度和渗透率,双相介质中的概念第四章岩石的弹性(4学时)岩石应力-应变概念,岩石的弹性常数,岩石的各向异性和理论。
第五章岩石中弹性波速度和衰减(10学时)岩石中的弹性波传播的基本概念,波在分界面上的反射和折射,岩石的速度各向异性,波速和衰减的实验测试原理和技术,弹性波传播衰减的基本知识,衰减实验测试的结果,衰减机制和理论第六章岩石速度的影响因素(10学时)岩石速度的影响因素定性描述,波速与岩石物性的经验关系;孔隙、压力温度、流体等因素的影响,速度的各向异性第七章流体饱和岩石中波的传播(8学时)有效介质模型,流体置换方程,Biot理论和实验观测第八章岩石的其它物理性质(6学时)岩石的电学性质,岩石的热学性质,核磁共振第九章石油地球物理中的应用(2学时)地震勘探中的应用,测井中的应用。
岩石物理-Rock--Physics资料讲解

Reservoir properties
Porosity 孔隙度 Density 密度 Saturation 饱和度
4D Feasibility & Seismic modeling 四type 流体类型
Pressure 压力 Temperature 温度 Fracture 裂隙
– Verify theoretical results and provide input data to theories and models 验证理论结果及对理论 与模型提供输入参数
– Gather real rocks from the field, whereas theories assume universal rocks 从油田采集真正的岩石, 而理论总是假设一个通用岩石
教 材: 陈颙,黄庭芳著,岩石物理学,北京大学出版社,2001年 参 考 书: 1)赵鸿儒、唐文榜、郭铁栓编著,超声地震模型试验技术 及应用,石油工业出版社,1986 2)R.E.Sheriff et.al., Reservoir Geophysics, SEG, 1992 3)Amos Nur著,许云译,双相介质中波的传播,石油工 业出版社,1986
– Rock physics quantifies/decomposes these factors 岩石物理对这 些因素分解、量化
Seismic data
Rock properties
Rock Physics in Angle
Dependent Reflectivity
• Angle-dependent reflectivity 依赖于角度的反射率
– Are the changes large enough to be resolved seismically? 这些变 化是否大于地震的分辨率
岩石物理学ppt

6.1 差应力作用下岩石的特性 6.1.3 声发射及其他性质
5、用声发射研究岩石的破裂过程 岩石变形直至发生破裂的过程中,岩石内部不断地产生微破裂,微
破裂产生时会有声波辐射出来,这就是声发射(acoustic emission)。 用仪器测定每个声发射发生的地点,就可以知道微破裂产生的地点,并 可以从其辐射图形(radiation pattern)定出其破裂机制(focal mechansim)。记录下岩石变形时微破裂不断产生的位置、频度,这 样用声发射的方法就可以知道岩石破裂微破裂的发展演变,以及和岩石 最终破裂的关系
同样平均应力
下由流体静压力实验得到的体积应变之差。前一
种方法比较简单,在处理实验资料时紧常采用,后一种方法物理意义清楚,
在理论分析时经常采用。
6.1 差应力作用下岩石的特性
6.1.1 岩石的膨胀
图6-2给出了四种岩石的体积膨胀实验绍果
6.1 差应力作用下岩石的特性
6.1.1 岩石的膨胀
(2)岩石膨胀的特点
岩石物理学ppt
《岩石物理学》
第1章 岩石 第2章 岩石孔隙度和渗透率 第3章 岩石中波的传播与衰减 第4章 岩石的弹性 第5章 岩石的变形 第6章 岩石的断裂 第7章 岩石的强度
《岩石物理学》
第6章 岩石的断裂 6.1 差应力作用下岩石的特性 6.2 脆性断裂(brittle fracture) 6.3 岩石断裂力学 6.4 流体对断裂的影响
6.1.1 岩石的膨胀
为了确定岩石的膨胀A, 必须知道在差应力σd作用下岩石的弹性变
形.以这种弹性变形为参考基准,才能得到膨胀A·。通常是把在低差应
力下岩石应力-应变曲线的线性部分外推,得到σd—εv曲线。但当岩石孔
岩石的基本物理力学性质

第一章 岩石的基本物理力学性质
主讲内容:
第一节 第二节 第三节 第四节 第五节
岩石的物理性质 岩石的强度性质 岩石的变形特征 岩石的流变特性 岩石的强度理论
第一节 岩石的基本物理性质
一、岩石的容重 二、岩石的比重 三、岩石的孔隙性 四、岩石的水理性质
含水性 吸水性 透水性 软化性 抗冻性 膨胀性 崩解性
破坏力的一部分用来克服与正应力无关的粘结力,
使材料颗粒间脱离联系;另一部分剪切破坏力用
来克服与正应力成正比的摩摩力,使面内错动而
最终破坏。
一、库伦准则:
数学表达式: c tan
参数 意义
f tan ——内摩擦系数
表示在破坏面上的正应力与剪应力的组合关系满足上式.
库仑准则的应用: 解决在压力(应力)作用下的破
第一节 岩石的基本物理性质
一、岩石的容重:
岩石单位体积(包括岩石内孔隙体积)的重量称为 岩石的容重,容重的表达式为:
W /V
岩石的容重取决于组成岩石的矿物成分、孔隙 发育程度及其含水量。岩石容重的大小,在一定程 度上反映出岩石力学性质的优劣。根据岩石的含水 状况,将容重分为天然容重、干容重、和饱和容重。
坏判推,不适应于拉破坏。
破坏判断2个方面:一个是判断材料在何种应力环
境下破坏,二是判断破坏面的方位角。当然,这种判 断是在材料特征常数[ f,(), c ]为已知的条件下去判断。
C tg c f
库仑准则 主要公式:
2c cos 1 1 sin c 2c cos 45 / 2
即有蠕变现象
力与应变速率一一对 应,受力瞬间不变形, 随时间流逝变形趋于
无限的特点
描述流变性质的三个基本元件
(3)粘性元件 本构方程 d
岩石的物理力学性质下岩石力学课件PPT

dilatancy)
。
1 2 3
Mar , 2007
17
第2章 岩石的物理力学性质
Mar , 2007
18
第2章 岩石的物理力学性质
5. 岩石的各向异性 岩石的全部或部分物理、力学性质随方向不同而表现出差异的现象
称为岩石的各向异性。
z
zx
ij =
x xy xz yx y yz
zx zy z
xy y yz
Mar , 2007
x
ij =
x xy xz yx y yz
zx zy z
19
第2章 岩石的物理力学性质
• 极端各向异性体的应力-应变关系
在物体内的任一点沿任何两个不同方向的弹性性质都互不相同,任何一个应力分量都会引起六个 应变分量。三向应力状态下,弹性矩阵为对称矩阵,36个弹性常数只有21个是独立的。
5
第2章 岩石的物理力学性质
弹性模量(modulus of elasticity):加载曲线直线段的斜率,加载曲线直线段大致与卸载曲线的割线相平 行。
E
变形模量(modulus of deformatieon):取决于总的变形量,即弹性变形与塑性变形之和,它是正应力与总
的正应变之比,它相应于割线OP的斜率。
由开尔文模型与马克斯威尔模型串联而组成,蠕变曲线上开始有瞬时变形,然后剪应变以指数递减的速率增长,最后趋于不变速率增长。
各向同性体的弹性参数中只有2个是独立的,即弹性模量 和泊松比 。
混凝土圆柱体三向
受压试验时,轴向
应力—应变曲线
Mar , 2007
Faculty of Civil Engineering, Chongqing University
岩体力学第二章岩石的基本物理力学性质PPT课件

岩石的强度和破坏
强度
岩石抵抗外力破坏的能力, 通常分为抗压、抗拉和抗 剪强度。
破裂准则
描述岩石在不同应力状态 下从弹性到破坏的过渡规 律。
破裂模式
岩石破坏时的形态和方式, 如脆性、延性、剪切等。
04
岩石的物理力学性质与岩体力学应用
岩石的物理力学性质在岩体工程设计中的应用
岩石的物理性质在岩体工程设计中具有重要影响, 如密度、孔隙率、含水率等参数,决定了岩体的承 载能力和稳定性。
岩石的物理力学性质在岩体工程治理中的应用
在岩体工程治理中,需要根据岩石的 物理力学性质制定相应的治理方案。
在治理过程中,还需要根据岩石的变形和 破坏模式,采取相应的监测和预警措施, 以确保工程治理的有效性和安全性。
如对于软弱岩体,可以采用加固、注浆等措 施提高其承载能力和稳定性;对于破碎岩体 ,可以采用锚固、支撑等措施防止其崩塌和 滑移。
弹性波速
表示岩石中弹性波传播速度, 与岩石的密度和弹性模量等有 关。
岩石的塑性和流变
01
02
03
塑性
当应力超过岩石的屈服点 时,岩石会发生塑性变形, 不再完全恢复到原始状态。
流变
在长期应力作用下,岩石 的变形不仅与当前应力状 态有关,还与应力历史有 关。
蠕变
在恒定应力作用下,岩石 变形随时间逐渐增加的现 象。
岩体力学第二章岩石的基本物 理力学性质ppt课件
目
CONTENCT
录
• 引言 • 岩石的物理性质 • 岩石的力学性质 • 岩石的物理力学性质与岩体力学应
用 • 结论
01
引言
岩石的基本物理力学性质在岩体力学中的重要性
岩石的基本物理力学性质是岩体力学研究的基础,对于理解岩体 的变形、破坏和稳定性至关重要。
最新岩块的物理力学性质PPT课件

(h/ D)
温度、湿度
含水量越高,强度越低;温度越高,强度越低。
端面条件端面效应
岩
块
的
变 形
层理结构强度各向异性
与
强
度
性
质
二、单轴抗拉强度σt
1.定义:单向拉伸条件下,岩块能承受的最大拉应力,简称抗拉 强度。
2.意义:衡量岩体力学性质的重要指标
岩
用来建立岩石强度判据,确定强度包络线
块
选择建筑石材不可缺少的参数
1~9 0.2~0.35
3)其他变形参数
岩
•剪切模量(G)
G E 2 (1 )
块 的
•拉梅常数(λ)
E
( 1 )( 1 2 )
变
形
•体积模量(KV)
E K V 3 (1 2 )
与
强
•弹性抗力系数(K) K E
度
(1 ) R o
性
质
3. 峰值后岩块的变形特征
塑性 大的 岩石
几种岩石的吸水性指标值
二、岩石的软化性
岩石浸水饱和后强度降低的性质
软化系数(KR):岩石试件的饱和抗压强度(σcw)与干抗压 强度(σc)的比值
KR
cw c
岩石中含有较多亲水性和可溶性矿物,含大开空隙 较多时,岩石的软化性较强,软化系数较小。(软 化性与岩石矿物成分及空隙性有关)
KR>0.75,岩石软化性弱,抗冻性和抗风化能力强; KR<0.75,岩石软化性较强,工程地质性质较差。
块
的
变
形
与
强
度
性 质
三、岩石的蠕变性质
在外部条件不变的情况下,岩石的变形或应力随时间而变化
岩 的现象叫流变,主要包括蠕变、松弛。
岩石基本物理力学性质PPT课件

岩石的变形指标
E
弹模
含或水E率t
d d
泊松比
含水 x率 y
剪切模量:G E
2(1 )
拉梅常数:
E
(1 )(1 2)
E
体积模量: Kv 3(1 2)
23
第243页/共36页
1.5 影响岩石力学性质的主要因素
• 围压 •水 • 温度 • 加载速度(应变率)
24
第254页/共36页
围压对岩石力学性质的影响
岩块 非连续面
联合作用
岩体特性
岩块研究 成果丰硕
理论背景 试验基础
采样 试验设备
2
第32页/共36页
课程章节调整
岩石物理力学性质 岩石的本构模型与强度理论 岩体力学性质 地应力 三大岩石工程--洞、坡、基
3
第43页/共36页
岩石的物理性质(Physical Properties of rocks)
砂岩
4~25
玄武岩 10~30 闪长岩 10~25
砾岩
2~15
石英岩 大理岩 白云岩
10~30 7~20 15~25
安山岩 片麻岩 板岩
10~20 5~20 7~15
灰岩
千枚岩、 片岩
5~20 1~10
Rt
1 25
~
1 4
Rc
13
第143页/共36页
岩石的抗剪强度
基本概念—正应力条件下施加剪切力,岩石能抵 抗的最大剪力
D点以后:破裂后阶段
典型的应力-应变曲线 第221页/共36页
21
岩石变形性质-体积变形
岩石的扩容
岩石在荷载作用下发生破坏之前产生体积膨胀大于体积压缩的非线性体积变形
岩石的主要物理性质和力学性质ppt课件

c
P A
端部效应
破坏形态
岩石的单轴抗拉强度σt
直接拉伸试验
t
P A
岩石的剪切强度τf:岩石抵抗剪切破坏的能力。
十、 影响岩石力学性质的因素
(1)矿物成分对岩石力学性质的影响 矿物硬度大,岩石的弹性越明显,强度越高。 如岩浆岩,橄榄石等矿物含量的增多,弹性越明显,
强度越高; 沉积岩中,砂岩的弹性及强度随石英含量的增加而
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
六、岩石的抗冻性
岩石的抗冻性是指岩石抵抗冻融破坏的性能,
是评价岩石抗风化稳定性的重要指标。
岩石的抗冻性用抗冻系数Cf表示,指岩石试样在 ±250C的温度期间内,反复降温、冻结、融解、升
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
岩石的主要物理性质
岩石由固体,水,空气等三相组成。 一、密度(ρ)和重度(γ): 单位体积的岩石的质量称为岩石的密度。单位体积的岩石的 重力称为岩石的重度。所谓单位体积就是包括孔隙体积在内的体 积。
二、比重(Δ)
岩石的比重就是指岩石固体的质量与同体积水 的质量之比值。岩石固体体积,就是指不包括孔隙 体积在内的体积。岩石的比重可在实验室进行测定, 其计算公式为:
Ws Vs w
式中:Δ——岩石的比重; Ws——干燥岩石的质量(g); Vs——岩石固体体积(cm3);
ΔW — 40C时水的密重。
W (g/cm3),γ=ρg(kN /m3)
V
岩石的密度可分为天然密度、干密度和饱和密度。相应地,岩 石的重度可分为天然重度、干重度和饱和重度。
岩石物理学ppt课件

4500-8000
性
质
地
震
二、岩石密度的影响 由纵横波速度公式:
勘
+2 k+4/3
E(1-)
探
纵波速度 VP = --------- = ------------ = ----------------
中
(1+)(1-2)
的
E
岩
横波速度 VS = ------ = -------------
石 物
2(1+)
物 ,则可通过Gardner公式计算。
理
性
质
地 三、孔隙度的影响
震
一般说来,在其它因素相同的情况下,孔隙
勘 度大时,岩石的波速V低,也就是说,孔隙度
探 和波的传播速度V成反比。
中
Wyllie 提出了V-关系的经验公式:
的 岩 石
1
1-
------ = ----- + -------- (时间平均方程)
可知,随着增大,VP 、 VS也增大,但由公式看, 增大,VP 、 VS 应降低,为什么它反而增大?
理
这是因为增大,杨氏模量E也增大,且其增大的级
性 次比高得多,所以增大,VP 、 VS也增大。
质
地 震 勘 探 中 的 岩 石 物 理 性 质
地
震
勘
探
中
的
岩
石
物
理
性
质
砂泥岩横波速度密度关系(p=0.600Vs0.183)
勘
探
从图上可以 看出,同样的未
中
固结砂岩,水饱
的
和时的纵波速度
岩
几乎与温度没有 关系。
石
岩体力学02-岩石的基本物理力学性质

强度指标 单轴抗压强度
受 单轴抗拉强度
力
状 态
剪切强度
三轴压缩强度
单向受压 单向受拉
压剪 双(三)向受力
一、单轴抗压强度σc
1、定义
岩石试件在无侧限条件下,受轴向压缩荷载作 用达到破坏时,单位面积所承受的最大的荷载,即
c
P A
又称无侧限抗压强度,简称抗压强度,单位: MN/m2、MPa 。
2、意义
类别
亚类
饱和单轴抗压强 度(MPa)
代表性岩石
硬质 岩石
极硬岩石 次硬岩石
>60 30~60
花岗岩、花岗片麻岩、闪长岩、玄 武岩、石灰岩、石英砂岩、石英岩、
大理岩、硅质砾岩等
软质 岩石
次软岩石 极软岩石
5~30 <5
粘土岩、页岩、千枚岩、绿泥石片 岩、云母片岩等
§2.2 岩石的基本物理性质
岩石是由固体、液体和气体三相组成的。岩石 的力学性质常与岩石中三相的比例关系及固相 与水相互作用有密切的关系。
砂岩
20~200
流纹岩 180~300 石英岩 150~350
砾岩
10~150
闪长岩 安山岩 白云岩
第二章 岩石的物理力学性质
——本章所说的岩石是指岩石块体,即岩块
§2.1 岩石的地质特征 §2.2 岩石的基本物理性质 §2.3 岩石的强度特性 §2.4 岩石的变形特性 §2.5 影响岩石物理力学性质的主要因素
§2.1 岩石的地质特征 —物质组成及结构
一、岩石(块)的物质组成 岩块的力学性质主要取决于组成岩石的矿物成
岩石强度:岩石抵抗外 力破坏的能力
岩块破 坏方式
脆性破坏
拉破坏 剪切破坏
岩石的基本物理力学性质及其试验方法-知识归纳整理

第一讲 岩石的基本物理力学性质及其试验想法(之一) 一、内容提要:本讲主要讲述岩石的物理力学性能等指标及其试验想法,岩石的强度特性。
二、重点、难点:岩石的强度特性,对岩石的物理力学性能等指标及其试验想法作普通了解。
一、概述岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周 围物理环境(力场)的变化作出反应的一门力学分支。
所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。
由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。
岩体是指在一定工程范围内的自然地质体。
通常以为岩体是由岩石和结构面组成。
所谓的结构面是指没有或者具有极低抗拉强度的力学不延续面,它包括一切地质分离面。
这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。
从结构面的力学来看,它往往是岩体中相对照较薄弱的环节。
所以,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。
【例题1】岩石按其成因可分为( )三大类。
A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩 答案:A 【例题2】片麻岩属于( )。
A. 火成岩 B. 沉积岩 C. 变质岩 答案:C【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。
A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小 答案:C 二、岩石的基本物理力学性质及其试验想法 (一)岩石的质量指标与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。
1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度 是指岩石的固体物质的质量与其体积之比值。
岩石颗粒密度通常采用比重瓶法来求得。
其试验想法见相关的国家标准。
岩石颗粒密度可按下式计算2 岩石的块体密度岩石的块体密度是指单位体积岩块的质量。
《岩石力学》课件(完整版)

(m3/s)
dh
dx ——水头变化率; qx——沿x方向水的流量;h——水头高度; A——垂直x方向的截面面积;k——渗透系数。
四、岩石的抗风化指标(3类)
(1)软化系数(表示抗风化能力的指标)
Rcc——干燥单轴抗压强度、 Rcd——饱和单轴抗压强度;
Rcc / Rcd
( 1 )越小,表示
1.频率越低,跨越裂隙宽度俞大,反之俞小
图3-7
2. 裂隙数目越多,则纵波速度愈小
3.岩体的风化程度愈高弹性波的速度亦小
4.夹层厚度愈大弹性波纵波速度愈
三、岩体波速与岩体的有效孔隙率n及吸水 率 W f 有关
一些岩浆岩,沉积 岩和变质岩的纵 波速度与有效孔 隙率n之间的关系 见图3-9所示。
静泊松比代替)求 Ed ,则
Vp
/ Vs
[
2(1
)
]
1 2
1 2
• 若 =0.25时,
• 经过各方面试验验证, 之间。
Vp /Vs =1.73
Vp /Vs 一般在1.6~1.7
三、岩体弹性波速得测定
(一)岩块声波传播速度室内测定
测定时,把声源和接收器放在岩块试件得两端,通 常用超声波,其频率为1000Hz-2MHz。(示波见图3-1)
表3-1表示了各类岩石的弹性波速与岩石种 类之间的关系。 图3-5从实例统计的角度,表示了各类岩 石的弹性波速及密度之间的关系。
VP 0.35 1.88
二、岩体波速与岩体中裂隙或夹层的关系
弹性波在岩体中传播时,遇到裂隙,则视
充填物而异。若裂隙中充填物为空气,则弹 性波不能通过,而是绕过裂隙断点传播。在 裂隙充水的情况下,声能有5%可以通过, 若充填物为其他液体或固体物质,则弹性波 可部分或完全通过。弹性波跨越裂隙宽度的 能力与弹性波的频率和振幅有关.
岩石物理岩性ppt课件

岩石物理学在油储地球物理中应用
参考文献
1. 岩石物理学,陈禺页,北京大学出版社 2. 双相介质中波的传播,Amos Nur 等,石
油工业出版社 3. 定量测井声学,唐晓明等,石油工业出
版社
4. 毛管理论在测井解释中的应用,原海 涵,石油工业出版社
岩石物理基本实验结果、基础理论
岩石物理特性—测井资料应用
高值 低值
低值
比砂岩还低
比砂岩还低
比砂岩还低 最低 最低 最低
(钾盐最高)
自然电位 (mV)
基值 异常不明显
明显负异常
明显负异常
大片负异常
大片负异常 基值 基值 基值
微电极 (Ω.m)
低平值
中等 明显正异常 较高明显
正异常 高值 锯齿正负异常 高值 锯齿正负异常
极低
电阻率 (Ω.m)
低值 高值 (无烟煤最低) 低到中等
不等粒砂岩,5×10
中砂质粗粒岩屑 长石砂岩(接触式胶结)
细粒岩屑石英砂岩(薄 膜-孔隙式胶结)
粒间扩大孔,5×10
粒间孔全貌,孔隙中无充填物
粒间孔隙被高岭石堵塞
颗粒表面生长次生石英
长石颗粒微溶蚀
碎屑颗粒粒度分级
十进制
粒级划分
颗粒直径(毫米)
巨砾
>1000
砾岩
粗砾 中砾
1000~100
100~10
岩石物理学重要性与意义
地球由岩石圈、水圈和大气层组成。而岩石是 构成地球最基本的物质,因此研究地球上的诸 多现象和过程(如地球的能源、资源、环境和 灾害等问题-人类生存的基础问题)都离不开对 岩石物理性质的清楚认识和深刻理解。它们包 括岩石力学、声学特性、电性、磁性和放射性 等,是地球物理勘探的物理基础,主要在资源 勘探、重大水利水电工程、地震预报等领域上 应用。 地质工程—地球探测与信息技术、地质勘查 地球物理学-固体地球物理学、应用地球物理学、 大地测量学和空间地球物理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石油工程
岩石物理
地球物理
3
图 1.1 岩石物理是地质、地球物理、石油工程的共同基础和桥梁
1.2 岩石物理学的研究方法
1.2.1 研究岩石的多尺度性
岩石是不同矿物、胶结物和孔隙及孔隙物质组成的复合体。研究岩石的尺度可分为: (1)矿物颗粒(grain)尺度,或微观尺度(micro-scale),与矿物颗粒大 小有关,一般为 10-7~10-1m。 (2)岩石尺度,又叫宏观尺度(macro-scale)(10-1~10+2m)。 (3)岩体尺度(mega-scale),包括岩体的节理、层面(100~103m)。 (4)地质尺度(giga-scale),是矿物、岩石、岩体+构造运动的总体尺度。 (101~104m)。 也可把(1)称为微观尺度,把(2)称为中观和细观尺度,把(3)、(4)称为 宏观尺度。 岩石物理性质随研究的尺度不同而不同。例如用岩石尺度看矿物,矿物性 质是均匀的,用矿物尺度看矿物,矿物是非均匀的。当地震波长 λ 小小于研究 对象的大小 d 时,即 λ << d , d 是不均匀的,要用射线理论研究。此时可应用 Shell 定理和 Fermat 原理; λ ≈ d 要用绕射、散射原理; λ >> d 时, d 是均匀的。
是良好的建筑装饰材料。
② 沉积岩
沉积作用形成的,在地表分布最广,覆盖了大陆面积的 75%。
主要类别:
7
砂岩(sandstone)占沉积岩总量的 25%,颗粒(grain)大小范围,1/16mm~2mm 经济性:油、气、水的储集体,建筑材料;页岩或泥岩(shale)占沉积岩 总量的 50%,矿物颗粒大小范围<1/16mm,是油、气、水的盖层,遮档层,建 筑材料。 碳酸盐岩(limestone)占沉积总量的 20%,世界油气探明储量的 50%以上 在碳酸盐岩储层中。矿物成分以方解石,白云石为主,grain 小。其中的裂隙很 重要,是油气赋存和运移通道,溶蚀白云岩孔隙比较发育,一般为良好储层! 变质岩 高温、高压环境下可形成变质岩、火成岩,沉积岩都可形成变质 岩,有重结晶作用,结构更复杂。不利于找油气,但可以是油气水的储集体。 是优质建筑与装饰材料,如大理石等。 ·成岩旋回(rock cycle)
若令 Lu = 1µ m ,其它情况相同,则 Lr = 0.04 m ,其它依此类推。
6
2 岩石与岩石的变形
2.1 地球上的岩石和矿物(学生自学为主)
·矿物——天然生成的无机成分的均匀固体
homogeneity 均匀≠各向同性 Isotropy
heterogeneity 非均匀≠各向异性 anisotropy
2
1 岩石物理学概论
1.1 岩石物理的内容与特点
岩石物理学是以研究岩石物理性质的相互关系及应用为主的学科。重点研 究: ·在地球内部特殊环境下岩石的行为及其物理性质。 ·研究那些与地球内部构造运动、能源和资源勘察与开发、地质灾害的成因与 减灾,环境保护与监测等密切相关的问题。
对油气勘探、资源、环境等问题,R. E. Sheriff 对岩石物理学的定义为[1] 岩石物理学研究岩石物理性质之间的相互关系,具体地说,研究孔隙度, 渗透率等是如何同地震波速度、电阻率、温度等参数相关联的。 岩石物理学与地质学、地球物理学、地球化学、力学、流体力学、材料力 学、地热学、环境科学、工程学等众多学科密切相关,是一个高度的交叉、边 缘学科。基础性,应用性都很强。一般情况下,人们把岩石物理学归属于地学 学科。对油气资源的勘探开发而言,岩石物理是联系地质、地球物理、石油工 程三个学科领域的共同基础和桥梁,见图 1.1。
3.1 岩石中的波
3.1.1 波的类型多、复杂,目前应用较多的有纵波、横波和转换波。 纵波又称 P 波,其质点运动方向与波传播方向一致。以疏、密带形式传播, 如下图。
……………………→传播方向 横波又称剪切波或 S 波,其传播方向与质点运动方向垂直,与传播方向垂 直的质点又有两个运动方向,一沿垂直剖面运动,称 SV 波,另一与垂直平面 垂直,称 SH 波。
Cementation(胶结),bulk density,……
·成岩过程
火成的(igneous process)
沉积的(sedimentary process)
变质的(metamorphic )
·三大岩类
① 火成岩
侵入岩(intrusive rocks)
喷发岩(extrusive rocks)
占地壳总体积的 95%。
型,研究较大尺度实际岩石介质的低频地震波特性。设实验所用的频率为 fu ,
岩样或模型的尺寸大小为 Lu ,波速为Vu ;实际地震勘探所用频率为 fr ,观测目
标大小为 Lr ,波速为Vr 。则存在关系式
Rf gRL = RV
(1.1)
式中
RL
= Lu / Lr , RV
= Vu Vr
, Rf
=
1 Rt
,整理后得
K
2 L
=
ω2 V2
在实际和模型介质中,波遵循相同的波动方程式,得
(1.6)
K
2 Lr
= ωr2 Vr2
(1.7)
K
2 Lu
=
ωu2 Vu2
(1.8)
取(1.7)/(1.8)得
KLr / KLu = (ωr /ωu ) /(Vr /Vu ) = Lu / Lr 考虑公式(1.2),且 t = T 为波的主周期,则有
σ31
z 注意:应力不是力,是单位面积上的力(协强)
应力单位: 应变 ε 包括体积形变和形状形变,有线应变,体应变,角形变等名词
应变率 ε&= dε dt
2.3 岩石的本构关系
·描述岩石应变 ε 或应变率ε&同应力σ ,温度 T,时间 t 等因素(变量)的 函数关系称为岩石的本构关系。
ε = f (σ ,T , tL ) 在弹性力学中,本构关系描述了弹性体的应变与应力之间的关系,比较单 一。而在岩石力学中,自然界的岩石,处于较大的温度、压力条件下,而且受 力变形的时间很长(地质年代)。这是其特殊性,与一般的弹性体不同。但对人 工地震而言,地震波作用时间很短,弹性力学的本构关系仍然适用。 ·典型的单向应力下的应力(压应力)——应变关系曲线
10
C 点 形变达到极大值,临界破裂状态 CD 段,岩石发生强烈破坏,应力能量大量释放。断裂,岩体失 稳,地震产生等,破碎后形变局部化,很难测量评价 CD 段的变化关 系。 DE 段:破裂已经完成,形变表现为岩石(体)沿断面或破裂而滑动。 2.4 岩石裂隙的多尺度性及定比观测
11
3 岩石中波的传播和衰减
L = L(x, y, z) 为向量,则(1.3)变为
(1.3)
∂2P(L,t) 1 ∂2P(L,t)
=
∂L2
V 2 ∂t2
通过傅氏变换将上式变换到频率波数域,则有
(1.4)
(iKL )2 P(KL ,ω )
=
(iω ) 2 V2
P(KL,ω)
(1.5)
式中 KL
=
1 ,ω L
= 2π
f
= 2π
1 T
由于受样品大小,测试环境和条件等的限制,在实验室测得的岩石样品的
微观特性如果不顾条件和环境,将其推广到实际的宏观问题中去应用,可能要
出现较大误差。应建立适当的模拟理论和方法,使得物理模型(或岩样)测试, 数值模拟和实际的地质模型在遵守一定的条件和规则情况下相互统一。
(2)地下原位条件和环境的模拟 地下的岩石常常处于较高的温度和较高的压力条件下,我们称其为原位条
矿物是均匀的,但可以是各向异性的
(位置)
(强调方向)
矿物颗粒的大小相差悬殊(grain)μm---cm 尺度的都有
地球矿物元素有 3300 多种,常见的有 20 多种。
O,Si,Al,Fe,Ca……等元素最多
·岩石
——由一种以上造岩矿物按一定方式结合而成的矿物的天然集合体
·岩石是多孔的,Pore, Porosity, Pore shape, permeability, Texture, Compaction,
岩石物理学
讲义
贺振华编
成都理工大学 2009 年
1
目录
1 岩石物理学概论 (4 学时) 1.1 岩石物理学的内容与特点 1.2 岩石物理学的研究方法 2 岩石与岩石的变形 (6 学时) 2.1 地球上的岩石和矿物 2.2 应力与应变 2.3 岩石的本构关系 2.4 岩石物理实验 3 岩石中波的传播与衰减(10 学时) 3.1 岩石中的波 3.2 岩石中波速的测量与应用 3.3 岩石中波的衰减 3.4 岩石模型 4 岩石的弹性 (12 学时) 4.1 二相体的弹性 4.2 流体静压力下岩石裂纹对弹性的影响 4.3 流体静压力下岩石孔洞对弹性的影响 4.4 岩石中孔隙流体对弹性的影响 4.5 弹性波在双相体岩石中的传播 5 岩石的输运特性 (2 学时) 5.1 达西(Darcy)定律和岩石的渗透率 5.2 渗透率的测量 5.3 岩石的输运模型 6 岩石物理应用 (4 学时) 6.1 Biot-Gassmann 方程与流体替换 6.2 裂缝储层岩石物理 复习与考试(2 学时)
进入地幔 (溶化)
岩浆
冷凝 结晶 固化
变质岩
高温高压 (变质)
沉积岩
高温、高压 风化
搬运
风化搬运
胶结、压实
火成岩 风化/剥蚀/搬运
沉积物
图 2.1 成岩旋回示意图
8
2.2 岩石的变形 ·应力和应变(Stress and strain)
δF σ=
δs
y
σ22
σ21
σ23
σ12
σ32
σ11
x
σ31 σ13
(1.9)
Rt gRv / RL = 1,或 Rf gRL = RV