往复式压缩机管道防振设计探讨

合集下载

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨造成往复式压缩机振动的原因主要有以下几个方面:
1. 设备安装不稳:往复式压缩机的安装位置不平稳、固定螺栓松动等原因都可能导
致设备振动。

2. 不平衡质量:往复式压缩机在制造过程中,如果某些零部件的质量分布不均匀,
或者安装不当,都会导致设备在运行时产生不平衡质量,进而引起振动。

3. 压力脉动和气流不稳定:由于往复式压缩机的工作原理决定了其输出的压力和气
流是周期性变化的,如果设计不当或者存在机械故障,都会引起压力脉动和气流的不稳定,进而导致振动问题。

1. 合理设计:在往复式压缩机的设计和制造过程中,应该严格按照相关标准和规范
进行。

合理选择和配置零部件,确保其质量分布均匀,减少不平衡质量的存在。

2. 定期维护:定期对往复式压缩机进行检查和维护,确保设备的正常运行和固定的
螺栓不松动。

定期检查和更换磨损严重的零部件,避免因故障导致振动。

3. 合理安装:在设备安装过程中,应该确保设备安装位置平稳,固定螺栓紧固牢固。

还应考虑减振装置的使用,以减少机械振动的传递。

4. 减少压力脉动和气流不稳定:通过优化往复式压缩机的工作参数和调整设备结构,可以减少压力脉动和气流的不稳定。

合理选择和使用阀门和管道设备,也可以降低振动问题。

往复式压缩机振动的产生可能由多种原因引起,因此必须采取适当的措施来减少振动。

通过合理设计、定期维护、合理安装和减少压力脉动,可以有效地降低振动问题,提高往
复式压缩机的运行稳定性和工作效率。

浅析往复式压缩机振动管道减振设计

浅析往复式压缩机振动管道减振设计

浅析往复式压缩机振动管道减振设计摘要:随着我国经济的发展以及科技的进步,压缩机的使用在很大程度上改善了人们的生活水平、工作水平以及实验环境。

这些先进的科学技术在给生活带来好的影响的同时也带来了一定负面的影响。

往复式压缩机作为一种先进设备,在工作过程中难免会产生噪声方面的污染,给我们的生活、工作以及学习带来影响。

因此,对于压缩机的振动必须要从根源上抓起,对往复式压缩机振动管道进行减振设计。

关键词:往复式压缩机;振动管道;减振设计1.往复式压缩机工作原理一般来讲,往复式压缩机通常是由单个部分所组成的,工作腔、曲柄连杆以及辅助系统。

曲柄连杆是压缩机主要的传动部分,也是其动力的主要提供部件,能够将驱动级的旋转运动直接的转换为往复式的运动,从而推动活塞在气缸里做往复式运动,进一步实现的往复式压缩机的排气和吸气的过程。

往复式压缩机其工作基本可以分为四个部分:1.1膨胀阶段在活塞的运动造成工作室里面的容积增加的时候残留在其内部的高压的气体就会发生膨胀,此时气阀不会打开,只有当压力小于吸入管路的压力时气阀才会打开;1.2吸气阶段吸入口的气阀在压差的作用下打开,活塞运行,工作室容积变大,气体不断吸入。

当压差消失后进气阀关闭;1.3压缩阶段活塞的反向运行,工作室的容积减小,当工作室压力增加时排气口阀门仍然关闭,气体被压缩;1.4排气阶段当工作室的压力大于排气管压力时,就会克服气阀压力排出气体。

2.往复式压缩机管道振动原因2.1气流脉动引起的管道振动往复式压缩机管道振动是由多种原因引起的,但生产中的管道振动多是由气流脉动引发的。

从气流脉动大小与压力不均匀度来看,当管道的气流压力不均匀度增大时,振动频率就高,振动能量就会加大,对管道带来的破坏性也会越大。

如果脉动气流通过管道弯头、分支管、阀门等时,压力不均匀度会引发管道振动的强大激振力,出现管道的机械振动。

2.2外力引起的管道振动管道振动的原因是多样的,如强风横吹时,会在管线背风面产生涡流而引发管道振动;地震会引发管道振动等。

往复式压缩机出口管道振动分析及消振措施研究

往复式压缩机出口管道振动分析及消振措施研究

往复式压缩机出口管道振动分析及消振措施研究刖H管道振动是往复式压缩机出口管线常见的故障之一。

往复式压缩机是炼油和化工装置中的重要设备。

其出口管道的振动对安全生产是一个很大的威胁。

它会引起:(1) 管道的疲劳损伤,尤其可能使小口径管道损坏;(2)管道保温材料的破损;(3)测量仪表及导管的损坏和控制系统误动作;(4)管道摆动或振动以及噪声对人的影响等。

强烈的管道振动使得管路附件的连接部位发生松动和破裂,轻则造成泄漏,重则引起爆炸。

通常引起往复式压缩机出口管道振动的原因往往很复杂,只有通过正确诊断和分析,才能找出引起管道振动的主要原因,并采取有效的措施消除隐患。

因此,管道设讣时必须充分重视管道振动的消除和控制。

对出现强烈振动的管道,需要分析原因,采取减振措施。

1、管道振动原因分析压缩机气体管道系统主要有3个振动源:(1) 气流压力脉冲在管件处冲击振动;(2) 管道内气柱的振动(共振);(3) 管道的机械振动;(1)气流压力脉动往复式压缩机工作特点是吸、排气流呈间歇性和周期性。

因此会激发进、出口管道内的流体呈脉动状态,使管内流体参数随位置及时间作周期性变化,这种现象称为气流脉动。

管道内气流压力随时间变化的情况如图1所示。

压力脉动越大,管道振动的振幅和动应力越大。

脉动气流会严重影响阀门的正常开关,还会引起管系机械振动,使管件疲劳破坏而发生泄漏,其至造成火灾爆炸等严重事故。

往复式压缩机的气流压力脉动除了可能引起气柱共振之外,管道中的压力和速度波动在管道的转弯处、截面变化处和各种阀件、盲板处还可能产生冲击作用,引起管道振动和噪声。

下图所示的一段等截面管弯头,设弯管的直径为d,弯管的转角B,弯管进气口处的压力为P。

1. 压力脉动的消减措施(1) 避开气柱共振。

消减气流脉动,首先应避免气柱共振。

要进行气柱固有频率的讣算,使气柱固有频率与活塞激发频率错开。

(2) 采用合理的吸排气顺序。

通过改进汽缸的结构和配置,)气,采用合理的吸、排气顺序,使压缩机较均匀地向管道排(吸可以达到减小气流压力脉动的U的。

往复式压缩机管道振动分析

往复式压缩机管道振动分析

往复式压缩机管道振动分析往复式压缩机是一种常见的工业设备,用于将气体压缩为高压气体。

在使用过程中,往复式压缩机管道振动是一个值得关注的问题。

管道振动会引起噪音、机械磨损和性能下降,甚至可能导致设备损坏。

因此,对往复式压缩机管道振动进行分析和评估是非常重要的。

1.涡流振动:涡流振动是由于流体通过管道时在阻力作用下产生的涡旋,引起管道的激烈振动。

涡流振动通常在压缩机进气和排气口附近发生,特别是在高速流体通过窄缝时。

2.压力脉动:压力脉动是由于气体在管道中的压缩和膨胀引起的。

往复式压缩机的排气过程中,气体经过多次膨胀和压缩,使得管道中的气体产生不稳定的压力脉动,引起管道振动。

3.特征频率振动:特征频率振动是由于管道结构本身的特性引起的。

例如,管道的自然频率与往复式压缩机的运行频率相接近时,会引起共振现象,使得管道振动加剧。

针对以上原因,可以采取一些措施来分析和减小往复式压缩机管道振动。

首先,可以采用模态分析的方法,通过对管道系统的振动模态进行计算和分析,得到管道系统的振动特性。

模态分析可以帮助确定管道自由振动的频率和模态形态,并通过合适的改善措施来避免特征频率振动。

此外,还可以使用有限元分析方法对管道系统进行模拟,以预测和减小管道振动。

其次,在设计和安装阶段,需要合理选择和设计管道的支撑方式。

合理的支撑结构可以减小管道振动的振幅,并降低管道传递给其他设备的振动幅值。

另外,可以通过调整往复式压缩机的工作参数来减小压力脉动和涡流振动。

例如,可以调整压缩机的排气阀的开关时间和扭矩大小,使得气体压缩和释放的过程更加平稳。

最后,定期进行管道和设备的维护检查,及时修复和更换老化、磨损或损坏的部件。

及时发现问题并采取措施可以减小管道振动的发生和影响范围。

总之,往复式压缩机管道振动分析是一个复杂的工程问题,需要综合考虑涡流振动、压力脉动和特征频率振动等多种因素。

对管道振动的认真分析和评估可以帮助减小振动对设备的不良影响,并提高设备的稳定性和性能。

往复式压缩机管道防振设计规定

往复式压缩机管道防振设计规定

往复式压缩机管道防振设计规定首先,往复式压缩机管道防振设计的材料选择应符合相关标准。

管道应选用耐压、耐腐蚀、耐震动的材料,如碳钢、不锈钢或者塑料管道。

材料的选择应根据工作介质的特性来确定,以保证管道在工作过程中的安全可靠性。

其次,管道布局需要合理设计,以降低振动和噪声的产生。

首先,应尽量避免使用长直管道,而是采用弯管连接,以减少压缩机振动的传导。

其次,应保证管道与地面或其他固定设施之间有足够的间距,以减少振动和噪声的传递。

最后,管道的支架间距应合理设置,以减少管道的自振。

支吊架设计也是往复式压缩机管道防振设计的重要内容。

支吊架应布置在压缩机进出口管道的靠近锻造焊接点的位置上,以减小管道的振动。

支吊架的材料选择应符合相关标准,且应具有足够的刚度和强度。

支吊架的位置和数量应根据管道的长度和重量来确定,以保证管道的稳定性。

吸振器的使用也是往复式压缩机管道防振设计的一种方法。

吸振器可以通过吸收管道振动能量来减少振动和噪声的产生。

吸振器的选用应根据管道的工作压力、流量和振动频率来确定,以确保其工作效果。

吸振器的安装位置应根据管道的特点和工况来确定,以充分发挥其吸振效果。

最后,往复式压缩机管道防振设计还应考虑安全操作与维护。

在安装过程中,应保证管道连接牢固,防止泄漏和松动。

在使用过程中,定期检查支吊架和吸振器的状态,如有松动或损坏应及时修复或更换。

此外,应保证管道的通畅,及时清理积存的污垢。

总之,往复式压缩机管道防振设计的规定包括材料选择、管道布局、支吊架设计、吸振器的使用等方面。

合理的管道防振设计可以降低振动和噪声的产生,保证往复式压缩机的安全稳定运行。

在实际设计中,还应根据具体工况和要求,结合相关标准和经验进行综合考虑和设计。

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨往复式压缩机气体管道振动是管道设计和机器运行中经常遇到的问题,往往影响到设备装置的正常运行,并严重威胁着工厂的安全生产。

本文分析了通常引起往复式压缩机气体管道振动的原因及常见的减振方法。

通过对一起往复式压缩机振动实例分析,针对原因提出合理的减震措施。

实施后现场实际运行情况良好,振动有明显改善。

标签:往复式压缩机;气体;管道振动;原因;减振措施管道内工作介质为气体的称为气体管道,动设备以及静设备是通过管道串联成工艺流程的,它主要起输运、传递介质的作用。

往复式压缩机在石油、化工、冶金、纺织、动力等部门中应用非常广泛,气体管道是压缩机装置中最主要的系统之一。

往复式压缩机管道的振动是管道设计和机器运行中经常遇到的问题,往往影响到装置的正常运行。

在生产实际中,由于强烈地管道振动,将会使管路附件,尤其是管道的连接部位、管道与附件的连接部位和管道与支架的连接部件等处发生磨损、松动;在振动所产生的交变应力作用下,导致疲劳破坏,从而发生管线断裂、介质外泄,甚至引起严重的生产事故,给生产和环境造成严重危害。

因此分析其振动原因及消振措施,很有必要。

本文对往复式压缩机气体管道振动原因进行了简单地分析,并针对往复式氢气压缩机的振动问题提出了具体地减振措施。

通过减振措施的实施,机组运行情况明显改善,振动减小。

1管道振动分析使用的控制标准往复式压缩机管系的振动分析应满足:(1)满足美国石油学会API618标准脉动控制要求,保证压缩机管系气流脉动不超过允许值。

(2)根据美国普渡压缩机技术协会关于机械振幅要求,保证机械振动全振幅不超过允许值。

美国石油学会制订的AP1618标准,从量上规定了对压力脉动和振动控制的设计要求。

2 压缩机气体管道振动原因分析压缩机气体管道系统主要有3个振动源:一是管道内气柱的振动;二是气流压力脉冲在管件处冲击振动;三是管道的机械振动。

2.1气柱共振往复式压缩机在运行过程中,由于吸气、排气是交替和间断性的,另外活塞运动的速度又是随时间变化的,这种现象就会引起压力脉动。

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨摘要:往复式压缩机的振动问题一直是行业的关注焦点之一。

本文通过对振动原因的分析及产生机理的探讨,提出了适合往复式压缩机的减振措施方案。

一、引言往复式压缩机广泛应用于各行各业,是现代化生产的重要设备,但常常被振动问题所困扰。

压缩机的振动会影响其工作效率、工作稳定性、降低机械安全性能和寿命,还会导致与之相连的管道和设备发生损坏,造成生产事故。

因此,对于往复式压缩机振动原因的深入探究和减振技术的研究,具有重要的意义。

二、往复式压缩机振动产生的原因及机理1. 动平衡不良往复式压缩机的转子和曲柄往复运动,机体自然存在不平衡的情况,如果动平衡处理不良,将导致转子与机体相互影响,发生振动。

2. 受力不均衡管路的布置不合理、设备安装松动、地基变形等因素会导致往复式压缩机受到非均匀力的作用,从而引起振动问题。

3. 频率共振频率共振是指在机体内部或与周围环境形成共振的现象。

当往复式压缩机固有频率与其它设备或管道的共振频率相同或接近时,会引发共振,导致机体振动。

4. 液体脉动液体流动过程中,由于液体压力变化,使得液体速度也随之变化,进而引起质量分布和涡流产生,形成液体脉动。

如果装置不合理或运行条件恶劣,液体脉动将从液体端传递到机械端,引起振动。

5. 脚螺栓不紧往复式压缩机的底座与地基之间采用脚螺栓连接,如果螺栓连接不紧或者螺纹损坏,将导致机体稳定性受到损害,从而引发振动。

三、减振措施针对上述振动产生原因的分析,可以采取以下措施:采用成熟的动平衡处理技术对往复式压缩机的各部件进行动平衡处理,降低不平衡对机体的影响。

2. 设备安装合理设计管路,采用合适的减振措施,安装压力表和温度计,定期检查设备是否松动,确保设备的安装牢固。

测定往复式压缩机固有频率,对与之相邻的设备或管道进行改动,消除频率共振点,降低共振振幅。

遵循设计标准,使用合适的管道和阀门,控制液体流速和压力,避免液体脉动。

定期检查脚螺栓连接状态,修补螺纹或更换脚螺栓,确保底座稳定。

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨往复式压缩机是一种常见的压缩机类型,广泛应用于工业和商业领域。

在使用过程中,往复式压缩机经常会出现振动问题,给设备的正常运行和使用带来困扰。

对往复式压缩机振动原因进行分析,并探讨减振措施,对于提高设备的稳定性和性能具有重要意义。

1. 不平衡不平衡是往复式压缩机振动的主要原因之一。

不平衡可能发生在转子、曲轴、飞轮等旋转部件上。

当这些部件出现不平衡时,会导致压缩机产生较大的振动。

2. 错位或偏心错位或偏心是往复式压缩机振动的另一个常见原因。

这可能是由于装配不当、机械零件磨损或损坏等原因导致的。

当机件错位或偏心时,会导致压缩机的运转不平稳,产生振动。

3. 轴承故障压缩机的轴承是支撑转子和其他旋转部件的重要部件。

当轴承出现故障,如磨损、疲劳等,会导致往复式压缩机的运转不稳定,产生振动。

4. 轴向不平衡力在往复式压缩机的工作过程中,由于活塞的上下运动,会产生轴向不平衡力。

这种不平衡力会导致压缩机的振动增大。

1. 均衡和调整旋转部件为了减少不平衡振动,可以对压缩机中的旋转部件进行均衡和调整。

通过精确矫正旋转部件的质量分布,可以减少不平衡振动的产生。

2. 检查和更换磨损零件定期检查往复式压缩机的机械零件,特别是轴承等易磨损部件,及时更换磨损严重的零件。

这样可以有效减少因零件磨损引起的振动。

3. 使用弹性支撑或减振器在安装往复式压缩机时,可以使用弹性支撑或减振器来降低振动传递。

弹性支撑能够吸收振动能量,减少振动的传递。

减振器可以调整其刚度和阻尼,以实现最佳的减振效果。

4. 框架设计优化对往复式压缩机的框架进行优化设计,可以提高其刚度和稳定性。

采用合理的结构和材料,可以减少振动的产生和传递。

总结:往复式压缩机的振动问题会影响设备的稳定性和性能,甚至可能导致设备的损坏。

对往复式压缩机振动原因的分析和减振措施的探讨具有重要意义。

通过采取合适的措施,如均衡和调整旋转部件、检查和更换磨损零件、使用弹性支撑或减振器、优化框架设计等,可以有效减少往复式压缩机的振动,提高设备的稳定性和性能。

往复压缩机管道防振探讨

往复压缩机管道防振探讨
问题 。
软件给出,并根据相关结果作合理判断。 2 计算共振管长 在布置管道时 ,除了满足工艺要求外 ,还应 避 免管 内气体 发生 气柱共 振 以及 管道 发生 机械共
振 。在 管道 防振设 计 中 ,首先应 根据 管 内介质 和
对于往复压缩机管道气体压力脉动和管道振 动 的控 制 ,国内尚无标 准 ,目前 主要 参考美 国石 油学会标准 A I 1 。由于往复压缩机管道的振 P 8 6 动与机器的设计和制造有直接关系,因此其振动 的控制也应主要 由机器制造厂负责。A I 1 P 6 8主
要 是 针对机 器制 造厂 制定 的 ,规 定 了机器 制造 厂
激振频率计 算可能发生气柱共振 的管道共 振管
长,并使相应的管道 长度避开 08~12倍共振 . . 管长。A I 1 P 8的附录 N和其他有关文献均列 出 6
了简单情况下共振管长的计算公式 。 ( )一端为闭端,另一端为开端的管道 1
[ 作者简 介] 刘兴 龙 ( 9 5 ) 男 , 庆忠 县人 , 工工 程 17 一 , 重 化 师, 主要从事化工工艺设计 、 热力管道应力分析工作。
第1 期 介质工作温度
刘兴龙等 :往复压缩机管道防振探讨 5 O℃
AXl T ES 7 9 2 @ N AL S R S: 4 07 . ODE 1 1 1
4机为另一种型号 ,均 已运行多年。本次改造因
为与压缩机制造厂无合同关系 ,因此仅能按相关 设计资料分别进行详细应力计算和振动分析 ,以
满 足相应 工 况 要 求 。本 文 通 过 对 1二 氧 化 碳 压
口 ——气体 中音速 , / ; ms
激振频率 ,H 。 z 与 2倍 激振 频率 相对应 的二 阶共振 管长

往复式压缩机工程设计中的问题探讨

往复式压缩机工程设计中的问题探讨

往复式压缩机工程设计中的问题探讨摘要:本文主要是对往复式压缩机工程设计中的问题进行探讨,首先研究往复式压缩机出现振动的振源与防振措施,然后分析管道设计,最后提出优化方案,为相关工作人员提供一定参考。

关键词:往复式压缩机;管道设计;振动前言:在往复式压缩机运行过程中,常常会出现振动现象,该现象不仅较为复杂,而且在设计时也是令设计人员极为头疼的问题,如果在设计时存在不足,就非常容易出现共振现象,从而对压缩机的使用寿命和性能产生非常大的影响,不利于设备的正常使用。

下面笔者就针对相关内容进行详细阐述。

一、往复式压缩机出现振动的振源与防振措施(一)振源分析根据此类型压缩机工作的具体情况来看,其在气缸当中通常是进行周期性往复运动,能够导致在吸排气上出现周期性变化,而管道中气体则呈现出脉动状态,不论是气体的压力、流速还是密度都会随着时间和位置发生周期性改变,而这一现场也被人们叫作气流脉动[1]。

由于气体接触到各种管件以后,便会产生激振力,当受到该力所产生的作用时,管道也就会出现振动。

由此能够的看出,发生振动的振源为管道内的气体发生了压力脉动。

因为压力脉动不可能消失,所以在管道中出现振动,并处于合理范围之内,那么所产生的任何振动都是正常的,需要注意的是避免发生剧烈的震动,主要是如果受到剧烈震动,那么就会对管道、材料等等造成破坏[2]。

通常情况下,致使管道发生振动的原因有:(1)气体所受到的压力脉动太大,使得所产生激振力过大,此时振动频率非常高,形成的振动也就很高。

而出现此种情况的因素主要在于在缓冲罐、基础等方面上的设计存在问题而引起的。

(2)管道结构自身容易出现共振,产生共振的原因主要在于压缩机自身所产生的激振力频率与管道固有频率是相同或是非常接近的,如果发生了共振会导致管道在振动上出现快速增加,而管线则发生了非常大的位移。

(二)防振措施如果想要最大程度减少管道中气体所发生的波动,避免出现共振现象,那么就应当采取有效措施加以解决[3]。

往复式压缩机管道振动的原因及减振技术

往复式压缩机管道振动的原因及减振技术

一、往复式压缩机管道振动的原因往复式压缩机管道振动的影响因素较多,由往复式压缩机的工作原理可知,其管线的振动形式是受迫振动。

根据激振力的不同情况,其主要原因通常有三种:(1)压缩机本身运动部件的动平衡性能差,安装不对中、基础设计不当等均能引起机组的振动,从而使与之连接的管线也发生振动。

(2)由气流脉动引起管线受迫振动。

往复式压缩机的工作特点是吸、排气呈间歇性和周期性变化,这种特性会导致管内气体呈脉动状态,使管内介质的压力、速度和密度等既随位置变化,又随时间作周期性变化,这种现象称之为气流脉动。

脉动的气流沿管线输送遇到弯头、异径管、控制阀和盲板等元件时,将产生随时间变化的激振力,受此激振力作用,管线系统便产生一定的机械振动响应,压力脉动越强,管线振动的位移峰值和应力越大。

(3)当往复式压缩机激励频率与气柱固有频率或管系机械固有频率重合或接近时所引起的共振现象导致的往复式压缩机管线振动。

在研究和分析气流脉动引起管线振动时,将同时存在2个振动系统和3个固有频率,即管内气体形成的气柱系统,它由压缩机气缸的吸、排气产生激发使管内压力产生脉动;管线结构的机械系统,压力脉动激发管线作机械振动。

显然若管线内脉动压力较大,则会对机械振动系统产生较大的激振力,引起较强烈的机械振动。

3个频率是气柱固有频率、管路结构固有频率和压缩机激发频率,当三者或其中二者相同及接近时就会产生共振,且表现为耦合振动。

系统振动的迭加必然产生该阶频率的共振,使管线产生该阶频率的共振,使管线产生较大的位移和应力。

2.1针对机组振动引起管线振动的减振方法针对往复式压缩机机组本身引起的管线振动,其解决方法的根本在于提高设备的支撑刚度和阻尼,尤其是往复式压缩机基础底座的支撑刚度。

支撑松动也会使管道在机组的带动下振动超过安全标准。

压缩机管线的支撑应采用固定支撑或防振管卡,尽量避免采用悬挂结构或者简单的支托;防振管卡布置时应该尽量避免几何上与管道同心、同型,并且可以在管道的加固位置和支撑位置加弹性材料的吸振衬垫。

往复式压缩机管道防振设计探讨

往复式压缩机管道防振设计探讨

往复式压缩机管道防振设计探讨摘要:往复式压缩机的相关管道的振动产生在实际工厂相关设计中是需要特别注意的问题。

合理的设备布置和多方面的配管防振设计、科学的支架设置都是规避往复压缩机系统产生振动的有效手段。

本文针对往复式压缩机在实际工厂设计中遇到的实例进行分析,为相类似的项目提供一定的参考目的。

关键词:往复式压缩机管道振动防振支架中船瓦锡兰发动机公司在上海的厂区需要对厂区内的工艺气体混入二氧化碳并进行增加,用于发动机制造工艺。

项目要求把制造发动机用工艺气体压力从0.6Mpa增加到0.8Mpa。

本装置的增压气体压缩机采用往复压缩机,型号采用四朋机械生产的HW-20型,该压缩机系列采用一级四缸。

其主要技术参数:(1)压缩机的气体流量6500Nm3/h;(2)曲轴转速:740r/min;(3)轴功率185KW;(4)入口缓冲罐3个立方,采用1个考虑。

(5)出口缓冲罐3个立方,采用1个考虑。

(6)压缩机有回流功能。

(7)设计温度最高80摄氏度。

1 工艺流程概述从厂区外的气源进入厂区内的调压撬设备稳定气体压力后,经过脱水器脱水后,进入进口缓冲罐稳定及缓和气体压力,随后进入压缩机进行增压。

本项目压缩机采用一用一备。

工艺气体经过增压后流入出口缓冲罐缓冲。

工艺气体出口管线同时并联入冷却器进行气体冷却循环回流。

增压后的管道与二氧化碳气体通过管道混合器混合后进入厂区现有总管,流入发动机主装置。

进口和出口缓冲罐均设计安全阀,安全阀出口管道汇总后排入总管,由于该工艺气体为可燃气体,所以总管末端设置阻火器。

2设备布置本项目压缩机设备采用露天布置,压缩机厂区在主装置建设前就已经规划好,且压缩机厂区预留区域的围墙已经建设完成,所以在设备布置中需重复考虑现有厂区的面积,已经和现有厂区周边环境是否符合总图规范要求。

本装置一边靠近场外高压电线,另一边紧邻厂内道路,设备布置需要按照国家规范,该压缩机需离高压线1.5倍杆高距离,同时要满足厂内道路间距要求;最终决定修改压缩机装置外的厂区内道路,从而满足了设备布置的规范规定,但造成压缩机与缓冲罐的布置过于密集的问题,为了尽量降低管道振动的可能性,缓冲罐靠近压缩机的设计也是非常合理的。

工程设计中往复式压缩机管道防振探讨

工程设计中往复式压缩机管道防振探讨

种 型号 , 是一 化尿素 建厂 时的设备 , 己运行多 均
年 。本次 改造 因 与压 缩机 制造 厂无 合 同关 系 , 因
此仅能按相关设计资料分别进行详细的应力计算 和振动分析, 以使改造后的管线满足相应工况要 求 。 以下 通过 对 1二 氧 化碳 压 缩 机 管 线 共 振 管 长和管系固有频率的计算分析 阐述管道防振 的方 法 与思路 。
21 1 主要条 件与数 据 .. 介 质 C2 O; 12 ; .6 18N ・ / k K) 8 m (g・ ; 2 ; 介 质 的等熵 指数 气 体常数 气 缸数
本文仅通过计算 1二氧化碳压缩机管道共振管 长和管系固有频率对管道布置和支撑进行调整,
以满 足防振 要求 , 对 机器 本 身 或脉 动 抑制 装 置 而 的计算 不作 阐述 。本 文 以 C E A I E .0 A S R I V R4 3 应力 分析软 件作 为 主要 辅 助设 计 工 具 , 力 分 析 应 结 果 由该 软件 给出 , 并根 据相 关结果作 合理 判断 。 2 1 共振 管 长的计 算 .
1 1 1 、 3 二氧化 碳压 缩机 配管 . 2 、
对于往复压缩机管道气体压力脉动和管道振
动 的控 制 , 内尚无标准 , 国 目前 主要 参考美 国石 油
1、 3二氧化 碳压 缩机配 管示意 图见 图 l 2、 。

房柱子
图 1 1 、’3 二 氧 化 碳 压 缩 机 配 管 示 意 图 2 、
0 引 言
学会 标准 A I 1 。 由于 往 复压 缩机 管道 的振动 P 8 6 与机 器 的设 计 和制 造 有着 直 接 关 系 , 因此 其 振动
川化 股份有 限公 司化肥 厂一化 尿素装 置 因二

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨往复式压缩机是工业生产中常用的一种设备,其主要作用是将气体压缩,使其增加压力。

但在使用过程中往复式压缩机常常会出现振动问题,振动不仅会影响设备的稳定性和工作效率,还可能导致设备的损坏甚至危险。

对往复式压缩机的振动原因进行分析,并探讨减振措施显得尤为重要。

一、往复式压缩机振动原因分析1. 设备自身原因往复式压缩机在工作过程中,由于设备运转等原因,可能会产生不平衡的振动。

设备的零部件安装不均匀、结构设计不合理等因素都有可能导致设备振动增加。

2. 润滑不足往复式压缩机在工作时需要进行润滑,以减少摩擦和磨损。

如果润滑不足或者润滑油质量不合格,都会导致设备摩擦增加,引起振动。

3. 气阀失调气阀是往复式压缩机正常运转的关键部件,如果气阀失调,工作不正常,可能会导致设备振动增加。

4. 压缩机负载过大在一些特殊情况下,往复式压缩机可能会因为负载过大而导致振动增加。

在设备超载运转时,设备可能会因为负载过大而出现振动现象。

5. 环境因素环境温度、湿度等因素都可能会影响往复式压缩机的工作状态,导致设备振动增加。

1. 设备日常维护定期对往复式压缩机进行检查和维护,及时发现和解决设备运转中的问题,是减少设备振动的重要措施。

在维护过程中,要特别注意设备的零部件安装情况和润滑情况,保证设备的正常运转。

2. 合理设计和安装在往复式压缩机的设计和安装过程中,要尽量保证设备的均衡和稳定性。

避免在设备设计和安装中出现不合理的因素,以减少设备的不平衡振动。

3. 优质润滑保证往复式压缩机良好的润滑情况是减少设备振动的有效途径。

选择合适的润滑油,控制润滑油的质量和使用量,对设备进行定期的润滑维护,可以有效降低设备的摩擦和磨损,减少设备的振动。

4. 气阀调整定期对往复式压缩机的气阀进行检查和调整,确保气阀的正常工作。

对气阀进行维护和更换,减少因为气阀工作不良导致的设备振动。

5. 控制压缩机负载在设备运转过程中,合理控制往复式压缩机的负载,尽量避免设备超载运转,可以有效降低设备的振动。

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨
往复式压缩机是一种常见的工业设备,常常用于将气体压缩后输送至其他系统中。

往复式压缩机在运行过程中产生的振动问题常常困扰着用户。

为了解决这一问题,本文将从振动的原因分析和减振措施探讨两个方面来进行讨论。

我们来分析往复式压缩机振动的原因。

往复式压缩机在运行过程中,振动主要有以下几个原因:
1. 不平衡:往复式压缩机的压缩机体和曲轴是关键部件,其中不平衡会导致压缩机在转动过程中产生振动。

2. 油膜振动:当润滑油膜不均匀分布时,会导致摩擦力的不均匀,从而引起振动。

3. 弹性变形:往复式压缩机中的零部件,比如气缸、连杆等,在运行过程中会发生弹性变形,导致振动。

接下来,我们来讨论如何减振。

往复式压缩机的振动减振措施主要包括以下几个方面:
1. 平衡调整:通过平衡调整来消除压缩机体和曲轴的不平衡,可以减小振动。

可以采用动平衡仪来检测和调整不平衡量。

3. 结构设计改进:对于容易发生弹性变形的部件,可以通过结构设计的改进,增加刚度,减小变形量,从而降低振动。

4. 安装减振:往复式压缩机在安装时,可以采取减振措施,比如采用减振垫片、减振螺栓等,来减小振动对设备和周围环境的影响。

往复式压缩机振动问题的解决主要从原因分析和减振措施探讨两个方面入手。

通过平衡调整、润滑措施、结构设计改进和安装减振等措施的综合应用,可以有效降低往复式压缩机的振动,并提高设备的运行效果和稳定性。

往复式压缩机管道防振的探讨

往复式压缩机管道防振的探讨

往复式压缩机管道防振的探讨摘要:往复式压缩机管道的振动是管道设计和实际运行中经常遇到的问题,合理的管道布置、支架设置是往复式压缩机管道设计的关键,它能使管系固有频率避开共振。

本文就往复式压缩机管道设计及管道的消振问题进行探讨。

关键词:往复式压缩机管道设计振动分析往复式压缩机是化工设备中常用的动设备,防止往复式压缩机管道的振动问题是管道设计的重点。

通过合理的管道布置、支架设置,能使管系固有频率避开共振频率,以确保压缩机长周期正常运转。

一、往复式压缩机管道振动的原因往复式压缩机管道振动的原因往复式压缩机的工作特点是活塞在气缸中进行周期性的往复运动,压缩机在吸、排气过程中呈间歇性状态,这使得接管内气流的压力和速度产生周期性的变化。

管内气体参数,如压力、速度、密度等不但随位置变化,而且随时间作周期性变化,这种现象称为气流脉动。

脉动气体遇到弯头、异径管、控制阀、盲板等元件后将产生随时间变化的激振力,受此激振力的影响,管道产生振动。

引起管道发生剧烈振动的主要原因有两个:一是气体压力脉动过大,导致激振力过大;另一原因是管道发生机械共振。

可能造成气体压力脉动过大的因素是,机器本身设计不合理、缓冲罐过小、机组的动平衡性能差、安装不合理、基础及支承不当和管内气柱发生共振。

二、控制脉动和振动的分析设计方法1.压力脉动往复式压缩机管道的振动,除少数是由机器振动引起的外,绝大多数都是由管内流体的压力脉动引起的。

此类振动也是管道应力分析中最常见的振动,是典型的周期性激振作用下的强迫振动,其激振力是管内流体的脉动压力。

由于往复压缩机管道气体压力脉动和振动的大小与机器本身的设计、缓冲罐的大小等因素直接相关,因此,根据AP1618的规定,往复压缩机管道的振动控制应主要由压缩机制造厂负责。

气体压力脉动和管道振动的分析设计方法有三种:方法一:使用专利或根据经验分析方法设计的脉动抑制装置来控制脉动,以满足正常操作条件下脉动抑制装置与管道连接处的脉动控制要求;分析管道系统,确定可能导致声学共振的临界管长。

往复式压缩机管道系统振动分析与控制

往复式压缩机管道系统振动分析与控制

往复式压缩机管道系统振动分析与控制管道系统振动会给设备运行和工作环境带来很多负面影响,如噪音、震动、设备磨损等。

因此,需要对往复式压缩机管道系统进行振动分析与控制。

首先,对于往复式压缩机管道系统振动问题的原因分析。

往复式压缩机的工作过程中存在气体脉动、谐振共振和机械震动等问题,这些问题都可以导致管道系统振动。

例如,气体脉动会引起管道内气体的压力波动,进而导致管道振动;谐振共振则是指在一定频率下,管道系统与其他机械部件的振动相互耦合;机械震动则来自于往复式压缩机本身的振动。

其次,针对往复式压缩机管道系统振动问题的一些解决方法。

首先,可以通过增加管道的刚度来抑制振动,如在管道上加装弯头、支架等设备来增加管道的刚度。

其次,可以通过使用减振器来控制振动,减振器可以吸收振动能量,减小振动的传递。

另外,合理设计管道系统结构和布局也可以减少或避免振动问题的发生。

最后,对于往复式压缩机管道系统振动的控制方法。

一方面,需要在设计阶段就考虑到振动问题,合理设计往复式压缩机管道系统的结构和布局,减少振动产生的可能性。

另一方面,可以采取必要的振动监测与控制措施,如使用振动传感器监测管道系统的振动状态,采取合适的控制措施来减少振动。

总之,往复式压缩机管道系统振动是一个需要重视的问题,它会给设备运行和工作环境带来很多负面影响。

因此,需要进行振动分析与控制,既要在设计阶段就考虑到振动问题,又要采取必要的措施来减少振动。


将有助于提高往复式压缩机管道系统的稳定性和可靠性,并提升设备的工作效率和寿命。

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨往复式压缩机是一种广泛应用于各种工业领域的重要设备,但在使用过程中常常会出现振动问题。

振动不仅会影响设备的稳定工作,还会导致设备寿命缩短,甚至引发安全事故。

因此,对往复式压缩机振动原因进行分析和采取适当的减振措施是非常重要的。

一、振动原因1.重量不平衡重量不平衡是导致往复式压缩机振动的主要原因之一。

往复式压缩机内部的活塞、连杆等构件质量分布不均匀,显然会导致其产生不同程度的重量不平衡,进而引起振动。

此外,输入轴、输出轴传动装置也可能存在重量不平衡的问题,如传动带、齿轮间隙不当等。

2.支撑刚度不足支撑刚度不足是另一个常见的导致往复式压缩机振动的原因。

支撑系统的刚度不足时,其密集的压缩和展开过程的力量会应用于压缩机,振动也随之出现。

受到振动的影响,在给定的工作压力下,支撑刚度越低,压缩机就会被振动得越厉害。

3.轴承失效轴承的失效也是往复式压缩机振动的原因之一。

轴承不良或轴承磨损严重,会导致往复式压缩机的产生过多的摩擦及摆臂转换不良,从而导致振动。

二、减振措施为防止重量不平衡的问题,往复式压缩机上的部件必须进行平衡和校正。

通过使部件质量均匀,在其运动方向上反转重量不平衡,可以减少磨合和减少振动。

在对压缩机进行加工和结构设计时,应尽可能减少其部件质量的不均匀性,保持压缩机的几何中心与质心的对称性。

提高支撑刚度是消除往复式压缩机振动的有效方法。

为了提高支撑刚度,可将支撑系统的刚度加强、支撑点设置在合理位置、增加支撑点数量,以确保压缩机在其整个操作范围内保持稳定的运行。

轴承失效可采取更换轴承的方法来解决。

但更换轴承可以立即解决振动问题,但并不能保证一劳永逸。

4.隔振隔振法是常用的减振措施之一。

隔振装置可以将往复式压缩机与外部环境隔开,以减少振动的传导。

隔振垫、隔振脚等隔振装置都是有效的隔振方法。

综上所述,往复式压缩机振动要想得到彻底的解决,必须综合考虑多种原因,并采取相应的减振措施。

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨

往复式压缩机振动原因分析及减振措施探讨往复式压缩机是目前工业生产中最常见的压缩机之一。

但是在使用、维护和保养过程中,往复式压缩机有时会出现振动的情况。

由于往复式压缩机主要是靠运动的活塞内部压缩气体,因此振动问题是一个非常常见的问题。

本文将会分析往复式压缩机振动的原因,并探讨一些减振的方法。

1. 排气管设计不合理如果排气管在运行过程中发生振动,那么整个压缩机就会震动。

排气管设计不合理也会影响排气管固定件的选择,不能很好地固定排气管。

2. 基础设计及支撑问题如果往复式压缩机的基础设计不合理,将会影响整个压缩机的稳定性和结构坚固性。

支撑不足也会导致振动。

3. 内部失衡如果往复式压缩机的活塞、曲轴、连杆及轴承等关键部分出现失衡,将会导致整个压缩机振动。

4. 传动系统问题5. 内部密封不好如果往复式压缩机内部密封性不好,气体在压缩过程中容易泄漏。

泄漏会导致压缩机运行不平衡。

二、往复式压缩机的减振方法在排除以上原因后,需要考虑一些有效的减振方法。

可以通过重新设计排气管,更换排气管固定件等方法,提高排气管的稳定性。

优化往复式压缩机的基础设计,加强基础的坚固性、稳定性和刚度等方面,在一定程度上可以减少振动。

定期检查活塞等关键部件的失衡情况,及时进行维护。

定期检查压缩机传动系统,如皮带、齿轮等部分是否完好,避免传动系统故障导致的振动。

除此之外,可以在往复式压缩机的安装位置上添加减震垫等措施,以提高往复式压缩机的稳定性和减少振动。

综上所述,往复式压缩机是一种机械设备,振动是其常见问题之一,而且振动不仅会损害机器本身,也会影响其所在的生产线,因此需要定期检查、维护和保养,采取相应的措施来解决振动问题,从而保证设备的正常运转。

往复式压缩机出口管系振动及减振的研究

往复式压缩机出口管系振动及减振的研究

三、管系振动研究
管系的振动问题主要是由流体的流动和外部机械力的作用引起的。管系的振动 特性与流体的性质(如流量、流速、压力等)、管材的特性(如弹性模量、泊 松比等)、支撑和约束条件以及外部机械力的作用等因素有关。为了降低管系 的振动,需要从以下几个方面进行考虑:
1、优化管系布局:合理安排管系的走向和支撑,避免形成振动节点。
故障诊断方法研究
故障诊断是往复式压缩机振动信号特征分析的重要应用之一。通过故障诊断, 可以及时发现压缩机存在的故障,避免事故的发生,保证生产过程的稳定性和 安全性。
1、基于神经网络的故障诊断方 法
神经网络是一种非线性映射方法,能够模拟人脑对信息的处理过程。基于神经 网络的故障诊断方法可以使用BP神经网络、RBF神经网络等,将采集到的振动 信号特征作为输入,将压缩机的故障类型和状态作为输出,通过训练神经网络 建立输入与输出之间的映射关系。
2、基于支持向量机的故障诊断 方法
支持向量机是一种二分类器,能够将输入数据分成两个类别。基于支持向量机 的故障诊断方法可以使用支持向量机对不同状态的振动信号进行分类,通过训 练模型将正常状态和故障状态分别映射到两个不同的类别中,从而实现故障诊 断。
3、基于深度学习的故障诊断方 法
深度学习是一种基于神经网络的机器学习方法,能够自动学习输入数据中的特 征。基于深度学习的故障诊断方法可以使用卷积神经网络、循环神经网络等深 度学习模型对振动信号进行特征提取和分类,通过训练模型实现故障诊断。
一、往复式压缩机出口管系振动 的原因
往复式压缩机出口管系的振动主要是由于压缩机的工作原理和管道系统自身的 特性所引起的。在往复式压缩机的运行过程中,活塞在气缸内往复运动,周期 性地改变气体压力,从而产生脉动流体。这种脉动流体在管道系统中产生机械 振动,进而引发管道系统的振动。此外,管道系统的振动还可能受到管道内部 流体的不稳定流动、管道支撑的刚度及阻尼等因素的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

往复式压缩机管道防振设计探讨
发表时间:2018-10-26T10:30:54.420Z 来源:《建筑学研究前沿》2018年第15期作者:吴洋[导读] 中船瓦锡兰发动机公司在上海的厂区需要对厂区内的工艺气体混入二氧化碳并进行增加,用于发动机制造工艺。

上海建安化工设计有限公司上海 200437
摘要:往复式压缩机的相关管道的振动产生在实际工厂相关设计中是需要特别注意的问题。

合理的设备布置和多方面的配管防振设计、科学的支架设置都是规避往复压缩机系统产生振动的有效手段。

本文针对往复式压缩机在实际工厂设计中遇到的实例进行分析,为相类似的项目提供一定的参考目的。

关键词:往复式压缩机管道振动防振支架
中船瓦锡兰发动机公司在上海的厂区需要对厂区内的工艺气体混入二氧化碳并进行增加,用于发动机制造工艺。

项目要求把制造发动机用工艺气体压力从0.6Mpa增加到0.8Mpa。

本装置的增压气体压缩机采用往复压缩机,型号采用四朋机械生产的HW-20型,该压缩机系列采用一级四缸。

其主要技术参数:(1)压缩机的气体流量6500Nm3/h;(2)曲轴转速:740r/min;(3)轴功率185KW;(4)入口缓冲罐3个立方,采用1个考虑。

(5)出口缓冲罐3个立方,采用1个考虑。

(6)压缩机有回流功能。

(7)设计温度最高80摄氏度。

1 工艺流程概述
从厂区外的气源进入厂区内的调压撬设备稳定气体压力后,经过脱水器脱水后,进入进口缓冲罐稳定及缓和气体压力,随后进入压缩机进行增压。

本项目压缩机采用一用一备。

工艺气体经过增压后流入出口缓冲罐缓冲。

工艺气体出口管线同时并联入冷却器进行气体冷却循环回流。

增压后的管道与二氧化碳气体通过管道混合器混合后进入厂区现有总管,流入发动机主装置。

进口和出口缓冲罐均设计安全阀,安全阀出口管道汇总后排入总管,由于该工艺气体为可燃气体,所以总管末端设置阻火器。

2设备布置
本项目压缩机设备采用露天布置,压缩机厂区在主装置建设前就已经规划好,且压缩机厂区预留区域的围墙已经建设完成,所以在设备布置中需重复考虑现有厂区的面积,已经和现有厂区周边环境是否符合总图规范要求。

本装置一边靠近场外高压电线,另一边紧邻厂内道路,设备布置需要按照国家规范,该压缩机需离高压线1.5倍杆高距离,同时要满足厂内道路间距要求;最终决定修改压缩机装置外的厂区内道路,从而满足了设备布置的规范规定,但造成压缩机与缓冲罐的布置过于密集的问题,为了尽量降低管道振动的可能性,缓冲罐靠近压缩机的设计也是非常合理的。

3 管道布置原则。

两台压缩机对称布置,管道在考虑柔性的情况下考虑减少弯头数量以减少共振情况;管道的布置和阀门的位置除了要考虑操作维修外,还要考虑不妨碍压缩机内部元件拆装及维护的空间。

进出口管线均沿地面上的管墩支架铺设,管道的配管设计要考虑尽量短同时路径走向要尽量直。

由于该工厂加压的介质气体属于易燃物,所以配管设计时对放空和排凝都采用双阀设计。

安全阀的管道放空应按照间歇排放的排放口规范考虑。

4 管道防振措施
压缩机管线的防振设计是管道配管的重要考虑因素,好的管线设计可在满足管道柔性的前提下也能防止管道振动,同时降低管道与设备之间产生共振的风险。

压缩机相关管道的振动归根结底就是气流在管件、阀门等管道部件内产生的周期性的流动。

压缩机管线内部介质的固有频率、激发频率以及压缩机本身往复运动产生的振动频率重合的化,就会产生整个关系的振动,从而使得管道发生疲劳甚至应力破环。

(一)管道配管。

(1)在满足管道柔性、应力的情况下,尽量缩小弯头的数量。

因为振动管线上的弯头过多就增加了管内气柱撞击弯头的次数,产生过多的激振力,从而使得整个管线不稳定,增加管道频率和设备频率的一致性的概率,最终可能引起整个管线系统的共振。

(2)管线上的仪表尽量扩大口径,小于DN40的仪表管分支,建议设计至少三个方向的补强。

常规补强方式是将与管道材质一致的三角筋板,按照一定角度把焊接在主管和仪表分支管之间。

除了仪表以外,阀门的手轮、控制机构等都可能产生振动,在配管设计的时候也要把这些因素考虑进去,合理的位置和方位,重点容易发生振动处的局部补强和合理的支撑固定都是防振的手段。

(3)往复式压缩机由于设备自身的内部结构和运行原理,使得增压后的气体从出口管嘴排出时带走一定的热量。

出口管线的温度升高的同时还会有一定的振动,所以相关管线需要考虑柔性的前提下进行防振考虑。

由于压缩机管线的振动性特点以及本项目的气体为易燃易爆介质,所以不能按照常规管道配管设计考虑膨胀节或者补偿器,而是需要通过配管走向和支架的设置达到自身消化热膨胀带来的管道应力和位移。

(二)管道支架。

降低管道振动的方法中除了扩大管径,增加缓冲措施,增加孔板、扩大缓冲罐、增加集管器等方法外,管道自身的支架也是防止管道振动的重要缓解和因素,本项目的具体支架设计有一下几点考虑和分析。

(1)管道支架采用刚性坚固支架,考虑到振动管线高度过高,支架也会相对增加高度,从而降低了支架的稳定性和刚度,故压缩机进出口管线沿管墩铺设,管墩采用混凝土基础,顶部预埋钢板,现场将工字钢和预埋板焊接,工字钢再和防振管卡底板焊接。

其余管道支架采用独立支架,避免了整体支架可能产生共振的可能。

(2)管卡采用防振管卡,卡箍采用金属带,内部设置聚四氟乙烯防振垫片。

防振管卡不可以选用U型的通用行卡箍,应带采取扁钢。

(3)支架本身需要根据应力和柔性分析设计支架本身的位移方向。

本项目压缩机内部管道从末端水平衍生出机体并形成管嘴的水平直管段,全部采用导向支架。

所以设备外进出口管线必须考虑吸收这部分设备内部管线的膨胀量。

相关管道支架的采用与管道膨胀方向一致的导向架。

而其余振动管线在满足柔性和应力的要求下用防振卡箍紧紧固定在支架上。

(4)管道配管需要按照设备布置设计,本项目由于空间狭小,所以管道走向本身收到空间狭小影响较大,故改变走向降低系统共振的难度较大,所以考虑管道支架的间距采用不规则设计,也就是管道支架的间距不一致,使得管道系统产生共振的可能性进一步降低。

管道支架的间距并不是都不一样就是最好的,一般相邻支架的间距可以考虑不一样,同时支架之间有一个间距设计的间隔较大也是比较好的方式,可以大大降低管道共振的概率。

(5)管道支架的位置设计除了考虑通常的配管要求,以及满足管道柔性和荷载的要求以外,在容易产生气流柱和激振的地方,如弯头、阀门、大小头等管道部件处,需设计刚性足够的支架。

在考虑经济、合理、美观的情况下,关键部位考虑设计支架也是一种降低管道共振的措施之一。

(6)通过对管系的应力分析,也可以分析出管道的固有频率,从而尽量在错开管线系统的共振区域,减少发生共振的概率。

通过下方公式,可以分析得出,管道支撑长度和管线长度都是可以根据实际配管情况进行变化的,所以通过增加管道支架的数量,缩小支架之间的跨距等手段都可以增加管系的固有频率。

λ-支撑型式系数。

E-弹性模量。

J-截面惯性矩
M-管线质量
L-管系长度
5.注意事项:
(1)压缩机厂家的设备制造图与实际不符,设备本身的管道布置不合理。

对压缩机外配管要求,除了考虑振动外,对吸收压缩机设备内部管道膨胀位移量和柔性都要考虑。

(2)在考虑防振支架的情况下,由于压缩机内部管道没有考虑吸收热膨胀,故管卡紧箍的同时需考虑管道柔性. 6.结语
往复压缩机的设备布置和管道布置除了要满足规范及防火和操作维修要求外,工作重心要放在管道的防振上。

通过优化管道路径和考虑支架的合理设置,使得压缩机的顺利运行有了坚实基础。

中船瓦锡兰发动机有限公司在2017年12月开始设计,2月完成施工图,并与同年5月中旬顺利完成开车并运转良好。

参考文献
[1]郁永章.往复活塞压缩机[M].西安交通大学能动学院,2006.
[2]李奇,往复式压缩机管道振动的解决办法[J].压缩机技术,2011,49(1):。

相关文档
最新文档