初三数学周末练习 综合练习二(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学周末练习综合练习
(时间120分钟,满分120分)
一、选择题(每小题4分,共32分)
1.4的算术平方根是().
A.2 B.–2C.±2D.16
2.未来15年,京津冀区域的人口规模将持续增长.在流动人口大量涌入的背景下,2020年北京人口将达到2140万.将2140万用科学记数法表示应为().A.0.214×108人B.214×105人C.2.14×107人D.2.14×108人
3.在函数中,自变量x的取值范围是().
A.x>3 B.x≥0C.x>0且x≠3 D.x≥0且x≠3
4.王老师对小明在参加中考前的5次数学模拟考试成绩进行统计分析,要判断小明的数学成绩是否稳定,老师需要知道小明这5次数学成绩的().A.平均数B.众数C.中位数D.方差
5.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于().
A.15°B.30°C.45°D.75°
6.分解因式:4a3-4a2+a结果正确的是().
A.B.C.D.
7.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外都相同),其中黄球有2 个,蓝球有3个.现从中任意摸出一个是蓝球的概率是,则口袋里白
球有().
A.5个B.4个C.3个D.2个
8.如图,已知圆锥的底面圆半径为r(r>0),母线长OA为
3r,C为母线OB的中点,在圆锥的侧面上,一只蚂蚁从点A爬
行到点C的最短路线长为().
A.B.C.D.
二、填空题(每小题4分,共16分)
9.已知:,那么____________.
10.如图,⊙O的半径为2,弦AB=,E为的中点,OE交AB于点F,则OF的长为___________.
11.关于x的一元二次方程有实数根,k的取值范围是__________.
12.用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,重叠部分也是正方形,下面的图案
中,第n个图案中正方形的个数是________.
三、解答题(13~19,21每小题5分,20小题6分,22小题4分,23、24小题每题7分,25小题8分,共72分)
13.计算:.
14.解分式方程:=1.
15.先化简,再求值:,其中,是方程
的根.
16.如图,将等腰直角三角形ABC的直角顶点置于直线上,且过A、B两点分别作直线的垂线,垂足分别为D、E,请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全等的过程.
17.已知一次函数的图象和反比例函数的图象相交,其
中一个交点的纵坐标为6,求两个函数的解析式.
18.如图,在梯形中,,AC=AD=4,,,求线段BC的长.
19.如图,以Rt△ABC的一条直角边AB为直径作⊙O,与AC交于点F,在AB的延长线上取一点E,连结EF与BC交于点D,且使得DF=CD.(1)求证:FE是⊙O的切线;
(2)如果sin∠A=,AE=,求AF的长.
20.在“不闯红灯,珍惜生命”活动中,实验中学的关欣和李好两位同学某天来到金融街的十字路口,观察、统计上午7:00~12:00中闯红灯的人次.制作了如下的两个数据统计图.
(1)求图(一)提供的五个数据(各时段闯红灯人次)的众数和平均数.
(2)估计一个月(按30天计算)上午7:00~12:00在该十字路口闯红灯的未成年人约有_____人次.
(3)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.
21.我市某乡两村盛产柑桔,村有柑桔200吨,村有柑桔300吨.现将这些柑桔运到两个冷藏仓库,已知仓库可储存240吨,仓库可储存260吨;从村运往两处的费用分别为每吨20元和25元,从村运往两处的费用分别为每吨15元和18元.设从村运往仓库的柑桔重量为吨,两
村运往两仓库的柑桔运输费用分别为元和元.
(1)求出与之间的函数关系式;
(2)试讨论两村中,哪个村的运费较少;
(3)考虑到村的经济承受能力,村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.
22.操作与探究:
(1)图(1)是一块直角三角形纸片.将该三角形纸片按图中方法折叠,点A 于点C重合,DE为折痕.试判断△CBE是什么特殊三角形;
(2)再将图(2)中的△CBE沿对称轴EF折叠,如图(2).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图(3)中的△ABC折叠成组合矩形吗? 如果能折成,请在图(3)中画出折痕;
(3)请你在图(4)的方格纸中画出一个斜三角形,同时满足下列条件: ①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?
图(1)图(2)图(3)图(4)
23.点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=_______;如图②,若∠BAC=90°,则∠AFB=_______;
(2)如图③,若∠BAC=,则∠AFB=_________(用含的式子表示);(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠的数量关系是___________;在图⑤中,∠AFB与∠的数量关系是___________.请你任选其中一个结论证明.
24.对于三个数,用表示这三个数的平均数,用
表示这三个数中最小的数.
例如:,,
,,.解决下列问题:
(1)填空:________;如果
,则的取值范围为.
(2)①如果,那么=________;
②根据①,你发现了结论“如果,那么____”
(填的大小关系).
③运用②的结论,填空:
若,则_______.(3)在同一直角坐标系中作出函数,,的图象(不需列表描点).通过观察图象,得出的最大值为________.
25.如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点
时,两点同时停止运动,设运动的时间为秒.
(1)求的度数.
(2)当点在上运动时,的面积(平方单位)与时间(秒)之间
的函数图象为抛物线的一部分,(如图②),求点的运动速度.(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标.
(4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由.
参考答案
1.A 2.C 3.D 4.D 5.A 6.A 7.B 8.B
9.10.1 11.且12.
13.
14.
15.原式=
16.,证明略.
17.解析式为,.
18.(提示:作于,于,AF-AE即得).
19.(1)连接BF,证明略;(2).
20.(1)众数是15,平均数是20;(2)1050;(3)略.
21.(1),
;
(2),
当且时,即时,,所以A村运费少;
当时,即时,,所以两村运费相当;
当且时,即时,,所以B村运费少.
(3)依题意,
即();
时,(元);
调运方案是:A运往C50吨,A运往D150吨,B运往C190吨,B 运往D110吨;
两村运费之和最小,最小值是9580元.
22.(1)是等腰三角形;
(2)如下左图;
(3)如下右图;
(4)对角线互相垂直.
23.(1)60°;45°;(2);(3);.
证明提示:如图④,先证∽,再证∽.24.(1)0.5;;(2)①1;②;③;(3)1.
25.(1)作轴于E,;
(2)速度是(单位长度/秒);
(3)由(2)知,,
当时,,此时P点坐标为(,);
(4)符合条件的点P有两个(提示:作轴于H,则有,即有两个不相等的实数根).。