高分子材料的主要物理性能

合集下载

高分子物理高分子的力学性能

高分子物理高分子的力学性能

高分子物理高分子的力学性能引言高分子是由大量重复单元组成的长链聚合物,具有广泛的应用领域。

高分子材料的力学性能是评估其性能和应用范围的重要指标之一。

本文将重点介绍高分子物理高分子的力学性能,包括拉伸性能、弯曲性能和压缩性能。

拉伸性能拉伸性能是衡量高分子材料抵抗拉伸变形的能力。

引伸模量是评估高分子材料刚度的指标,反映了材料在受力下沿着拉伸方向的抗弯刚度。

拉伸模量越大,材料刚度越高,说明材料越难被拉伸变形。

另一个重要的指标是断裂伸长率,即材料在断裂前所能延伸的长度与原始长度之比。

断裂伸长率越大,材料的延展性越好,能够在受力下更好地承受高应变。

弯曲性能弯曲性能是评估高分子材料在受力下的弯曲变形能力。

弯曲模量是衡量材料刚度和弯曲抗弯能力的指标,它反映了材料在弯曲过程中所需的力和弯曲程度之间的关系。

弯曲模量越大,材料的刚度越好,弯曲变形能力越低。

另一个重要的指标是弯曲强度,即材料在抵抗内部应力下断裂弯曲的能力。

弯曲强度越高,材料越能够承受弯曲应力而不断裂。

压缩性能压缩性能是评估高分子材料在受力下的抗压能力。

压缩模量是衡量材料在受压过程中抗弯刚度的指标,它反映了材料在压缩过程中所需的力和压缩程度之间的关系。

压缩模量越大,材料的刚度越高,抗压变形能力越低。

另一个重要的指标是压缩强度,即材料在抵抗内部应力下断裂压缩的能力。

压缩强度越高,材料越能够承受压缩应力而不断裂。

影响高分子材料力学性能的因素高分子材料的力学性能受多种因素影响。

其中,聚合度是一个重要的因素,即聚合物链的长度。

聚合度越高,链段之间的力学相互作用越多,因此材料的力学性能越好。

另一个重要因素是材料的结晶度。

高结晶度的材料通常具有更好的力学性能,因为结晶区域可以提供更多的强度和刚度。

此外,材料的处理方式和加工工艺也会对力学性能产生影响。

高分子物理高分子的力学性能是评估其应用潜力和性能表现的关键指标。

拉伸性能、弯曲性能和压缩性能是评估高分子材料力学性能的重要指标。

第三章 (1) 高分子材料的物理化学性质

第三章 (1) 高分子材料的物理化学性质
热胀温度敏感型水凝胶指水凝胶的体积在某一温度附近随温度升高而突然增加这一温度叫做较高临界溶解温度ucstuppercriticalsolutiontemperatureucst以上大分子链亲水性增加因水合而伸展使水凝胶在ucst以上突然体积膨热缩温度敏感型水凝胶则是随温度升高大分子链疏水性增强发生卷曲使水凝胶体积急剧下降体积发生突变的温度叫较低临界溶解温度lcstlowercriticalsolutiontemperature
19
(ii)pH敏感水凝胶 :pH敏感性水凝胶是体积随环境pH值、 离子强度变化的高分子凝胶。这类凝胶大分子网络中具有可解 离成离子的基团,其网络结构和电荷密度随介质pH值的变化而 变化,并对凝胶的渗透压产生影响;同时因为网络中添加了离 子,离子强度的变化也引起体积变化。 一般来说,具有pH值响应性的水凝胶都是含有酸性或碱性侧 基的大分子网络,即聚电解质水凝胶。随着介质pH值、离子强 度的改变,酸、碱基团发生电离,导致网络内大分子链段间氢 键的解离,引起不连续的溶胀体积变化。
18
热可逆性水凝胶 有些聚合物水溶液在室温下呈自由流动的液态 而在体温下呈凝胶态,即形成热可逆性水凝胶(TGR)。这一体系 能够较容易地对特定的组织部位注射给药,在体内环境下很快形 成凝胶。而且这种给药系统的制备较简单,只需将药物与聚合物 水溶液进行简单地混合。 如:聚环氧乙烷(PEO)与聚环氧丙烷(PPO)嵌段共聚物是已被批 准用于药用辅料的高分子,商品名叫普流罗尼(Pluronic)或泊洛沙 姆(Poloxamer),依据其结构和浓度,这类聚合物存在两个临界相 转变温度,即溶液-凝胶转变温度(相当于LCST)和凝胶-溶液转变 温度,在这两个温度之间其水溶液呈现凝胶状态。利用这类共聚 物水溶液低温溶液状态混合药物,尤其是生物类药物,注人体内 形成凝胶,从而实现控制药物释放同时保护药物活性的功能。

高分子材料的物理性能

高分子材料的物理性能

整理课件
16
非极性聚合物:极性杂质常常是介电损耗的主要 原因。非极性聚合物的tgδ一般小于10-4;
极性聚合物:tgδ在10-1~5×10-3之间。
整理课件
17
三、介电强度 ——电击穿:当电场强度超过某一临界值时,电介
质就丧失其绝缘性能,这称为电击穿。 ——击穿电压:发生电击穿的电压。 ——击穿电场强度:击穿电压与击穿处介质厚度之
左右)。 ⊕结晶聚合物的热导率稍高,非晶聚合物的热导率
随分子量增大而增大。 ⊕低分子的增塑剂的加入:会使热导率下降。
整理课件
3
⊕温度:聚合物热导率随温度的变化有所波动,但 波动范围一般不超过10%。
⊕取向:引起热导率的各向异性,沿取向方向热导 率增大,横向减小→聚氯乙烯伸长300%时,轴 向的热导率比横向的要大一倍多。
于环境(光、热、氧、潮湿、应力、化学侵蚀等) 的影响,性能(强度、弹性、硬度、颜色等)逐 渐变坏的现象称为老化。 一、光氧化 ※分子链断裂决定因素:光的波长与聚合物的键能。 ※各种键的离解能:167-586kJ/mol ※紫外线的能量:250-580kJ/mol。
整理课件
40
※可见光的范围:聚合物一般不被离解,但呈激发 状态→氧存在下→易发生光氧化过程。
比,简称介电强度。 ——热击穿:在强电场下,因温度上升导致聚合物
的热破坏而引起的击穿;其击穿电压要比固有击 穿电压小。
整理课件
18
——纯电击穿(固有击穿):当电场强度增加到临 界值时,撞击分子发生电离,使聚合物击穿,称 为纯电击穿或固有击穿;此击穿过程极为迅速, 击穿电压与温度无关。
——聚合物介电强度:可达1000 MV/m。 ——决定因素:上限是由共价键电离能所决定的。

高分子物理----高分子的力学性能

高分子物理----高分子的力学性能

一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸

高分子材料性能与评价

高分子材料性能与评价

高分子材料性能与评价引言高分子材料是一类重要的材料,由于其独特的化学结构和物理性能,广泛应用于工程、医疗、电子等领域。

高分子材料的性能对于材料的选择和设计具有重要意义。

本文将介绍高分子材料的性能与评价方法,为材料研究和应用提供参考。

高分子材料性能高分子材料的性能可以通过多个方面进行评价,下面将介绍几个重要的性能指标。

1. 机械性能高分子材料的机械性能是指其在受力条件下的力学响应特性,包括强度、刚度、韧性等。

其中,强度是指材料抵抗外力破坏的能力,通常以拉伸强度和压缩强度来表示;刚度是指材料的变形能力,常用弹性模量来表示;韧性是指材料在断裂前的塑性变形能力,常用断裂韧性来表示。

机械性能的评价通常通过拉伸、压缩、弯曲等实验来进行。

2. 热性能高分子材料的热性能是指其在高温条件下的稳定性和变形能力。

热稳定性是指材料在高温下不发生分解和失效的能力,常用热分解温度来表示;热变形能力是指材料在高温下的变形行为,通常通过热膨胀系数和热软化温度来评价。

3. 光学性能高分子材料的光学性能是指其对光的透过性、散射性和吸收性等特性。

透过性是指材料对光的透过能力,常用透光率来表示;散射性是指材料对光的散射能力,常用散射系数来评价;吸收性是指材料对光的吸收能力,常用吸收系数来表示。

光学性能的评价通常通过透光率、透明度和显色变化来进行。

4. 电性能高分子材料的电性能是指其导电性和绝缘性等特性。

导电性是指材料能够导电的能力,常用电导率来评价;绝缘性是指材料阻止电流通过的能力,常用电阻率来表示。

电性能的评价通常通过电导率、电阻率和介电常数等参数来进行。

高分子材料评价方法高分子材料的评价方法主要包括实验方法和计算模拟方法两种。

下面将介绍几种常用的评价方法。

1. 实验方法实验方法是通过实验来评价高分子材料的性能。

常用的实验方法包括拉伸实验、压缩实验、弯曲实验等。

通过这些实验可以得到高分子材料的力学性能、热性能、光学性能和电性能等参数。

高分子材料与无机非金属金属材料的区别

高分子材料与无机非金属金属材料的区别

高分子材料与无机非金属金属材料的区别高分子材料与无机非金属材料、金属材料的区别有机高分子化合物简称高分子化合物或高分子,又称高聚物,与无机非金属材料、高分子材料并称三大材料。

高分子材料一般具有以下特点:(1)力学性能:比强度高,韧性高,耐疲劳性好,但易应力松弛和蠕变;(2)反应性:大多数是惰性的,耐腐蚀,但粘连时要表面处理,加聚合物共混时需要表面处理,另外,有的高分子材料容易吸收紫外线或红外线及可见光发生降解;(3)物理性能:密度小,很高的电阻率,熔点相比金属较低,限制了使用领域高分子化合物的一般具有特殊的结构,使它表现出了非同凡响的特性。

例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。

此外高分子材料可用纤维增强(复合材料)制成高性能的新型材料,可设极性大,部分性能超过金属。

当前,高分子材料正趋向功能化,合金化发展,比传统材料有更大的发展空间和更广阔使用的领域。

高分子化合物固、液、气三种存在状态的变化一般并不很明显。

固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。

固体状态的高分子化合物多是硬而有刚性的物体。

无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。

在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。

纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。

通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。

无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。

高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法高分子材料是一类重要的材料,主要包括塑料、橡胶和纤维。

高分子材料的质量标准和检验方法对于保证产品质量的稳定性和可靠性至关重要。

本文将从材料物理性能、化学性能、耐候性能、力学性能、热性能和表面性能等方面介绍高分子材料的质量标准及检验方法。

一、材料物理性能的质量标准及检验方法高分子材料的物理性能包括密度、熔点、玻璃转化温度等。

对于高分子材料来说,密度是一个重要的物理性能,它直接影响材料的重量和成本。

检验方法一般采用浮力法或密度计进行测定。

二、材料化学性能的质量标准及检验方法高分子材料的化学性能包括与酸、碱和溶剂的耐受性、吸湿性以及电气性质等。

检验方法主要包括酸碱溶胀实验、吸湿实验和电性能测试。

三、材料耐候性能的质量标准及检验方法高分子材料的耐候性能是指材料在光、热、氧等外界环境作用下的稳定性能。

检验方法主要包括光照老化试验、热氧老化试验等。

四、材料力学性能的质量标准及检验方法高分子材料的力学性能包括拉伸强度、弯曲强度和冲击强度等。

检验方法主要包括拉伸试验机、弯曲测试仪和冲击试验机。

五、材料热性能的质量标准及检验方法高分子材料的热性能包括熔融温度、热稳定性和热导率等。

检验方法主要包括热分析仪和热导率测试仪。

六、材料表面性能的质量标准及检验方法高分子材料的表面性能包括光泽度、表面硬度和耐刮花性等。

检验方法主要包括光泽度计、硬度计和耐刮花试验机。

总之,高分子材料的质量标准及检验方法是保证材料质量的重要手段。

通过对材料的物理性能、化学性能、耐候性能、力学性能、热性能和表面性能的检测,可以有效评估材料的性能,从而保证产品的质量稳定性和可靠性。

在实际生产过程中,应根据产品的需求和使用环境来选择合适的标准和检验方法,确保高分子材料的优良性能。

七、投料和原材料的质量标准及检验方法除了对成品的质量进行检验外,对投料和原材料的质量也是非常重要的。

投料和原材料的质量直接影响着最终产品的质量稳定性和可靠性。

PET高分子材料介绍

PET高分子材料介绍

PET高分子材料介绍PET是聚酯类高分子材料之一,它以聚对苯二甲酸乙二醇酯为主要成分,是一种具有优良物理性能和化学稳定性的塑料。

PET具有高刚度、高强度、耐热、耐化学药剂腐蚀、耐候性好等优点,被广泛应用于纺织、食品包装、医药和电子等行业。

首先,PET具有优良的物理性能。

它具有较高的刚度和强度,使其成为一种理想的工程塑料。

PET的强度比一般的塑料强度高出几倍,抗弯曲能力也更优秀。

此外,由于PET材料的紧密排列,其具有较高的密度,因此PET具有较好的耐磨性,不易变形。

另外,PET还具有优异的耐腐蚀性能,能够抵抗多种化学药剂的侵蚀,延长材料使用寿命。

其次,PET具有良好的耐热性能。

PET的熔点较高,约为250℃,可以在高温环境下保持形状稳定性,不易热膨胀。

因此,PET广泛应用于电子行业中,用于制作耐高温设备的组件。

此外,PET材料还具有良好的耐寒性,在低温环境下依然能保持一定的韧性。

PET的耐候性也是其优势之一、PET材料能够经受住紫外线辐射的照射,不会发生老化和变色。

这使得PET成为一种耐用的包装材料,可以保持包装物的品质稳定,并延长货物的保质期。

此外,PET还具有耐水性和耐潮性,不易吸水和迅速干燥,能够减少包装内的氧气氧化反应和细菌滋生。

PET材料还具有优异的透明性和隔气性能。

PET可以制成透明的薄膜或板材,使其成为一种理想的包装材料。

透明的PET包装不仅能够直观地展示内部产品,还能够有效阻隔水蒸气和氧气的渗透,保持包装物的新鲜度和口感。

因此,PET广泛应用于食品包装行业,例如瓶装饮料、食品包装袋等。

此外,PET还具有可回收利用的环保性。

PET材料可以经过专门的处理过程进行再生利用,制成新的塑料制品。

再生PET材料可以替代原始PET材料,减少塑料废弃物的产生和对环境的污染。

因此,PET是一种环保塑料,符合可持续发展的要求。

综上所述,PET作为一种高分子材料具有优良的物理性能和化学性能。

其具有高刚度、高强度、耐热、耐化学腐蚀、耐候性好等特点,使其在纺织、食品包装、医药和电子等行业得到广泛应用。

高分子物理高分子的热学性能

高分子物理高分子的热学性能

高分子的热学性能引言高分子是一类由大量重复单元组成的大分子化合物。

由于其特殊的结构和性质,高分子在热学性能上表现出一系列的特点。

本文将从热学性能的角度探讨高分子的特点。

1. 玻璃化转变温度高分子在加热过程中会经历玻璃化转变。

玻璃化转变温度是指在高分子加热过程中,高分子从固态转变为类似于玻璃的非结晶态的临界温度。

玻璃化转变温度是高分子的重要热学指标之一,其数值与高分子材料的应用温度范围密切相关。

2. 熔点和熔融热高分子在加热过程中,当温度达到熔点时会发生熔化,形成液态高分子。

熔点是指高分子从固态到液态转变的温度,熔融热则是指单位质量高分子在熔解过程中释放或吸收的热量。

3. 热膨胀系数高分子的热膨胀系数是指高分子在单位温度变化时长度或体积的变化程度。

热膨胀系数对于高分子材料在热学应用中的变形和热应力具有重要影响。

不同高分子材料的热膨胀系数差异较大,因此在设计高分子制品时需要考虑其热膨胀系数的影响。

4. 热导率高分子的热导率是指高分子材料在温度梯度下传导热量的能力。

热导率是衡量高分子热学性能的重要指标之一,它对高分子材料的导热性能和热传导过程有着直接影响。

不同高分子材料的热导率差异较大,因此在选择高分子材料时需要考虑其热导率的要求。

5. 热稳定性高分子的热稳定性是指在高温条件下高分子材料自身是否发生热分解的能力。

热稳定性对于高分子材料在高温环境下的应用具有重要影响,直接影响其使用寿命和性能表现。

6. 热膨胀系数和热导率的关系高分子的热膨胀系数和热导率之间存在一定的关系。

通常情况下,热导率和热膨胀系数呈反相关关系。

热膨胀系数大的高分子材料常常具有较低的热导率,而热导率高的高分子材料往往具有较低的热膨胀系数。

7.高分子材料在热学性能上具有一系列的特点,包括玻璃化转变温度、熔点和熔融热、热膨胀系数、热导率以及热稳定性。

这些热学性能对高分子材料的应用和性能表现具有重要影响,因此在选择和设计高分子材料时需要考虑这些因素。

高分子聚合物基本性能

高分子聚合物基本性能

高分子聚合物基本性能
高分子聚合物是一类由长链分子构成的化合物,具有许多特殊的物理和化学性质。

下面将介绍高分子聚合物的一些基本性能。

1. 强度和刚度
高分子聚合物的强度和刚度可以根据其分子结构和化学组成来衡量。

通常,高分子的分子量越高,其强度和刚度也越高。

此外,分子的排列和结晶性质也会对强度和刚度产生影响。

一些常见的高分子材料,如聚丙烯和聚乙烯,具有较高的强度和刚度,适用于结构性应用。

2. 耐热性和耐寒性
高分子聚合物的耐热性和耐寒性是衡量其在不同温度条件下性能稳定性的重要指标。

一些高分子聚合物材料在高温下可能会软化或熔化,而在低温下可能会变脆。

根据具体应用的需求,可以选择适合高温或低温环境的高分子材料。

3. 耐化学性
高分子聚合物通常具有较好的耐化学性,能够抵抗酸、碱、溶
剂等化学物质的侵蚀。

不同的高分子聚合物对于不同化学物质的耐
受性不同,因此在特定的环境中需选择适宜的高分子材料。

4. 电绝缘性和介电性能
由于高分子聚合物大多为非金属材料,它们具有良好的电绝缘
性能和介电性能。

这使得高分子聚合物广泛应用于电子和电气领域,例如制造绝缘材料和电子器件。

5. 可塑性和加工性
高分子聚合物具有良好的可塑性和加工性,能够通过热塑性或
热固性加工方式制成各种形状和尺寸。

这使得高分子聚合物成为理
想的塑料材料,广泛应用于注塑成型、挤出成型、吹塑等加工工艺。

以上是高分子聚合物的一些基本性能。

在选择和应用高分子材料时,需要根据具体需求和环境条件,综合考虑这些性能指标,以确保材料的可靠性和适用性。

高分子材料的微观结构与物理性能研究

高分子材料的微观结构与物理性能研究

高分子材料的微观结构与物理性能研究引言:高分子材料是由大量重复单元结构组成的大分子化合物,其具有独特的物理和化学性质。

研究高分子材料的微观结构与物理性能之间的关系,对于优化材料性能、设计新材料具有重要意义。

一、高分子材料的微观结构高分子材料的微观结构是由聚合物链的排列方式和交联情况决定的。

主要有线性、支化和交联三种结构类型。

1. 线性结构线性高分子材料的聚合物链呈直线排列,没有交联点。

这种结构常见于聚乙烯、聚丙烯等材料中。

由于没有交联点的存在,线性高分子材料具有良好的可加工性和可拉伸性。

2. 支化结构支化高分子材料的聚合物链在聚合物链的主链上分支出若干侧链。

这种结构常见于聚苯乙烯、聚醚硫醚等材料中。

由于支化结构可以减少聚合物链的晶界区域,提高材料的柔韧性和热稳定性。

3. 交联结构交联高分子材料的聚合物链通过共价键交联形成三维网络结构。

这种结构常见于硅橡胶、聚氨酯等材料中。

由于交联结构的存在,材料具有较高的强度和耐热性。

二、高分子材料的物理性能高分子材料的微观结构直接影响其物理性能。

常见的物理性能包括力学性能、热性能、电性能等。

1. 力学性能高分子材料的力学性能包括强度、韧性、硬度等指标。

微观结构决定了材料的晶化程度、晶粒大小等因素,从而影响了材料的力学性能。

例如,线性高分子材料由于没有交联点,往往具有较高的韧性;而交联高分子材料由于其网络结构的存在,具有较高的强度。

2. 热性能高分子材料的热性能主要包括熔融温度、热变形温度等指标。

微观结构中的晶粒大小、晶化程度等因素影响了材料的热性能。

一般来说,材料中晶粒越大、晶化程度越高,其熔融温度和热变形温度越高。

3. 电性能高分子材料的电性能主要包括导电性、介电性等指标。

微观结构中的电荷分布和电子运动情况影响了材料的电性能。

对于具有共轭结构的高分子材料,可以实现电荷的输运和电子的共享,从而具有较好的导电性能。

三、微观结构与物理性能的关系高分子材料的微观结构对其物理性能具有非常重要的影响。

高分子材料的主要物理性能

高分子材料的主要物理性能

第四章 高分子材料的主要物理性能高分子材料与小分子物质相比具有多方面的独特性能,其性能的复杂性源自于其结构的特殊性和复杂性。

联系材料微观结构和宏观性质的桥梁是材料内部分子运动的状态。

一种结构确定的材料,当分子运动形式确定,其性能也就确定;当改变外部环境使分子运动状态变化,其物理性能也将随之改变。

这种从一种分子运动模式到另一种模式的改变,按照热力学的观点称作转变;按照动力学的观点称作松弛。

例如天然橡胶在常温下是良好的弹性体,而在低温时(<-100℃)失去弹性变成玻璃态(转变)。

在短时间内拉伸,形变可以恢复;而在长时间外力作用下,就会产生永久的残余形变(松弛)。

聚甲基丙烯酸甲酯(PMMA )在常温下是模量高、硬而脆的固体,当温度高于玻璃化温度(~100℃)后,大分子链运动能力增强而变得如橡胶般柔软;温度进一步升高,分子链重心能发生位移,则变成具有良好可塑性的流体。

本着“结构⇔分子运动⇔物理性能”这样一条思维线路,本章有选择地介绍高分子材料的热性能、力学性能、高弹性和粘弹性、溶液性质、流变性质、电学性能等。

同时通过介绍结构与性能的关系,帮助我们根据使用环境和要求,有目的地选择、使用、改进和设计高分子材料,设计和改进加工工艺和设备,扩大高分子材料使用范围。

第一节 高分子材料的分子运动、力学状态转变及热性能一、高分子运动的特点与低分子材料相比,高分子材料的分子热运动主要有以下特点: (一)运动单元和模式的多重性 高分子的结构是多层次、多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次、多类型的,相应的转变和松弛也具有多重性。

从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。

从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。

在各种运动单元和模式中,链段的运动最为重要,高分子材料的许多特性均与链段的运动有直接关系。

高分子材料的特征

高分子材料的特征

高分子材料的特征高分子材料是由许多单体(通常是有机化合物)共价结合形成长链分子的大分子化合物。

这种类型的材料具有众多特殊的物理和化学性质,这些性质与其材料的组成密切相关。

鉴于高分子材料不仅具有独特的物理性质,而且使用也非常广泛,本文将着重介绍高分子材料的特征。

高分子材料的分子量大,具有无限的分子量分布,分子结构复杂,均聚物和共聚物都可见。

由于分子量越大,物理性质越接近实心材料,大分子的高柔性,使得高分子材料具有高韧性和良好的抗切割性能,具有优良的挠曲回复性和耐冲击属性。

这类材料通常具有较高的强度、刚度和硬度,但在应变率较高的情况下,其性能可能会下降。

针对应力水平远低于常温常压下大气压强度的高分子材料,它们需要不断地改进材料的构造,以提高其使用性能。

高分子材料无色透明或色彩丰富。

高分子材料具有高透明度,大多数塑料透光性好,植物纤维材料如全素皮革类材料虽然透光性差,但由于生物桥接和共聚作用的加强,使其表面细节和手感更加接近天然皮革。

并且高分子材料可以根据需要通过染色或添加其他添加剂来提供特定的颜色、亮度和光泽度等性质。

高分子材料具有化学稳定性优良,并且具有较高的耐化学腐蚀性。

大多数的高分子材料具有耐酸、碱、油和有机溶剂等化学物质的能力,可在一定温度和湿度范围内具有较好的化学稳定性。

此外,高分子材料通常更容易处理和加工成形,因此很适合用于制造各种产品和结构,比如注塑件、管道、复杂的组件和工程结构等。

高分子材料比通常使用的金属材料和木材更轻便,体积更小,且节约成本。

在同样的体积和重量下,高分子材料通常比其他材料更轻。

这使得它们具有重要的应用价值,可以用于制造负重轻、大体积的部件或是轻型建筑结构等。

高分子材料具有良好的电学性能。

高分子材料的电学性能多样,它们可以是导体、绝缘体或半导体。

其特殊的电学性能使得高分子材料广泛应用于工业生产和电子行业中。

高分子防水材料标准

高分子防水材料标准

高分子防水材料标准高分子防水材料是一种应用广泛的材料,它在建筑、交通、环保等领域都有着重要的作用。

为了确保高分子防水材料的质量和性能,制定了一系列的标准来规范其生产、检验和应用。

本文将对高分子防水材料的标准进行详细介绍,以便相关人员更好地了解和应用这些标准。

首先,高分子防水材料的标准主要包括材料的物理性能、化学性能、耐候性能、施工工艺和应用要求等方面。

在材料的物理性能方面,主要包括拉伸强度、断裂伸长率、抗冲击性能等指标。

这些指标的标准化可以确保材料具有足够的强度和韧性,能够满足不同工程的需求。

其次,化学性能是衡量高分子防水材料质量的重要指标之一。

化学性能的标准主要包括耐酸碱性、耐老化性、耐腐蚀性等指标。

这些指标的标准化可以保证材料在不同环境下具有稳定的化学性能,能够长期保持其防水功能。

再次,耐候性能是高分子防水材料必须具备的重要性能之一。

耐候性能的标准主要包括抗紫外线性能、耐高低温性能、耐臭氧性能等指标。

这些指标的标准化可以确保材料在各种恶劣气候条件下都能够保持稳定的性能,延长材料的使用寿命。

此外,施工工艺和应用要求也是高分子防水材料标准中不可忽视的部分。

施工工艺的标准化可以确保施工过程规范、安全,提高工程质量;应用要求的标准化可以指导用户正确选择和使用材料,确保工程的防水效果。

总之,高分子防水材料的标准化对于保障工程质量、延长材料使用寿命、降低维护成本等方面都具有重要意义。

各相关行业应严格按照标准要求生产、施工和使用高分子防水材料,以确保工程的安全可靠性和持久性。

希望本文的介绍能够对大家有所帮助,让大家更加了解高分子防水材料的标准,更好地应用和推广这些标准,为各行各业的发展贡献力量。

高分子材料的化学与物理性质

高分子材料的化学与物理性质

高分子材料的化学与物理性质高分子材料是现代化学工业中非常重要的一类材料。

由于其独特的分子结构和物理性质,高分子材料在各种领域都有广泛的应用。

比如,聚合物材料用于制备塑料、橡胶、纤维等物质,在医疗、电子、航空等领域中也有很多应用。

那么,高分子材料的化学和物理性质是什么?了解这些特性有什么意义?接下来我们深入探讨。

一、高分子材料的化学性质高分子材料的化学性质与其分子结构有关。

高分子材料通常是由重复的单体分子组成的巨大分子,这样的分子结构决定了高分子材料具有独特的化学特性和反应规律。

首先,高分子材料可以进行链延长反应。

链延长是指通过加入新的单体结构,使高分子链继续增长,形成更长的高分子链的反应。

这个过程通常是通过自由基反应、阳离子反应和阴离子反应来实现的。

例如,聚乙烯是由乙烯单体分子通过自由基反应逐渐递增而成的。

其次,高分子材料还可以进行聚合反应。

聚合反应是指仅仅在特定的反应条件下,使单体分子链之间的化学键键合成,以形成高分子链的过程。

聚合反应是一种常见的高分子化学反应,其反应方式受热量、光强、催化剂和其他环境因素的影响,不同的聚合条件可以产生不同的聚合体。

最后,高分子材料还可以进行交联反应。

交联反应是指在高分子材料中引入交联的反应性物质,从而形成高分子材料内部的三维结构。

这种交联化学反应可以通过光固化、热固化和辐射固化等多种方法实现。

交联反应可以使高分子材料具有更高的稳定性和强度,并改善其耐化学性和耐热性等性能。

二、高分子材料的物理性质高分子材料的物理性质影响着材料在各个领域中的应用。

高分子材料常常表现出典型的高分子性质,如高分子链的柔性、分子排列和相互作用等。

首先,高分子材料具有重量轻、强度高和断裂韧性好等性质。

这些性质使高分子材料被广泛应用于轻型结构、柔性设备和耐磨设备等领域。

其次,高分子材料具有良好的电学和热学性能。

例如,聚苯乙烯的介电常数非常低,它的耐热性和耐腐蚀性也很好。

聚乙烯在高温下具有较高的电绝缘性能,因此被广泛应用于电线电缆绝缘层。

高分子材料的物理性质与应用

高分子材料的物理性质与应用

高分子材料的物理性质与应用高分子材料是一类由大分子组成的材料,具有独特的物理性质和丰富的应用领域。

本文将从不同方面探讨高分子材料的物理性质以及其在各个领域的应用。

第一部分:高分子材料的物理性质高分子材料的物理性质包括机械性能、热性能、电性能和光学性能等。

首先,高分子材料具有良好的韧性和延展性,可以用于制造耐压、耐弯曲的产品。

其次,高分子材料具有较低的密度,相对于金属材料更轻,因此可用于制造轻质产品。

此外,高分子材料还具有较好的绝缘性能和隔热性能,可用于制造电器电子产品和隔热材料。

此外,高分子材料还具有较高的抗腐蚀性能和耐老化性能,使其成为一种广泛应用于化工、医疗、包装和建筑等领域的材料。

第二部分:高分子材料在工业上的应用高分子材料在工业上的应用十分广泛。

首先,高分子材料可用于制造塑料制品。

塑料制品具有良好的可塑性和耐用性,应用于日常生活的各个领域,如家电、日用品、交通工具等。

其次,高分子材料还可用于制造纤维材料。

纤维材料广泛应用于纺织、服装、建筑和汽车等领域,如聚酯纤维、尼龙纤维等。

此外,高分子材料还可用于制造橡胶制品,如轮胎、密封件等。

另外,高分子材料还可用于制造高分子膜材料,如聚丙烯膜、聚乙烯膜等,应用于包装、过滤和膜分离等领域。

第三部分:高分子材料在医疗领域的应用高分子材料在医疗领域的应用日益增多。

首先,高分子材料可用于制造人工器官。

由于其生物相容性良好,高分子材料可用于制造人工心脏瓣膜、人工骨骼等,为医疗技术提供了重要支持。

其次,高分子材料还可用于制造药物包装材料。

高分子材料可以保护药物不受环境因素的影响,确保药物的疗效和安全性。

此外,高分子材料还可用于制造医疗器械,如导管、注射器等。

高分子材料的应用为医疗领域带来了许多创新和便利。

第四部分:高分子材料在环境保护中的应用高分子材料在环境保护中发挥着重要作用。

首先,高分子材料可用于制造可降解塑料制品。

传统塑料制品对环境造成的污染严重,而可降解塑料制品可以在一定条件下被微生物降解,减少对环境的影响。

高分子材料有哪些性能

高分子材料有哪些性能

号;3.合成纤维:广泛应用于防弹背心、导弹壳体、直升 飞机吊绳、人造卫星电子部件等。
全文完!谢谢欣赏 再见!
爱看小说网 /
高分子材料具有耐磨,坚硬,装饰性强。通过聚合反应 重复连接而成的,也称聚合物,因此高分子材料也叫聚 合物材料。下面跟大家讲解一下高分子材料有哪些
性能。高分子材料1什么是高分子材料一、什么是高分子 高分子材料顾名思义就是以高分子化合物为基体的材料。 什么是高分子?高分子是一种链状化合物,有
结构单元通过共价键的形式,通过聚合反应重复连接而 成,也称聚合物,因此高分子材料也叫聚合物材料。二、 高分子材料特点1.分子量多分散性;2.没有
一定的耐热性,一定的染色性;3.优点:耐霉、耐虫蛀、 强度高、光泽好;4.缺点:易起球、吸湿性差、耐热性差。 4高分子材料的应用1.聚乙烯:在各
种聚乙烯中,低密度聚乙烯产量最大,主要用于制造食 品袋、垃圾袋和大棚膜等,少量(10%左右)用于生产注 塑用品;有一种更薄于低密度聚乙烯的是线型
低密度聚乙烯,主要用于生产扁丝、编织袋等;2.聚四氟 乙烯:一种高结晶度聚合物,主要应用于化工机械防腐、 容器防腐、电绝缘等,素有“塑料王”的称
烯腈、聚丙烯等)。3高分子材料的性能一、塑料1.性能: 耐磨、坚硬、加工时尺寸稳定性好、化学稳定性好;2.优 点:可塑性强、装饰性强、功能多元、
经济实惠;3.缺点:耐热性差、易燃易老化。高分子材料 二、合成纤维合成纤维是以煤、是有、天然气、水、等 简单化合物为原料,经过加聚或缩聚的化学处
理制成、再经纺丝和后期处理加工制成的人工纤维。1.主 要品种:腈纶、涤纶、棉纶、丙纶、维纶以及氯纶;2.特 性:一定的机械物理性能和化学稳定性,
沸点和固定熔点,若加热到200-300℃性。2高分 子材料有哪些1.天然高分子材料:

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法引言高分子材料是一类重要的工程材料,公认为21世纪最具潜力的材料之一。

高分子材料的性能与结构密切相关,因此对其进行分析测试与研究是非常必要的。

本文将介绍常用的高分子材料分析测试方法及其研究方法,包括物理性能测试、化学结构分析、热性能分析、力学性能测试以及相关的表征技术。

一、物理性能测试物理性能是高分子材料的基本性能之一,常用的物理性能测试包括密度测量、吸水性能测试、熔融指数测试等。

1. 密度测量密度是衡量材料物理性能的重要指标之一,可以通过比重法、浮力法或压缩气体法等方法进行测量。

其中,比重法是最常用的方法,通过称量样品质量和体积来计算密度。

2. 吸水性能测试吸水性能是衡量材料对水分的吸收能力的指标,可以通过浸泡法、浸水法或密闭测量等方法进行测试。

这些测试方法可以帮助评估材料的耐水性能及吸水后的性能变化。

3. 熔融指数测试熔融指数是衡量高分子材料熔融流动性能的指标,常用的测试方法有熔体指数法、熔体流动速率法等。

通过测量熔融材料的流动性能,可以评估材料的加工性能以及与其他材料的相溶性。

二、化学结构分析化学结构分析是研究高分子材料化学特性的重要手段,常用的化学结构分析方法包括红外光谱分析、核磁共振分析、质谱分析等。

1. 红外光谱分析红外光谱分析是研究材料化学结构的重要手段,通过研究材料在红外波段的吸收谱图,可以确定材料中的官能团、键的类型以及化学环境等信息。

2. 核磁共振分析核磁共振分析是研究材料分子结构及动力学性质的重要方法,通过测量核磁共振信号,可以获得材料中原子的化学环境、相对数量以及分子间的相互作用信息。

3. 质谱分析质谱分析是研究材料分子结构及组成的关键分析方法,通过测量不同质荷比的离子的相对丰度,可以确定材料中的化学元素、分子量以及它们的相对含量等信息。

三、热性能分析热性能是衡量材料耐热性、热膨胀性等重要性能的指标,常用的热性能分析方法包括热重分析、差示扫描量热分析等。

高分子材料的性质与应用

高分子材料的性质与应用

高分子材料的性质与应用高分子材料是一类具有特殊性质和广泛应用的材料,其特点是由大量重复单元构成的长链结构。

本文将对高分子材料的性质进行探讨,并介绍其在不同领域中的应用。

一、高分子材料的性质高分子材料具有以下几个主要性质。

1. 分子量大:高分子材料的分子量通常在几万至上百万之间,分子量越大,其物理性质越优异。

2. 高柔韧性:由于高分子材料的长链结构,使得其具有较高的柔韧性,能够承受较大的拉伸变形。

3. 高吸湿性:高分子材料的分子链中含有大量的极性基团,使其具有吸湿性。

这种性质使得高分子材料在一些特殊应用中具有优势,比如制作吸湿性材料。

4. 耐热性:高分子材料中的键结构稳定,使其在高温条件下能够保持较好的物理性能。

5. 耐化学性:高分子材料在一定程度上能够耐受化学物质的侵蚀,具有一定的耐酸碱性。

二、高分子材料的应用领域1. 塑料制品:高分子材料的一大应用领域就是制造各种塑料制品。

不同种类的高分子材料可以通过调控其化学结构和分子量来制备出不同性能的塑料制品,如聚乙烯、聚氯乙烯等。

2. 纤维材料:高分子材料可以通过纺丝、拉伸等工艺制造出各种纤维材料,具有良好的拉伸性和柔韧性。

这些纤维材料广泛应用于纺织、服装、建筑等领域。

3. 包装材料:高分子材料的耐化学性和吸湿性使其成为理想的包装材料。

用高分子制造的塑料薄膜可以用于食品、药品等包装领域,具有良好的密封性和保鲜效果。

4. 电子材料:高分子材料在电子领域中也有广泛的应用。

例如,聚酰亚胺材料具有优异的电绝缘性能,可用于制造印制线路板等电子元件。

5. 医疗材料:高分子材料在医疗领域中具有很好的应用前景。

生物相容性好、可降解的高分子材料在医疗器械、组织工程等方面有广泛的应用。

6. 高分子复合材料:高分子材料与其他材料的复合可以产生更加优异的性能。

高分子复合材料广泛应用于汽车、航空航天、建筑等领域,用以制造轻量化、高强度的结构材料。

总结:高分子材料具有独特的性质和广泛的应用领域。

高分子材料的优点

高分子材料的优点

高分子材料的优点
高分子材料是一类由大量重复单元组成的高分子化合物,具有许多优点,使其在各种领域得到广泛应用。

首先,高分子材料具有优异的物理性能。

例如,高分子材料具有较低的密度,使其成为轻量化材料的理想选择。

此外,高分子材料还具有良好的机械性能,如强度高、韧性好等,能够满足不同领域对材料性能的要求。

其次,高分子材料具有良好的化学稳定性。

高分子材料在常温下具有较好的耐腐蚀性能,能够在恶劣的环境条件下保持稳定。

这使得高分子材料在化工、航空航天等领域得到广泛应用,成为各种设备和器件的重要构成材料。

另外,高分子材料还具有良好的加工性能。

高分子材料可以通过热压、注塑、挤出等多种加工工艺进行成型,使其在制造过程中具有较大的灵活性和可塑性。

这一特点使得高分子材料成为现代工业制造中不可或缺的材料之一。

此外,高分子材料还具有良好的绝缘性能和隔热性能。

这使得高分子材料在电子电器、建筑等领域得到广泛应用,能够有效地保护设备和建筑结构,提高其安全性和稳定性。

总的来说,高分子材料具有物理性能优异、化学稳定性好、加工性能良好、绝缘性能和隔热性能优秀等诸多优点,使其在各种领域得到广泛应用。

随着科学技术的不断进步,相信高分子材料将会在更多领域展现出其独特的优势,为人类社会的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 高分子材料的主要物理性能高分子材料与小分子物质相比具有多方面的独特性能,其性能的复杂性源自于其结构的特殊性与复杂性。

联系材料微观结构与宏观性质的桥梁就是材料内部分子运动的状态。

一种结构确定的材料,当分子运动形式确定,其性能也就确定;当改变外部环境使分子运动状态变化,其物理性能也将随之改变。

这种从一种分子运动模式到另一种模式的改变,按照热力学的观点称作转变;按照动力学的观点称作松弛。

例如天然橡胶在常温下就是良好的弹性体,而在低温时(<-100℃)失去弹性变成玻璃态(转变)。

在短时间内拉伸,形变可以恢复;而在长时间外力作用下,就会产生永久的残余形变(松弛)。

聚甲基丙烯酸甲酯(PMMA)在常温下就是模量高、硬而脆的固体,当温度高于玻璃化温度(~100℃)后,大分子链运动能力增强而变得如橡胶般柔软;温度进一步升高,分子链重心能发生位移,则变成具有良好可塑性的流体。

本着“结构⇔分子运动⇔物理性能”这样一条思维线路,本章有选择地介绍高分子材料的热性能、力学性能、高弹性与粘弹性、溶液性质、流变性质、电学性能等。

同时通过介绍结构与性能的关系,帮助我们根据使用环境与要求,有目的地选择、使用、改进与设计高分子材料,设计与改进加工工艺与设备,扩大高分子材料使用范围。

第一节 高分子材料的分子运动、力学状态转变及热性能一、高分子运动的特点与低分子材料相比,高分子材料的分子热运动主要有以下特点:(一)运动单元与模式的多重性高分子的结构就是多层次、多类型的复杂结构,决定着其分子运动单元与运动模式也就是多层次、多类型的,相应的转变与松弛也具有多重性。

从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。

从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转与摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁与大分子的蠕动等。

在各种运动单元与模式中,链段的运动最为重要,高分子材料的许多特性均与链段的运动有直接关系。

链段运动状态就是判断材料处于玻璃态或高弹态的关键结构因素;链段运动既可以引起大分子构象变化,也可以引起分子整链重心位移,使材料发生塑性形变与流动。

(二)分子运动的时间依赖性在外场作用下,高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态就是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。

例如将一根橡胶条一端固定,另一端施以拉力使其发生一定量变形。

保持该形变量不变,但可以测出橡胶条内的应力随拉伸时间仍在变化。

相当长时间后,内应力才趋于稳定,橡胶条达到新的平衡。

设材料在初始平衡态的某物理量(例如形变量、体积、模量、介电系数等)的值为x 0,在外场作用下,到t 时刻该物理量变为x (t ),许多情况下x (t )与x 0满足如下关系:()τ/0t e x t x -= (4-1)公式(4-1)实质上描述了一种松弛过程,式中τ称松弛时间。

当t =τ时,()e x x /0=τ,可见松弛时间相当于x 0变化到x 0/e 时所需要的时间。

低分子物质对外场的响应往往就是瞬时完成的,因此松弛时间很短,而高分子材料的松弛时间可能很长。

高分子的这种松弛特性来源于其结构特性,由于分子链的分子量巨大,几何构型具有明显不对称性,分子间相互作用很强,本体粘度很大,因此其松弛过程进行得较慢。

不同运动单元的松弛时间不同。

运动单元越大,运动中所受阻力越大,松弛时间越长。

比如键长、键角的变化与小分子运动相仿,其松弛时间与小分子相当,约10-8-10-10s;链段运动的松弛时间较长,可达到分钟的数量级;分子整链的松弛时间更长,可长达几分、几小时,甚至几天、几个月。

由于高分子材料结构具有多重性,因此其总的运动模式具有一个广阔的松弛时间谱。

了解材料的松弛时间谱十分重要,因为材料的不同性质就是在不同的松弛过程(它们具有不同的松弛时间)中表现出来的。

在实际测试或使用材料时,只有那些松弛时间与外场作用时间数量级相当的分子运动模式(或性质)最早与最明显地被测试或表现出来。

例如要研究链段的运动,实验进行的速度应当掌握在分钟数量级,太快或太慢的实验都不能测到链段的运动。

如果要研究分子整链的运动(如材料的流动),实验时间必须长得多。

换句话说,高分子材料的松弛特性使得其物理与力学性能与观察与测量的速度(或时间)相关。

(三)分子运动的温度依赖性温度就是分子运动激烈程度的描述,高分子材料的分子运动也强烈地依赖于温度的高低。

一般规律就是温度升高,各运动单元热运动能力增强,同时由于热膨胀,分子间距增加,材料内部自由体积增加,有利于分子运动,使松弛时间缩短。

松弛时间与温度的关系可用Eyring 公式表示:RT E o e /∆=ττ (4-2)式中τ0就是常数,△E 就是运动活化能,R 就是气体常数,T 就是绝对温度。

由(4-2)式可见,温度升高,τ变小,松弛过程加快。

由于高分子材料的分子运动既与温度有关,也与时间有关,因此,观察同一个松弛现象,升高温度与延长外场作用时间得到的效果就是等同的,在后面章节中将详细介绍这个十分重要的“时—温等效原理”。

这一性质也决定了我们在研究测量高分子材料物理性能时,或者规定好测量温度,或者规定好测量时间或速度,否则不易得到正确可靠的结果。

二、高分子材料的力学状态及转变不同类型高分子材料的力学状态不同,下面按非晶态(无定型)聚合物、结晶聚合物、体型聚合物分别介绍。

(一) 非晶态线型聚合物的力学状态及转变对尺寸确定的非晶态线型聚合物试样施加一定的外力,并以一定的速度升温,测定试样发生的形变随温度的变化,得到材料的温度-形变曲线,又称热机曲线,如图4-1所示。

整条曲线按温度高低可分为五个区,特点如下:A 区:该区温度低,分子热运动能力小,链段运动处于冻结状态,只有侧基、链节、短支链等小运动单元的局部振动发生,因此材料弹性模量高(~1010N/m 2),形变小(~0、1%-1%),外力撤去后,形变立即消失、恢复原状。

材料无论在内部结构还就是力学性质方面都类似于低分子玻璃,这种状态称玻璃态。

B 区:该区称玻璃化转变区,就是一个对温度变化十分敏感的区域。

在此区间内,随温度升高,链段活动能力增加,链段可以通过绕主链上的单键内旋转而改变分子链构象,使形变迅速增加,模量下降3~4个数量级。

该区域对应的转变温度称玻璃化转变温度,记为g T 。

C 区:温度进一步升高,链段具有充分的运动能力。

在外力作用下,一方面通过链段运动使分子链呈现局部伸展的构象,材料可以发生大形变(~100%-1000%);另一方面此时的热能还不足以使分子整链运动,分子链相互缠结形成网络,链段又有回复卷曲的趋势。

这两种作用相互平衡,使温度-形变曲线出现一个平台区。

处于该区间的高分子材料,模量低,仅为106N ·m -2左右,形变大,外力去除后,形变可以恢复。

这种力学状态称高弹态。

D 区:这也就是一个对温度十分敏感的转变区,称粘流转变区。

由于温度升高,链段的热运动进一步加剧。

链段沿外力方向的协同运动,不仅使分子链形态发生改变,而且导致分子链解缠结,分子重心发生相对位移,宏观上表现为出现塑性形变与粘性流动。

形变迅速增加,弹性模量下降到104 N ·m -2以下。

该区间对应的转变温度称粘流温度,记为f T 。

E 区:温度高于f T 后,大分子链重心发生相对位移的运动占绝对优势,形变继续发展,高分子材料呈熔体(液体)状,这种状态称粘流态。

高分子制品的加工成型多在该区域内进行。

图4-1 非晶态线型聚合物的温度-形变曲线由上可见,在不同外部条件下,非晶态线型聚合物可以存在三种不同的力学状态—玻璃态、高弹态、粘流态,三态之间有两种状态转变过程—玻璃化转变、粘流转变。

与转变过程对应的两个转变温度——玻璃化转变温度g T 、粘流温度f T 就是两个十分重要的物理量。

从分子运动的观点瞧,玻璃化转变温度g T 对应着链段的运动状态,温度小于g T 时链段运动被冻结,大于g T 时链段开始运动。

粘流温度f T 对应着分子整链的运动状态,温度小于f T 时分子链重心不发生相对位移,大于f T 时分子链解缠结,出现整链滑移。

不同高分子材料具有不同的转变温度,在常温下处于不同的力学状态。

如橡胶的g T 较低,一般就是零下几十度,如天然橡胶g T = -73℃,顺丁橡胶g T = -108℃。

常温下橡胶处于高弹态,表现出高弹性,g T 规定为其最低使用温度,即耐寒温度。

塑料的g T 较高,如聚氯乙烯g T =87℃,聚苯乙烯g T =100℃,常温下处于硬而脆的玻璃态,g T 为其最高使用温度,也即耐热温度。

另须指出,从热力学相态角度瞧,玻璃态、高弹态与粘流态均属液相,非晶态线型聚合物处于这三态时,分子排列均就是无序的。

三态之间的差别主要就是变形能力不同,即模量不同。

从分子热运动角度来瞧,三态的差别只不过就是分子运动能力不同而已,因此从玻璃态到高弹态到粘流态的转变均不就是热力学相变。

(二) 结晶聚合物的力学状态及转变结晶聚合物的力学状态与结晶度与聚合物分子量大小有关。

低结晶度聚合物中结晶区小,非晶区大,非晶部分有玻璃化转变温度g T 决定其力学状态,结晶部分则有熔点m T 决定其力学状态。

当温度高于g T 而低于m T 时(g T < T <m T ),虽然非晶区的链段开始运动,但由于晶区没熔融,微晶限制了整链的运动,材料仍处于高弹态。

只有当温度高于m T ,晶区熔融,且分子整链相对移动(T >f T ),材料才进入粘流态。

高结晶度聚合物中(结晶度>40%)结晶相形成连续相,低温时处于类玻璃态,材料可作为塑料、纤维使用。

温度升高,玻璃化转变不明显,而晶区熔融为主要的状态转变。

晶区熔融后或者直接进入粘流态(若材料分子量低,f T <m T );或先变为高弹态,继续升温超过粘流温度时再变为粘流态(若材料分子量高,f T >m T ),见图4-2。

图4-2 结晶聚合物的温度-形变曲线(三) 体型聚合物的力学状态体型聚合物由于分子链间存在交联化学键,限制了整链运动,因此其特点就是不溶、不熔。

尽管如此,在合适条件下,链段仍能运动,根据链段运动与否可判断其处于玻璃态或就是高弹态。

当交联度较小时,网链较长,网链构象的变化仍可按高斯链处理。

此时材料仍有玻璃化转变温度g T 。

根据环境温度高或低于g T ,可判断材料处于高弹态或玻璃态。

当交联度大时,链段运动困难,玻璃化转变难以发生,材料始终处于玻璃态。

通常热固性树脂,如酚醛树脂、环氧树脂等,其交联度(固化程度)高,它们就是一类强度高、硬而脆的塑料。

硫化橡胶作弹性体用,要求其处于高弹态,交联度必需恰当控制。

三、高分子材料的玻璃化转变(一)玻璃化转变现象玻璃化转变就是高分子材料力学状态变化中的普遍现象,玻璃化转变温度g T 就是高分子材料最重要的特征温度。

相关文档
最新文档