压缩机防喘振的两种方法
压缩机喘振原因及预防措施
压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
压缩机防喘振资料整理
据我公司与陕鼓技术协议,压缩机流量调节方式为回流调节+变频调速,收集相关资料整理如下:回流调节+变频调速在离心压缩机喘振控制中的应用1 喘振1.1 喘振现象当压缩机在运转过程中,流量减小到一定程度时,就会在压缩机流道中出现严重的旋转脱离,流动严重恶化,使压缩机出口压力突然严重下降。
由于压缩机总是和管网系统联合工作的,这时管网中的压力并不马上减低,这时管网中的气体压力就反大于压缩机出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降至低于压缩机出口压力为止,这时倒流停止,压缩机又开始向管网供气,压缩机的流量又增大,压缩机又恢复正常工作。
但是当管网中的压力也恢复到原来的压力时,压缩机的流量又减小,系统中气体又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。
上图中n为压缩机的转速,在每种转速下都有一个p2/p1值最高的点(驼峰点),将不同转速下的各个驼峰点连接起来就可以得到一条所谓的喘振边界线(上图中实线所示)。
边界线左侧部分为不稳定的喘振区,边界右侧部分则是安全运行区。
在喘振区,压缩比p2/p1随着Q的增大而增大,即出口压力p2增大,到大于管道阻力时,就会使压缩机排出量增大,并恢复到稳定的值QA。
假如流量继续下降到小于驼峰值QB,这时压缩比不仅不会增大,反而下降,即p2下降,就会出现恶性循环:压缩机排出量会继续减小,而出口压力p2会继续下降,当p2下降到低于管网压力时,瞬间将会出现气体的倒流;随着倒流的产生,管网压力下降,当管网压力下降到与压缩机出口压力相等时倒流停止;然而压缩机仍在运转,于是压缩机又将倒流回来的气体重新压回去;此后又引起p2/p1下降,被压出的气体又倒流回来。
这种现象将重复产生,这就是所谓的喘振。
1.2 产生喘振的先决条件从喘振现象可知,影响喘振的因素有:(1) 流量;(2) 转速;(3) 管网特性。
(1)流量是导致喘振的先决条件,因为当压缩机越过最小流量值时,就会在流道中产生严重的旋转脱流和脱流区急剧扩大的情况,进而发展到喘振状态。
大型透平式压缩机防喘振控制及应用
大型透平式压缩机防喘振控制及应用随着工业生产的日益发展,大型透平式压缩机在工业生产中扮演着重要的角色。
由于透平式压缩机工作时会产生较大的振动和噪音,如果不加以控制和防范,很容易引发喘振问题,严重影响设备的安全性和正常运行。
对大型透平式压缩机的喘振控制及应用成为工程技术领域亟待解决的重要问题。
什么是喘振?喘振是由于压缩机内部气体振荡而产生的一种不稳定的振动现象。
当压缩机工作时,由于气体流动速度和压力变化引起的共振效应,会使得系统产生自激振动,即所谓的喘振。
喘振不仅会导致设备损坏,还会引起严重的噪音污染,甚至对生产车间的安全形成威胁。
大型透平式压缩机的喘振控制成为了工程技术领域的焦点关注。
在喘振控制中,需要从多个方面入手,包括结构设计、控制系统、运行管理等多个方面,才能全面有效地解决喘振问题。
对于大型透平式压缩机的结构设计来说,需要合理设计压缩机的内部结构。
通过科学的设计和优化,减小气体流动速度的变化,降低共振效应的发生,从而减少喘振的产生。
还可以通过结构的改善和优化,增加阻尼器、削减共振频率等措施来有效抑制喘振的发生。
在压缩机的结构设计阶段,就可以采取措施来预防喘振问题的产生,这是避免喘振问题的有效手段。
对于大型透平式压缩机的控制系统来说,需要建立完善的控制系统,并对其进行合理的配置和优化。
通过运用先进的控制算法和技术,实时监测和调节压缩机的工作状态,及时发现并处理喘振问题。
还可以通过自适应控制、模糊控制和神经网络控制等方法,对压缩机的振动进行智能化控制,从而有效减少喘振的发生。
还可以通过合理的控制策略和调整参数,提高控制系统的稳定性和可靠性,进一步降低喘振的风险。
对于大型透平式压缩机的运行管理而言,需要建立严格的运行管理制度,确保设备的正常运行。
通过定期的维护和保养,及时发现和解决压缩机设备的问题,确保设备处于良好的工作状态。
还可以通过对设备运行数据的分析,及时发现异常情况,采取措施进行修复和调整,有效降低喘振的发生。
压气机防喘措施
压气机防喘振措施嘿,小伙伴们,今天咱们来聊聊压气机的防喘振措施。
你们知道吗,压气机喘振可是个大问题,就像是咱们跑步时突然喘不过气来一样,压气机也会出现这种情况,不过它的“喘”可是会直接影响到整个机器的运行哦!要想防止压气机喘振,咱们得从它的工作原理说起。
压气机啊,就像是个大力士,得不停地吸气、压缩、再排气,才能维持机器的正常运转。
但是呢,有时候它吸进的空气太多或太少,就会导致内部的压力不稳定,从而产生喘振现象。
所以啊,咱们得想点办法,让它吸进的空气量刚刚好。
第一个妙招,就是中间放气。
这就像是咱们吃饭,吃撑了就得松松裤腰带,让肚子舒服点。
压气机也一样,当它吸进的空气太多时,咱们就打开放气阀,让一部分空气溜出去,这样它的压力就不会太高了。
当然啦,这个放气阀得是个智能的家伙,得知道什么时候该开、什么时候该关,不然咱们可就亏大了,毕竟放出去的可都是白花花的能量啊!第二个妙招,是改变压气机的进口叶片角度。
这就像是咱们开车,遇到上坡就得加大油门,让车子更有劲。
压气机也一样,当它吸进的空气量不够时,咱们就调整进口叶片的角度,让空气更容易被吸进去。
这样一来,压气机就能吸到足够的空气,保持稳定的运行啦!第三个妙招,是双转子或三转子设计。
这就像是咱们团队合作,每个人都有自己的特长,相互配合才能完成任务。
压气机也一样,采用双转子或三转子设计后,每个转子都有自己的工作范围和最佳转速。
这样一来,无论机器运行在什么状态下,都能找到最合适的转子来配合工作,避免喘振现象的发生。
好啦,今天咱们就聊到这里啦!希望这些防喘振措施能帮到大家,让咱们的压气机都能健健康康地运行!记得哦,机器也是咱们的“小伙伴”,得好好照顾它们才行!。
压缩机喘振原因及预防措施
转自海川论坛0 引言压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
防喘振
1. 压缩机的防喘振控制方案以往方案大致可分为固定极限流量和可变极限流量防喘振控制两类。
但到目前为止,对于不同摩尔质量、温度、压力的压缩气体,还没有一种切实可行的方法来有效、精确地计算压缩机的喘振线,通常都是建立一个较大的额外安全空间,保证机组在可预设的最佳工作状况下安全运行,但这种方法使得压缩机的工作效率大为降低,因此有关的专业技术人员一直在寻找更有效的方法来解决防喘振控制过程中的安全与效率问题。
TS3000 系统的成功应用,就较好地解决了此问题。
2. 喘振线作图的基本方法压缩机防喘振控制系统的基本原理,如图2 所示。
图中:Yl=Y2/Y3=Pd/Ps=(PT2+ 1.0332)/(PT1+1.0332);SP=Y4=V(Pd/Ps)+K(给定);Y5= h/Ps=FT5/(PT1+1.0332)(测量)采用Pd/Ps 和c·h/Ps 做喘振曲线,其基本形状为抛物线,而采用Pd/Ps 和(c· h/Ps )2作图时得到的喘振线则在工作点附近基本呈直线形状(简化后,C2h/Ps)。
其关系式如下:h/Ps=V·(Pd/Ps)+K式中,Pd—压缩机出口压力(绝压),kPa;Ps—压缩机入口压力(绝压),kPa;C—常数(由孔板尺寸决定),m2;h—孔板差压(与流量的关系式为Q2=H),kPa3. 工艺控制方案(1)压缩机防喘振调节画面组成(a)防喘振动态示意图,将压缩机实际工作点在防喘振示意图上相应显示。
(b)动态数据,将实际工作点数据在ESD 画面相应处显示。
(c)点击ESD 流程图上相应调节阀,可弹出PID 画面,可在线修改设定值或输出值。
(2)调节防喘振电磁阀设定3 种状态,正常运转状态下,可设定自动调节,开停工或异常状态下,可设定手动调节或强制调节。
(3)报警利用声光报警及画面报警提示。
(4)控制要点(a)开压缩机前,应先将防喘振阀强制打开至100%。
(b)当压缩机实际工作点靠近防喘振线时,应提高压缩机转速,维持正常生产,若压缩机转速已达最大,则应打开防喘振阀,并适当降低装置负荷,保证压缩机的正常运行。
压缩机喘振与调节方法
压缩机喘振与调节方法压缩机的喘振是指压缩机在运行过程中出现的振动和噪音现象,通常产生的原因有两个方面:机械方面和气动方面。
喘振会严重影响压缩机的正常运行,甚至导致设备故障和损坏。
因此,对于压缩机的喘振问题,需要采取一些调节方法来减少和消除。
一、机械方面1.检查压缩机的支撑结构和基础,确保其稳定性。
如果支撑结构不牢固或基础不稳定,容易引发振动和噪音,导致喘振问题。
2.检查压缩机的叶轮、轴承和其他转动部件的装配情况和磨损程度。
如果叶轮装配不当或者轴承磨损严重,都会导致不平衡振动和喘振现象。
需要及时更换磨损严重的部件,并确保装配的正确性。
3.清洗和维护压缩机的冷却系统,确保冷却效果良好。
如果冷却系统存在堵塞或冷却水流量不足,会导致压缩机过热,引发振动和喘振。
4.对于柱塞式压缩机,要定期检查气缸套的磨损情况,及时更换磨损严重的气缸套,并确保柱塞的正确配合度。
柱塞不良配合度会引发气缸内部的振动和噪音。
二、气动方面1.检查压缩机的进气阀和排气阀的工作情况。
如果阀门存在卡滞或密封不良,会导致气体回流和压力不稳定,引发喘振现象。
需要及时清洗和维护阀门,确保其正常工作。
2.对于容积式压缩机,要调节气缸的容积比。
容积比过大或过小都会引发振动和噪音,需要根据实际情况进行调整。
3.检查压缩机的冷却器的工作情况,确保冷却器散热良好。
如果散热不良,会导致压缩机过热,引发振动和喘振。
4.检查压缩机的管道系统,确保管道的密封性和稳定性。
如果管道存在泄漏或支撑不稳定,会导致气体流动不畅,引发喘振。
在调节压缩机喘振时,应先排除机械方面的问题,检查和维护压缩机的各个部件。
如果机械方面的问题已经解决,但喘振问题仍然存在,则需要进一步检查和调节气动方面的问题。
压缩机防喘振的两种方法
点是 当压缩机转速降低 ,处在低负荷运行时 ,防喘 振 控 制系统 投用 过早 , 回流 量较 大 ,能耗 较 大 。
( )可变 极 限流量 法 2
图 2 根据转速 的流量调节器控制方案
在压 缩 机 负荷 有 可 能通 过 调速 来 改 变 的 场 合 ,
因为不同转速工况下 ,极 限喘振 流量是一个 变数 ,
的曲线上有一个 P / 2P 值的最高点。在此点右面的
曲线上工 作 ,压缩 机是 稳定 的 。在 曲线 左 面低 流量 范 围 内 ,由于气体 的可 压缩 性 ,产生 了一个 不稳 定 状 态 。当流量 逐渐 减小 到喘 振线 时 ,一 旦压 缩 比下 降 ,使 流量进 一步 减小 ,由于输 出管 线 中气 体压 力 高 于压缩 机 出 口压 力 ,被压缩 了的气 体很 快 倒 流人 压缩 机 ,待管线 中压 力下 降后 ,气 体 流动 方 向又 反 过来 ,周 而复始 便产 生 喘振 。
Co p e s r Ant — s r e o h m r so i — u g ft e Two M e h d to s
S UN n ti Yo ga
(hnagcyi L oi acsbe ah e c r i Seyn ,Lan g100 ) Seyn i i n gi ces l m ci r f t y n hnag i i 120 t n a n n i n y ao on
它 随转 速 的下 降而变 小 ,所 以最 合理 的防 喘振 控 制 方法 ,应 是 留有 适 当的 安全裕 量 ,使 防喘振 调 节 器 沿着 喘 振 极 限 流 量 曲线 右 侧 的一 条 安 全 控 制 线 工 作 ,这便 是 可变 极 限流量 法 。 常用 控制 方 案有 两种 :一 是 采用 测 量压 缩 机 转
压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统出现的问题及防范措施【摘要】压缩机防喘振系统在工业生产中起着至关重要的作用,但是在运行过程中会出现一些问题,例如振动过大、压缩机故障频繁、能效降低等。
为了预防这些问题的发生,可以通过定期检查系统、调整系统参数、安装振动吸收器、提高设备维护水平等方式来加强防范措施。
本文总结了压缩机防喘振系统问题及防范措施的重要性,并展望了未来对该系统的研究方向。
通过加强对压缩机防喘振系统问题的认识和采取有效的预防措施,可以提高设备的稳定性和运行效率,从而确保工业生产的顺利进行。
【关键词】压缩机防喘振系统、问题、防范措施、振动、故障、能效、定期检查、系统参数、振动吸收器、设备维护、重要性、研究方向、展望。
1. 引言1.1 介绍压缩机防喘振系统的重要性压缩机是工业生产中常用的设备,用于将气体压缩成高压气体以供各种设备使用。
在压缩机工作过程中,由于压力的变化和内部构件的运动,容易产生振动,并可能演变成压缩机喘振,给设备和工作环境带来严重影响。
压缩机防喘振系统的重要性不言而喻,它可以有效地控制振动频率和振幅,减轻喘振对设备的损害,提高设备的可靠性和稳定性。
通过引入防喘振系统,可以实时监测压缩机振动情况,一旦发现异常振动就及时采取措施处理,避免振动进一步恶化导致严重故障。
而且,防喘振系统的使用还有助于提高压缩机的运行效率,减少能源消耗,降低生产成本,提升设备的使用寿命。
压缩机防喘振系统的建立和运行对于保障设备安全稳定运行、提高生产效率具有重要意义。
在工业生产中,对压缩机防喘振系统的关注和重视,不仅有利于生产的顺利进行,也为企业节约成本,增加竞争力奠定了基础。
1.2 阐述本文的研究意义本文旨在探讨压缩机防喘振系统出现的问题及相应的防范措施,旨在帮助工程师和维护人员更好地理解并处理此类系统中可能出现的振动、故障和能效降低等问题。
通过对压缩机防喘振系统的问题进行深入分析和研究,本文旨在为相关领域的工作人员提供有效的解决方案,帮助他们更好地维护和保养压缩机防喘振系统,提高设备运行效率和使用寿命。
【专业知识】离心式制冷压缩机防喘振措施
【专业知识】离心式制冷压缩机防喘振措施【学员问题】离心式制冷压缩机防喘振措施?【解答】1、喘振产生的机理离心压缩机的基本工作原理是利用高速回转的叶轮对气体做功,将机械能加给气体,负气体压力升高,速度增大,气体获得压力能和速度能。
在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,负气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。
扩压器流道内的边界层分离现象:扩压器流道内气流的活动,来自叶轮对气流所做功转变成的动能,边界层内气流活动,主要靠主流中传递来的动能,边界层内气流活动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。
当主流传递给边界层的动能不足以使之克服压力差继续前进时,终极边界层的气流停滞下来,进而发生旋涡和倒流,负气流边界层分离。
气体在叶轮中的活动也是一种扩压活动,当流量减小或压差增大时也会出现这种边界层分离现象。
当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。
当流量大大减小时,由于气流活动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B流道转移到A流道。
这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。
扩压器同样存在旋转脱离。
在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,活动严重恶化,使压缩机出口压力忽然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。
压缩机喘振及其预防方法
压缩机喘振及其预防方法摘要:喘振现象是离心式压缩机固有的机械特性,在压缩机的运行生产中,喘振有着较大的危害和隐患,所以在生产的过程中,要结合实践,弄清喘振机理和引起喘振的影响因素,根据问题的实际情况,采取相对应的有效防止和抑止喘振的措施,同时准确地判断喘振现象并加以控制,喘振现象就能够完全避免,从而实现提高离心式压缩机的工作效率,确保离心式压缩机运行稳定性和可靠性。
文章重点介绍了压缩机喘振及其预防方法,以供同行参考。
关键词:压缩机喘振,预防方法前言压缩机的控制在化工企业中是相当重要的,而抗喘振控制系统是离心式压缩机的一个重要控制系统,它的可靠性将直接关系到压缩机的安全稳定运行。
充分认识和理解其控制方案对于改进和优化压缩机的控制是有益的,随着科技的进步和发展,相信更加合理和先进的控制方案将会随时出现。
一、空气压缩机喘振原因探讨某空气压缩机是通过燃气轮机驱动,是轴流式和两缸三段式离心式组合压缩机,该空气压缩机的高压缸冷饮轴流式结构,而低压缸利用离心式结构。
空气压缩机在正常工作时,入口过滤器吸入空气,通过入口消音器将大部分固体杂质除去的空气送入空气压缩机一段,空气被压缩到180℃,0.20Mpa 后,通过出口冷却器后温度降低到42℃,利用分离器把冷凝液除去,在空气压缩机二段将空气继续压缩,温度达到200℃,压强达到0.81Mpa 经过二段冷却器出口进行冷却,温度降低到42℃,再次通过分离器将冷凝液除去;此时,被压缩的其他一部分作为仪表空气及公用空气被送到合成装置及成品装置;剩余的空气将继续被压缩,经过预热盘管之后,作为燃烧空气。
如果空气压缩机的空气系统停车,那么用气量就会变为零,此时随着PC109 输出值的增加,PV109 没有及时的放空空气有时间的出口气,从而造成了空气压缩机出口压力越来越高,此时压缩比变化迅速,从而引起了管网特性曲线向左移动,使得空气压缩机工作的工况点由小流量进入到了喘振区,从而引起了空气压缩机的喘振现象。
工艺空气压缩机的喘振及预防
工艺空气压缩机的喘振及预防工艺空气压缩机是工业生产中常见的设备之一,其主要作用是将环境空气压缩成高压气体供给生产过程中所需的能源。
然而,在使用过程中,有时会出现喘振现象,严重影响设备的正常运行。
本文将详细介绍工艺空气压缩机喘振的原因及预防措施。
一、喘振的原因1.系统失稳:系统失稳是造成工艺空气压缩机喘振的主要原因之一。
工艺空气压缩机的压缩比一般比较高,当压缩比过高时,系统失去稳定性,容易引起振动。
2.过流现象:过流现象是指空气压缩机运行过程中,过度增加系统的流量。
当系统的气流量明显超过设计工况时,气流的动能将会增大,导致系统不稳定。
3.系统泄漏:系统泄漏是喘振的常见原因之一。
当系统中存在泄漏现象时,将会引起气流的变化,导致系统压力和温度的不稳定,从而诱发喘振。
4.系统阻力不平衡:系统阻力不平衡也是喘振的一个重要因素。
当系统不同部分的阻力不平衡时,将会导致气流的分布不均匀,从而引起系统的不稳定。
5.气源压力波动:气源压力波动是导致工艺空气压缩机喘振的一个主要原因。
当进气口的气体压力波动较大时,将会引起系统的紊乱和不稳定。
二、喘振的预防措施1.选择合适的压缩机:在购买工艺空气压缩机时,应根据实际需求选择合适的型号和规格。
压缩机的功率和排气量应与生产工艺的需求相匹配,避免过大或过小的情况发生。
2.增加系统的稳定性:通过增加系统的稳定性来预防喘振。
可采取的方法包括增加系统的负反馈,提高反馈控制系统的带宽,优化系统的控制算法等。
3.控制系统的总能量:在运行过程中,应更加注重控制系统的总能量,避免气体的过度压缩或过流现象的发生。
通常可以通过调整进气口的开度和调整压缩机的运行参数来实现。
4.加强系统的泄漏检测和修复:定期对系统进行泄漏检测,及时发现和修复泄漏现象。
可以通过检查气体管道、阀门和接口等部位进行泄漏检测,并采取相应的修复措施。
5.优化系统的通风和降温:保持压缩机周围的通风良好,有效降低设备及系统的温度。
防喘振控制原理及方法
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
离心式压缩机喘振及控制
离心式压缩机喘振及控制一、什么是喘振?离心式压缩机产生喘振的原因?当离心机压缩机的负荷降低,排气量小于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,产生强烈的震荡,并发出如哮喘病人的喘气的噪声,此时可看到气体出口压力表、流量表的指示发生大幅度的波动,随之,机身也会发生剧烈的震动,并带动出口管道,厂房振动,压缩机将会发生周期性、间断的吼响声。
如不及时采取措施,压缩机将会产生严重的破坏,这种现象就叫做压缩机的喘振,也称飞动。
喘振是因为离心式压缩机的特性曲线程驼峰状引起的,离心式压缩机是其压缩比(出口绝压P2与入口绝压P1之比)与进口气体的体积流量之间的关系曲线,具体图如下(其中n 为压缩机的转速):从上图可以看出每种转速下都有一个P2/P1的最高点,这个点称之为驼峰,将各个驼峰点连接起来就可以得到一条喘振边界线,如图中虚线所示,边界线左侧的阴影部分为不稳定的喘振区,边界线右侧部分则为安全运行区,在安全运行区压缩比P2/P1随流量Q的增大而减小,而在喘振区P2/P1随流量的增大而增大举例说明:假设压缩机在n2转速下工作在A点,对应的流量为QA,如果此时有某个干扰使流量减,小,但仍在安全区内,这时压缩比会增大,即P2增大,这时就会使压缩机的排出压力增大并恢复到稳定时的流量QA。
但如果流量继续下降到小于n2转速下的驼峰值QB,这时压缩比不但不会增大,反而会下降,即出口压力P2会下降,这时就会出现恶性循环,压缩机的排出量会继续小,P2会继续下降,当P2下降到低于管网压力时瞬间将会出现气体的倒流,随着倒流的产生,管网压力下降,当管网压力降到与压缩机出口压力相等时倒流停止,然而压缩机仍处于运转状态,于是压缩机又将倒流回来的气体又重新压缩出去,此时又会引起P2/P1下降,被压出的气体又重新倒流回来,这种现象将反复的出现,气体反复进出,产生强烈的整理,这就是所谓的喘振。
二、防喘振控制的方案(两种)固定极限流量防喘振控制:把压缩机最大转速下的喘振点的流量作为极限值,是压缩运行时流量始终大于该极限值。
压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常用的设备之一,但在使用中常常会出现喘振或振动等问题,这不仅会影响生产效率,还可能导致设备的损坏和人员的安全问题。
因此,必须采取有效的防范措施来避免这些问题的出现。
一、喘振和振动的原因1、系统管道设计不合理,直径过小或过长;2、系统管道漏气,或管道连接处泄漏;3、压缩机自身结构松动或损坏;4、压缩机受力不平衡,导致机身振动;5、系统管道内气体流速过大或变化不稳定。
二、防范措施1、管道设计合理根据气体流量、压力差等参数合理选择管道直径,并保证管道通畅,减少管道连接点,避免漏气点的出现。
2、管道漏气检查定期检查系统管道的连接点是否漏气,可以利用泄漏检测仪等设备进行检测,在压缩机运行时进行检测可以更好地发现问题。
3、压缩机结构检查定期检查压缩机的结构是否松动,比如固定螺栓是否正常、机内管道是否连接紧等,若发现问题及时处理。
4、维护压缩机平衡在运行中,尽量避免出现过载或空载状态,这将导致压缩机产生不平衡的受力,增加喘振和振动的风险。
此外,也要注意机体的平衡,如润滑系统油量、过滤器清洗等。
5、气体流速控制压缩机出气管道内,冷却风机叶轮和散热排成型件都可能成为引发振动的元凶。
其工作原理类似于翼型。
对于翼型式风机或散热器,为减小旋翼的阻力,其内壁通常都采用低密度网格或微小的平衡凸起,如果此类内壁材料堆积有灰尘和油污,将严重干扰了其工作,打破平衡状态,从而产生振动,因此要进行定期清洗。
以上就是压缩机防喘振的问题及防范措施,对于企业来说,应重视这些问题的发生,加强日常维护,确保设备的正常稳定运行,提高生产效率和安全性。
防喘振控制原理及方法
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
浅谈压缩机喘振原因及解决措施
浅谈压缩机喘振原因及解决措施一、设备喘振流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。
例如,泵或压缩机出现流量减小到最小值时,出口压力会突然下降,管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。
人们把以上现象称为喘振。
喘振现象在压缩机使用过程较为常见,设备和管道系统出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。
喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。
一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。
为防止喘振,必须使流体机械在喘振区之外运转。
在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。
当多台机器串联或并联工作时,应有各自的防喘振调节装置。
二、风机喘振的现象当风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动。
风机的电动机电流波动很大,最大波动值有50A左右。
风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。
风机发出“呼噜、呼噜”的声音,使噪声剧增。
风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s左右。
三、喘振原因根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p-Q性能曲线是一组带有驼峰形状的曲线(这是风机的固有特性,只是轴流式通风机相对比较敏感),如左图所示。
当工况点处于B点(临界点)左侧B、C之间工作时,将会发生喘振,将这个区域划为非稳定区域。
发生喘振,说明其工况已落到B、C之间。
离心压缩机发生喘振,根本原因就是进气量减少并达到压缩机允许的最小值。
理论和实践证明:能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。
压缩机喘振原因及预防措施(2)
压缩机喘振原因及预防措施(2)压缩机喘振原因及预防措施升速,升压之前一定要事先查好性能曲线,选好下一步的运行工况点,根据防喘振安全裕度来控制升压,升速。
防喘振安全裕度就是在一定工作转速下,正常工作流量与该转速下喘振流量之比值,一般正常工作流量应比喘振流量大1.05~1.3倍,即:裕度太大,虽不易喘振,但压力下降很多,浪费很大,经济性下降。
在实际运行中,最好将防喘阀门的整定值,根据防喘裕度来整定。
太大则不太经济,太小又不安全。
防喘系统根据安全裕度下整定好以后,在正常运行时防喘阀门应当关闭,并投入自动,这样既安全又经济。
有的单位防喘振装置不投自动,而用手动,恐怕发生喘振而不敢关严防喘阀门,正常运行时有大量气体回流或放空,这既不经济又不安全;因为发生喘振时用手动操作是来不及的,结果不能防止喘振。
3.3 在升压和变速时,强调“升压必先升速,降速必先降压”的原则压缩机升压应当在汽轮机调速器投入工作后进行;升压之前查好性能曲线,确定应该到达的转速,升到该转速后再提升压力;压缩机降速应当在防喘阀门安排妥当后再开始;升速,升压不能过猛过快;降速降压也应当缓慢,均匀。
3.4 防喘阀门开启和关闭必须缓慢,交替防喘阀门操作不要太猛,避免轴位移过大,轴向推力和振动加剧,油密封系统失调。
如压缩机组有两个以上的防喘阀门的话,在开或关时应当交替进行,以使各个缸的`压力均匀变化,这对各缸受力,防喘和密封系统协调都有好处。
3.5 采用“等压比”升压法和“安全压比”升压法为了安全起见,在升压时可以采用“等压比”升压法,这在前面已经介绍,这种方法有助于防止喘振。
“安全压比”升压法对升压时防止喘振是有效的。
它的基本原理是根据压缩机各缸的性能曲线,在一定转速下有一个喘振流量值,它与转速曲线的交点便对应一个“喘振压比”(或排出压力)。
在此转速下,升压比(或排出压力)达到此数值便发生喘振。
因此控制压比也就是控制一定转速下的流量。
如果根据防喘裕度,计算出不同转速下的正常流量,也就是安全流量,再查出对应的压比(或排出压力),在升压时根据转速,使压缩机出口压力值不超过安全压比计算出的出口压力,就不会发生喘振了。
工艺空气压缩机的喘振及预防范文
工艺空气压缩机的喘振及预防范文工艺空气压缩机是工业生产过程中常用的设备之一,其功效在于提供所需的压缩空气。
然而,在实际使用过程中,有时候会出现喘振现象,这对设备的正常运行和生产效率都会造成不利的影响。
因此,了解喘振的原因,并采取预防措施是非常重要的。
一、喘振的原因:1. 设备内部压力不稳定:设备内部的压力过高或过低都会导致喘振现象的发生。
例如,若压缩机的排气压力超过了设定的阀门压力,就会引起气体压缩过程中的喘振。
2. 气流不均匀:系统内部的气流不均匀也会引起喘振现象。
例如,气流在管道中存在突然变窄或变宽的情况,就会导致气体的流动不稳定,从而引起喘振。
3. 过载运行:设备长时间的过载运行也是造成喘振的重要原因之一。
过载运行会导致设备的负荷过大,进而导致设备内的压力不稳定,从而引起喘振。
二、喘振的预防措施:1. 设备维护保养:定期对设备进行维护保养是预防喘振的重要措施之一。
例如,定期检查和清洁设备内部的管道、阀门等,以确保设备正常工作,并消除可能引起喘振的问题。
2. 压力控制:恰当地控制设备内的压力,避免过高或过低的压力出现,可以有效地预防喘振。
例如,定期检查和调整设备的阀门压力,确保在设备正常工作范围内。
3. 管道设计优化:合理设计和布置管道,避免气流不稳定的情况出现,也是预防喘振的重要措施之一。
例如,避免管道中存在过多的弯曲和分支,以保证气流的均匀流动。
4. 过载保护装置的安装:安装过载保护装置是预防喘振的有效手段之一。
当设备负荷超过预定值时,过载保护装置会自动停机,避免设备长时间运行过载,从而减少喘振的发生。
三、喘振的处理方法:1. 减小负荷:当设备出现喘振现象时,可以适当减小设备的负荷,以降低设备压力,从而减少喘振的发生。
2. 检查管道:检查设备内部的管道和阀门是否存在堵塞或漏气等问题,并及时进行处理。
3. 检查压力控制装置:检查设备内的压力控制装置是否正常工作,若存在问题,及时修复或更换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压缩机防喘振的两种方法
压缩机防喘振的两种方法 (1)
一、离心式压缩机喘振的原因 (1)
二、防喘振自控系统的可行性分析 (1)
三、防喘振自控系统的几种实现方法 (2)
1.固定极限流量法 (2)
2.可变极限流量法 (2)
四、防喘振控制系统的实现方法 (3)
五、结束语 (5)
一、离心式压缩机喘振的原因
喘振是离心式压缩机的固有特性。
产生喘振的原因首先得从对象特性上找。
从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。
在此点右面的曲线上工作,压缩机是稳定的。
在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。
当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。
喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。
二、防喘振自控系统的可行性分析
为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。
只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。
即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。
三、防喘振自控系统的几种实现方法
目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法
固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。
此法优点是控制系统简单,使用仪表较少。
缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。
2.可变极限流量法
在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。
常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。
二是根据防喘振控制线的数学表达式,用常规仪表来模拟表达式(1),控制流程如
图3所示。
近年来随着数字仪表和微处理器的发展,这样的控制系统已容易实现。
其中a、b由压缩机制造厂决定,C是一个常数。
式中M—分子量
z—压缩系数
R—气体常数
k—综合流量系数
四、防喘振控制系统的实现方法
水气厂一英格索兰空气压缩机,型号为C90M × 3,三级压缩,流量11942m3/h,进气压力(绝)0.09MPa,排气压力(绝)0.9MPa,功率1305kW。
防喘振控制系统如图4所示。
此防喘振系统是通过测量机组出口压力接近喘振点(旁通阀打开点)时,打开旁通阀来放出部
分空气实现的。
旁通阀打开点的设定很重要。
设定过高时,压缩机在低负荷下消耗更大的能量。
设定过低时,压缩机将被允许穿过喘振线而发生喘振。
而压缩机的CMC可自动调整旁通阀打开点,使其高于喘振线的值来修正。
该压缩机也曾发生喘振,从自控系统分析,有几种情况会造成压缩机喘振:
1.出口压力的检测出现故障,使CMC接受的信号是假信号,造成旁通阀不能开到位。
2.旁通阀故障,打不开。
3.斜坡时间(旁通阀从关到开的时间)设定过长,使旁通阀打开过于滞后。
4.入口过滤器脏,过滤器阻力大,入口流量减小。
5. CMC故障,使旁通阀失控。
五、结束语
离心式压缩机的防喘振控制系统,在保证大机组的安稳运行方面起着极其重大的作用。
防喘振控制系统的实现方法,可用固定极限流量法和可变极限流量法。
还可根据具体的情况,增加一些其它方面的保安措施。