圆锥曲线知识点例题练习含答案
圆锥曲线练习题含答案(很基础,很好的题)
圆锥曲线练习题含答案(很基础,很好的题)1.抛物线y=10x的焦点到准线的距离是()2答案:52.若抛物线y=8x上一点P到其焦点的距离为9,则点P的坐标为()。
答案:(7,±14)3.以椭圆x^2/25+y^2/16=1的顶点为顶点,离心率为2的双曲线方程是()。
答案:x^2/9 - y^2/16 = 14.F1,F2是椭圆x^2/16+y^2/27=1的两个焦点,A为椭圆上一点,且∠AF1F2=45,则ΔAF1F2的面积()。
答案:75.以坐标轴为对称轴,以原点为顶点且过圆x^2+y^2-2x+6y+9=0的圆心的抛物线的方程是()。
答案:y=3x或y=-3x6.若抛物线y=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()。
答案:(±1/4.1/8)7.椭圆x^2/48+y^2/27=1上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为()。
答案:288.若点A的坐标为(3,2),F是抛物线y=2x的焦点,点M 在抛物线上移动时,使MF+MA取得最小值的M的坐标为()。
答案:(2/5.4/5)9.与椭圆4x^2+y^2=1共焦点且过点Q(2,1)的双曲线方程是()。
答案:x^2/3 - y^2/4 = 110.若椭圆x/√3 + y/√2 = 1的离心率为2/3,则它的长半轴长为_______________。
答案:√611.双曲线的渐近线方程为x±2y=0,焦距为10,这双曲线的方程为______________。
答案:x^2/4 - y^2/36 = 112.抛物线y=6x的准线方程为y=3,焦点为(0,3)。
13.椭圆5x^2+k^2y^2=5的一个焦点是(0,2),那么k=____________。
答案:√314.椭圆kx^2+8y^2=9的离心率为2/3,则k的值为____________。
答案:7/315.根据双曲线的定义,其焦点到准线的距离等于其焦距的一半,因此该双曲线的焦距为3.又根据双曲线的标准方程,8kx-ky=8,将焦点代入方程可得8k(0)-3k=8,解得k=-8/3.16.将直线x-y=2代入抛物线y=4x中,得到交点为(2,8)和(-1,-5)。
高二圆锥曲线基础练习题及答案
高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。
B. 椭圆的离心率大于1。
C. 椭圆的长轴和短轴相等。
D. 椭圆的焦点个数与离心率有关。
答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。
B. 双曲线的离心率等于1。
C. 双曲线的长轴和短轴相等。
D. 双曲线的焦点个数与离心率有关。
答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。
B. 抛物线的离心率等于1。
C. 抛物线的长轴和短轴相等。
D. 抛物线的焦点个数与离心率有关。
答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。
答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。
答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。
答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。
解:设椭圆的离心率为e,短轴长度为b。
根据椭圆的定义,焦距的长度为ae,即6 = ae。
由此可以解得椭圆的离心率为e = 6/a。
又已知长轴长度为10,即2a = 10,解得a = 5。
将a = 5代入离心率的公式,可得e = 6/5。
由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。
将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线基础训练题及答案
圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。
圆锥曲线基础题有答案
• 题目:已知双曲线$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1(a > 0,b > 0)$的一条准线恰好为圆$x^{2} + y^{2} + 4x - 4y + 7 = 0$的一条切线, 则该双曲线的离心率为( ) A.$\frac{\sqrt{3}}{3}$ B.$\frac{\sqrt{5}}{3}$ C.$\frac{2\sqrt{3}}{3}$ D.$\frac{2\sqrt{5}}{5}$ 答案:C • A.$\frac{\sqrt{3}}{3}$ B.$\frac{\sqrt{5}}{3}$ C.$\frac{2\sqrt{3}}{3}$ D.$\frac{2\sqrt{5}}{5}$ • 答案:C
圆锥曲线基础题有答案
2一、选择题:1. 已知椭圆2x25 2. 3. 4. 5. 圆锥曲线基础训练+ Z =1上的一点P 到椭圆一个焦点的距离为 3,则 16 A . 2 若椭圆的对称轴为坐标轴, 2 2x y , —=1 9 16 A . B . B . 3 长轴长与短轴长的和为 2 2x y , 一+L=1 C. 25 16 25 C 5 18,焦距为 2+— =1 或 16动点 A . P 到另一焦点距离为P 到点M (1,0)及点N(3,0)的距离之差为 D . 7则椭圆的方程为2+ — =1 D .以上都不对 16 25 2,则点P 的轨迹是 双曲线 抛物线y 5 A .2 若抛物线 B.双曲线的一支 22=10x 的焦点到准线的距离是 C.两条射线D . —条射线 15C. 2 y 2=8x 上一点P 到其焦点的距离为9,则点P 的坐标为 A . (7, ±用 B . (14,±届) C. (7, ±2714) D . (—7, ±2714) B . 5 D . 10二、填空题 6. 7. 8.9. 3 若椭圆x 2+my 2 =1的离心率为 —,则它的长半轴长为 _______________2 双曲线的渐近线方程为 x ±2y = 0 ,焦距为10 ,这双曲线的方程为2 2 若曲线 +丄 =1表示双曲线,则k 的取值范围是 4+k 1 -k抛物线y 2 = 6x 的准线方程为 ■ 10.椭圆5x 2 +ky 2=5的一个焦点是(0,2),那么k = 三、解答题 11. k 为何值时,直线y = kx +2和曲线2x 2 + 3y 2= 6有两个公共点?有一个公共点?没有公共点?12.在抛物线y =4x 2上求一点,使这点到直线y=4x-5的距离最短。
13.双曲线与椭圆有共同的焦点 F 1(0, -5), F 2(O,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
数学课程圆锥曲线基础练习题及答案
数学课程圆锥曲线基础练习题及答案1、请写出圆锥曲线的定义和常见的几种形式,并说明它们的性质。
圆锥曲线是平面解析几何的一个分支,由平面上固定点F称为焦点,和到该点的固定比例e(离心率)的点P构成。
根据e的不同取值,圆锥曲线可以分为以下几种形式:1)当离心率e=0时,圆锥曲线是一个圆。
圆具有以下性质:- 圆上任意两点的距离相等;- 圆的内切线与切点相垂直;- 圆的半径相等。
2)当离心率0 < e < 1时,圆锥曲线是一个椭圆。
椭圆具有以下性质:- 椭圆上任意两点到两个焦点的距离之和等于常数2a;- 椭圆的两个焦点到准线(短轴所在直线)的距离之和等于2a;- 椭圆的准线是对称轴;- 椭圆的离心率e满足0 < e < 1;- 椭圆的半长轴长为a,半短轴长为b,焦距为c,且a^2 = b^2 +c^2。
3)当离心率e=1时,圆锥曲线是一个抛物线。
抛物线具有以下性质:- 抛物线上任意一点到焦点的距离等于该点到准线的距离;- 抛物线的准线与焦点所连的直线垂直;- 抛物线的准线是对称轴;- 抛物线的离心率e=1;- 抛物线的焦距等于顶点到准线的距离。
4)当离心率e>1时,圆锥曲线是一个双曲线。
双曲线具有以下性质:- 双曲线上任意一点到两个焦点的距离之差等于常数2a;- 双曲线的两个焦点到准线(短轴所在直线)的距离之差等于2a;- 双曲线的准线是对称轴;- 双曲线的离心率e满足e > 1;- 双曲线的半长轴长为a,半短轴长为b,焦距为c,且a^2 = b^2 +c^2。
2、给定一个椭圆的方程为x^2/25 + y^2/9 = 1,确定椭圆的中心、两个焦点和两个顶点的坐标。
根据椭圆的标准方程x^2/a^2 + y^2/b^2 = 1,我们可以得到以下信息:- 中心的坐标为(0, 0);- 焦点的坐标为(0, ±√(a^2 - b^2)) = (0, ±√(25 - 9)) = (0, ±√16) = (0, ±4);- 顶点的坐标为(±a, 0) = (±5, 0)。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
(完整版)圆锥曲线-面积问题(原题+答案)
直线与圆锥曲线的位置关系专题一:面积问题1、已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 解:利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .又因为焦点在x 轴上, 所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为 93+=x y .由直线方程与椭圆方程联立得0836372132=⨯++x x .设1x ,2x 为方程两根, 所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB 2、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值。
解:(Ⅰ)设椭圆的半焦距为c,依题意3c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=。
(Ⅱ)设11()A x y ,,22()B x y ,。
(1)当AB x ⊥轴时,AB =。
(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+。
=,得223(1)4m k =+。
把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631km x x k -∴+=+,21223(1)31m x x k -=+。
22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤。
圆锥曲线大题20道(含答案)
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1|1|0)(|||21221c eec e a c e d PF =+=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形.[来源:Z,xx,]3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长.[来源学+科+网][启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由y y x x +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •=0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且3,3OF FP t OM OP j ⋅==+ .(I )设443,t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
(完整版)圆锥曲线练习题含标准答案(最新整理)
当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9
当
0 时,
x2
y2
1,
4
25,
20 ;
4
当
0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(
圆锥曲线的综合经典例题(有答案)
经典例题精析种类一:求曲线的标准方程1. 求中心在原点 ,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确立椭圆标准方程的焦点的地点(定位),选择相应的标准方程,再利用待定系数法确立、(定量).分析:方法一:因为有焦点为,因此设椭圆方程为,,由,消去得,因此解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦 AB 中点,因此,由得,(点差法)因此又故椭圆标准方程为.贯通融会:【变式】已知椭圆在x 轴上的一个焦点与短轴两头点连线相互垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得∴椭圆标准方程为2.依据以下条件,求双曲线的标准方程.( 1)与双曲线有共同的渐近线,且过点( 2)与双曲线有公共焦点,且过点分析:,;,( 1)解法一:设双曲线的方程为由题意,得,解得,因此双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,因此双曲线方程为即( 2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,因此双曲线方程为.总结升华:先依据已知条件确立双曲线标准方程的焦点的地点(定位),选择相应的标准方程,再利用待定系数法确立、.在第( 1)小题中第一设出共渐近线的双曲线系方程.而后辈点坐标求得方法简易.第( 2)小题实轴、虚轴没有独一给出.故应答两个标准方程.(1)求双曲线的方程,重点是求、,在解题过程中应熟习各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2) 若已知双曲线的渐近线方程,可设双曲线方程为() .贯通融会:【变式】求中心在原点,对称轴在座标轴上且分别知足以下条件的双曲线的标准方程.( 1)一渐近线方程为,且双曲线过点.( 2)虚轴长与实轴长的比为,焦距为10.【答案】( 1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.( 2)由已知设,,则()依题意,解得.∴双曲线方程为或.3.求知足以下条件的抛物线的标准方程,并求对应抛物线的准线方程:( 1)过点;( 2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确立一次项系数;从实质剖析,一般需联合图形确立张口方向和一次项系数两个条件,不然,应睁开相应的议论分析:( 1)∵点在第二象限,∴抛物线张口方向上或许向左当抛物线张口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线张口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺乏对张口方向的议论,先入为主,设定一种形式的标准方程后求解,致使失掉一解.求抛物线的标准方程重点是依据图象确立抛物线张口方向,选择适合的方程形式,正确求出焦参数P.贯通融会:【变式 1】分别求知足以下条件的抛物线的标准方程.(1)焦点为 F(4,0);( 2)准线为;(3)焦点到原点的距离为 1;(4)过点( 1,- 2);(5)焦点在直线 x-3y+6=0 上 .【答案】(1)所求抛物线的方程为 y2=16x;(2)所求抛物线的标准方程为x2=2y;( 3)所求抛物线的方程y2=± 4x 或 x2=± 4y;( 4)所求抛物线的方程为或;( 5)所求抛物线的标准方程为y2=- 24x 或 x2=8y.【变式 2】已知抛物线的极点在原点,焦点在轴负半轴上,过极点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.种类二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P 是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.重点是求.由椭圆第必定义有,由余弦定理有,易求之 .分析:设,,依题意有(1)2-(2)得,即.∴.贯通融会:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依照双曲线的定义有,由得、,又,则,即,因此,应选 A.【变式 2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有:,,两式左、右分别相加得 (.即∴.故的周长.【变式 3】已知椭圆的焦点是,直线是椭圆的一条准线.① 求椭圆的方程;②设点 P在椭圆上 ,且,求.【答案】①.②设则,又.【变式 4】已知双曲线的方程是.( 1)求这双曲线的焦点坐标、离心率和渐近线方程;( 2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x 轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.( 1)求椭圆与双曲线的方程;( 2)若为这两曲线的一个交点,求的余弦值.【答案】( 1)设椭圆方程为(),双曲线方程,则,解得∵,∴,.故所求椭圆方程为,双曲线方程为.( 2)由对称性不如设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.种类三:离心率5.已知椭圆上的点和左焦点,椭圆的右极点和上极点,当,( O 为椭圆中心)时,求椭圆的离心率.思路点拨:因为,因此此题应成立、的齐次方程,使问题得以解决.分析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由以下方法求.( 1)可直接求出、;( 2)在不好直接求出、的状况下,找到一个对于、的齐次等式或、用同一个量表示;( 3)若求的取值范围,则想方法找不等关系.贯通融会:【变式 1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连结,则是直角三角形,且,令,则,,即,,因此,应选 D.交于【变式 2】已知椭圆B 点, F 点是左焦点,且()与 x 轴正半轴交于,求椭圆的离心率.A 点,与y 轴正半轴法一:∵,,, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ABF 中,∵,∴,即【变式 3】如图,椭圆的中心在原点, 焦点在椭圆于 A、 B 两点 , 若椭圆上存在一点C, 使,下略)x 轴上 , 过其右焦点 F 作斜率为. 求椭圆的离心率1 的直线 .,交【答案】设椭圆的方程为(),焦距为,则直线 l 的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵ C 点在椭圆上 ,∴.∴又∴∴∴【变式 4】设、为椭圆的两个焦点,点,则椭圆离心率为_____.【答案】如图,点知足,且是以为直径的圆与椭圆的交点,若.在∵中,有:,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;分析:如图,令,,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴即此椭圆离心率的取值范围为贯通融会:【变式 1】已知椭圆..,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△ F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1| 2+|PF2| 2-2|PF 1||PF 2|cos120 °①又 |PF 1|+|PF 2|=2a②联立①②得4c2=4a2-|PF1||PF2|,∴【变式 2】椭圆为,若A.【答案】由B.的焦点为,,两条准线与,则该椭圆离心率的取值范围是()C.D.得,即,解得轴的交点分别,故离心率.因此选 D.【变式 3】椭圆中心在座标系原点,焦点在x 轴上,过椭圆左焦点 F 的直线交椭圆P、Q 两点,且OP⊥ OQ,求其离心率 e 的取值范围.【答案】 e∈ [,1)【变式 4】双曲线(a> 1,b> 0)的焦距为 2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点 (-1,0)到直线的距离之和s≥c.求双曲线的离心率 e 的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且 a> 1,获得点 (1,0)到直线的距离.同理获得点 (-1,0)到直线的距离.=.由 s≥c,得≥ c,即 5a≥ 2c2.于是得 5≥ 2e2.即 4e4-25e2+25≤0.解不等式 ,得≤ e2≤5.因为 e> 1,因此 e 的取值范围是.种类五:轨迹方程7.已知中,,,为动点,若和为定值 15.求动点的轨迹方程.思路点拨:充足利用定义直接写出方程是求轨迹的直接法之一解法一:设动点,且,、边上两中线长的.应给予重视则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点故动点的轨迹是以,,的距离之和为常数为焦点且,30,,的椭圆,挖去点.∴动点解法二:设的轨迹方程是的重心,(,动点).,且,则∴点的轨迹是以且,,.,.为焦点的椭圆(挖去点),其方程为().又,代入上式,得()为所求.总结升华:求动点的轨迹,第一要剖析形成轨迹的点和已知条件的内在联系,选择最便于反应这类联系的坐标形式,成立等式,利用直接法或间接法获得轨迹方程.贯通融会:【变式 1】求过定点且和圆:相切的动圆圆心的轨迹方程 .【答案】设动圆圆心, 动圆半径为,.( 1)动圆与圆外切时,,( 2)动圆与圆内切时,,由( 1)、( 2)有.∴动圆圆心M 的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式 3】已知圆的圆心为 M 1,圆的圆心为 M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程 .【答案】设动圆圆心 P( x, y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心 P 的轨迹是以M1、M 2为焦点的双曲线的右支,此中 c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程 .法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左边,故∵,∴.化简得, 即为所求 .法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为极点,为焦点,:为准线的抛物线.故为所求 .。
圆锥曲线专题40大题练习(含答案)
圆锥曲线44道特训221.已知双曲线C:「-仁=1的离心率为心,点(V3,o)是双曲线的一个顶点.a-b'(1)求双曲线的方程;(2)经过的双曲线右焦点旦作倾斜角为30°直线/,直线/与双曲线交于不同的A,3两点,求A3的长.22[2.如图,在平面直角坐标系xOy中,椭圆、+与=1(。
〉力〉0)的离心率为一,过椭圆右a2b22焦点F作两条互相垂直的弦A3与CQ.当直线A3斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.3.已知椭圆C:「+「=1(。
〉力〉0)的一个焦点为尸(1,0),离心率为土.设P是椭圆Zr2C长轴上的一个动点,过点P且斜率为1的直线/交椭圆于A,B两点.(1)求椭圆C的方程;(2)求|PA|2+|PB|2的最大值.224.已知椭圆C:「+七=1(0〉力〉0)的右焦点为『(L°),短轴的一个端点B到F的距离a'd等于焦距.(1)求椭圆。
的方程;(2)过点万的直线/与椭圆C交于不同的两点M,N,是否存在直线/,使得△3加与△B月V的面积比值为2?若存在,求出直线/的方程;若不存在,说明理由..2,25.已知椭圆C:=■+%■=1(a>b>0)过点p(—1,—1)-c为椭圆的半焦距,且c=姻b.过a"b~点P作两条互相垂直的直线L,L与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线L的斜率为一1,求APMN的面积;第1页共62页(3)若线段MN的中点在x轴上,求直线MN的方程.6.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e=—.2(1)求椭圆£*的方程;(2)若直线l:y=kx+m(人主0)与椭圆E交于不同的两点A、B,且线段的垂直平分线过定点P(|,0),求实数女的取值范围.Ji7.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e.2(1)求椭圆E的方程;(2)设直线l-.y=x+m(m^O)与椭圆E交于A、3两点,线段A3的垂直平分线交x 轴于点T,当hi变化时,求面积的最大值.8.已知椭圆错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准方程)0(12222>>=+b a by a x )0(12222>>=+b a b x a y 图 形顶 点 ),0(),,0()0,(),0,(2121b B b B a A a A -- ),0(),,0()0,(),0,(2121a B a B b A b A -- 对称轴 x 轴,y 轴;短轴为b 2,长轴为a 2焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F -焦 距 )0(2||21>=c c F F 222b a c -=离心率)10(<<=e ace (离心率越大,椭圆越扁) 通 径 22b a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常用结论:(1)椭圆)0(12222>>=+b a by a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两点,则2ABF ∆的周长=(2)设椭圆)0(12222>>=+b a by a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ二、双曲线:xO F 1 F 2 P y A 2 B 2 B 1xO F 1F 2 Py A 2A 1B 1B 2 A 1(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。
||221F F a =表示两条射线;||221F F a >没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准 方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a bx a y 图 形顶 点 )0,(),0,(21a A a A -),0(),,0(21a B a B -对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2焦 点 )0,(),0,(21c F c F -),0(),,0(21c F c F -焦 距 )0(2||21>=c c F F 222b a c+=离心率 )1(>=e ace (离心率越大,开口越大) 渐近线 x ab y ±= x ba y ±= 通 径22b a(3)双曲线的渐近线: ①求双曲线12222=-by a x的渐近线,可令其右边的1为0,即得02222=-by a x ,因式分解得到0x y a b ±=。
②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ;(4)等轴双曲线为222t y x =-2xOF 1P B 2B 1F 2xO F 1 F 2PyA 2 A 1y(4)常用结论:(1)双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,过1F 的直线交双曲线的同一支于B A ,两点,则2ABF ∆的周长=(2)设双曲线)0,0(12222>>=-b a by a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交双曲线于Q P ,两点,则Q P ,的坐标分别是 =||PQ三、抛物线:(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。
其中:定点为抛物线的焦点,定直线叫做准线。
(2)抛物线的标准方程、图象及几何性质:0>p焦点在x 轴上, 开口向右焦点在x 轴上, 开口向左焦点在y 轴上, 开口向上焦点在y 轴上, 开口向下标准 方程px y 22=px y 22-=py x 22=py x 22-=图 形顶 点 )0,0(O对称轴 x 轴y 轴焦 点 )0,2(pF )0,2(p F -)2,0(p F)2,0(p F -离心率 1=e准 线 2p x -=2p x =2p y -=2p y =通 径 p 2焦半径 2||||0p x PF += 2||||0p y PF += 焦点弦焦准距pO FPy lxOF Py lxOF P y lxx OFPy l四、弦长公式: ||14)(1||1||2212212212A k x x x x k x x k AB ∆⋅+=-+⋅+=-+= 其中,∆,A 分别是联立直线方程和圆锥曲线方程,消去 y 后所得关于x 的一元二次方程 的判别式和2x 的系数求弦长步骤:(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出AB x x -=+21,ACx x =21;(3)代入弦长公式计算。
法(二)若是联立两方程,消去x,得关于y 的一元二次方程,02=++C By Ay 则相应的弦长公式是:||)1(14)()1(1||)1(1||2212212212A k y y y y k y y k AB ∆⋅+=-+⋅+=-+=注意(1)上面用到了关系式||4)(||2122121A x x x x x x ∆=-+=-和 ||4)(2122121A y y y y y y ∆=-+=- 注意(2)求与弦长有关的三角形面积,往往先求弦长,再求这边上的高(点到直线的距离),但若三角形被过顶点的一条线段分成两个三角形,且线段的长度为定值,求面积一般用分割法五、弦的中点坐标的求法法(一):(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出ABx x -=+21;(3)设中点),(00y x M ,由中点坐标公式得2210x x x +=;再把0x x =代入直线方程求出0y y =。
法(二):用点差法,设),(11y x A ,),(22y x B ,中点),(00y x M ,由点在曲线上,线段的中点坐标公式,过A 、B 两点斜率公式,列出5个方程,通过相减,代入等变形,求出00,y x 。
六、求离心率的常用方法:法一,分别求出a,c ,再代入公式法二、建立a,b,c 满足的关系,消去b,再化为关于e 的方程,最后解方程求e (求e 时,要注意椭圆离心率取值范围是0﹤e ﹤1,而双曲线离心率取值范围是e ﹥1)例1:设点P 是圆224x y +=上的任一点,定点D 的坐标为(8,0),若点M 满足2PM MD =.当点P 在圆上运动时,求点M 的轨迹方程.解 设点M 的坐标为(),x y ,点P 的坐标为()00,x y ,由2PM MD =, 得()()00,28,x x y y x y --=--,即0316x x =-,03y y =.因为点P ()00,x y 在圆224x y +=上,所以22004x y +=.即()()2231634x y -+=,即2216439x y ⎛⎫-+= ⎪⎝⎭,这就是动点M 的轨迹方程.例2:已知椭圆的两个焦点为(-2,0),(2,0)且过点53(,)22-,求椭圆的标准方程解法1 因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a b+=>>,由椭圆的定义可知:222253532(20(202102222a =++--+-+--=)())() 10a ∴=又2222,6c b a c =∴=-=所以所求的标准方程为 221106x y +=解法222222,4c b a c a =∴=-=-,所以可设所求的方程为222214x y a a +=-,将点53(,)22-代人解得:10a = 所以所求的标准方程为221106x y += 例3.例4.高二圆锥曲线练习题11、F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段2、已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x3、已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .324、设椭圆1C 的离心率为513,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A .2222143x y -=B .22221135x y -=C .2222134x y -=D .222211312x y -=5、设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ). (A )4 (B )3 (C )2 (D )16、双曲线8222=-y x 的实轴长是( )(A )2 (B ) 22 (C ) 4 (D )427、双曲线24x -212y =1的焦点到渐近线的距离为( ) A .3.2 C 3.18、以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=9、、过椭圆2222x y a b+=1(a >b >0)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若∠1F 2PF 60=°,则椭圆的离心率为( ) A .22 B .33C .12D .1310. “0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆的 ( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 11、写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); .(3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; (4)离心率为23,经过点(2,0); 12、与椭圆且短有相同的焦点,y x 14922=+轴长为2的椭圆方程是: 13、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22.过1F 的直线l 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为:14、已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .15、 已知1F 、2F 是椭圆C :22221x y a b+=(0a b >>)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥,若12PF F △的面积是9,则b = .16、求心在原点,焦点在坐标轴上,且经过P ( 4,3- ),Q ( 3,22 )两点的椭圆方程。