(参考资料)水轮机初步选型设计

合集下载

水轮机选型设计

水轮机选型设计

目录第一章基本资料 (2)1.1水轮机选择的内容 (2)第二章水能计算与相关曲线的绘制 (3)2.1水能计算 (3)2.2相关曲线的绘制 (7)第三章机组台数和单机容量的确定 (8)3.1水轮机选型方案初定 (8)3.2确定水轮机选型方案 (8)第四章水轮机基本参数的计算 (13)4.1水轮机转轮直径的计算 (13)4.2水轮机效率的计算 (13)4.3水轮机转速的计算 (13)4.4水轮机设计流量的计算 (14)4.5水轮机几何吸出高度的计算 (14)4.6飞逸转速的计算 (16)第一章基本资料水轮机的选型是水电站设计中的一项重要任务。

水轮机的型式与参数选择的是否合理,对于水电站的动能经济指标及运行稳定性、可靠性有重要的影响。

水电站水轮机的选择工作,一般是根据水电站的开发方式、动能系数、水工建筑物的布置等,并参照国内已生产的水轮机转轮参数及制造厂的生产水平,拟选出若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数1.1水轮机选择的内容水轮机选型设计包括以下基本内容:(1)根据水能规划推荐的电站总容量确定机组的台数和单机容量;(2)选择水轮机的型号及装置方式;(3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数;(4)绘制水轮机的运转特性曲线;(5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的外形尺寸、重量和价格;(6)选择调速设备;(7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件;(8)对电站建成后水轮机的运行、维护提出建议。

第二章水能计算与相关曲线的绘制2.1水能计算根据所给原始资料,通过水能计算可以得到相应数据下的装机容量、发电量登各种参数,并将所得数据记录于表2-1中。

(1)水头HH=Hg-△h …………………………………(2-1)式中 Hg ——水电站毛水头,m ;△h —— 水电站引水建筑物中的水力损失,m 。

将计算结果录入表2-1第⑪列中。

小型水电站水轮机的选型设计

小型水电站水轮机的选型设计

小型水电站水轮机的选型设计摘要:高坪桥水库电站水头运行范围为22.99~57.92m,以统计规律为指导,在容量相近的水轮机参数水平基础上,结合目前国内机组制造水平及转轮特点,通过技术经济比较分析,进行机组选型设计,最终确定合理的水轮机参数。

关键词:卧式混流机组;选型设计1 引言浙江省龙游县高坪桥水库工程地处龙游县境内衢江支流社阳溪上,社阳溪流域现有社阳水库调蓄能力有限,且未设置防洪库容,下游地区受衢江洪水顶托,汛期每遇暴雨,易发生洪涝灾害。

2水轮机参数选择2.1 电站基本参数高坪桥水库总库容3206万m3,供水调节库容2431万m3,防洪库容560万m3;死库容218万m3;配套电站总装机容量3.6MW。

电站为引水式电站,正常蓄水位182.0m,发电死水位150.0m;电站最大毛水头58.42m,最小毛水头26.0m,加权平均水头46.66m。

2.2 水轮机模型参数选择本电站水头范围为26.00m~58.42m。

对于该水头段的机组宜采用卧式混流式机组。

参考现有的水轮机模型转轮,供本电站选用的混流机转轮较多,其中A289和A551C模型参数较优,其能量特性和空化性能均较好,具有一定的代表性。

经计算比较,机组选型方案比较表如下两个方案均能满足运行要求。

模型转轮A551c效率较高,选用的转轮直径较小,机组总造价较低。

但安装高程较低,主厂房土建造价较高。

考虑本阶段预留一定裕度,选取效率略低,单位流量较小的模型转轮,有利获得较好汽蚀性能。

综合考虑,本阶段暂按照A286转轮来选择水轮机参数及机组流道主要控制尺寸,提出本电站水轮机应具有的能量指标及空化指标。

2.3 水轮机机组台数选择台数的选择应综合考虑满足工程功能要求的技术经济指标。

从运行和检修方面来看,机组台数越多,运行调度越灵活,检修工作也越容易安排。

但是台数增加将加大机电设备及土建投资。

本电站发电厂房距离大坝较远,大坝位置另外设置生态流量泄放装置,不需考虑通过机组泄放生态流量。

(一)水电站水轮机选型设计方法及案例

(一)水电站水轮机选型设计方法及案例

水电站水轮机选型设计总体思路和基本方法水轮机选型是水电站设计中的一项重要任务。

水轮机的型式与参数的选择是否合理,对于水电站的动能经济指标及运行稳定性、可靠性都有重要的影响。

水轮机选型过程中,一般是根据水电站的开发方式、动能参数、水工建筑物的布置等,并考虑国内外已经生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。

一 已知参数1 电站规模:总装机容量:32.6MW 。

2 电站海拔:水轮机安装高程:▽=850m3 水轮机工作水头:max H =8.18m ,min H =8.3m ,r H =14.5m 。

二 机组台数的选择对于一个确定了总装机容量的水电站,机组台数的多少将直接影响到电厂的动能经济指标与运行的灵活性、可靠性,还将影响到电厂建设的投资等。

因此,确定机组台数时,必须考虑以下有关因素,经过充分的技术经济论证。

1机组台数对工程建设费用的影响。

2机组台数对电站运行效率的影响。

3机组台数对电厂运行维护的影响。

4机组台数对设备制造、运输及安装的影响。

5机组台数对电力系统的影响。

6机组台数对电厂主接线的影响。

综合以上几种因素,兼顾电站运行的可靠性和设备运输安装的因素,本电站选定机组为:4×8.15MW 。

三 水轮机型号选择 1 水轮机比转速s n 的选择水轮机的比转速s n 包括了水轮机的转速、出力与水头三个基本工作参数,它综合地反映了水轮机的特征,正确的选择水轮机的比转速,可以保证所选择的水轮机在实际运行中有良好的能量指标与空化性能。

各类水轮机的比转速不仅与水轮机的型式与结构有关,也与设计、制造的水平以及通流部件的材质等因素有关。

目前,世界各国根据各自的实际水平,划定了各类水轮机的比转速的界限与范围,并根据已生产的水轮机转轮的参数,用数理统计法得出了关于水轮机比转速的统计曲线或经验公式。

当已知水电站的水头时,可以用这些曲线或公式选择水轮机的比转速。

水电站水轮机选型设计1

水电站水轮机选型设计1

院校:河北工程大学水电学院专业班级:水利水电建筑工程01班姓名:苏华学号: 093520101指导老师:简新平水电站水轮机的选型设计摘要本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。

主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。

系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。

关键词:水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。

【abstract】Curriculum project of hydrostation is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of inadaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method , when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydrostation , the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened .【Keyword】Curriculum project of hydrostation ; guarding method ; mode of thinking ; methodology; design step.水电站水轮机选型设计第一节基本资料 (4)1.1基本资料1.2设计内容第二节机组台数与单机容量的选择 (4)2.1 机组台数与机电设备制造的关系2.2 机组台数与水电站投资的关系2.3 机组台数与水电站运行效率的关系2.4 机组台数与水电站运行维护工作的关系2.5 单位容量的选择第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5)3.1 HL240型水轮机3.2 ZZ440型水轮机3.3 两种方案的比较分析第四节水轮机运转特性曲线的绘制 (13)4.1 基本资料4.2 等效率曲线的计算与绘制4.3 出力限制线的绘制4.4 等吸出高度线的绘制第五节蜗壳设计 (15)5.1 蜗壳型式选择5.2 主要参数确定5.3 蜗壳的水力计算及单线图,断面图的绘制第六节尾水管设计 (18)6.1 尾水管型式的选择6.2 尺寸确定及绘制平面剖面单线图第七节调速设备的选择 (19)8.1 调速器的计算8.2 接力器的选择8.3 调速器的选择8.4 油压装置的选择参考资料 (21)大江水电站水轮机选型设计第一节基本资料1.1基本资料大江水电站,最大净水头H max=35.87m,最小净水头H min=24.72m,设计水头H p=28.5m,电站总装机容量N装=68000KW,尾水处海拔高程▽=24.0m,要求吸出高Hs> -4m。

第二节 水轮机选型设计

第二节 水轮机选型设计

反击式水轮机转轮公称直径系列
25 30 35 (40) 42 50 60 71 (80) 84 100 120 140 160 180 200 225 250
275 300 330
380
410 450 500 550 850 900 950 1000
• 五、反击式水轮机的主要参数选择 • 2、转速n的选择
• 3、选择水轮机的型号: • (3)也可根据教材表8-4或图8-25确定水轮机的类型后, 或当用上述方法有两个型号接近的可选方案时,可用下 述方法选择水轮机的型号(比转速) • 轴流式 • 混流式
2300 ns Hr
2000 ns 20 Hr
• 贯流式:查下面曲线
• 2、装置方式选择 • 在大中型水电站中,其水轮发电机组的尺寸一般较大, 安装高程也较低,因此其装置方式多采用立轴式,即水 轮机轴和发电机轴在同一铅垂线上,并通过法兰盘联接。 这样使发电机的安装位置较高不易受潮,机组的传动效 率较高,而且水电站厂房的面积较小,设备布置较方便。 • 对机组转轮直径小于1m,吸出高度Hs为正值的水轮机, 常采用卧轴装置,以降厂房高度。而且卧式机组的安装、 检修及运行维护也较方便。
• 三、机组台数及单机容量的选择 • (2)运行效率 • 较大单机尺寸的机组,效率比较高。这对于预计经常满 负荷运行的水电厂获得的动能效益特别显著。 • 对变动负荷的水电厂,若采用过少的机组台数,虽单机 效率高,但在部分负荷时,由于负荷不便于在机组间调 节,因而不能避开低效率区。因此电厂的平均效率较低。
• 四、水轮机型号及装置方式的选择 • 1、根据电站装机总容量及机组台数,计算单机容量。
PZ P Z
• 2、选择水轮机的型号: • (1)根据水轮机系列应用范围综合图选择转轮型号 • 选型时可用已知的水电站设计水头和单机容量,在水轮 机系列应用范围综合图上找出适当的水轮机型号和装置 方式。有时可能有两种或三种适用的水轮机型号,这时 就需要根据具体情况,对不同机型方案进行全面的分析 比较,最后选用一种最优的机型。 • 常用于中小型机组的选择。

水轮机选型设计毕业论文

水轮机选型设计毕业论文

水轮机选型设计毕业论文目录第一章水轮机....................................... - 4 - 1.1 特征水头的确定............................................. - 4 -1.2 水轮机选型................................................. - 6 -1.3 水轮机蜗壳及尾水管......................................... - 8 - 1.3.1 蜗壳尺寸确定............................................ - 8 - 1.3.2 尾水管尺寸确定.......................................... - 8 -1.4 调速设备及油压设备选择..................................... - 9 - 1.4.1 调速功计算.............................................. - 9 - 1.4.2 接力器选择.............................................. - 9 - 1.4.3 调速器的选择............................................ - 9 - 1.4.4 油压装置............................................... - 10 -第二章发电机...................................... - 11 -2.1 发电机的尺寸估算.......................................... - 11 - 2.1.1 主要尺寸估算........................................... - 11 - 2.1.2 外形尺寸估算........................................... - 12 -2.2 发电机重量估算............................................ - 13 - 第三章混凝土重力坝................................ - 14 -3.1 剖面设计.................................................. - 14 - 3.1.1 坝高的确定............................................. - 14 - 3.1.2 坝底宽度的确定......................................... - 16 -3.2 稳定与强度校核............................................ - 17 -紧水滩水电站坝后式厂房方案论证设计3.2.1 作用大小............................................... - 17 - 3.2.2 承载能力极限状态强度和稳定验算......................... - 20 - 3.2.3 正常使用极限状态进行强度的计算和验算................... - 25 -第四章引水建筑物布置.............................. - 27 -4.1 压力钢管布置.............................................. - 27 - 4.1.1 确定钢管直径........................................... - 27 -4.2 进水口布置................................................ - 28 - 4.2.1 确定有压进水口的高程................................... - 28 - 4.2.2 渐变段尺寸确定......................................... - 28 - 4.2.3 拦污栅尺寸确定......................................... - 28 - 4.2.4 通气孔的面积确定....................................... - 29 -第五章主厂房尺寸及布置 ............................ - 30 -5.1 厂房高度的确定............................................ - 30 - 5.1.1 水轮机安装高程......................................... - 30 - 5.1.2. 尾水管顶部高程及尾水管底部高程......................... - 30 - 5.1.3 基岩开挖高程........................................... - 30 - 5.1.4 水轮机层地面高程....................................... - 31 - 5.1.5 发电机层楼板高程....................................... - 31 - 5.1.6 吊车轨顶高程........................................... - 31 - 5.1.7 厂房顶高程............................................. - 31 -5.2 主厂房长度的确定.......................................... - 31 - 5.2.1 机组段长度确定......................................... - 31 - 5.2.2 端机组段长度........................................... - 32 - 5.2.3 装配场长度............................................. - 33 -5.3 主厂房宽度和桥吊跨度的确定................................ - 33 - 第六章混凝土溢流坝................................ - 34 -6.1 溢流坝段总宽度的确定...................................... - 34 - 6.1.1 单宽流量q的选择....................................... - 34 - 6.1.2 确定溢流前缘总净宽L ................................... - 34 - 6.1.3 确定溢流坝段总宽度..................................... - 35 -6.2 堰顶高程的确定............................................ - 35 -6.2.1 堰顶高程的确定 ......................................... - 35 - 6.2.2 闸门高度的确定 ......................................... - 36 - 6.3 堰面曲线的确定 ............................................ - 36 - 6.3.1 最大运行水头max H 和定型设计水头d H 的确定 ............... - 36 - 6.3.2 三圆弧段的确定 ......................................... - 36 - 6.3.3 曲线段的确定 ........................................... - 36 - 6.3.4 直线段的确定 ........................................... - 37 - 6.3.5 反弧段的确定 ........................................... - 37 - 6.3.6 鼻坎挑角和坎顶高程的确定 ............................... - 38 - 6.3.7 溢流坝倒悬的确定 ....................................... - 38 - 6.4 溢流坝强度和稳定验算 ...................................... - 39 - 6.4.1 作用大小 ............................................... - 39 - 6.4.2 承载能力极限状态强度和稳定验算 ......................... - 41 - 6.4.3 正常使用极限状态进行强度的计算和验算 ................... - 43 - 6.5 消能与防冲 ............................................... - 44 - 6.5.1 挑射距离和冲刷坑深度的估算 ............................. - 44 -第七章 压力钢管应力分析及结构设计................... - 44 -7.1 水力计算 .................................................. - 45 - 7.1.1 水头损失计算 ........................................... - 45 - 7.1.2 水锤计算 ............................................... - 49 - 7.2 压力钢管厚度的拟定 ........................................ - 53 - 7.3 钢管、钢筋、混凝土联合承受压的应力分析 .................... - 54 - 7.3.1 混凝土开裂情况判别 ..................................... - 54 - 7.3.2 应力计算 ............................................... - 58 -紧水滩水电站坝后式厂房方案论证设计第一章 水轮机1.1特征水头的确定1. 在校核洪水位下, 四台机组满发,下泄流量Q=14100m 3/s,由厂区水位流量关系可得,尾水位▽尾=220.54m ,▽库=291.8mH 1=0.99×(▽库-▽尾)=0.99×(291.8-220.54)=70.54m2, 在设计洪水位下,四台机组满发,下泄流量Q=11000 m 3/s,由厂区水位流量关系得, 尾水位▽尾=217.82m, ▽库=289.94mH 2=0.99×(▽库-▽尾)=0.99×(289.94-217.82)=71.40m3, 在设计蓄水位下,一台机组满发,由下列式子试算出该情况下对应的下泄流量和水头N=9.81QH η H=0.99×(▽库-▽尾) ▽尾=f (Q)η=η水×η电=0.95×0.9列表试算,得当下泄流量为67.5 m 3/s 时,一台机组满发,对应水头为81.26m.,即H 3=81.26m.4.在设计蓄水位下,四台机组满发,试算该情况下对应的下泄流量和水头,列表试算当下泄流量为274 m 3/s 时,四台机组满发,对应水头为80.08m ,即H 4=80.08m 。

水轮机选型设计

水轮机选型设计

⽔轮机选型设计第⼀章⽔轮机的选型设计第⼀节⽔轮机型号的初步选择⼀、沙溪⽔电站的主要参数H max =68.0m H p =50.0m H min =43.0m由《⽔利机械》P 36设计⽔头 H r 初算时可近似取(0.9~1.0)H p H r = 0.95×50.0= 47.5m 总装机35万kw⼆、因为沙溪⽔电站的⽔头范围为43.0m~68.0m,根据《⽔轮机》课本,符合此⽔头范围的要求,分别是 HL220,它的使⽤⽔头为30~70m 。

该⽔电站的⽔头范围为38-68m ,适合此⽔头范围⽔轮机的类型有斜流式和混流式。

⼜根据混流式⽔轮机的优点:(1)⽐转速范围⼴,适⽤⽔头范围⼴,可适⽤30-700m ;、(2)结构简单,价格低;(3)装有尾⽔管,可减少转轮出⼝⽔流损失;故选择混流式⽔轮机。

⼆.⽐转速的选择按我国⽔轮机的型谱推荐的设计⽔头与⽐转速的关系,⽔轮机的s n 为 )(19.270205.472000202000kw m H n rs ?=-=-=因此,选择s n 在260左右的⽔轮机为宜。

在⽔轮机型谱中有HL220,故按HL220进⾏计算三.单机容量第⼆节原型⽔轮机主要参数的选择按电站建成后,在电⼒系统的作⽤和供电⽅式,初步拟定为2台、3台、4台、5台四种⽅案进⾏⽐较。

HL220其主要参数如下:模型转轮直径D 1=46cm,导叶相对⾼度b 0/D 1=0.25 z 1=14, 最优⼯况n 10’=70r/min,Q 10’=1.0m 3/s,η=92%,ns0=255,σ=0.115; 限制⼯况Q 1’=1.150m 3/s,η=89%,σ=0.133. 最⼤单位飞逸⽐转速n 1p ’= 133 r/min⼀.(⼆台)1、计算转轮直径⽔轮机额定出⼒:kw N P GGr 4.17857198.0105.174=?==η式中:G η-----发电机效率,取0.98 G N -----机组的单机容量(KW )取最优单位转速流量,Q 11r =1.14m 3/s ,对应的模型效率ηm=0.886,暂取效率修正值Δη=0.03,则设计⼯况原型⽔轮机效率η=ηm +Δη=0.916)(29.7916.05.4714.181.99183781.95.15.1111m H Q P D r r ===η按我国规定的转轮直径系列,计算值处于标准值7.0m 和7.5m 之间。

第六章 水轮机的选型设计

第六章 水轮机的选型设计
② 重叠区内相同型式不同型号转轮的比 较
3、选择水轮机主要参数计算
4、计算各方案的吸出高度 H s
5、绘制各方案的运转综合特性曲线
6、确定各方案的安装高程 安
7、各方案分析比较
8、结论
§6-3 反击式水轮机主要参数计算
主要介绍最常见的用模型综合特性曲线选择 参数的方法,基于几点考虑:
①原、模型水轮机满足相似条件,因此,可 用相似公式计算原、模型水轮机主要参数。
9.81Q11H 2
P 式中: ----水轮机的额定出力,单位kW。P Pf f
其中 Pf 为同步发电机额定容量; f 为发电机效
率,中小型 f 95% ~ 96% ,大中型 f 96% ~ 98%
H ----水轮机的设计水头,单位m。
Q11 ----设计工况下的单位流量
对HL式和ZD式水轮机,采用模型最优单位
转速 n110M 与模型出力限制线交点的单位流量值
;对ZZ式水轮机,由于无出力限制线,出力受
气蚀的限制,故选用小于型谱推荐的 Q11 值。
----水轮机效率,可按单位流量取值点的
模型效率 M ,先初略加上1%---3%的效率修正
值进行计算。待求出 D1 后,再按转轮直径标 准系列取与之接近的标准直径(见课本P17)。
转速所包含的区间,这个区间就是原型水轮机的
工作范围。若这个区间在模型综合特性图上处于
高效率区,则说明原型水轮机工作范围理想,所
选参数配合合理。
初选水轮机基本参数表
台数Z
P Pf Z f
D1
P
3Hale Waihona Puke 9.81Q11H 2标准直径
max
1 1 M max
5
D1M D1

水轮发电机组选型设计设计共39页

水轮发电机组选型设计设计共39页

第 1 页第1章 水轮发电机组选型设计1.1、机组台数及型号选择1.1.1、水轮机型式的选择已知参数保证出力:MW 35=b N ,利用小时数:h 2225 取设计水头3.23av r ==H H按我国水轮机的型谱推荐的设计水头与比转速的关系,混流式水轮机的比转速s n :轴流式水轮机的比转速s n :根据原始资料,适合此水头范围的水轮机类型有轴流式和混流式。

轴流式和混流式水轮机优点:(1)混流式结构紧凑,运行可靠,效率高,能适应很宽的水头范围,是目前应用最广泛的水轮机之一。

(2)轴流式水轮机s n 较高,具有较大的过流能力,轴流转桨式水轮机可在协联方式下运行,在水头、负荷变化时可实现高效率运行根据表本电站水头变化范围m H 6.25~8.22=查《水电站机电设计手册—水力机械》 选择适合的水轮机有244/260A HL 、503JK 和500ZZ 。

三个水轮机参数如下:转轮型号推荐使用水头 H(m) 模型转轮直径1Dcm 最优工况限制工况'10nr/mi n '10Q sm /3η%'10Q sm /3η %σ模型试验水头 H(m)单位飞逸转速'Rn 1(r/min) 水推力系数K HL260/A244 35~60 35 80 1.08 91.7 1.27586.5 0.15 3 158.7 0.34~0.41 JK503 26 35 135 903 90.8 1800 87 0.63 10 340 0.87 ZZ50018~30461280.9889.5 1.65 86.7 0.58533520.871.1.2、拟订机组台数并确定单机容量因为设计电站是无调节电站,所以工作容量等于保证出力MW 35=b N选用混流式机组的单机容量不得超过MW 8.7745.035= 选用轴流式机组的单机容量不得超过MW 10035.035= 确定机组台数4台和5台 方案列表如下:水轮机组选型及台数汇总表台数4 5 转轮型号HL260/A244 JK503 ZZ500 HL260/A244 JK503 ZZ500 单机容量(MW)50 50 50 40 40 40 1.2、水轮机方案比较1.2.1、方案Ⅱ、MW 504⨯ 244/260A HL1、计算转轮直径水轮机的额定出力为:取最优单位转速min 80110r/n =与出力限制线的交点的单位流量为设计工况点单位流量,则)(s /m 29.1Q 3110=,对应的模型效率875.0m =η,暂取效率修正值%2=∆η,则设计工况原型水轮机效率895.002.0875.0m =+=∆+=ηηη。

水电站水轮机选型设计

水电站水轮机选型设计

院校:河北工程大学水电学院专业班级:水利水电建筑工程01班姓名:苏华学号: 093520101指导老师:简新平水电站水轮机的选型设计摘要本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。

主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。

系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。

关键词:水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。

【abstract】Curriculum project of hydrostation is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of inadaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method , when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydrostation , the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened .【Keyword】Curriculum project of hydrostation ; guarding method ; mode of thinking ; methodology; design step.水电站水轮机选型设计第一节基本资料 (4)1.1基本资料1.2设计内容第二节机组台数与单机容量的选择 (4)2.1 机组台数与机电设备制造的关系2.2 机组台数与水电站投资的关系2.3 机组台数与水电站运行效率的关系2.4 机组台数与水电站运行维护工作的关系2.5 单位容量的选择第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5)3.1 HL240型水轮机3.2 ZZ440型水轮机3.3 两种方案的比较分析第四节水轮机运转特性曲线的绘制 (13)4.1 基本资料4.2 等效率曲线的计算与绘制4.3 出力限制线的绘制4.4 等吸出高度线的绘制第五节蜗壳设计 (15)5.1 蜗壳型式选择5.2 主要参数确定5.3 蜗壳的水力计算及单线图,断面图的绘制第六节尾水管设计 (18)6.1 尾水管型式的选择6.2 尺寸确定及绘制平面剖面单线图第七节调速设备的选择 (19)8.1 调速器的计算8.2 接力器的选择8.3 调速器的选择8.4 油压装置的选择参考资料 (21)大江水电站水轮机选型设计第一节基本资料1.1基本资料大江水电站,最大净水头H max=35.87m,最小净水头H min=24.72m,设计水头H p=28.5m,电站总装机容量N装=68000KW,尾水处海拔高程▽=24.0m,要求吸出高Hs> -4m。

混流式水轮机的设计与选型方法

混流式水轮机的设计与选型方法

混流式水轮机的设计与选型方法混流式水轮机是一种常见的水轮机类型,广泛应用于水力发电站等场合。

它具有结构简单、效率高、运行稳定等优点,因此在项目建设中选用适合的混流式水轮机对电力的发电效率和运行安全性有重要的影响。

本文将介绍混流式水轮机的设计与选型方法。

一、混流式水轮机的基本结构与工作原理混流式水轮机由转轮、导叶、固定叶片、导水管等组成。

水从导水管中进入转轮的内部,经过导叶的引导后,进入转轮的混流通道,水的能量转化为转动转轮的动能,从而带动发电机发电。

二、混流式水轮机的设计要点1. 水轮机的转速根据水轮机的设计要求和实际工况,确定合适的转速是设计混流式水轮机的重要一步。

通常,转速的选择应该遵循以下原则:(1)保证水轮机的效率;(2)保证水轮机的运行平稳;(3)避免共振和临界转速。

2. 水轮机的喷口直径水轮机的喷口直径直接影响水轮机的水量和功率输出。

选择适当的喷口直径可保证水轮机高效率的运行。

喷口直径的选择需要考虑以下因素:(1)水头;(2)水轮机的效率;(3)水轮机的装置空间限制。

3. 水轮机的导叶角度导叶角度的选择直接影响水轮机的出力特性。

合适的导叶角度可使水轮机在不同负荷下保持高效率的运行。

导叶角度的选择需要考虑以下因素:(1)水轮机的设计工况;(2)水轮机的负荷变化范围。

4. 混流式水轮机的转轮形状混流式水轮机的转轮形状对水轮机的效率和运行特性有重要影响。

适当选择合适的转轮形状,可使水轮机的效率得到最大化。

转轮形状的选择需要考虑以下因素:(1)水流进入转轮的速度;(2)水轮机的出力转速。

5. 水轮机的材料选择水轮机常用的材料有钢、铸铁、不锈钢等。

在选择材料时,需要考虑以下因素:(1)水质的腐蚀性;(2)水流速度对材料的冲击力;(3)材料的成本。

三、混流式水轮机的选型方法混流式水轮机的选型需要考虑以下因素:1. 水头和水量根据水力资源的水头和水量确定所需的装机容量,再根据实际情况选择合适的混流式水轮机。

水轮机选型设计

水轮机选型设计

第一部分 设计原始资料一、电站地理位置:位于华北地区。

电站所在地海拔高程约850m 。

二、枢纽任务:发电为主。

三、 主要参数1、 总装机容量30万千瓦 保证出力9.99万千瓦2、水轮机工作水头最大水头 m a x 81H m = 平均水头 69.5av H m =设计水头 73r H m = 最小水头 m i n 58H m =第二部分 任务与要求一、水轮机部分1、水轮机型号选择。

2、应用主要综合特性曲线初步拟订待选方案。

3、通过初步分析比较淘汰明显不合理的方案,保留两个较好方案精选。

4、精选过程进行两个方案的动能经济比较。

绘制运行特性曲线,进行机电设备投资的投资估算及土建工程比较。

5、确定最佳方案。

并对其进行如下计算。

(1) 水轮机飞逸转速;(2)轴向力;(3)导叶高程,导叶最大及最优开度;(4) 蜗壳水力计算及单线图;(5) 尾水管型式选择及单线图和主要剖面图的绘制;(6) 对水轮机结构的特殊要求。

二、绘制水轮机的运转综合特性曲线。

三、进行蜗壳,尾水管的水力计算。

四、油系统(1) 确定油系统的服务对象,油系统类型。

绘制油系统图。

绝缘油和透平油分别绘制。

(2) 计算最大充油设备、充油量及全厂总充油量。

(3) 计算选择贮油设备,净油设备,输油设备及管道直径。

(4) 列设备明细表。

五、技术供水系统(1)设计该水电站技术供水系统六、计算书和说明书1、分别编写设计计算书和设计说明书各一份。

2、计算书要求计算准确,层次清晰,公式和系数选择要求正确合理并表明依据。

3、说明书要论证充分正确,结论清楚。

书写字迹工整。

4、图纸要符合标准,要求选择一张用计算机绘制。

5、说明书附英文标题与摘要。

摘要本设计着重阐述了水轮机型号的选择,水力机组辅助设备中油系统、技术供水系统的设计过程。

第一部分是通过已知所给水电站的数据,拟定水轮机的初选方案,经过比较,确定两个精选方案,绘制它们的运转综合特性曲线图,并进行机电设备的投资估算及土建工程比较,最后确定最佳方案。

水轮发电机组选型设计精品资料

水轮发电机组选型设计精品资料
2)技术供水采用顶盖取水,改变初步设计时的水泵供水方案,施工设计时技术供水系统改为以顶盖取水为主,水泵供水为备用的设计方案,并在供水总管设置压力控制器和排水电磁阀等元件,电气自动化回路设计中增加了供水压力过高(超0.35MPa)时自动排水降压,过低时(0.2MPa)自动开启供水泵增加供水压力和水量。
走访闽、浙、赣三省主要水轮发电机设备制造厂,厂家表示两种机型均可生产供货,对高转速机组的运行都有所担心,推荐本站采用冲击式机组。初步报价两种机型的水轮机和发电机主设备价格相差悬殊,冲击式1套141.2万元,混流式1套只70万元。初设中经两种机型的辅助设备配套和水工建筑物不同方案的投资对比,在造价上选用混流式机组仍可节省84.2万元;此外选用HLD54-WJ-55水轮机在本站的水力条件下,运行区域很理想,溪屯溪水电站群在建瓯市电力系统中为辅助调频电站,对有水库调节的更应发挥顶峰作用,一般时间在较高出力区运行,既使水库水位变化,机组也运行在较高效率区内,为此初设推荐选用HLD54-WJ-55配SFW1250-4/1170水轮发电机组。
1)技术供水由顶盖取水是成功的三斗水库电站为高水头小转轮卧式混流式水轮机,D1=55cm,采用顶盖取水附近省份尚无先例,可能是采用顶盖取水作为技术供水最小的转轮。按设备制造厂的技术资料,技术供水的压力0.1MPa~0.2MPa,每台机空冷器需水量34m3/h,推力轴承7m3/h,加2个导轴承总需水量约55m3/h;试运行时测得机组空载时供水总管压力0.21MPa~0.27MPa,供水量61m3/h,满载时供水压力0.3MPa,供水量73m3/h(经各分支阀门调节控制进入冷却器水压为0.13MPa~0.15MPa),随着大坝的继续砌筑和水库水位的升高,顶盖取水的压力和水量还将加大,可满足机组自空载至满载时技术供水的需要。

大江水电站水轮机选型设计

大江水电站水轮机选型设计

《水轮机》课程设计任务书1 课程设计的目的课程设计的目的,是培养学生运用本课程及相关课程基本理论和技术解决实际问题,进一步提高运算、绘图和使用技术资料的能力,通过具体工程实例设计提高设计观念和分析解决工程问题的能力。

2 课程设计成果及要求2.1 课程设计成果(1)设计说明书一份,内容包括:A、封面;B、课程设计任务书;C、中文摘要;D、英文摘要;E、目录;F、正文;G、谢辞;H、参考文献;I、附录(附录为可选内容)。

(2)设计图纸一张,内容为:设计过程中的辅助图、蜗壳、尾水管单线图。

采用大米格纸或1号AutoCAD打印图纸,文字书写必须采用符合制图规范的长仿宋体。

2.2 设计成果要求※请大家务必按以下要求完成设计成果,否则,审查时不予通过。

2.2.1 说明书内容要求(1)摘要。

中文摘要在300字左右,外文摘要以250个左右实词为宜,关键词一般以3~5个为妥。

(2)目录。

按三级标题编写(即:1 ……、1.1 ……、1.1.1 ……),附录也应依次列入目录。

(3)量和单位。

量和单位必须采用中华人民共和国的国家标准GB3100~GB3102-93,它是以国际单位制(SI)为基础的。

非物理量的单位,可用汉字与符号构成组合形式的单位。

(4)正文标题层次。

全部标题层次应有条不紊,整齐清晰。

相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

章节编号方法应采用分级阿拉伯数字编号方法,两级之间用下角圆点隔开,每一级的末尾不加标点。

分级阿拉伯数字的编号一般不超过四级。

各层标题均单独占行书写。

第一级标题居中书写;第二级标题序数顶格书写,后空一格接写标题,末尾不加标点;第三级和第四级标题均空两格书写序数,后空一格书写标题。

第四级以下单独占行的标题顺序采用A.B.C.…和a.b.c.两层,标题均空两格书写序数,后空一格写标题。

正文中对总项包括的分项采用⑴、⑵、⑶…单独序号,对分项中的小项采用①、②、③…的序号或数字加半括号,括号后不再加其他标点。

高清图文+水轮机选型设计要点步骤

高清图文+水轮机选型设计要点步骤
后再修正。
(4) Q1
在N= Nr时,取限制工况下的 Q1 ,并查出限制工况
的η M
HL水轮机由5%出力限制线得到,ZL式由汽蚀条
件得到,或限制[HS]反推σ z,以防止开挖过多。
σz为水轮机装置的汽蚀系数。
10
z
900 H
H s
2、η的修正计算 求得D1后,再查附表得出η Mmax,换算得出η max。
△η=η max-η Mmax-ε 1-ε 2 ε 1=1%~2%(表示工艺水平),ε 2=1%~3%(表示异形
部件)
η=η M+△η,与假定出入太大,应重新计算。
3、转速的选择
n n1 H D1
n n10 H a D1
n1 用最优单位转速n10, n10 n10M n1
(二) 按综合特性曲线选择
1、D1的确定
Nr 9.81Q1D12Hr Hr
D1
Nr
9
. 81 Q 1H
3 r
/
2
(1) Nr(水轮机额定出力) Nr= Nf/ηf
(2) H=Hr计算。
(3) η:原型水轮机在限制工况下的效率,在D1未确定 时 一般先取η=ηM+△η (△η=2~3%),求得D1
有关资料:
(1) 水轮机产品技术资料:
系列型谱、生产厂家、产品目录、模型综合特性曲线。 (2) 水电站技术资料:
河流梯级开发方案、水库的调节性能、水电站布置方案、地形 、地质、水质、泥沙情况、总装机容量、水电站运输、安装技 术条件。
(3) 水文情况: 特征流量及特征水头(Qmax、Qmin、Qav、Hmax、Hmin、Hr、Hav) 、下游水位流量关系曲线 (4) 水电站有关经济资料:机电设备价格、工程单价、年运行费 等

水轮机选型设计计算书

水轮机选型设计计算书

第一章 水轮机的选型设计第一节 水轮机型号选定一.水轮机型式的选择根据原始资料,该水电站的水头范围为,查[《水电站机电设计手册—水力机械》表1-4]适合此水头范围水轮机的类型有斜流式和混流式。

又根据混流式水轮机的优点:(1) 比转速范围广,适用水头范围广;、(2) 结构简单,价格低;(3) 装有尾水管,可减少转轮出口水流损失;因此,选择混流式水轮机。

二.比转速的选择水轮机的设计水头估算为m H H p r 8.695.7395.095.0≈⨯==适合此水头范围的有HL260/D74和HL240/D41.[根据本电站水头变化范围(H=64-85m)查《水电站机电设计手册—水力机械》表1-4]三.单机容量 台数单机容量(万千瓦) 216 332/3 48 5第二节 原型水轮机主要参数的选择根据电站建成后,在电力系统的作用和供电方式,初步拟定为2台,3台,4台,5台,四种方案进行比较。

首先进行HL260/D74水轮机的选择一.二台1、计算转轮直径水轮机额定出力:kw N P G Gr 3.16326598.010164=⨯==η 上式中: G η-----发电机效率,取G N -----机组的单机容量(KW )由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =s,对应的模型效率ηm =894%,暂取效率修正值 Δη=,η=+=。

模型最高效率为924%。

)(98.4924.08.69247.181.93.16326581.95.15.1111m H Q P D r r =⨯⨯⨯==η 按我国规定的转轮直径系列(见《水轮机》课本),计算值处于标准值和5m 之间,且接近5m ,暂取D 1=。

2、计算原型水轮机的效率955.00.535.0)924.01(1)1(155110max =--=--=D D M M ηη 3、Δη=ηmax -ηM0=同步转速的选择min /5.13555.73791110r D H n n p=⨯== 此值介于125r/min 和 r/min 之间,且接近min ,所以取n=min 。

水轮机的选型设计资料

水轮机的选型设计资料

水轮机的选型设计资料水轮机的选型设计水轮机的选型设计水轮机选型时水电站设计的一项重要任务。

水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。

水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。

一:水轮机选型的内容,要求和所需资料1:水轮机选择的内容(1)确定单机容量及机组台数。

(2)确定机型和装置型式。

(3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。

对于冲击式水轮机,还包括确定射流直径与喷嘴数等。

(4)绘制水轮机的运转综合特性曲线。

(5)估算水轮机的外形尺寸,重量及价格。

wertyp9ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。

2.水轮机选择的基本要求水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。

在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。

(1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。

(2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。

(3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。

在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。

(4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。

(5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。

(6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。

3.水轮机选型所需要的原始技术材料水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录绪论 (1)第一章水轮机型号选择 (3)第一节选择机组台数、水轮机型号及装置方式 (3)第二节确定转轮直径、同步转速 (6)第三节运转综合特性曲线的计算和绘制 (14)第四节计算水轮机最大吸出高度和安装高程 (19)第五节待选方案的综合比较 (26)第二章蜗壳计算 (31)第一节形式、进口断面参数选择 (31)第二节蜗壳各断面参数计算 (35)参考文献 (40)总结 (41)绪论一、 设计目的:水轮机课程设计是水轮机课程教学中的一个重要实践环节,在学完水轮机有关章节的理论知识后,经过课程设计的实践,以达到巩固和加深所学理论知识的目的,并培养学生独立思考、工作的能力。

通过这一课程设计的实践,进一步掌握选型设计的内容、程序和步骤,应该考虑合比较的种种因素,培养查阅并利用资料、手册的能力。

为今后的毕业设计打下基础。

二、 设计任务:根据所给的原始资料,对指定原始参数进行水轮机选型设计,包括:1.选择机组台数、水轮机型号及装置方式2.确定转轮直径、同步转速3.运转综合特性曲线的计算和绘制4.计算水轮机最大吸出高度和安装高程5.待选方案的综合比较6.蜗壳的水力计算(1)确定蜗壳各断面尺寸(2)绘制蜗壳平面单线图三、 设计成果:1.设计计算说明书:设计说明书需说明设计思想、方案比较及最终结果设计计算书应包括设计计算过程、计算公式、参数选取的依据和计算结果2.用坐标纸绘制出的图纸四、 原始资料:电站名:CEH-1水电站该水电站为引水式开发的电站电力系统容量60万千瓦最大水头H max:320m设计水头H r:290m最小水头H min:250m装机容量:12万千瓦年利用小时数:4360h下游平均尾水位:1729.0m下游最低尾水位:1726.0m下游最高尾水位:1733.0m第一章 水轮机型号选择第一节 选择机组台数、水轮机型号及装置方式一、 机组台数及水轮机型号确定:1. 水轮机型号确定:由所给出的原始数据判断,水轮机的运行水头范围为:250m~320m,故可供选择的水轮机形式有混流式和冲击式两种。

其中冲击式水轮机具有安装高程不受空化条件限制,只要强度允许即可使用在很高的水头条件下的特点,广泛应用于负荷变化大而水头变化不大的电站;而混流式水轮机具有结构紧凑、运行可靠、效率高,能适应很宽的水头范围等特点,技术十分成熟,是目前国际国内应用最广泛的水轮机机型,安装检修均具有强有力的技术保障,且由于本次设计的电站水头变化范围较宽,且负荷较为稳定,故决定采用混流式水轮机。

按照原始资料中的最高水头查《混流式水轮机转轮型谱参数表》,经过初步比较判断选择五个型号的转轮,其详细参数见下表:经过对个机型参数的初步比较,可以看出HLD54-40型、HLA543-50型及HLA179-40型模型水轮机在最优工况下的单位转速M n 110、单位流量M Q 110、最高效率M η以及限制工况点的单位流量限M Q 11均比较高,可使原型机获得较高的转速和较大的通过流量,从而在相同出力的情况下缩小机组的尺寸,同时模型机的气蚀系数M σ较小,有利于电站的稳定运行,故选取上述三个水轮机机型进行计算,其具体参数如下表所示:2. 机组台数选择:由原始资料可知,电力系统的总容量为60万kW,CEH-1水电站的装机容量为12万kW,根据规定电站的单机容量不允许超过系统总容量的10%,否则在电站机组发生故障时,会将整个系统拖垮甚至瓦解,故电站设计单机容量不能超过6万kW,考虑到电站本身检修需要,需有电源来提供厂用电而不用从系统中调电,故一般情况下个电站均不采用一台机组的设计。

故在满足处理要求的情况下,可采用2台、3台、4台机组的设计方案进行计算比较。

若选用2台或4台机组可采用扩大单元接线方式,若选用3台机组则可采用一条单元接线、一条扩大单元接线的方式接入系统当中。

分别对于HLD54型、HLA543型及HLA179型模型水轮机按照2台、3台和4台三个方案进行计算,并比较所得结果,最终确定所选择的台数。

二、 水轮及装置方式的确定:水轮机的装置方式可分为卧轴和立轴两种,其中卧轴布置方式布置简单,不需向下开挖但占地面积较大,一般用于小型电站或水头较低的贯流式水电站。

立轴布置方式具有占地面积小的特点,但需向下进行较大的土石开挖,增加土建投资成本。

为缩小厂房面积,高水头大型电站一般均采用立轴布置方式。

根据原始资料,本次设计电站的最大水头达320m ,故应按照立轴方式布置机组。

第二节 转轮直径与机组同步转速确定分别对于HLD54型、HLA543型及HLA179型模型水轮机按照2台、3台和4台三个方案进行计算,求得转轮直径、机组同步转速,并根据计算结果最终确定机组台数。

计算步骤如下:(1) 根据电站的装机容量及所选定的机组台数,确定出单机的出力f fZ N N η=其中f N 为电站的装机容量 Z 为所选定的机组台数f η为发电机效率,%97~%96=fη(2) 根据处理确定转轮直径 2/311181.9rH Q N D η=参[一] P328公式(9-42)其中11Q 为限制工况点上的单位流量 r H 为电站的设计水头(3) 根据上部计算所得的直径,查表确定水轮机的标准直径(4) 根据模型水轮机的最高效率及查得的标准直径计算原型水轮机的最高效率)1(1511max max D D MM ηη−−= 其中max M η为模型水轮机的最高效率 m D 1为模型水轮机的转轮直径(5) 计算效率修正值max max M ηηη−=∆(6) 校验单位参数是否需要进行修正1maxmax−M ηη(7) 计算单位转速的修正值11n ∆)1(maxmax11011−=∆M n n ηη(8) 计算原型水轮机最优工况下的单位转速 11110110n n n M ∆+=参[一] P17参[一] P71 公式(3-41)参[一] P73参[一] P72 公式(3-48)其中M n 110为模型水轮机最优工况下的单位转速(9) 计算原型水轮机的转速1110D H n n cp=其中cp H 为加权平均水头cp r H H )95.0~9.0(=(河床式取小值) (10) 按照计算所得的原型水轮机转速,结合发电机的同步转速,查找接近并且偏大的同步转速,确定水轮机的标准转速。

(11) 计算原型水轮机的效率ηηη∆+=M(12) 按照查得的标准直径1D 验证水轮机的出力是否满足要求η2/3211181.9r H D Q N =(13) 按照查得的标准直径1D 和标准转速计算出水轮机在最大水头、设计水头和最小水头下的单位转速11nH nD n 111=参[一] P326公式(9-36)参[一] P326表 (9-9)参[一] P305 公式(9-9)参[一] P305公式(9-10)参[一] P52公式(3-16)n为查得的水轮机标准转速(14)按照计算所得的单位转速在模型综合特性曲线上找到各方案所穿越的效率区,选择通过最高效率区域的方案各型水轮机的计算结果见下表:HLD54型水轮机参数计算结果表:HLA179型水轮机参数计算结果表:HLA543型水轮机参数计算结果表由计算表格及原型水轮机综合特性曲线可知,HLD54型、HLA179型、HLA543型水轮机通过高效率区的均为A方案,D均为2.25m,故取机组台数为2台。

各型水轮机的标准直径1/r,其具体参数如下表:标准转速n均为500min第三节 机组运转综合特性曲线的计算和绘制 在确定转轮型号、转轮直径1D 以及标准转速n 后,结合模型水轮机综合特性曲线,将水轮机的工作水头范围划分为若干个区域,从中选取5个特征水头进行列表计算,求出在各水头下,原形水轮机效率与出力之间的关系,并在坐标纸上以原型水轮机效率和出力为纵横坐标描出各点,最后用光滑的曲线将各点连接,得到)(P f =η曲线。

具体计算步骤如下: (1) 计算效率修正值 max max M ηηη−=∆(2) 校验单位参数是否需要进行修正 1max max −M ηη (3) 计算单位转速的修正值11n ∆ )1(maxmax 11011−=∆M n n ηη (4) 计算各水头所对应的模型水轮机的单位转速M n 11参[一] P306公式(9-12) 参[一] P73参[一] P72公式(3-48)11111n H nD n M ∆−= (5) 计算单位流量的修正值11Q ∆ )1(maxmax 11011−=∆M Q Q ηη (6) 按照各水头线与模型综合特性曲线的交点,查出模型水轮机的效率M η与单位流量M Q 11列表计算原型水轮机的效率T η、单位流量T Q 11及出力P 。

ηηη∆+=M T111111Q Q Q M T ∆+= T H D Q P η2/3211181.9= (7) 找到各水头线与5%出力限制线的交点,查出对应的M η和M Q 11填入表格中,求出各水头下水轮机的限制流量及限制出力。

各型水轮机等效率曲线计算结果如下表 计算所得的出力P 单位均为MW参[一] P307 表 (9-1)参[一] P73公式(3-49) 参[一] P305公式(9-9) 参[一] P305公式(9-10)HLD54式水轮机等效率曲线计算表:HLA179式水轮机等效率曲线计算表:HLA543式水轮机等效率曲线计算表:根据上表计算所得的数据,在坐标纸上以原型水轮机效率和出力为纵横坐标描出各点,最后用光滑的曲线将各点连接,得到)(P f =η曲线。

但因时间关系,无法将三条曲线全部完成,仅从草图中作粗略比较,决定仅对HLD54型和HLA179型水轮机进行精确描点作图和后续计算。

图纸见附图一(HLD54等效率曲线)和附图二(HLA179等效率曲线) 第四节 水轮机最大吸出高度和 安装高程的计算 一、水轮机最大吸出高度的计算及等吸出高度曲线的绘制 水轮机的吸出高度直接关系着水轮机的气蚀性能,因此需对水吸出高度进行计算并绘出反应吸出高度与水轮机出力之间关系的曲线。

在确定转轮型号、转轮直径1D 以及标准转速n 后,结合模型水轮机综合特性曲线,将水轮机的工作水头范围划分为若干个区域,从中选取5个特征水头进行列表计算,求出在各水头下,原形水轮机出力P 与吸出高度s H 之间的关系,并在坐标纸上以原型水轮机吸出高度s H 和出力P 为纵横坐标描出各点,最后用光滑的曲线将各点连接,得到)(P f H s =曲线。

具体计算步骤如下: (1) 计算效率修正值max max M ηηη−=∆(2) 校验单位参数是否需要进行修正 1maxmax−M ηη (3) 计算单位转速的修正值11n ∆)1(maxmax11011−=∆M n n ηη(4) 计算各水头所对应的模型水轮机的单位转速M n 1111111n HnD n M∆−=(5) 查参考资料确定水轮机气蚀系数的修正值σ∆02.0=∆σ参[一] P306 公式(9-12)参[一] P73参[一] P72 公式(3-48)参[一] P307 表 (9-1)参[一] P101 图 (4-22)(6) 计算原型水轮机的气蚀系数σσ∆+M (7) 计算水轮机的吸出高度s HH H M s )(90010σσ∆+−∇−=其中∇为下游水面到海平面的标高 (8) 由表中的H 和11Q 查)(11P f Q =曲线,得到各单位流量所对应的出力值,填入表中。

相关文档
最新文档