非线性回归分析(常见曲线及方程)

合集下载

非线性回归分析的入门知识

非线性回归分析的入门知识

非线性回归分析的入门知识在统计学和机器学习领域,回归分析是一种重要的数据分析方法,用于研究自变量和因变量之间的关系。

在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出一种复杂的非线性关系。

因此,非线性回归分析就应运而生,用于描述和预测这种非线性关系。

本文将介绍非线性回归分析的入门知识,包括非线性回归模型的基本概念、常见的非线性回归模型以及参数估计方法等内容。

一、非线性回归模型的基本概念在回归分析中,线性回归模型是最简单和最常用的模型之一,其数学表达式为:$$Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_pX_p +\varepsilon$$其中,$Y$表示因变量,$X_1, X_2, ..., X_p$表示自变量,$\beta_0, \beta_1, \beta_2, ..., \beta_p$表示模型的参数,$\varepsilon$表示误差项。

线性回归模型的关键特点是因变量$Y$与自变量$X$之间呈线性关系。

而非线性回归模型则允许因变量$Y$与自变量$X$之间呈现非线性关系,其数学表达式可以是各种形式的非线性函数,例如指数函数、对数函数、多项式函数等。

一般来说,非线性回归模型可以表示为:$$Y = f(X, \beta) + \varepsilon$$其中,$f(X, \beta)$表示非线性函数,$\beta$表示模型的参数。

非线性回归模型的关键在于确定合适的非线性函数形式$f(X,\beta)$以及估计参数$\beta$。

二、常见的非线性回归模型1. 多项式回归模型多项式回归模型是一种简单且常见的非线性回归模型,其形式为: $$Y = \beta_0 + \beta_1X + \beta_2X^2 + ... + \beta_nX^n +\varepsilon$$其中,$X^2, X^3, ..., X^n$表示自变量$X$的高次项,$\beta_0, \beta_1, \beta_2, ..., \beta_n$表示模型的参数。

非线性回归分析常见模型

非线性回归分析常见模型

非线性回归常见模型一.基本内容模型一xc e c y 21=,其中21,c c 为常数.将xc ec y 21=两边取对数,得x c c e c y xc 211ln )ln(ln 2+==,令21,ln ,ln c b c a y z ===,从而得到z 与x 的线性经验回归方程a bx z +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型二221c x c y +=,其中21,c c 为常数.令a c b c x t ===212,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型三21c x c y +=,其中21,c c 为常数.a cbc x t ===21,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型四反比例函数模型:1y a b x=+令xt 1=,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型五三角函数模型:sin y a b x=+令x t sin =,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.二.例题分析例1.用模型e kx y a =拟合一组数据组()(),1,2,,7i i x y i =⋅⋅⋅,其中1277x x x ++⋅⋅⋅+=;设ln z y =,得变换后的线性回归方程为ˆ4zx =+,则127y y y ⋅⋅⋅=()A.70e B.70C.35e D.35【解析】因为1277x x x ++⋅⋅⋅+=,所以1x =,45z x =+=,即()127127ln ...ln ln ...ln 577y y y y y y +++==,所以35127e y y y ⋅⋅⋅=.故选:C例2.一只红铃虫产卵数y 和温度x 有关,现测得一组数据()(),1,2,,10i i x y i =⋅⋅⋅,可用模型21e c x y c =拟合,设ln z y =,其变换后的线性回归方程为4zbx =- ,若1210300x x x ++⋅⋅⋅+=,501210e y y y ⋅⋅⋅=,e 为自然常数,则12c c =________.【解析】21e c x y c =经过ln z y =变换后,得到21ln ln z y c x c ==+,根据题意1ln 4c =-,故41e c -=,又1210300x x x ++⋅⋅⋅+=,故30x =,5012101210e ln ln ln 50y y y y y y ⋅⋅⋅=⇒++⋅⋅⋅+=,故5z =,于是回归方程为4zbx =- 一定经过(30,5),故ˆ3045b -=,解得ˆ0.3b =,即20.3c =,于是12c c =40.3e -.故答案为:40.3e -.该景点为了预测2023年的旅游人数,建立了模型①:由最小二乘法公式求得的数据如下表所示,并根据数据绘制了如图所示的散点图.。

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

2.在两个变量y与x的回归模型中,分别选择了4个不同的模型,它
们的决定系数R2如下,其中拟合效果最好的模型是(
2为0.98
A.模型1的决定系数R

B.模型2的决定系数R2为0.80
C.模型3的决定系数R2为0.50
D.模型4的决定系数R2为0.25
A
[R2越大拟合效果越好.]
)
3.从某省“双一流”大学中随机选出8名女大学生,得到其身高
残差图
观测值等,这样作出的图形称为______.在残差图中,残差点比较
均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的
带状区域的宽度____,说明模型拟合精度越高.
越窄
残差
(3)残差分析:____是随机误差的估计结果,通过对残差的分析可以
判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据
建立两个变量间的非线性经验回归方程.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)残差平方和越接近0,线性回归模型的拟合效果越好.
(√ )
(2)在画两个变量的散点图时,响应变量在x轴上,解释变量在y轴
上.
( × )
(3)R2越小,线性回归模型的拟合效果越好.
( × )
(4)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( √ )
和幂函数模型的求解过程.(数学运算、数学建模)
01
必备知识·
情境导学探新知
设某幼苗从观察之日起,第x天的高度为y cm,测得的一些数据如表
所示:
第x天
1
4
9
16
25
36
49
高度y/cm
0
4
7
9

第23讲 非线性回归方程(解析版)

第23讲 非线性回归方程(解析版)

第23讲 非线性回归方程一、必备秘籍当经验回归方程并非形如y bx a =+(,a b R ∈)时,称之为非线性经验回归方程,当两个变量不呈线性相关关系时,依据样本点的分布选择合适的曲线方程来模拟,常见的非线性经验回归方程的转换方式总结如下:1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换(一般题目都有明显的暗示如何换元,换元成什么变量),将非线性经验回归模型转化为线性经验回归模型(特别注意:使用线性回归方程的公式,注意代入变换后的变量);4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 . 二、例题讲解1.(2021·全国高三专题练习(文))人类已经进入大数据时代.目前,数据量级已经从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024PB )乃至ZB (1ZB =1024EB )级别.国际数据公司(IDC )研究结果表明,2008年全球产生的数据量为0.49ZB ,2009年数据量为0.8ZB ,2010年增长到1.2ZB ,2011年数据量更是高达1.82ZB .下表是国际数据公司(IDC )研究的全球近6年每年产生的数据量(单位:ZB )及相关统计量的值:表中ln i i z y =,16i i z z ==∑.(1)根据上表数据信息判断,方程21c xy c e =⋅(e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(2c 精确到0.01).(2)有人预计2021年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由.参考数据: 4.5695.58e ≈, 4.5897.51e ≈,回归方程y a bx =+中,斜率最小二乘法公式为()()()1122211n niii ii i nniij i x x y y x y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1) 1.520.38x y e +=;(2)见解析. 【分析】(1)设ln z y =,则12ln z c c x =+,再根据参考数据及公式即可得解(2)先将8x =代入得预计2021年数据量,进而和2011年的50倍比较大小即可得解 【详解】(1)由21c xy c e =⋅,两边同时取自然对数得()2112ln ln ln c x y c e c c x =⋅=+,设ln z y =,则12ln z c c x =+. 因为 3.5x =, 2.85z =,()62117.58i i x x=-=∑,()()616.7.i i i x x z z =--=∑,所以()()()12216.730.3817.58niii nij x x z z c x x ==--==≈-∑∑,12ln 2.850.38 3.5 1.52c z c x =-=-⨯=.所以 1.520.38ln z x y =+=, 所以 1.520.38x y e +=;(2)令8x =,得 1.520.388 4.56ˆ95.58 1.825091ye e +⨯==≈>⨯=. 预计2021年全世界产生的数据规模会超过2011年的50倍. 【点睛】关键点点睛:对于非线性回归方程的求解,一般要结合题意作变换,转化为线性回归方程来求解,同时也要注意相应数据的变化.((11ii nj x b ===∑∑再直接选择数据,字母x 没有((11n ii nj x b ===∑∑参考数据总选择需要的数据代入计算。

非线性回归分析(常见曲线与方程)

非线性回归分析(常见曲线与方程)

非线性回归分析回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic)对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1.双曲线1b a yx2.二次曲线3.三次曲线4.幂函数曲线5.指数函数曲线(Gompertz)6.倒指数曲线y=ab/xe其中a>0,7.S型曲线(Logistic) y1 abex8.对数曲线y=a+blogx,x>0bx9.指数曲线y=ae其中参数a>01.回归:(1)确定回归系数的命令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’,beta0,alpha)2.预测和预测误差估计:[Y,DELTA]=nlpredci(’model’,x,beta,r,J)求nlinfit或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA.例2观测物体降落的距离s与时间t的关系,得到数据如下表,求s关于t的回归方程s?a btct2.t(s)1/302/303/304/305/306/307/30s(cm)11.8615.6720.6026.6933.7141.9351.13t(s)8/309/3010/3011/3012/3013/3014/30s(cm)61.4972.9085.4499.08113.77129.54146.48解:b/x,建立M文件volum.m如下:e1.对将要拟合的非线性模型y=afunctionyhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[6.428.209.589.59.7109.939.9910.4910.5910.6010.8010.6010.9010.76];beta0=[82]';3.求回归系数:[beta,r,J]=nlinfit(x',y','volum',beta0);beta2.y11.6036ex即得回归模型为:4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r,J);plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化曲线方程曲线图形变换公式变换后的线性函数b y=ax c=lnavlnx=u=ylnu=cbvbx y=ae c=alnu=ylnu=cbvc=alny=a1bvxxeu=ylnu=cbvy=abxvlnxln==u=abvuy。

非线性回归分析常见曲线及方程)

非线性回归分析常见曲线及方程)

非线性回归分析回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S 型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的 回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1. 双曲线1b a y x =+2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a /e b x 其中a>0, 7.S 型曲线(Logistic) 1e x y a b -=+ 8.对数曲线 y=a+b log x,x >0 9. 指数曲线y =a e bx 其中参数a >01.回归:(1)确定回归系数的命令[beta ,r ,J]=nlinfit (x,y,’model’,beta0)(2)非线性回归命令:nlintool (x ,y ,’model’, beta0,alpha )2.预测和预测误差估计:[Y ,DELTA]=nlpredci (’model’, x,beta ,r ,J )求nlinfit 或lintool 所得的回归函数在x 处的预测值Y 及预测值的显著性水平为1-alpha 的置信区间Y ,DELTA.例2 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s关于t 的回归方程2ˆct bt a s++=. 解:1. 对将要拟合的非线性模型y=a /e b x ,建立M 文件volum.m 如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.5910.60 10.80 10.60 10.90 10.76];beta0=[8 2]';3.求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta即得回归模型为:1.064111.6036e x y-=4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化。

非线性回归分析(常见曲线及方程)

非线性回归分析(常见曲线及方程)

非线性返回分解之阳早格格创做返回分解中,当钻研的果果闭系只波及果变量战一个自变量时,喊干一元返回分解;当钻研的果果闭系波及果变量战二个或者二个以上自变量时,喊干多元返回分解.别的,返回分解中,又依据形貌自变量取果变量之间果果闭系的函数表白式是线性的仍旧非线性的,分为线性返回分解战非线性返回分解.常常线性返回分解法是最基原的分解要领,逢到非线性返回问题不妨借帮数教脚法化为线性返回问题处理二个局面变量之间的相闭闭系并没有是线性闭系,而浮现某种非线性的直线闭系,如:单直线、二次直线、三次直线、幂函数直线、指数函数直线(Gompertz)、S型直线(Logistic) 对于数直线、指数直线等,以那些变量之间的直线相闭闭系,拟合相映的返回直线,修坐非线性返回圆程,举止返回分解称为非线性返回分解罕睹非线性筹备直线1.单直线1bay x =+2.二次直线3.三次直线4.幂函数直线5.指数函数直线(Gompertz)6.倒指数直线y=a/e b x其中a>0,7.S型直线(Logistic)1e x ya b-=+8.对于数直线y=a+b log x,x>09.指数直线y=a e bx其中参数a>01.返回:(1)决定返回系数的下令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性返回下令:nlintool(x,y,’model’, beta0,alpha)2.预测战预测缺点预计:[Y,DELTA]=nlpredci(’model’, x,beta,r,J)供nlinfit 或者lintool所得的返回函数正在x处的预测值Y 及预测值的隐著性火仄为1-alpha的置疑区间Y,DELTA.例2 瞅测物体降降的距离s取时间t的闭系,得到数据如下表,供s闭于t的返回圆程2ˆctbtas++=.解:1. 对于将要拟合的非线性模型y=a/e b x,修坐M文献如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输进数据:x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]'; 3.供返回系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta即得返回模型为: 1.064111.6036e xy -=4.预测及做图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r') 2.非线性函数的线性化直线圆程直线图形变更公式变更后的线性函数by ax=ln ln ln c a v x u y ===u c bv +=bx y ae =ln ln c a u y ==u c bv +=b xey a =1ln ln x c a v u y ===u c bv +=ln y a b x +=ln v x u y ==u bv +=a。

非线性回归分析(常见曲线及方程)

非线性回归分析(常见曲线及方程)

非线性回归分析(常见曲线及方程)预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制非线性回归分析回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1.双曲线1bay x =+2.二次曲线3.三次曲线4.幂函数曲线5.指数函数曲线(Gompertz)6.倒指数曲线y=a/e b x其中a>0,7.S型曲线(Logistic)1e x ya b-=+8.对数曲线y=a+b log x,x>09.指数曲线y=a e bx其中参数a>01.回归:(1)确定回归系数的命令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha)2.预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x,beta,r,J)求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA.例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s2解:1. 对将要拟合的非线性模型y=a/e b x,建立M文件volum.m如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]';3.求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0);beta即得回归模型为:1.064111.6036e x y-=4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化。

专题02 非线性回归方程(解析版)

专题02 非线性回归方程(解析版)

专题2 非线性回归方程例1. 某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:模型①:由最小二乘法公式求得y 与x 的线性回归方程5081697=+ˆ..yx ; 模型②:由散点图的样本点分布,可以认为样本点集中在曲线=bx y ae 的附近. (1)根据表中数据,求模型②的回归方程=ˆbx yae .(a 精确到个位,b 精确到001.). (2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).参考公式、参考数据及说明:①对于一组数据1(v ,1)w ,2(v ,2)w ,⋯,(n v ,)n w ,其回归直线αβ=+ˆˆˆwv 的斜率和截距的最小二乘法估计分别为121βαβ==--==--∑∑()()ˆˆ,()nii i nii ww v v w v vv . ②刻画回归效果的相关指数221211==-=--∑∑()()nii i n ii yy Ryy .③参考数据:546235≈.e ,14342≈..e .表中101110===∑,i i ii u lny u u.【解析】解:(1)对=bx y ae 取对数,得=+lny bx lna , 设=u lny ,=c lna ,先建立u 关于x 的线性回归方程.1011021900010883==--==≈-∑∑()().ˆ.()ii i ii xx u u bxx , 6050108555456546=-≈-⨯=≈ˆˆ.....cu bx ,546235=≈≈ˆ.ˆc a e e . ∴模型②的回归方程为011235=.ˆx ye ; (2)由表格中的数据,有3040714607>,即101022113040714607==>--∑∑()()iii i yy yy ,即10102211304071460711==-<---∑∑()()iii i yy yy ,∴2212<R R ,模型①的相关指数21R 小于模型②的22R ,说明回归模型②的拟合效果更好.2021年时,13=x ,预测旅游人数为0111314323523523542987⨯==≈⨯=..ˆ.y e e (万人).例2. 近年来,随着国家综合国力的提升和科技的进步,截至2018年底,中国铁路运营里程达13.2万千米,这个数字比1949年增长了5倍;高铁运营里程突破2.9万千米,占世界高铁运营里程的60%以上,居世界第一位.如表截取了20122016-年中国高铁密度的发展情况(单位:千米/万平方千米).已知高铁密度y 与年份代码x 之间满足关系式=(b y ax a ,b 为大于0的常数).若对=b y ax 两边取自然对数,得到=+lny blnx lna ,可以发现lny 与lnx 线性相关.(1)根据所给数据,求y 关于x 的回归方程ˆ(lna ,ˆb 保留到小数点后一位);(2)利用(1)的结论,预测到哪一年,高铁密度会超过30千米/万平方千米.参考公式:设具有线性相关系的两个变量x ,y 的一组数据为(i x ,1=)(i y i ,2,⋯⋯)n ,则回归方程ˆˆˆybx a =+的系数:121==--=-∑∑()()ˆ()nii i nii xx y y b xx ,=-ˆay bx . 参考数据:515092=-≈∑.ii i lnxlny lnx lny ,5221516=-≈∑()().ii lnx lnx ,515=≈∑ii lnx,5114=≈∑ii lny,274≈.,3034≈.ln .【解析】解:(1)对00=>>(,)b y ax a b 两边取自然对数,得=+lny blnx lna ; 令=i i v lnx ,=i i u lny ,1=i ,2,3,⋯,n ; 得u 与v 具有线性相关关系,计算51522150920575165==-===-∑∑.ˆ..i i i ii v uvubvv ,140575122255=-=-⨯=ˆ..lna u bv , ∴06≈ˆ.b,22≈≈.lna , ∴0622=+ˆ..u v ,故y 关于x 的回归方程为0622+=..ˆlnx y e , 即2206=..ˆye x ; (2)在(1)的回归方程中,0622+=..lnx y e ,高铁密度超过30千米/万平方千米; 即062230+>..lnx e ,06223034+>≈...lnx ln ,2>lnx .274>≈.x e ,即8=x 时,高铁密度超过30千米/万平方千米;所以预测2019年,高铁密度超过30千米/万平方千米.例3. 某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图1):产品的质量指数在[50,70)的为三等品,在[70,90)的为二等品,在[90,110]的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元),以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率. (1)求每件产品的平均销售利润;(2)该公司为了解年营销费用x (单位:万元)对年销售量y (单位:万件)的影响,对近5年的年营销费用i x 和年销售量i y (1,2,3,4,5)i =数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中ln i i u x =,ln i i v y =,5115i i u u ==∑,5115i i v v ==∑根据散点图判断,by a x =可以作为年销售量y (万件)关于年营销费用x (万元)的回归方程.(ⅰ)建立y 关于x 的回归方程;(ⅰ)用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润-营销费用,取 4.15964e =)参考公式:对于一组数据:11(,)u v ,22(,)u v ,,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小乘估计分别为^121()()()nii i nii uu v v uu β==--=-∑∑,^v u αβ∧∧=-【解析】(1)设每件产品的销售利润为ξ元,则ξ的所有可能取值为1.5,3.5,5.5 由直方图可得:一、二、三等品的频率分别为0.4,0.45,0.15, 所以()1.50.15P ξ==,()3.50.45P ξ==, ()5.50.4P ξ==,所以:随机变量ξ的分布列为:所以, 1.50.15 3.50.45 5.50.44E ξ=⨯+⨯+⨯= 故每件产品的平均销售利润为4元.(2)(ⅰ)由·b y a x =得,()ln ln ?ln ln by a x a b x ==+,令ln u x =,ln v y =,ln c a =,则v c bu =+,由表中数据可得,()()()1210.410.251.6ˆ4ni i i n i i u u v v b u u ==--===-∑∑, 则24.8716.300.25 4.15955ˆc v bu∧∧=-=-⨯= 所以, 4.1590.25v u ∧=+,即14.1594ln 4.1590.25ln ln ?y x e x ∧⎛⎫=+= ⎪⎝⎭因为 4.15964e=,所以1464?y x ∧=故所求的回归方程为1464?y x =(ⅰ)设年收益为z 万元,则()14256z E y x x x ξ=-=-设14t x =,()4256f t t t =-,则()()33'2564464f t t t=-=-当()0,4t ∈时,()'0f t >,()f t 在()0,4单调递增, 当()4,t ∈+∞时,()'0f t <,()f t 在()4,+∞单调递减. 所以,当4t =,即256x =时,z 有最大值为768即该厂应投入256万元营销费,能使得该产品一年的收益达到最大768万元.例4. 近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x 为收费标准(单位:元/日),t 为入住天数(单位:),以频率作为各自的“入住率”,收费标准x 与“入住率”y 的散点图如图(1)若从以上六家“农家乐”中随机抽取两家深入调查,记ξ为“入住率”超过0.6的农家乐的个数,求ξ的概率分布列;(2)令ln z x =,由散点图判断ˆˆˆybx a =+与ˆˆy bz a =+哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(ˆb结果保留一位小数) (3)若一年按365天计算,试估计收费标准为多少时,年销售额L 最大?(年销售额365L =⋅入住率⋅收费标准x )参考数据:1221ˆ,ni i i n ii x y nx y b x nx ==-⋅=-∑∑621,200,0.45,32500,ˆˆ0ii a y bx x y x ==-===∑ 615.1,12.7,i i i z y z =≈≈∑6231158.1,148.4ii ze =≈≈∑【解析】(1)ξ的所有可能取值为0,1,2.则()0P ξ== 2426C C 62,155== ()1124268115C C P C ξ⋅===,()2P ξ== 2226C C 115= ξ∴的分布列(2)由散点图可知ˆˆˆybz a =+更适合于此模型. 其中6162216 1.070.52.0ˆ46i i i i i z y zy bz z ==--==≈--∑∑,ˆ3ˆˆay bz =-= 所求的回归方程为0.5ˆ3ylnx =-+ (3)()3650.53L lnx x =-+=3651095.2xlnx x -+ 365365365322L lnx =--+⨯'令505148.4L lnx x e =⇒=⇒=≈' ∴若一年按365天计算,当收费标准约为148.4元/日时,年销售额L 最大,最大值约为27083元.例5. 已知某种细菌的适宜生长温度为10C 25C ︒~︒,为了研究该种细菌的繁殖数量y (单位:个)随温度x (单位:C ︒)变化的规律,收集数据如下:对数据进行初步处理后,得到了一些统计量的值,如下表所示:其中ln i i k y =,7117i i k k ==∑.(1)请绘出y 关于x 的散点图,并根据散点图判断y bx a =+与21e c xy c =哪一个更适合作为该种细菌的繁殖数量y 关于x 的回归方程类型(结果精确到0.1);(2)当温度为25C ︒时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据()(),1,2,3,...,i i u v i n =,其回归线ˆˆˆvu βα=+的斜率和截距的最小二乘估计分别为:()121ˆ()()niii nii u u v v u u β==--=-∑∑,ˆˆav u β=-.参考数据: 5.5e 245≈.【解析】(1)绘出的散点图如图所示,根据散点图判断21c xy c e =更适合作为该种细菌的繁殖数量y 关于x 的回归方程类型;(2)∵21c xy c e=,∴21lny c x lnc =+,∴()()()71272120.50.2112i ii i i x x k k c x x ==--==≈-∑∑,1220.53.8180.5112lnck c x =-=-⨯≈, ∴0.51c e =,20.20.51c xx y c e e +==,当温度为25C ︒时,该种细菌的繁殖数量的预报值为 5.5245e ≈.例6. 噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度D (单位:分贝)与声音能量(单位:2/W cm )之间的关系,将测量得到的声音强度1D 和声音能量i I (i =1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.表中lg i i W I =,101110i i W W ==∑。

回归曲线方程

回归曲线方程

回归曲线方程一、引言回归分析是一种统计学方法,用于研究自变量与因变量之间的相关关系,并通过对自变量的已知值来预测因变量的未知值。

回归曲线方程是回归分析中常用的数学模型,用于描述因变量如何随自变量的变化而变化。

本文将介绍回归曲线方程的种类、参数估计以及应用。

二、回归曲线方程的种类1.线性回归方程:线性回归方程是最简单的回归模型,其形式为y=ax+b,其中a是斜率,b是截距。

线性回归方程假设因变量y与自变量x之间存在线性关系。

2.多项式回归方程:当线性回归方程不能很好地拟合数据时,可以考虑使用多项式回归方程。

多项式回归方程的一般形式为y=a0+a1x+a2x2+…+anxn,其中an是最高次项的系数。

3.非线性回归方程:非线性回归方程的形式与线性回归方程类似,但关系不是线性的。

常见的非线性回归方程包括对数回归方程、指数回归方程等。

三、回归曲线方程的参数估计在建立回归曲线方程后,需要估计方程中的参数。

最小二乘法是最常用的参数估计方法,其基本思想是通过最小化预测值与实际观测值之间的平方误差来估计参数。

最小二乘法能够给出参数的“最佳”估计值,使得预测值与实际观测值之间的差距最小。

四、回归曲线方程的应用1.生物医学研究:在生物医学领域中,回归曲线方程常被用来分析生物标志物与疾病之间的关系,或者评估治疗效果与药物剂量的关系。

通过建立回归曲线方程,可以更好地理解生物系统的复杂性和动态性。

2.社会科学调查:在社会科学调查中,回归曲线方程可以用于研究各种社会问题,例如收入水平、教育程度、性别等因素对就业的影响。

通过回归分析,能够深入了解各种因素之间的相关关系和因果关系。

3.工程领域:在工程领域中,回归曲线方程可以用于分析工程数据,例如机械性能、材料强度等。

通过建立回归曲线方程,可以更好地了解工程系统的性能和行为,优化设计并提高产品质量。

4.环境监测:在环境监测中,回归曲线方程可以用于分析环境因素与生态系统之间的关系。

非线性回归

非线性回归

非线性回归一、可化为线性回归的曲线回归在实际问题当中,有许多回归模型的被解释变量y 与解释变量x 之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为线性关系,利用线性回归求解未知参数,并作回归诊断。

如下列模型。

εββ++=x e y 10-------(1) εββββ+++++=p p x x x y 2210--------(2) εe ae y bx =--------------------(3) ε+=bx ae y -------------(4)对于(1)式,只需令x e x ='即可化为y 对x '是线性的形式εββ+'+=x y 10,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。

对于(2)式,可以令1x =x ,2x =2x ,…, p x =p x ,于是得到y 关于1x ,2x ,…, p x 的线性表达式εββββ+++++=p p x x x y 22110对与(3)式,对等式两边同时去自然数对数,得ε++=bx a y ln ln ,令 y y ln =',a ln 0=β,b =1β,于是得到y '关于x 的一元线性回归模型: εββ++='x y 10。

对于(4)式,当b 未知时,不能通过对等式两边同时取自然数对数的方法将回归模型线性化,只能用非线性最小二乘方法求解。

回归模型(3)可以线性化,而(4)不可以线性化,两个回归模型有相同的回归函数bx ae ,只是误差项ε的形式不同。

(3)式的误差项称为乘性误差项,(4)式的误差项称为加性误差项。

因而一个非线性回归模型是否可以线性化,不仅与回归函数的形式有关,而且与误差项的形式有关,误差项的形式还可以有其他多种形式。

乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为t y 本身是异方差的,而t y ln 是等方差的。

常见非线性回归模型

常见非线性回归模型

常见非线性回归模型1.简非线性模型简介非线性回归模型在经济学研究中有着广泛的应用。

有一些非线性回归模型可以通过直接代换或间接代换转化为线性回归模型, 但也有一些非线性回归模型却无法通过代换转化为线性回归模型。

柯布—道格拉斯生产函数模型εβα+=L AK y其中 L 和 K 分别是劳力投入和资金投入, y 是产出。

由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。

对于联立方程模型, 只要其中有一个方程是不能通过代换转化为线性, 那么这个联立方程模型就是非线性的。

单方程非线性回归模型的一般形式为εβββ+=),,,;,,,(2121p k x x x f y2.可化为线性回归的曲线回归在实际问题当中,有许多回归模型的被解释变量y 与解释变量x 之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为线性关系,利用线性回归求解未知参数,并作回归诊断。

如下列模型。

(1)εββ++=x e y 10(2)εββββ+++++=p p x x x y 2210(3)ε+=bx ae y(4)y=alnx+b对于(1)式,只需令x e x ='即可化为y 对x '是线性的形式εββ+'+=x y 10,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。

对于(2)式,可以令1x =x ,2x =2x ,…, p x =p x ,于是得到y 关于1x ,2x ,…, p x 的线性表达式εββββ+++++=p p x x x y 22110对与(3)式,对等式两边同时去自然数对数,得ε++=bx a y ln ln ,令 y y ln =',a ln 0=β,b =1β,于是得到y '关于x 的一元线性回归模型: εββ++='x y 10。

乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为t y 本身是异方差的,而t y ln 是等方差的。

第八讲 非线性回归PPT课件

第八讲 非线性回归PPT课件

400 x1 600
200
0
0
2.00e+11 4.00e+11 6.00e+11 8.00e+11 1.00e+12
y4
20
Y 0 1Xi 2 Xi2 3 Xi3 K rXir ui
选取好最高阶数后,按照下列步骤进行: (1)选定最大的r值并估计r阶多项式回归。 (2)利用t统计量检验Xr的系数ßr为零的假设。 如果拒绝原假设,则Xr应包含在回归中, 故使用r阶多项式。
7
如何决定是用线性还是非线性? 最简单的办法是利用t检验考察二次方的显 著性: 对于方程
我们需要检验income2前的系数β2是否显 著。
8
非线性设定形式中X变化对Y的效应
想知道在固定其他自变量X2、X3…Xk 的情形下,当自变量X1变化∆X时,预期 因变量Y如何变化。当总体回归函数为线 性时,很容易计算这个效应, ∆Y=ß1∆X1 但当回归函数为非线性时,由于Y的预期 变化依赖于自变量的取值,因此其计算 较复杂。
61
在本题中我们还可以求以下数据: 1。低学生/教师比和低英语学习者百分率学区 的样本平均侧试成绩。 2。低学生/教师比和高英语学习者百分率学区 的样本平均侧试成绩。 3。高学生/教师比和低英语学习者百分率学区 的样本平均侧试成绩。 4。高学生/教师比和高英语学习者百分率学区 的样本平均侧试成绩。
38
注意:因为自变量不包含任何对数形式, 所以对数线性模型的拟合图是一条直线。
39
6.6
6.55
6.5
6.45
6.4
0
20
40
60
income
lntestscr
Fitted values

非线性回归PPT课件

非线性回归PPT课件


S
S形函数
y exp(b0 b1 / t)
Logistic
逻辑函数
y 1 ,u是预先给定的常数
1 u
b0b1t
Growth Exponent
增长函数 指数函数
y exp(b0 b1t)
y b0 exp(b1t)
第3页/共62页


3
对以上各种曲线回归,选用SPSS的Regression 命令下的Curve Estimation命令,即可直接拟合各种 曲线回归,不必作任何变量变换。
y x x x2 x2 x x
i
0
1 i1
2 i2
11 i1
22 i 2
12 i1 i 2
i
检验是否有交互效应,并检验风险反感度的二次效应。 26 第26页/共62页
序号 1
x1 66.29
x2
y
7
196
2
40.964
5
63
3
72.996 10 252
4
45.01
6
84
5
11
第11页/共62页
非线性回归 (例题分析)
1. 用双曲线模型:
y 1 , x 1 , 则有y x
y x 2. 按线性回归的方法求解 和 ,得
yˆ 0.038 0.026x
1 0.038 0.026 1

x
12
第12页/共62页
非线性回归 (例题分析)
需求量
价格与需求量的散点图
9.23
1987
7
11962.5
12350.06
-387.56
9.39
1988
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性回归分析
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理
两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S 型曲线(Logistic) 对数曲线、指数曲线等,以这
些变量之间的曲线相关关系,拟合相应的 回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析
常见非线性规划曲线
1.
双曲线
1b a y x
=+2.二次曲线
3.三次曲线
4.幂函数曲线
5.指数函数曲线(Gompertz)
6.倒指数曲线y=a 其中a>0,
/e
b x
7.S 型曲线(Logistic)
1e x
y a b -=
+8.对数曲线 y=a+b log x,x >0 9.
指数曲线y =a 其中参数a >0
e
bx
1.回归:
(1)确定回归系数的命令
[beta ,r ,J]=nlinfit (x,y,’model’,beta0)
(2)非线性回归命令:nlintool (x ,y ,’model’, beta0,alpha )2.预测和预测误差估计:
[Y ,DELTA]=nlpredci (’model’, x ,beta ,r ,J )
求nlinfit 或lintool 所得的回归函数在x 处的预测值Y 及预测值的显著性水平为1-alpha 的置信区间Y ,DELTA.
例2 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s
2解:
1. 对将要拟合的非线性模型y=a ,建立M 文件volum.m 如下:
/e
b x
f unction yhat=volum(beta,x)
y hat=beta(1)*exp(beta(2)./x);
2.输入数据:
x=2:16;
y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];
beta0=[8 2]';
3.求回归系数:
[beta,r ,J]=nlinfit(x',y','volum',beta0);
beta
即得回归模型为:
1.0641
11.6036e x y-
=
4.预测及作图:
[YY,delta]=nlpredci('volum',x',beta,r ,J);
plot(x,y,'k+',x,YY,'r')
h
e i r
b e
i n g
a r
e g
o o
d f
o 2.非线性函数的线性化
曲线方程
曲线图形
变换公式
变换后的线性函数
b
y ax
=ln ln ln c a v x u y
===u c bv
+=bx
y ae
=ln ln c a u y
==u c bv
+=b x
e y a
=1
ln ln x c a v u y
===u c bv +=ln y a b x
+=ln v x u y
==u bv
+=a。

相关文档
最新文档