最新电磁铁的设计计算35780
电磁铁的设计计算
电磁铁的设计计算1原始数据YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数额定工作电压UH=24V额定工作电压时的工作电流IH ≤1A 2 测试数据测试参数工作行程δ=1mm 吸力F=7.5kg 电阻R=3.5Ω4 设计程序根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能4.1 确定衔铁直径dc电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力F=7.5kg 则电磁铁的结构因数K =F/δ7.5/0.1=27 (1)电磁铁的结构形式应为平面柱挡板中心管式根据结构因数查参考资料,可得磁感应强度BP=10000 高斯当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式F= (Bp/5000)2×Π/4×dc2 (2) 式中Bp磁感应强度(高斯) dc 活动铁心直径(毫米)可以求得衔铁直径为dc=5800×FBp=5800×7.510000=1.59cm=15.9mm取dc=16 mm4.2 确定外壳内径D2在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n 约为2~ 3 ,选取n=2.7 D2=n ×dc=2.76×16=28.16 毫米(3) 式中D2 外壳内径毫米 4.3 确定线圈厚度bk=D2−dc2−Δ(4)式中bk -----线圈厚度毫米Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米bk=28.16−162−1.7 =4.38毫米今取bk=5 毫米 4.4 确定线圈长度线圈的高度lk与厚度bk比值为β,则线圈高度lk=β×bk (5) lk------线圈长度毫米β值根据参考资料选取经验数据为β=3.4 则线圈高度lk=β×bk=3.4×5=17毫米 4.5 确定导线直径导线直径d=4×ρ×Dcp×IWU(6)式中平均直径Dcp=dc+bk=0.016+0.005=0.021( 米) IW-----线圈磁势(安匝)IW= (IW)z + (IW) cm+ (IW)k式中(IW)z ------消耗在气隙中的磁势(IW)z=Bp×δμ0×10−8(IW) cm和(IW)k 消耗在铁心中和非工作气隙中磁势的安匝数约为总磁势的15~30% ,即(IW) cm+ (IW)k=α×(IW)式中α=0.15 ~0.3由此可得线圈的磁势为(IW)=Bp×δμ0×(1−α)×10−8 (安匝) (7)式中Bp单位为高斯,δ单位为厘米空气导磁系数μ0=1.25 ×10−8亨/厘米电磁铁在实际应用时电压可能降低至85%UH 为了保证在电压降低后电磁铁仍然能够可靠地工作上式计算所得安匝数应该是指电压降低至0.85UH时的磁势用(IW)1表示(IW)1=10000×0.11.25×10−8×(1−0.3)×10−8=1143安匝显然,电源电压为额定值时的磁势为IW=(IW)10.85=1344 安匝电磁铁容许最高工作温度240℃,由参考资料选取电阻系数ρ=0.03208 欧. 毫米2米d= 4ρ∗Dcp∗IWU= 4×0.03208×0.021×134424=0.388 毫米查线规表其最邻近的直径为d=0.41 毫米带绝缘后的直径d =0.45 毫米4.6 确定线圈匝数WW=1.28(IW)jd2(8)式中j ---容许电流密度(安毫米2) ,j=Iq=4UπRd2=4×24π×3.5×0.412=51安毫米2(9)W=1.28(IW)jd2=1.28×134451×0.412=200 匝 4.7 确定电阻线圈平均匝长lcp=π(DH+D1)2(10)DH=D1+2bk (11) D 1=dc+2Δ(12)式中DH ---线圈外直径D1 ---线圈内直径D1=dc+2Δ=16+2×1.7=19.4毫米DH=D1+2bk=19.4+2×4.38=27.4 毫米lcp=π(DH+D1)2=π(27.4+13.4)2=64 毫米=0.064 米线圈电阻下载文档到电脑,查找使用更方便1下载券1385人已下载下载还剩2页未读,继续阅读R=ρ40∗lcp∗wπ4∗d2=0.01991×0.064×1093π4×0.252=28 欧(13)现在已初步确定了电磁铁的结构尺寸绘制电磁铁结构草图如图 25 特性验算虽然根据设计要求已完成了初步设计但是由于在初步设计中作了不少简化有些参数的选择和估计是极其近似的因此为了电磁铁的工作可靠起见还需要根据初步设计的结构尺寸和数据做进一步详细的验算 5.1 吸力计算F=(Φ5000)2∗1S(1+αδ)(14)忽略铁磁阻和漏磁通这样气隙中的磁通ΦZ=IW∗GZ∗10−8 (15) 式中磁导GZ =μ0∗πdC24δ(16)式中空气导磁系数μ0=1.25 ×10−8亨/厘米GZ =μ0∗πdC24δ=1.25 ×10−8×π×1.024×0.065=15×10−8亨ΦZ=IW∗GZ∗10−8=961×15×10−8×108=14415 麦式中α-----修正系数取α=4S -------铁心截面积S=πdC24=π×1.024=0.785 厘米2(17) F=(Φ5000)2∗1S(1+αδ)=(144155000)2∗10.785×(1+4×0.065)=8.4 公斤可见吸力是满足设计要求的 5.2 线圈温升计算线圈容许温升θ=110℃,查参考资料可得散热系数为μm=12.89×10−4瓦厘米2金属骨架线圈其传导能力较强ηm≈1.7 线圈的散热表面S= πDH+ ηmD1 lk=(2.74+1.7×1.34 )×2.38=37.5 厘米 2线圈温升θ=PμmS=412.89×10−4×37.5=82.7℃(18)温升小于110℃可见是合格的。
电磁铁设计计算书
电磁铁设计计算书河北科技大学电气工程学院 张刚电磁铁设计中有许多计算方法,但有许多计算原理表达的不够清晰,本人参照“电磁铁设计手册”一书,对相关内容进行了整理补充,完成了一个直流110V 拍合式电磁铁的计算。
设计一个拍合式电磁铁,它的额定工作行程为4mm ,该行程时的电磁吸力为0.8公斤,用在电压110V 直流电路上,线圈容许温升为65℃。
1) 初步设计 第一步:计算极靴直径电磁铁的结构因数为:2.2K φ==≈查空气气隙磁感应强度与结构因数的经济表格,如下图所示:从图中可查得,气隙磁感应强度最好取为p B =2000Gs 。
极靴的表面积为:222500050000.852000n p S F cm B ⎛⎫⎛⎫==⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭极靴直径为:2.52n d cm === 取n d =2.5cm ,则24.9n S cm =。
磁感应强度p B 增加为2040Gs 。
第二步,计算铁芯直径材料采用低碳钢,其磁感应强度取cm B =11000Gs ,漏磁系数σ取2,则:222040 4.91.1811000p ncm cmB S S cm B σ⨯⨯===铁芯直径为:1.52c d cm ===取 1.5c d cm =,则21.77cm S cm =第三步,计算线圈磁动势线圈的磁动势NI 为工作气隙磁动势、铁芯磁动势和非工作气隙磁动势的和,记为:()()()cm n NI NI NI NI δ=++计算中,可取:()()()cm n NI NI a NI +=这里a=0.15~0.3,也就是铁芯磁动势和非工作气隙磁动势的和约占总磁动势的15%~30%。
因此,线圈的磁动势应为:()()()427102040100.4109321141010.3ppB B NI a a δμδμπ---⋅⨯⨯⨯==⋅=≈--⨯-安匝 系统一般要求电压降到85%U n 时仍能正常工作,在额定电压U n 下的磁动势为:()110950.85NI NI ==安匝计算温升时,一般取额定电压U n 的1.05~1.1倍,此时的磁动势为:()2 1.051150NI NI =⨯=安匝第四步,计算线圈尺寸 1)推导计算线圈厚度公式线圈的温升公式为:m PSθμ=⋅ 这里: θ:温升,单位℃;P :功率,单位W ;m μ:线圈的散热系数,单位2/W cm ⋅℃;S :线圈的散热表面积,单位2cm 。
电磁铁设计计算书
电磁铁设计计算书河北科技大学电气工程学院 张刚电磁铁设计中有许多计算方法,但有许多计算原理表达的不够清晰,本人参照“电磁铁设计手册”一书,对相关内容进行了整理补充,完成了一个直流110V 拍合式电磁铁的计算。
设计一个拍合式电磁铁,它的额定工作行程为4mm ,该行程时的电磁吸力为0.8公斤,用在电压110V 直流电路上,线圈容许温升为65℃。
1) 初步设计 第一步:计算极靴直径电磁铁的结构因数为:0.82.2FK φδ==≈查空气气隙磁感应强度与结构因数的经济表格,如下图所示:从图中可查得,气隙磁感应强度最好取为p B =2000Gs 。
极靴的表面积为:222500050000.852000n p S F cm B ⎛⎫⎛⎫==⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭极靴直径为:4452.523.14nn S d cm π⨯=== 取n d =2.5cm ,则24.9n S cm =。
磁感应强度p B 增加为2040Gs 。
第二步,计算铁芯直径材料采用低碳钢,其磁感应强度取cm B =11000Gs ,漏磁系数σ取2,则:222040 4.91.1811000p ncm cmB S S cm B σ⨯⨯===铁芯直径为:1.52c d cm ===取 1.5c d cm =,则21.77cm S cm =第三步,计算线圈磁动势线圈的磁动势NI 为工作气隙磁动势、铁芯磁动势和非工作气隙磁动势的和,记为:()()()cm n NI NI NI NI δ=++计算中,可取:()()()cm n NI NI a NI +=这里a=0.15~0.3,也就是铁芯磁动势和非工作气隙磁动势的和约占总磁动势的15%~30%。
因此,线圈的磁动势应为:()()()427102040100.4109321141010.3ppB B NI a a δμδμπ---⋅⨯⨯⨯==⋅=≈--⨯-安匝 系统一般要求电压降到85%U n 时仍能正常工作,在额定电压U n 下的磁动势为:()110950.85NI NI ==安匝计算温升时,一般取额定电压U n 的1.05~1.1倍,此时的磁动势为:()2 1.051150NI NI =⨯=安匝第四步,计算线圈尺寸 1)推导计算线圈厚度公式线圈的温升公式为:m PSθμ=⋅ 这里: θ:温升,单位℃;P :功率,单位W ;m μ:线圈的散热系数,单位2/W cm ⋅℃;S :线圈的散热表面积,单位2cm 。
电磁铁磁力的计算公式
电磁铁磁力的计算公式电磁铁的磁力计算公式:
一、电磁铁的平均磁力:
1、总质量M的电磁铁磁力(H)计算公式:
2、电磁铁的平均磁力(Hm)计算公式:
二、电磁铁的最大磁力:
1、电磁铁的最大磁力(Hmax)计算公式:
2、电磁铁的最大磁力系数 Kmax计算公式:
三、电磁铁的最小磁力:
1、电磁铁的最小磁力(Hmin)计算公式:
2、电磁铁的最小磁力系数 Kmin计算公式:
四、电磁铁U型磁力(U)计算公式:
五、电磁铁的最大磁矩(Mmax)计算公式:
1、电磁铁的最大磁矩(Mmax)计算公式:
2、电磁铁的最大磁矩系数 Kmax计算公式:
六、电磁铁的最小磁矩(Mmin)计算公式:
1、电磁铁的最小磁矩(Mmin)计算公式:
2、电磁铁的最小磁矩系数 Kmin计算公式:
七、电磁铁的轴向磁感计算公式:
1、电磁铁的轴向磁感(Gax)计算公式:
2、电磁铁的轴向磁感系数 Kax计算公式:
八、电磁铁的轴向磁矩计算公式:
1、电磁铁的轴向磁矩(Max)计算公式:
2、电磁铁的轴向磁矩系数 Kax计算公式:
九、电磁铁的轴向孔径计算公式:
1、电磁铁的轴向孔径(dax)计算公式:
2、电磁铁的轴向孔径系数 Kdax计算公式:
总结:电磁铁的磁力计算公式由以上九种,均可通过能量密度与核磁比等参数,计算出电磁铁的平均磁力、最大磁力、最小磁力、最大磁矩、最小磁矩、轴向磁感、轴向磁矩、轴向孔径等。
公式的详细计算公式需参考相关的电磁学文献进行查看。
电磁铁的设计计算
电磁铁的设计计算一. 电磁铁的吸力计算1. 曳引机的静转矩T=[(1-φ)Q ·g ·D/(2i )]×10-3式中:φ-------对重系数(0.4-0.5)g---------重力加速度 9.8m/s 2i----------曳引比Q---------额定负载 kgD--------曳引轮直径 mmT=[(1-Text1(3))×Text1(0) ×9.8×Text1(1)/(2×Text1(2))]×10-3 = Text1(16) Nm2. 制动力矩 取安全系数S=1.75-2 取S= Text1(5)Mz=S ·T= Text1(5)×Text1(16)= Text1(6) Nm3. 电磁铁的额定开闸力u--------摩擦系数 0.4-0.5,取0.45;Dz------制动轮直径 Dz= Text1(8)mmF N = )321(1031L L L uD L M Z Z ++⨯ = Text1(6)×Text1(11)×103/(Text1(7)×Text1(6)×Text1(9))= Text1(12)NL1,L2,L3所示详见右图4. 电磁铁的过载能力F1----电磁铁的最大吸力;5. 所需电磁铁的最大吸力F1=1.5F N =1.5×Text1(12)= Text1(13)N6. 电磁铁的额定功率1021F P == Text1(14) W7. 电磁铁的额定工作电压,设计给定U N =110 V8. 额定工作电流NN U P I == Text2(13) A 9. 导线直径的确定 (电密 J=5—6 A/mm 2 ) J= Text2(1) A/mm 2 裸线 JI d N π4'0== Text2(12) mm 绝缘后导线直径 d ’ = Text2(6) mm 10. 衔铁的直径(气隙磁密 B δ=0.9-1T )取B δ= Text2(2) Tπδ215B F d X = = Text2(3)mm取 d X = Text2(7) mm(结构调整)11. 电磁铁的最大行程计算长度1312F =δ = Text2(4)mm 12. 电磁铁线圈匝数初值(后期计算的匝数必须大于初值) W1=31020⨯Id F X πδ = Text2(5)匝二. 线圈的结构设计1. 线圈厚度b k ,高度为L k线圈结构比43-==k k b L β 取 β= Text2(8) 线圈厚度b k =β1'W d = Text2(10)mm高度k k b L ∙=β=Text2(9)mm 2. 电磁铁窗口尺寸确定b=5b k /4= Text3(4) mmL D1=5L k /4= Text3(5) mm3. 吸盘长度L2=2 L D1/5= Text3(0) mm4. 线圈中径D m = d x +2c+b= Text2(7)+2×Text3(7)+ Text3(4)= Text3(6) mm5. 根据结构确定线圈匝数Nm Z I D d U W 410320∙∙∙=ρ= Text3(1) 匝 ρ-----电阻率 取Text3(11)×10-26. 匝数初值确定误差计算%1001]12[⨯-W W W = Text3(2)% 若初值匝数与结构匝数>3% 应调整结构重新计算 1-6项,即调整中径D m (应<3%,目的是保证电磁铁的功率)7. 线圈匝数额定值221W W W N +== Text3(3)(匝) 8. 核算线圈槽满率 )21)(2(2'c L c b W d A N F --∙== Text3(9) % (应 ≤85%) 按计入填充系数1d t f L b J f W I A ∙∙∙∙== Text3(10)% (应≤75%) f t =0.5-0.57 (通过实验调整总结经验)9. 根据结构确定电磁铁的行程(或按标准确定)δN = Text3(12) (注δN < δ)10. 标准工作行程的电磁力= Text3(8) N (F 应F1)11. 结构设计具体的图纸设计12. 线圈电阻320104-⨯∙∙=d WD R m ρ= Text4(4) Ω 13. 电磁铁的实际功率损耗RU P G 2= = Text4(0)W 14. 电磁铁的温升计算SP G ∙=ατTD S=S1+ηm ·S2α-------线圈的散热系数65°时α=12.04×10-4 W/cm 270°时α=12.25×10-4 W/cm 280°时α=12.68×10-4 W/cm 2 (通常按80度计算)S1------线圈的外表面积S1= π·D1·L d = Text4(1) cm 2S2------线圈的内表面积S2=L D m ∙∙∙2πη= Text4(2) cm 2ηm -----散热系数,含金属骨架,ηm =1.7无骨架, ηm =0.9-1直接绕在铁芯上,ηm =2.4τ------线圈温升TD---- 通电率 40%(升降电梯),自动扶梯取100%=∙=TD SP G ατ Text4(5) 15. 电磁铁的最低启动电压,电磁力计算按标准最低启动电压 U 80 =80%U N = Text4(7) V线圈电流 RU I 80== Text4(6)A 16. 80%的U N 电磁吸力= Text4(9)NF 80 > F N 满足要求17. 温升变化后,电磁力计算线圈温升为90°C 时,电阻率ρ(90°C )=2.236×10-2Ωmm 2/m 320104-⨯∙∙=d WD R m t t ρ= Text4(10)Ω 电流tt R U I == Text4(11)A 7222104)(28.6-⨯∙∙=δπX t t d W I F = Text4(8)N F t > F N 满足要求。
电磁铁的制作与磁场的方向的应用的计算
电磁铁的制作与磁场的方向的应用的计算电磁铁的制作与磁场方向的应用的计算电磁铁是一种由电流通过的线圈产生磁场的装置,它在科学实验、工程设计以及日常生活中都具有广泛的应用。
本文将介绍如何制作一个简单的电磁铁,并探讨磁场的方向在不同场景下的应用计算方法。
一、电磁铁的制作制作电磁铁所需的材料和工具如下:1. 铁芯(例如铁钉):作为电流通过的导体。
2. 铜线:用于制作线圈,导电性良好。
3. 电源:可以是电池或电源适配器,用于提供电流。
4. 螺丝刀:用于连接铁芯和线圈。
制作步骤如下:1. 将铜线绕在铁芯上,形成紧密的线圈。
线圈的匝数(即绕线的圈数)越多,电磁铁的磁场越强。
2. 使用螺丝刀将线圈两端固定在铁芯上,确保线圈不松动。
3. 将线圈的一端连接到正极,另一端连接到负极,接通电源。
二、磁场方向的计算在使用电磁铁时,了解磁场方向对于正确应用和运用电磁铁具有重要意义。
以下是计算磁场方向的方法。
1. 电流通过直线线圈时的磁场方向当电流通过垂直于纸面的直线线圈时,可使用右手螺旋法确定磁场方向。
具体步骤如下:将伸直的右手手指按顺时针方向握住线圈,当电流从手指指尖流入线圈时,拇指所指的方向即为磁场的方向。
2. 电流通过螺旋线圈时的磁场方向当电流通过螺旋线圈时,磁场方向根据线圈的匝数和电流方向来确定。
若电流从线圈底部向上流动,则线圈顶部的磁场指向观察者。
若电流从线圈顶部向下流动,则线圈底部的磁场指向观察者。
若电流通过线圈的侧面,则磁场方向垂直于线圈平面。
3. 磁场的应用计算磁场的方向不仅仅是理论上的计算,还可以应用于实际问题中。
例如,在制作电磁铁时,了解磁场方向可以帮助我们确定需要将电磁铁放置的位置和方向,以获得最佳的磁力效果。
另外,磁场的方向还可以应用于电磁感应计算。
当导体在磁场中运动时,会产生感应电动势。
根据楞次定律,感应电动势的方向与磁场变化率相垂直。
因此,我们可以利用磁场方向的知识来计算感应电动势的方向。
三、总结本文介绍了电磁铁的制作方法和磁场方向的计算。
电磁铁的基本公式及计算
电磁铁的基本公式及计算1.磁路基本计算公式B =μH,φ=ΛIW,∑φ=0IW=∑HL, Λ=μS/LB—磁通密度(T);φ—磁通〔Wb);IW—励磁安匝(A);Λ一磁导(H);L一磁路的平均长度(m) }S—与磁通垂直的截面积(m2);H一磁场强度(A/m);μ一导磁率(H/m) ,空气中的导磁率等于真空中的导磁率μ0=0 .4π×10-8 H/m。
2,电磁铁气隙磁导的计算电磁铁气隙磁导的常用计算公式列于表“气隙磁导的计算公式”中。
表中长度单位用crn,空气中的导磁率μ0为0 .4π×10-8 H/m。
气隙磁导的计算公式3·电磁铁吸力基本计算公式 (1)计算气隙较小时的吸力为10210S392.0⨯=φF式中:F —电磁铁吸力(N); φ—磁极端面磁通(Wb); S —磁极表面的总面积(cm 2)。
(2)计算气隙较大时的吸力为10210)a S(1392.0⨯+=δφF式中:a —修正系数,约为3~5;δ—气隙长度(cm )。
上式适用于直流和交流电磁铁的吸力计算。
交流时,用磁通有效值代入,所得的吸力为平均值。
例:某磁路如图所示。
已知气隙δ为0.04cm ,铁芯截面S 为4.4cm 2,线圈磁势IW 为1200安匝。
试求在气隙中所产生的磁通和作用在衔铁上的总吸力。
解:(1)一个磁极端面上的气隙磁导为000111004.04.4μμδμδ=⨯==S G 由于两个气隙是串联的,所以总磁导为G δ = G δ1/2=55μ0=55×0.4π×10-8=68.75×10-8(H ) (2)气隙中所产生的磁通为φδ=IW G δ =1 200×68.75×10-8 =8 .25×10-4 (Wb) (3)总吸力为)(1213104.425.8392.0210S 392.02102102N F =⨯⨯⨯=⨯⨯=δδφ 式中乘2是因为总吸力是由两个气隙共同作用所产生的。
电磁铁计算公式
电磁铁计算公式电磁铁是一种利用电流产生磁场的装置,它在工业生产、科研实验和日常生活中都有着广泛的应用。
在设计和使用电磁铁时,我们需要了解一些相关的计算公式,以便能够准确地计算出所需的参数和性能。
本文将介绍一些常用的电磁铁计算公式,帮助读者更好地理解和应用电磁铁技术。
1. 计算电磁铁磁场强度的公式。
在电磁铁中,磁场强度是一个重要的参数,它决定了电磁铁的磁性能。
我们可以利用以下公式来计算电磁铁的磁场强度:H = (N I) / l。
其中,H表示磁场强度,单位是安培/米(A/m);N表示匝数;I表示电流,单位是安培(A);l表示磁路长度,单位是米(m)。
通过这个公式,我们可以根据电磁铁的匝数、电流和磁路长度来计算出电磁铁的磁场强度。
2. 计算电磁铁磁感应强度的公式。
磁感应强度是描述磁场强度的物理量,它也是电磁铁的重要性能指标。
我们可以利用以下公式来计算电磁铁的磁感应强度:B = μ0 μr H。
其中,B表示磁感应强度,单位是特斯拉(T);μ0表示真空中的磁导率,其数值约为4π×10^-7 H/m;μr表示相对磁导率;H表示磁场强度。
通过这个公式,我们可以根据磁场强度和相对磁导率来计算出电磁铁的磁感应强度。
3. 计算电磁铁磁力的公式。
电磁铁的磁力是其另一个重要的性能指标,它决定了电磁铁在吸引和吸附物体时的力量大小。
我们可以利用以下公式来计算电磁铁的磁力:F = B S。
其中,F表示磁力,单位是牛顿(N);B表示磁感应强度;S表示磁极面积,单位是平方米(m^2)。
通过这个公式,我们可以根据磁感应强度和磁极面积来计算出电磁铁的磁力大小。
4. 计算电磁铁电阻的公式。
在电磁铁中,电阻是一个重要的参数,它决定了电磁铁的电流和功率消耗。
我们可以利用以下公式来计算电磁铁的电阻:R = ρ (l / A)。
其中,R表示电阻,单位是欧姆(Ω);ρ表示电阻率,单位是欧姆·米(Ω·m);l表示电磁铁的长度,单位是米(m);A表示电磁铁的横截面积,单位是平方米(m^2)。
电磁铁的制作与磁场的方向的计算
电磁铁的制作与磁场的方向的计算电磁铁是一种利用电流通过线圈产生磁场的装置。
它的制作可以通过简单的材料和步骤完成。
本文将介绍电磁铁的制作过程,并详细讲解磁场的方向的计算方法。
一、电磁铁的制作要制作一个简单的电磁铁,我们需要以下材料和工具:1. 铜线:选择绝缘包覆的铜线,一般直径为0.2-0.4毫米。
2. 电源:选择适合的电源供应电流,一般使用直流电源。
3. 铁芯:可以使用铁钉或铁片作为铁芯,确保铁芯足够导磁。
4. 钳子:用于剥去铜线的绝缘层。
现在我们可以按照以下步骤开始制作电磁铁:步骤一:准备铜线和铜芯首先,将铜线剥去一段绝缘层,长度约为5-10厘米。
然后将铜线缠绕在铁芯上,确保线圈紧密均匀地绕在铁芯表面。
铜线的圈数越多,电磁铁的磁场就越强。
步骤二:连接电源将电源的正极连接到铜线的一端,将负极连接到铜线的另一端。
确保电源的电流适中,过高的电流可能会损坏电磁铁。
步骤三:测试电磁铁完成上述步骤后,用一块小磁铁或指南针来测试电磁铁的磁场。
将小磁铁或指南针靠近电磁铁的铁芯附近,观察是否受到吸引。
如果成功吸引小磁铁或指南针,证明电磁铁制作成功。
二、磁场的方向的计算电磁铁产生的磁场具有方向性。
为了计算磁场的方向,我们可以使用右手定则。
右手定则是一种常用的计算磁场方向的方法。
按以下步骤进行:1. 伸直右手,将拇指和其他四个手指分开。
2. 用食指、中指和拇指呈垂直状态。
3. 让电流方向与食指一致,电流流向由正极指向负极。
4. 根据右手定则,四个手指的方向表示磁场的方向。
注意:右手定则适用于直线电流,即电流直线通过线圈的情况。
在使用右手定则计算电磁铁磁场方向时,需确定电流方向(判断长电流线从上往下还是从下往上)、握住线圈或电磁铁后,拇指的方向就是磁场的方向。
三、总结本文介绍了电磁铁的制作过程和磁场方向的计算方法。
通过简单的步骤和手持材料,我们能够自己制作出一个简单的电磁铁,并且可以通过右手定则计算出磁场的方向。
了解电磁铁的制作和磁场方向的计算方法对于理解电磁学原理和应用具有重要意义。
电磁铁磁力计算公式
电磁铁磁力计算公式好的,以下是为您生成的关于“电磁铁磁力计算公式”的文章:咱今天就来好好唠唠电磁铁磁力计算公式这回事儿。
记得我读中学那会,学校组织了一次科技小制作的活动。
我和几个小伙伴凑一块儿,决定搞一个电磁铁的小玩意儿。
我们雄心勃勃,想着一定要做出个厉害的电磁铁来。
那时候,啥都不懂,就知道瞎鼓捣。
一开始,我们找来了电池、电线、铁钉这些材料,然后照着书上的样子,一圈一圈地绕电线。
可是弄出来的电磁铁,那磁力小得可怜,连个小铁钉都吸不起来。
这可把我们给愁坏了,几个人凑在一起,抓耳挠腮地想办法。
后来,老师看到我们的窘样,笑着给我们讲了电磁铁磁力计算公式的一些知识。
老师说,电磁铁的磁力大小和电流强度、线圈圈数以及铁芯的情况都有关系。
这电流强度越大,磁力就越强;线圈圈数越多,磁力也会越大;还有那铁芯,要是铁芯又粗又长,磁力也能跟着变强。
按照老师说的,我们重新调整了我们的设计。
把电池多串联了几个,增大了电流;把电线也多绕了好多圈;还专门找了一根又粗又长的铁钉当铁芯。
嘿,您还别说,这一改,效果那叫一个明显!我们做出来的电磁铁,轻轻松松就把一堆小铁钉给吸起来了,大家那个高兴劲儿就别提了。
从那以后,我算是真正明白了这电磁铁磁力计算公式的重要性。
这电磁铁磁力的计算公式啊,其实说起来也不复杂。
简单来说,磁力大小和电流(I)以及线圈圈数(N)的乘积成正比。
用公式表示就是 F = k × I × N ,这里的 k 是个常数,和铁芯的材料、形状等因素有关。
比如说,在实际应用中,如果我们要制作一个磁力很强的电磁铁来吊运重物,那就要想办法增大电流和线圈圈数。
电流这方面呢,我们可以通过增加电池数量或者使用更高电压的电源来实现。
但要注意哦,可别超过了电路能承受的范围,不然会出问题的。
线圈圈数这一块,就得耐心点,一圈一圈仔细绕。
绕的时候还得注意,要绕得整齐紧密,不能松松垮垮的,要不然磁力也会受影响。
再说说铁芯。
铁芯的材料得选导磁性好的,像纯铁或者硅钢片就很不错。
电磁铁的设计计算
电磁铁的设计计算电磁铁是一种利用电流的磁场产生磁力的设备,常用于工业制造、电子设备、电动机、磁悬浮等领域。
在设计电磁铁时,需要考虑电流、匝数、导线材料、磁路形状等因素。
下面我们将逐步介绍电磁铁的设计计算。
首先,我们需要确定电磁铁所需的磁力大小。
这取决于具体的应用需求,比如提起多大负荷、吸附多大物体等。
一般而言,磁力的大小与电流、匝数成正比。
其次,需要确定所用导线的截面积和电流。
根据所需磁力和电流,可以利用安培定律计算所需的导线长度。
安培定律表明,磁场力和电流成正比。
然后,需要计算所需的匝数。
匝数越多,则磁力越大。
计算匝数时,我们需要知道导线的长度以及每匝的长度。
导线长度可以根据安培定律和导线的电阻来计算。
每匝的长度可以通过所需的匝数和导线长度来计算。
接下来,需要确定导线材料。
导线材料的选择应考虑到电阻、耐热性和成本等因素。
常用的导线材料包括铜和铝。
铜导线的电阻较低且耐热性好,但成本较高,适合用于需要高功率输出的场合。
铝导线的电阻较高,但成本较低,适合用于一些低功率应用。
最后,需要设计电磁铁的磁路形状。
磁路形状影响着磁力的大小和分布。
常见的磁路形状有U型、C型、磁铁板型等。
选择合适的磁路形状可以提高磁力的利用率。
在设计电磁铁时,还需要考虑一些其他因素,比如电源电压、工作环境温度、散热等。
电源电压决定了电流的大小,工作环境温度和散热决定了电磁铁的容量和稳定性。
总之,电磁铁的设计计算是一个综合考虑电流、匝数、导线材料、磁路形状等因素的过程。
根据具体的应用需求,我们可以计算出所需的磁力大小,选择适当的导线和磁路形状,设计出满足要求的电磁铁。
电磁铁磁场强度计算公式
电磁铁磁场强度计算公式
电磁铁磁场强度计算公式是用来计算电磁铁磁场强度的公式。
电磁铁是一种能够产生磁场的装置,它由导线和铁芯组成。
当电流通过导线时,会产生磁场,而铁芯则会增强磁场的强度。
因此,电磁铁的磁场强度与电流、导线的长度、导线的截面积、铁芯的磁导率等因素有关。
电磁铁磁场强度计算公式为:
B = μ0 * μr * N * I / l
其中,B表示磁场强度,单位为特斯拉(T);μ0表示真空磁导率,其值为4π×10^-7 H/m;μr表示铁芯的相对磁导率;N表示导线的匝数;I表示电流,单位为安培(A);l表示导线的长度,单位为米(m)。
从公式中可以看出,磁场强度与电流成正比,与导线的长度成反比,与导线的匝数成正比,与铁芯的磁导率成正比。
因此,在设计电磁铁时,需要根据实际需求来选择合适的导线长度、匝数和铁芯材料,以达到所需的磁场强度。
除了电磁铁磁场强度计算公式外,还有一些其他的公式可以用来计算磁场强度,如安培环定理、比奥-萨伐尔定律等。
这些公式都是基于电磁学原理推导出来的,可以帮助工程师和科学家更好地理解和应用磁场的相关知识。
电磁铁磁场强度计算公式是电磁学中的重要公式之一,它可以帮助我们计算电磁铁产生的磁场强度,为电磁学的研究和应用提供了重要的理论基础。
电磁铁的设计与计算
为了减小交流电磁铁在闭合位置的吸力脉动 一般均在交流电磁铁的磁极面上装置分磁环
第四节 交流电磁铁的设计
➢ 交流电磁铁设计的特点 交流并联电磁铁为恒磁链电磁铁(电压线圈)。
线圈电流随行程减小而减小,在衔铁打开位置与 衔铁闭合位置线圈电流之比,约为几倍至十几 倍。在衔铁闭合位置,为防止剩磁的影响,引 入一个非磁性间隙—去磁间隙
➢ 决定铁心尺寸 对于有两个相同工作气隙的交流电磁铁
F0
Bm 2 2 Ac
40
Ac
20 F0
Bm 2
➢ 决定铁心尺寸 对于有三个工作气隙的交流电磁铁
Ac
40 F0
1
1
2
Bm
2
Ac1
Ac
0.6 ~ 0.7
Ac1 :每个边柱铁心截面积
➢ 计算线圈匝数,在线圈电压为额定电压下, 且衔铁在闭合位置
2rc
➢ 计算线圈高度及厚度 线圈填充系数
d2N
ktc
4 h
初步设计时取 : ktc 0.5
R 2rc N 2
ktc h
散热面积
A A1 k A2
A1 : 线圈外表面积 A2 : 线圈内表面积
k : 线圈内表面与外表面散热率之比(k kT 2 kT1 )
➢ 计算线圈高度及厚度 散热面积
IN U m U U f 1.65 ~ 2.5 U U f
U
m
2
cm Bcm Ac
2
2
Uf
cm Bcm Ac
2 f
2 f
0 Ac
f
0 Ac f
11 1 f
IN
直流电磁铁设计计算表
直流电磁铁设计计算表(原创版)目录1.直流电磁铁的设计目标参数2.直流电磁铁的设计流程3.直流电磁铁的计算公式4.直流电磁铁的线圈电流计算5.直流电磁铁的电磁力计算公式6.直流电磁铁的铁芯材料选择7.直流电磁铁的散热措施正文直流电磁铁设计计算表是电磁铁设计的重要工具,它能帮助工程师确定电磁铁的各项性能参数,以满足实际应用的需求。
下面我们将详细介绍直流电磁铁的设计计算过程。
1.直流电磁铁的设计目标参数电磁铁的设计目标参数主要包括推力、最大行程、工作电压和工作电流。
这些参数的确定需要考虑电磁铁的实际应用场景和性能要求。
例如,如果电磁铁用于起重机,那么推力需要足够大;如果电磁铁用于精密控制,那么最大行程和工作电压需要足够小。
2.直流电磁铁的设计流程直流电磁铁的设计流程主要包括确定设计目标参数、选择电磁铁的结构形式、计算电磁铁的磁势、计算线圈电流、计算电磁力、确定铁芯材料和设计散热措施等步骤。
3.直流电磁铁的计算公式直流电磁铁的磁势计算公式是 F=ni,其中 F 是磁势,n 是线圈匝数,i 是线圈中的电流。
根据磁势可以计算出电磁铁的电磁力,电磁力的计算公式是 F=B*A,其中 B 是磁感应强度,A 是电磁铁的有效吸力面积。
4.直流电磁铁的线圈电流计算线圈电流的大小取决于电磁铁的工作电压和线圈的电阻。
线圈电阻的计算公式是 R=U/I,其中 R 是线圈电阻,U 是工作电压,I 是线圈电流。
根据线圈电阻和线圈匝数可以计算出线圈的直径,线圈直径的计算公式是D=sqrt(4*R*n)。
5.直流电磁铁的电磁力计算公式根据磁势可以计算出电磁铁的电磁力,电磁力的计算公式是 F=B*A,其中 B 是磁感应强度,A 是电磁铁的有效吸力面积。
6.直流电磁铁的铁芯材料选择铁芯材料的选择对电磁铁的性能有重要影响。
一般选择导磁性能好的材料,如纯铁、硅钢片等,可以增加电磁铁的吸力。
7.直流电磁铁的散热措施直流电磁铁在工作过程中会产生热量,如果热量不能及时散发,可能会导致电磁铁过热,影响其使用寿命。
电磁铁吸力计算公式
电磁铁吸力计算公式嘿,咱们来聊聊电磁铁吸力的计算公式!说起电磁铁,这玩意儿在咱们生活里可不少见。
就像我之前去工厂参观的时候,看到那些巨大的机械手臂精准地抓取零件,那靠的就是电磁铁的强大吸力。
先来讲讲电磁铁吸力的基本概念。
简单说,电磁铁的吸力大小取决于很多因素,比如电流大小、线圈匝数、铁芯材料等等。
那重点来了,电磁铁吸力的计算公式通常是这样的:F = B * I * A 。
这里的 F 表示吸力,B 是磁感应强度,I 是电流,A 是磁极面积。
咱们一个一个来细说。
先说电流 I ,电流越大,就好像给电磁铁注入了更强大的“能量”,吸力自然也就跟着增强。
这就好比咱们跑步,跑得越快,冲击力就越大。
再说说磁感应强度 B ,它和铁芯的材料、磁场的分布都有关系。
好的铁芯材料能让磁感应强度更强,就像给运动员穿上了更高级的跑鞋,助力效果更明显。
磁极面积 A 呢,面积越大,能“抓”住的东西也就越多,吸力表现也就更出色。
举个例子,假如有一个电磁铁,电流是 5 安培,磁感应强度是 2 特斯拉,磁极面积是 0.1 平方米,那通过公式计算,吸力 F = 2 × 5 × 0.1 = 1 牛顿。
不过要注意哦,这个公式是在理想情况下的简化计算。
在实际应用中,情况可要复杂得多。
比如说,磁场分布不均匀、铁芯的磁饱和、温度对磁性的影响等等,都会让实际的吸力和计算结果有所偏差。
还记得那次在实验室里,我们几个小伙伴一起做电磁铁吸力的实验。
大家都兴致勃勃地摆弄着各种器材,想通过改变电流、线圈匝数来看看吸力到底有多大变化。
有个小伙伴不小心把电流调得太大,结果导线都发烫了,把我们都吓了一跳。
但也正是通过这样的小意外,让我们更深刻地理解了电磁铁吸力的原理和影响因素。
总之,要准确计算和掌握电磁铁的吸力,不仅要熟悉这个公式,还得考虑到实际中的各种复杂情况。
这样,咱们才能更好地利用电磁铁为我们的生活和工作服务。
希望通过我的这些讲解,能让您对电磁铁吸力的计算公式有更清晰的认识!。
电磁铁的设计计算
电磁铁的设计计算1原始数据YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数额定工作电压U H=24V额定工作电压时的工作电流IH ≤1A2 测试数据测试参数工作行程δ =1mm吸力 F=7.5kg电阻R=3.5Ω4 设计程序根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能4.1 确定衔铁直径 d c电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程 δ=1mm时的吸合力F=7.5kg则电磁铁的结构因数K =√Fδ=√7.50.1=27(1)电磁铁的结构形式应为平面柱挡板中心管式根据结构因数查参考资料,可得磁感应强度 B P=10000 高斯当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式F=(B p/5000)2×Π4×d c2(2)式中B p磁感应强度(高斯) d c活动铁心直径(毫米) 可以求得衔铁直径为d c=5800×√FB p =5800×√7.510000=1.59cm=15.9mm取d c=16 mm4.2 确定外壳内径D2在螺管式电磁铁产品中它的内径D2与铁心直径d c之比值n 约为 2~ 3 ,选取n=2.7 D2=n ×d c=2.76× 16=28.16 毫米(3)式中D2外壳内径毫米4.3 确定线圈厚度b k=D2−d c2−Δ (4)式中b k-----线圈厚度毫米Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米b k=28.16−162−1.7 =4.38毫米今取b k=5 毫米4.4 确定线圈长度线圈的高度l k与厚度b k比值为β,则线圈高度l k=β×b k(5)l k------线圈长度毫米β值根据参考资料选取经验数据为β=3.4则线圈高度l k=β×b k=3.4× 5=17毫米4.5 确定导线直径导线直径d=√4×ρ×D cp×IWU(6)式中平均直径D cp=d c+b k=0.016+0.005=0.021( 米)IW----- 线圈磁势(安匝)IW= (IW)z + (IW) cm+ (IW)k式中 (IW)z------消耗在气隙中的磁势(IW)z=B p×δμ0×10−8(IW) cm和 (IW)k消耗在铁心中和非工作气隙中磁势的安匝数约为总磁势的15~30%,即(IW) cm+ (IW)k=α×(IW)式中α=0.15 ~0.3由此可得线圈的磁势为(IW)=B p ×δμ0×(1−α)×10−8 (安匝) (7)式中 B p 单位为高斯,δ单位为厘米 空气导磁系数 μ0=1.25 ×10−8亨/厘米 电磁铁在实际应用时 电压可能降低至 85%U H 为了保证在电压降低后 电磁铁仍然能够可靠地工作 上式计算所得安匝数应该是指电压降低至0.85U H 时的磁势 用 (IW)1表 示(IW)1=10000×0.11.25×10−8×(1−0.3)×10−8=1143安匝 显然,电源电压为额定值时的磁势为 IW = (IW)10.85=1344 安匝电磁铁容许最高工作温度 240℃ ,由参考资料选取电阻系数 ρ=0.03208 欧. 毫米2米⁄d =√4ρ∗D cp ∗IW U =√4×0.03208×0.021×134424=0.388 毫米 查线规表 其最邻近的直径为 d=0.41 毫米 带绝缘后的直径d =0.45 毫米4.6 确定线圈匝数 W W =1.28(IW)jd 2 (8)式中 j ---容许电流密度 (安毫米2 ⁄) ,j =I q =4U πRd 2=4×24π×3.5×0.412=51安毫米2⁄ (9) W =1.28(IW)jd 2=1.28×134451×0.412=200 匝 4.7 确定电阻线圈平均匝长 lcp =π(D H +D 1)2 (10)D H =D 1+2b k (11)D 1=d c +2Δ (12)式中 D H ---线圈外直径D 1 ---线圈内直径D 1=d c +2Δ=16+2×1.7=19.4毫米D H =D 1+2b k =19.4+2×4.38=27.4 毫米lcp =π(D H +D 1)2=π(27.4+13.4)2=64 毫米=0.064 米线圈电阻R =ρ40∗l cp ∗wπ4∗d 2=0.01991×0.064×1093π4×0.252=28 欧 (13)现在已初步确定了电磁铁的结构尺寸 绘制电磁铁结构草图如图 25 特性验算虽然根据设计要求 已完成了初步设计 但是 由于在初步设计中作了不少简化 有 些参数的选择和估计是极其近似的 因此 为了电磁铁的工作可靠起见 还需要根据初步 设计的结构尺寸和数据 做进一步详细的验算5.1 吸力计算F =(Φ5000)2∗1S(1+αδ) (14)忽略铁磁阻和漏磁通 这样气隙中的磁通ΦZ =IW ∗G Z ∗10−8 (15)式中磁导 G Z =μ0∗πd C24δ (16)式中 空气导磁系数μ0=1.25 ×10−8亨/厘米G Z =μ0∗πd C 24δ=1.25 ×10−8×π×1.024×0.065=15×10−8亨 ΦZ =IW ∗G Z ∗10−8=961×15×10−8×108=14415 麦 式中 α -----修正系数 取α=4S -------铁心截面积S =πd C 24=π×1.024=0.785 厘米 2 (17) F =(Φ5000)2∗1S(1+αδ)=(144155000)2∗10.785×(1+4×0.065)=8.4 公斤可见吸力是满足设计要求的5.2 线圈温升计算线圈容许温升 θ=110℃ ,查参考资料可得散热系数为μm =12.89×10−4瓦 厘米2⁄金属骨架线圈其传导能力较强 ηm ≈1.7线圈的散热表面S = π(D H + ηm D 1)l k =(2.74+1.7×1.34 )×2.38=37.5 厘米 2线圈温升 θ=Pμm S =412.89×10−4×37.5=82.7℃ (18)温升小于 110℃ 可见是合格的。
电磁铁计算公式范文
电磁铁计算公式范文电磁铁磁场强度的计算公式是根据安培定律得到的。
安培定律说明了通过导线的电流产生的磁场强度与电流成正比,与距离导线的距离成反比。
对于一根直导线而言,其磁场强度的计算公式为:B=(μ0*I)/(2π*r)其中,B表示磁场强度,μ0为真空中的磁导率,其数值约等于4π*10^-7T*m/A,I表示电流的大小,r表示距离直导线的距离。
对于一个电流通过多匝线圈构成的电磁铁而言,其磁场强度的计算需要考虑线圈的匝数和线圈的长度。
由于线圈产生的磁场的磁感应强度是由所有匝数叠加而成的,因此可以将线圈视为若干根平行直导线的组合。
对于一个匝数N的线圈,其磁场强度的计算公式可以表示为:B=(μ0*N*I)/(2π*r)其中,B表示磁场强度,μ0为真空中的磁导率,I表示电流的大小,N表示线圈的匝数,r表示距离线圈中心的距离。
除了磁场强度的计算公式之外,磁通量和磁场能量的计算也是电磁铁设计中重要的参数。
磁通量是指磁场通过一个表面的数量,其单位为韦伯(Wb)。
对于一个磁场与表面垂直的平面而言,磁通量的计算公式为:Φ=B*A其中,Φ表示磁通量,B表示磁场强度,A表示表面的面积。
磁场能量是指磁场中储存的能量量度。
对于一个线圈产生的磁场而言,其磁场能量的计算公式为:W=(1/2)*μ*N^2*I^2*V其中,W表示磁场能量,μ为线圈中的有效磁介质的磁导率,N表示线圈的匝数,I表示电流的大小,V表示线圈的体积。
需要注意的是,上述公式是根据一些简化条件推导得到的近似公式,在实际应用中可能需要考虑更多的因素,如磁场的非均匀性、磁铁的几何形状等。
因此,在具体应用中,可能需要进行更精确的计算和分析。
比例电磁铁的设计计算
比例电磁铁的设计计算
比例电磁铁是一种能将输入的电信号按比例转换成机械量(力或位移)输出的电子控制元件。
以下是其设计计算方法:
对于螺管电磁铁而言,螺管力的大小是由沿线圈高度方向上单位长度的激磁安匝以及漏磁通两者所决定。
由此可知,增大激磁安匝和减小漏磁可以增大力。
增大安匝一方面会在材料、能源方面造成浪费;另方面会使得铁磁材料多处饱和。
虽然可以通过增大铁心厚度来处理饱和问题,但是当铁心厚度增大时,漏磁也会增大。
减小漏磁的方法是在衔铁和轭铁上开一些槽,可以改变漏磁通的方向得到比较大的力。
另外,采用正交优化和TABU搜索法对影响力的轭铁直径、衔铁直径、槽的尺寸等进行优化研究,得出了最终结果。
比例电磁铁具有结构紧凑、控制简单、反应迅速、动作可靠等优点,在电液比例控制中得到了广泛应用。
电磁铁磁感应强度计算公式
电磁铁磁感应强度计算公式嘿,咱们来聊聊电磁铁磁感应强度的计算公式这回事儿。
要说这电磁铁磁感应强度的计算公式,那可是物理学里挺重要的一部分。
咱们先从基础说起,磁感应强度,简单理解就是描述磁场强弱和方向的物理量。
那电磁铁的磁感应强度咋算呢?一般来说,用B = μ₀ * n * I 这个公式。
这里面的μ₀是真空磁导率,是个定值,约等于4π×10⁻⁷韦伯/(安培·米);n 呢,指的是线圈的匝数;I 就是通过线圈的电流。
我给您举个例子啊,就说我之前在实验室里捣鼓电磁铁的事儿。
当时我们做一个实验,要弄清楚不同电流下电磁铁的磁感应强度变化。
我们先准备了一个匝数确定的线圈,然后通过改变电流来测量磁感应强度。
我记得特别清楚,第一次我们把电流调到 1 安培,那心里是又紧张又期待,不知道测出来的数据会咋样。
小心翼翼地操作着测量仪器,眼睛紧紧盯着读数,当看到那个数字的时候,心里那叫一个激动,就感觉像是揭开了一个神秘的面纱。
咱们再回到这个公式,要注意的是,这里面每个参数都很关键。
匝数越多,磁感应强度一般就越大;电流越大,磁感应强度也会跟着增强。
在实际应用中,这个公式用处可大了。
比如说,在电动机里,为了让电动机有更强的动力,就得根据这个公式去设计电磁铁,调整匝数和电流,来达到理想的磁感应强度。
还有在一些电磁起重机里,要是磁感应强度不够,那可就吊不起重物啦。
所以得好好利用这个公式,算出合适的参数,保证能稳稳地吊起货物。
学习这个公式的时候,可别死记硬背,得理解每个参数的含义和它们之间的关系。
多做几道题,多动手做几个实验,这样才能真正掌握。
总之,电磁铁磁感应强度的计算公式虽然看起来有点复杂,但只要咱用心去琢磨,多联系实际,就一定能搞明白,为解决各种电磁学的问题打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
虽然根据设计要求已完成了初步设计但是由于在初步设计中作了不少简化有
些参数的选择和估计是极其近似的因此为了电磁铁的工作可靠起见还需要根据初步设计的结构尺寸和数据做进一步详细的验算5.1吸力计算F=(
Φ5000
)2∗
1
S(1+αδ)
(14)
忽略铁磁阻和漏磁通这样气隙中的磁通ΦZ=IW∗GZ∗10−8 (15)式中磁导GZ =
电磁铁的设计计算
1原始数据
YDF-42电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数
额定工作电压UH=24V
额定工作电压时的工作电流IH≤1A 2测试数据
测试参数工作行程δ=1mm吸力F=7.5kg电阻R=3.5Ω
4设计程序
根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能
(IW) cm+ (IW)k=α×(IW)
式中α=0.15 ~0.3
由此可得线圈的磁势为
(IW)=
Bp×δμ0×(1−α)
×10−8 (安匝) (7)
式中Bp单位为高斯,δ单位为厘米空气导磁系数μ0=1.25×10−8亨/厘米
电磁铁在实际应用时电压可能降低至85%UH为了保证在电压降低后电磁铁仍然能够可靠地工作上式计算所得安匝数应该是指电压降低至0.85UH时的磁势用(IW)1表示
μ0∗
πdC24δ
(16)
式中空气导磁系数μ0=1.25×10−8亨/厘米
GZ =μ0∗
πdC24δ
=1.25×10−8
×
π×1.024×0.065
=15×10−8亨
ΦZ=IW∗GZ∗10−8=961×15×10−8×108=14415麦
式中α
-----修正系数取α=4
S -------铁心截面积
S=
导线直径d=
4×ρ×Dcp×IW
U
(6)
式中平均直径Dcp=dc+bk=0.016+0.005=0.021(米) IW-----线圈磁势(安匝)
IW= (IW)z + (IW) cm+ (IW)k
式中(IW)z ------消耗在气隙中的磁势
(IW)z=Bp×δ
μ0
×10−8
(IW) cm和(IW)k消耗在铁心中和非工作气隙中磁势的安匝数约为总磁势的15~30%,即
(IW)1=
10000×0.11.25×10−8×(1−0.3)
×10−8
=1143安匝
显然,电源电压为额定值时的磁势为
IW=
(IW)1
0.85
=1344安匝
电磁铁容许最高工作温度240℃,由参考资料选取电阻系数ρ=0.03208欧.毫米2
米
d= 4ρ∗Dcp∗IWU= 4×0.03208×0.021×134424
F=(Bp/5000)2×Π/4×dc2 (2)
式中Bp磁感应强度(高斯) dc活动铁心直径(毫米)
可以求得衔铁直径为
dc=
5800×F
Bp
=
5800×7.510000
=1.59cm=15.9mm
取dc=16 mm
4.2确定外壳内径D2
在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n约为2~ 3 ,选取n=2.7 D2=n×dc=2.76×16=28.16毫米(3)式中D2外壳内径毫米4.3确定线圈厚度
4.1确定衔铁直径dc
电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm时的吸合力F=7.5kg则电磁铁的结构因数
K =
F/δ7.5/0.1=27 (1)
电磁铁的结构形式应为平面柱挡板中心管式
根据结构因数查参考资料,可得磁感应强度BP=10000高斯
当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式
S=πDH+ηmD1 lk=(2.74+1.7×1.34 )×2.38=37.5厘米2
线圈温升
θ=
PμmS
=
4
12.89×10−4×37.5
=82.7℃(18)
温升小于110℃可见是合格的。6结论
到目前为止虽然设计电磁铁的方法有许多种但是都还没有一套既严谨准确又使计算简便的方法很大部分还只能依靠经验数据来选择经过某些理论计算最后试制样品加以验证证实所设计的结构参数是否合理必要时作适当修改本产品试验数据如下电压V工作行程mm吸合力kg电阻电流A 27 0.65 6.7 29.73 0.91经试验证明该电磁铁的设计满足使用要求初中语文全程辅导
πdC24
=
π×1.02
4
=0.785厘米2
(17) F=(
Φ5000
)2∗
1
S(1+αδ)
=(
144155000
)2
∗
1
0.785×(1+4×0.065)
=8.4公斤
可见吸力是满足设计要求的5.2线圈温升计算
线圈容许温升θ=110℃,查参考资料可得散热系数为
μm=12.89×10−4瓦厘米2
金属骨架线圈其传导能力较强ηm≈1.7线圈的散热表面
=0.388毫米
查线规表其最邻近的直径为d=0.41毫米带绝缘后的直径
d =0.45毫米
4.6确定线圈匝数W
W=
1.-容许电流密度(安毫米2
),
j=Iq
=
4UπRd2
=
4×24π×3.5×0.412
=51安毫米2
(9)
W=1.28(IW)jd2=1.28×134451×0.41
2=200匝4.7确定电阻
线圈平均匝长lcp
=
π(DH+D1)
2
(10)
DH=D1+2bk (11) D1=dc+2Δ(12)
式中DH ---线圈外直径D1 ---线圈内直径
D1=dc+2Δ=16+2×1.7=19.4毫米DH=D1+2bk=19.4+2×4.38=27.4毫米
lcp=
π(DH+D1)
bk=
D2−dc
2
−Δ(4)
式中bk -----线圈厚度毫米
Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7毫米
bk=
28.16−16
2
−1.7 =4.38毫米
今取bk=5毫米4.4确定线圈长度
线圈的高度lk与厚度bk比值为β,则线圈高度
lk=β×bk (5) lk------线圈长度毫米
β值根据参考资料选取经验数据为β=3.4则线圈高度lk=β×bk=3.4×5=17毫米4.5确定导线直径
2
=
π(27.4+13.4)
2
=64毫米=0.064米
线圈电阻
下载文档到电脑,查找使用更方便
1下载券1385人已下载
下载
还剩2页未读,继续阅读
R=ρ40∗
lcp∗w
π
4
∗d2=0.01991×
0.064×1093
π
4
×0.252=28欧(13)
现在已初步确定了电磁铁的结构尺寸绘制电磁铁结构草图如图2