电力电子第3章 直流斩波电路
第3章直流斩波电路

电容泵常用于小功率电源电路(IC) 由于不用电感,电磁干扰小
26
3.2.3
多重斩波电路:
多重斩波电路
等效频率升高,有利滤波平稳电流 可增大输出容量 可冗余备用,提高抗故障能力。
27
本章小结
本章介绍了6种基本斩波电路、2种复合斩波电路及多 相多重斩波电路。
本章的重点 降压和升压斩波电路,2,4象限斩波电路 ---- 原理,输入输出关系、分析方法、工作特点
5
例
E=200V ,Em=30V, R=1.0Ω,ρ=0.01 m=30/200=0.15 α=0.25, Io=(200*0.25-30)/1.0=20A---? Δi=0.01*0.25*(1-0.25)*200/1.0=0.375 A Io>Δi/2—io连续,Io有效 或: αc=0.15+0.01/8=0.151 α> αc ---……
6
降压斩波器I闭环驱动LED
LD—电流给定,CS—电流反馈
7
升压斩波电路 (Boost Chopper) 电路 ---利用L电势升压
储存电能
保持输 出电压
8
3.1.2 升压斩波电路
工作原理
α期间V通D断: L由 E充电; C向R放电。 β期间V断D通: E和L同时向C和R放电。 电流连续时输出平均电压: 按波形: UV =βUo 按电路: E-r*IL= Uv (电感UL=0 电容Ic=0) 略电源侧r Uo=E/β=E/(1- α) α↑ Uo↑ (同降压..
-∑In*rLn/3
In=(Un-Uo)/rLn可闭环控为Io/3
特点 (1)等效开关频率升为3倍,有利滤 波平稳电流. (2)可增大电流容量 (3)可冗余备用,提高抗故障能力
第三章 直流斩波电路

u1正半周:V1导通输出电压,V1关断时,V3 续流;
u1负半周:V2导通;V2关断 时,V4续流。 可通过改变占空比α调节输出电压的大小。
通过谐波分析可知,电源电流中不含有低次 谐波,只含有和开关周期T成反比的高次谐波, 这些高次谐波用很小的滤波器即可滤除。电路的 功率因数接近1。
4.1.2 三相交流调压电路
这种电路常用于电炉的温度控制等时间常数很 大的负载中,以周期为单位进行控制足够了。 当晶闸管导通时刻是正弦波的起始点时,在电 源电压接通期间,负载电压是正弦波,没有谐 波污染。
4.2.2 交流电力电子开关
把反并联的晶闸管串入交流电路中起 接通和断开电路的作用,这就是交流电力 电子开关。其作用是代替电路中的机械开 关。
以交流电的周期(2π)为单位来控 制晶闸管的通断,从而调节输出平均功率 的电路,称为交流调功电路。
设控制周期为M,晶闸管在前N个周期导通, 后M-N个周期关断。
当M=3、N=2时的电路波形如图4-13所示。
调功电路和调压电路的电路形式完全相同,只 是控制方式不同。因其直接调节对象是电路的 平均输出功率,所以被称作交流调功电路。
1)T不变,调节ton,称为脉冲宽度调制,简称PWM; 2) ton不变,改变T,称为频率调制或调频型; 3) ton和T 都调节,称为混合型。 其中第一种方式使用最多。
3.1.2 升压斩波电路
1、工作原理:
当V导通时,E向L补充电能,充电电流为I1,C向负载R 供电,u0基本恒定。 当V阻断时,E和L共同向C充电,并向负载提供能量。
S U1I 0 U1 2
α的移项范围为0°——180°。
2、阻感负载
若把α=0点仍定在电源电压的零点,显然, 阻感负载下稳态时α的移项范围应为 φ<=α<=π。其中负载的阻抗角为φ,负载电 流应滞后于电源电压u1φ角度。在用晶闸管控制 时,很显然只能进行滞后控制,使负载电流更为 滞后,而无法使其超前。
电力电子课程设计直流斩波电路优秀设计

课程设计汇报课题名称:直流斩波电路旳设计电力电子技术课程设计任务书系:电气与信息工程系年级:专业:自动化直流斩波电路旳功能是将直流电变为另一种固定旳或可调旳直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流旳状况,不包括直流-交流-直流旳状况;直流斩波电路旳种类诸多:降压斩波电路,升压斩波电路,这两种是最基本电路。
此外尚有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。
斩波器旳工作方式有:脉宽调制方式(Ts不变,变化ton)和频率调制方式(ton不变,变化Ts)。
本设计是基于SG3525芯片为关键控制旳脉宽调制方式旳升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。
Multisim重要是仿真分析,借助其强大旳仿真功能可以很直观旳看到PWM控制输出电压旳曲线图,通过设置参数分析输出与电路参数和控制量旳关系,运用软件自带旳电表和示波器能直观旳分析多种输出成果。
第二部分是硬件电路设计,它通过Protel等软件设计完毕。
关键字:直流斩波;PWM;SG35251 直流斩波主电路旳设计 (1)1.1 直流斩波电路原理 (1)直流降压斩波电路 (1)直流升压斩波电路 ........................................... 错误!未定义书签。
1.2 主电路旳设计.............................................................. 错误!未定义书签。
直流降压斩波电路 ........................................... 错误!未定义书签。
直流降压斩波电路参数计数 ........................... 错误!未定义书签。
直流升压斩波电路 ........................................... 错误!未定义书签。
直流斩波电路

图3-8 可关断晶闸管电极判别
(3)可关断晶闸管触发特性测试
如图3-9所示。将万用表置于R×1档,黑表笔 接可关断晶闸管的阳极A,红表笔接阴极G悬空,这 时晶闸管处于阻断状态,电阻应为无穷大(∞), 如图3-9(a)所示。
(4)可关断晶闸管关断能力的初步检测
测试方法如图3-10所示。采用1.5V干电池一节, 普通万用表一只。
3.1.4绝缘栅双极晶体管
1.IGBT工作原理 由结构图可知,IGBT相当于一个由MOSFET
驱动的厚基区GTR。其剖面图见图3-21, N沟道IGBT的图形符号如图3-22所示。
图3-21 IGBT结构剖面图
图3-22 N-IGBT图形符号
2.IGBT主要特性
(1)静态特性
IGBT的静态特性包括转移特性和输出特性。
图3-16 功率MOSFET的输出特性
图3-17 功率MOSFET的转移特性
图3-18 功率MOSFET开关过程的电压波形
3.功率MOSFET 的主要参数 (1)通态电阻Ron (2)开启电压UGS(th) (3)跨导gm (4)漏源击穿电压BUDS (5)栅源击穿电压BUGS 4.功率MOSFET的安全工作区
IGBT的转移特性是描述集电极电流IC与栅射电压 UGE之间关系的曲线,如图3-23(a)所示。
图3-23(b)是以栅源电压UGE为参变量的IGBT正 向输出特性,也称伏安特性 。
(2)动态特性
IGBT的动态特性也称开关特性,包括开通和关 断两个部分,如图3-24所示。
图3-23 IGBT的静态特性曲线 (a)转移特性 (b)输出特性
图3-9 可关断晶闸管触发特性简易测试方法
图3-10 可关断晶闸管的Leabharlann 断能力测试3.1.2电力晶体管
电力电子技术第四版答案

目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章 PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第1章 电力电子器件1. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。
或:u AK >0且u GK >0。
2. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
3. 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 1、I 2、I 3。
π4π4π25π4a)b)c)图1-43图1-43 晶闸管导电波形解:a) I d1=π21⎰ππωω4)(sin t td I m=π2m I (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m =2m I π2143+≈0.4767 I m b) I d2 =π1⎰ππωω4)(sin t td I m =πm I (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t I m =22m I π2143+≈0.6741I m c) I d3=π21⎰20)(πωt d I m =41 I mI 3 =⎰202)(21πωπt d I m =21 I m4. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I ≈329.35, I d1≈0.2717 I m1≈89.48b) I m2≈6741.0I ≈232.90,I d2≈0.5434 I m2≈126.56c) I m3=2 I = 314,I d3=41 I m3=78.55. GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能?答:GTO 和普通晶闸管同为PNPN 结构,由P 1N 1P 2和N 1P 2N 2构成两个晶体管V 1、V 2,分别具有共基极电流增益1α和2α,由普通晶闸管的分析可得,1α+2α=1是器件临界导通的条件。
单片机第三章直流斩波电路n

滤波原理
直流斩波电路通过滤波电路对 高频脉冲进行滤波,得到稳定 的直流输出。
控制原理
直流斩波电路通过控制器对开 关元件的控制信号进行调节, 实现对输出的精确控制。
直流斩波电路的基本结构
控制器
控制器负责生成开关元件的控制 信号,用于调节电源的输出。
开关元件
滤波电路
开关元件是直流斩波电路的核心 部分,负责快速切换电源的输出。
优点
• 高效率 • 精确控制 • 能量回收
局限
• 电磁干扰 • 纹波幅度 • 成本较高
直流斩波电路的未来发展趋势
随着电力电子技术的不断进步,直流斩波电路将进一步提高电压和电流的调 节精度,降低纹波幅度,并应用于更广泛的领域,如新能源和电动汽车。
直流斩波电路的作用
电压/电流调节
直流斩波电路能够调节直流电源的输出电压或电流,满足特定的需求。
能量回收
直流斩波电路可实现电能的回收利用,减少能源的浪费。
电机驱动
直流斩波电路可用于控制电机的速度和转向,实现高精度的电机控制。
直流斩波电路的原理
切换原理
直流斩波电路通过开关元件的 快速切换,将直流电源的输出 转换为高频脉冲。
直流斩波电路
直流斩波电路是一种用于调节直流电源输出的电路,通过切换电源的开关来 改变输出电压或电流。
直流斩波电路的定义
1 调节直流电源
直流斩波电路可通过高频开关路由,调节直流电源的输出电压或电流。
2 重要组成部分
直流斩波电路主要由控制器、开关元件和滤波电路组成。
3 作为电源变换器
直流斩波电路也可以将直流电源转换为交流电源。
滤波电路对高频脉冲进行滤波, 使输出稳定且纹波尽可能小。
直流斩波电路的应用示例
直流斩波电路设计

一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。
二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。
也称为直流-直流变换器(DC/DCConverter)。
一般指直接将直流电变为另一直流电,不包括直流-交流-直流。
升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。
主要由功率开关、二极管、储能电感、输出滤波电容等组成。
本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。
图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。
第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。
电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。
由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。
第二部分是比较器部分。
比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。
改变输入的电平信号的值,则相应改变了输出方波的占空比。
第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。
将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。
电力电子技术实验三 直流斩波电路实验

实验三 直流斩波电路实验一·实验目的1.掌握Buck 电路的基本组成和工作原理;2.熟悉Buck 电路的基本特性;3.掌握Buck 电路的PSIM 仿真模型;4.熟悉电力电子实验台PTS-1000的操作和功能;5.通过直接的波形展示,了解输出电压的纹波。
二·实验设备本实验需要掌握降压型直流斩波电路即Buck 电路的工作特性。
实验时,直流电源GW PSW 160-7.2 360W 接入Buck 电路输入端,直流电源输出电压操作范围为30~70V ,直流负载GW PEL-2004与PEL-2040接入Buck 电路输出端,采用示波器GW GDS-2304A/GDS-2204E 观察电路电压电流信号。
Buck 电路模块本实验设备如图3-1所示,输入电压因安全考虑设定在50V ,输出电压为24V 。
输入端先经过一个10A 的保险丝,接着并联两个100uF/250V 输入电解电容,随后一个由MOS 与二极管及电感(365uH)组成的降压式转换器,后端为三个100uF/250V 的输出电解电容并联,最后接至输出端。
图3-1 Buck 电路实验模块辅助电源该模块输入电压范围为100~250V ,输出为三组不共地的隔离电源,分别是(1)12V (2)12V ,5V (3)15V ,-15V ,如图3-2所示。
图3-2 辅助电源MOS管驱动电路驱动电源模块由门极驱动电路和门极驱动电源电路组成,图3-3左为门极驱动电路,右为门极驱动电源电路。
输入一个12V电压至门极驱动电源,其输出为±12V的方波。
门极驱动电路的输入为此±12V的方波和由DSP产生的PWM信号,输出为驱动MOS的信号。
图3-3 MOS管驱动电路JTAG烧录电路此电路可将计算机中的程序代码烧录至DSP芯片,如图3-4所示,计算机通过该电路与DSP连接。
图3-4 JTAG烧录电路直流电源GW PSW 160-7.2GW PSW 160-7.2 360W直流电源,额定电压输入为160V,输出功率360W,如图3-5所示,图3-5 直流电源GW PSW 160-7.2示波器GDS-2304A/GDS-2204E测量波形信号时使用GDS-2304A (或GDS-2204E),4通道,彩色数字储存示波器,如图3-6所示,图3-6 示波器GDS-2304A/GDS-2204E直流负载PEL-2000直流负载使用PEL-2040与PEL-2004,如图3-7所示,具有编辑功能,可模拟负载的实际状况。
电力电子技术第四版三四章课后答案

第3章 直流斩波电路1.简述图3-1a 所示的降压斩波电路工作原理。
答:降压斩波器的原理是:在一个控制周期中,让V 导通一段时间t on ,由电源E 向L 、R 、M 供电,在此期间,u o =E 。
然后使V 关断一段时间t off ,此时电感L 通过二极管VD 向R 和M 供电,u o =0。
一个周期内的平均电压U o =E t t t ⨯+offon on。
输出电压小于电源电压,起到降压的作用。
2.在图3-1a 所示的降压斩波电路中,已知E =200V ,R =10Ω,L 值极大,E M =30V ,T =50μs,t on =20μs,计算输出电压平均值U o ,输出电流平均值I o 。
解:由于L 值极大,故负载电流连续,于是输出电压平均值为U o =E T t on =5020020⨯=80(V) 输出电流平均值为I o =R E U M o -=103080-=5(A)3.在图3-1a 所示的降压斩波电路中,E =100V , L =1mH ,R =Ω,E M =10V ,采用脉宽调制控制方式,T =20μs ,当t on =5μs 时,计算输出电压平均值U o ,输出电流平均值I o ,计算输出电流的最大和最小值瞬时值并判断负载电流是否连续。
当t on =3μs 时,重新进行上述计算。
解:由题目已知条件可得:m =E E M =10010= τ=RL =5.0001.0=当t on =5μs 时,有ρ=τT = =τont =由于11--ραρe e =1101.00025.0--e e =>m所以输出电流连续。
此时输出平均电压为U o =E T t on =205100⨯=25(V) 输出平均电流为I o =R E U M o -=5.01025-=30(A) 输出电流的最大和最小值瞬时值分别为I max =R E m e e ⎪⎪⎭⎫ ⎝⎛-----ραρ11=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛-----e e =(A)I min =R E m e e ⎪⎪⎭⎫ ⎝⎛---11ραρ=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛---e e =(A) 当t on =3μs 时,采用同样的方法可以得出: αρ=由于11--ραρe e =1101.0015.0--e e =>m 所以输出电流仍然连续。
电力电子技术直流斩波电路的性能研究实验报告

电力电子技术直流斩波电路的性能研究实验总结
备注:序号(一)、(二)、(三)、(四)为实验预习填写项。
五、实验内容与步骤
图1 降压斩波电路的原理图及波形
图2 升压斩波电路的原理图及波形
图3 升降压斩波电路的原理图及波形
1、控制与驱动电路的测试
(1)启动实验装置电源,开启PE-19 控制电路电源开关。
(2)调节PWM 脉宽调节电位器改变Ur,用数字存储示波器分别观测SG3525 的第11 脚与第14 的波形,观测输出PWM 信号的变化情况。
(3)用示波器分别观测A、B 和PWM 信号的波形,记录其波形、频率和幅值。
(4)用数字存储示波器的两个探头同时观测11 脚和14 脚的输出波形,调节PWM 脉宽调节电位器,观测两路输出的PWM 信号,测出两路信号的相位差,并测出两路PWM 信号之间最小的“死区”时间。
2、直流斩波器的测试
斩波电路的输入直流电压Ui 由三相调压器输出的单相交流电经DJK20 挂箱上的单相桥式整流及电容滤波后得到。
接通交流电源,观测Ui 波形,记录其平均值。
电力电子技术第3章直流斩波电路ppt课件

值,记为Uo。设V通的时间为ton,此阶段L上积
蓄的能量为
EI 1ton
电力电子技术
L
i1 E
iG
VD io
V
C
uo R
iG
a)
O
t
io
I1
O
t
b)
➢V断时,E和L共同向C充电并向负载R供电。设V断的时间为
toff,则此期间电感L释放能量为
Uo - E I1toff
电力电子技术
➢稳态时,一个周期T中L积蓄能量与释放能
UB
toff T
UC
➢A点的电压平均值为
UA
-
ton T
UC
➢L2的电压平均值为零,按图3-5b中输出电压Uo的极性,有
Uo
ton T
UC
电力电子技术
➢输出电压Uo与电源电压E的关系:
Uo
ton toff
E
ton T - ton
E
1-
E
这一输入输出关系与升降压斩波电路时的情况相同。
优点(与升降压斩波电路相比):输入电源电流 和输出负载电流都是连续的,且脉动很小,有利 于对输入、输出进行滤波。
T
0 uL d t 0
当V处于通态期间,uL = E;而当V处于断态期间,uL = - uo。于是:
E ton Uo toff
所以输出电压为:
Uo
ton toff
E
ton T - ton
E
1-
E
改变导通比,输出电压既可以比电源电压高,也可以比电源电压低。 当0< <1/2时为降压,当1/2< <1时为升压,因此将该电路称作升降
反过来,V进入断态时的电流初值就是V在通态阶段结束时的电
(电力电子)课程设计直流斩波电路

直流斩波电路设计方案和方案实施2.1 设计方案选择斩波电路有三种控制方式(1)脉冲宽度调制(PWM ):开关周期T 不变,改变开关导通时间ton 。
(2)频率调制:开关导通时间ton 不变,改变开关周期T 。
(3)混合型:开关导通时间ton 和开关周期T 都可调,改变占空比。
本次设计采用的是脉宽调制的方法,开关选用全控型器件IGBT ,它集中了电力MOSFET 和GTR 得优点。
2.2 升压斩波电路的设计原理原理图如图3-5所示:假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I1,同时C 的电压向负载供电,因C 值很大,输出电压o U 为恒值,记为o U 。
设V 通的时间为on t ,此阶段L 上积蓄的能量为on t EI 1V 断时,E 和L 共同向C 充电并向负载R 供电。
设V 断的时间为off t ,则此期间电感L 释放能量为 offOt I E U 1)(- (2-1)稳态时,一个周期T 中L 积蓄能量与释放能量相等化简得: off O ont I E U t EI 11)(-= (2-2)E t TE t t t U offoffoffon O =+=(2-3)1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。
也称之为boost chooper变换器。
offt T /——升压比,调节其即可改变o U 。
将升压比的倒数记作β,即Tt off =β。
和导通占空比,有如下关系:1=+βα (2-4)因此,式(2-2)可表示为(2-5)升压斩波电路能使输出电压高于电源电压的原因:① L 储能之后具有使电压泵升的作用 ② 电容C 可将输出电压保持住2.3 IGBT 驱动电路选择对IGBT 驱动电路提出以下要求和条件:(1)由于是容性输出输出阻抗;因此IBGT 对门极电荷集聚很敏感,驱动电路必须可靠,要保证有一条低阻抗的放电回路。
(2)用低内阻的驱动源对门极电容充放电,以保证门及控制电压GS U 有足够陡峭的前、后沿,使IGBT 的开关损耗尽量小。
现代电力电子技术直-直变换电路复习题[1]
![现代电力电子技术直-直变换电路复习题[1]](https://img.taocdn.com/s3/m/d0490a37ae45b307e87101f69e3143323968f569.png)
第3章 直-直变换电路复习题一、填空题1.直流斩波电路完成得是直流到_直流_的变换。
2.直流斩波电路的典型应用有_直流电机驱动_和_直流开关稳压电源_等。
3.直流斩波电路中最基本的两种电路是_降压斩波电路_和_升压斩波电路_。
4.斩波电路有三种控制方式:_定频调宽_、_定宽调频_和_调频调宽_。
5.对单端正励变换器的电路要求之一是应保证其 高频变压器的磁通能复位 。
6.在带隔离变压器的DC/DC 变换器中,变压器的磁通仅在单方向变化的变换器称作 单端 变换器;当开关管导通时,电源将能量传给负载的变换器称作 正励 变换器;当开关管关断时,电路将能量传给负载的变换器称作 反励 变换器。
二、简答题1. 分别绘出BUCK 、BOOST 、Cuk 式DC/DC 斩波电路图,并在理想条件下分别导出它们在电感电流连续下的输出电压、电流表达式。
2. 在基本BUCK 、BOOST 、Cuk 等DC/DC 斩波电路中,引入隔离变压器的功用有哪些?3. 画出单端正励变换器主电路,指出其中变压器各绕组在电路中的作用。
4.画出单端反激式变换器主电路,在理想条件下写出其电感电流连续下的输出电压表达式。
5. 试比较Buck 电路和Boost 电路的异同。
答:相同点:Buck 电路和Boost 电路多以主控型电力电子器件(如GTO ,GTR , MOSFET 和IGBT 等)作为开关器件,其开关频率高,变换效率也高。
不同点:Buck 电路在T 关断时,只有电感L 储存的能量提供给负载,实现降压变换,且输入电流是脉动的。
而Boost 电路在T 处于通态时,电源Ud 向电感L 充电,同时电容C 集结的能量提供给负载,而在T 处于关断状态时,由L 与电源E 同时向负载提供能量,从而实现了升压,在连续工作状态下输入电流是连续的。
6.试分析反激式和正激式变换器的工作原理。
答:正激变换器:当开关管T 导通时,它在高频变压器初级绕组中储存能量,同时将能量传递到次级绕组,根据变压器对应端的感应电压极性,二极管D1导通,此时D2反向截止,把能量储存到电感L 中,同时提供负载电流O I ;当开关管T 截止时,变压器次级绕组中的电压极性反转过来,使得续流二极管D2导通(而此时D1反向截止),储存在电感中的能量继续提供电流给负载。
第三章+直流斩波

负载电流平均值:I o
U o EM R
负载中L值较小时,V关断后,到 t2,会出现负载 电流断续状态,负载电压平均值,会被抬高,一 般不希望出现 。
电流连续时电路的工作情况
基于“分段线性”的思想,对降压斩波电路进行解 析
V通态期间,设负载电流为 i1,可列出如下方程 d i1
L dt Ri1 EM E
如果 DC—DC 开关变换电路的输入电压是一个 平直的直流电压,在开关接通的占空比为常数 的情况下,输出电压除了直流分量外,仅包括 开关频率及其倍数次的谐波。在应用中,必须 将这些谐波用无源滤波器滤除。因为谐波频率 越高,滤波越简单,无源滤波器越小,因此, 在 DC—DC 开关变换电路中,开关频率往往较 高。 如果 DC—DC 开关变换电路的输入电压不是一 个平直的直流电压,例如,可以是工频整流后 的直流电压(包含 100Hz或 300Hz的谐波), 在开关接通的占空比为常数的情况下,输出电 压除了直流分量和开关频率及其倍数次的谐波 外,还包括 100Hz或 300Hz的谐波。因为这些 谐波频率较低,很难用无源滤波器滤除。 在应用中,可用脉冲宽度调制(PW M )或脉冲 频率调制(PFM )的方法将这些谐波滤除。
其具有体积小、重量轻、效率高的优点。 作为直流电动机调速的有效手段,在运输车辆 上得到了广泛应用,如直流电网供电的城市无 轨电车、地铁列车、工矿电力机车、高速电动 机组以及由蓄电池供电的搬运车、叉车、电动 汽车等,使上述控制获得加速平稳、快速响应 的性能,并同时收到节能的效果。 半控性的器件只能通过一些强迫换流措施来实 现,造成线路复杂化和成本的提高,因此,直 流斩波器多以全控型的器件作为开关器件。
o 1 off
直流斩波电路

期间工作于模式2,V关断, 期间工作于模式 , 关断, 关断
VD导通 导通 在一个周期T的剩余时间工作于模式3 在一个周期T的剩余时间工作于模式3, VD均关断 均关断, V和VD均关断,在此期间电感电流保持 为零,负载由滤波电容C供电。 为零,负载由滤波电容C供电。
负载电流断续的情况: 负载电流断续的情况:
2、 瞬时值和平均值控制方式
(2)平均值控制方式 此种控制方式是将负载电流(或电压)反馈的平均值与预 此种控制方式是将负载电流(或电压)反馈的平均值与 负载电流 先设定电流(或电压) 相比较, 先设定电流(或电压)值相比较,用其偏差值去控制斩波 电路开关元件的开通和关断。 电路开关元件的开通和关断。
第6 章
6.1 6.2 6.3
直流斩波电路
斩波电路的工作原理和控制方式 基本斩波电路 复合斩波电路和多相多重斩波电路
本章小结
直流斩波电路( 直流斩波电路(DC Chopper)
将直流电变为另一固定电压或可调电压的直流电。 将直流电变为另一固定电压或可调电压的直流电 。 也称为直流--直流变换器( Converter) 也称为直流--直流变换器(DC/DC Converter)。 --直流变换器 一般指直接将直流电变为另一直流电, 一般指直接将直流电变为另一直流电 , 不包括直 交流—直流 流—交流 直流。 交流 直流。
电路结构
6.2.1
降压斩波电路
全控型器件 若为晶闸管, 若为晶闸管,须 有辅助关断电路。 有辅助关断电路。
续流二极管
电路的工作情况可分为V导通、VD截止和V关断、VD导通 电路的工作情况可分为V导通、VD截止和 关断、VD导通 截止 VD均关断三种工作状态。 均关断三种工作状态 及V和VD均关断三种工作状态。
直流斩波

开关器件
+
ud -
uo
图5-1 斩波器原理示意图
uo
Ud Uo t
5.1
直流斩波电路基本原理
ud u udd 1
斩波电路的控制
时间比控制方式
定频调宽式(脉冲宽度控制PWM)
开关器件的触发频率恒定,调节脉冲宽度τ。
1
toff
ud u udd
t
2T T1 T1
ton tton on
四 象 限 斩 波
电压极性可变、电流极性也可变
V1 E V2 VD1 VD2 L uo R io M EM V4 VD3 V3 VD4
图5- 9 全桥式斩波电路
图
•V1、VD1+ V4、VD4=B型两象限斩波器 V1、V4导通时,uo>0,io>0;电机吸收能量,io增加 io > 0,Uo可正可负,位于第一、四象限。 VD1、VD4导通时,uo<0,io>0;电机释放能量,io减小 •V2、VD2+ V3、VD3=B型两象限斩波器(左右翻转) V2、V3导通时,uo<0,io<0;电机反方向吸收能量,io增加 io < 0,Uo可正可负,位于第二、三象限。 VD2、VD3导通时,uo>0,io<0;电机反方向释放能量, io减小 •组合后 Io、Uo 极性均可变,电机可四象限运行。
EI Lton (U 0 E ) I Ltoff
化简得:
Uo
ton toff toff
T E E toff
T/toff>1,输出电压高于电源电压,故称该电路为 升压斩波电路
5.2.3
i1
升降压斩波电路
V i2 VD IL E uL L C uo R
斩波

3.1.2
升压斩波电路
电容C可将输出电压保持住
电压升高得原因:电感L储能使电压泵升的作用
如果忽略电路中的损耗,则由电源提供的能量仅由负载R 消耗,即 : EI1 = Uo Io 。 (3-24) 与降压斩波电路一样,升压斩波电路可看作直流变压器。 输出电流的平均值Io为:
Io =
电源电流的平均值Io为:
a) uo E uo E
O i
t i1 I 10 I 20 toff T b) i2 I 10 t
O io i1 I 20 O ton T t1 t x toff c) t2 i2
t
O
t on
t
用于直流电动机回馈能量的升压斩波电路及其波形 a) 电路图 b) 电流连续时 c) 电流断续时
3-14
3.1.2
EM
3-5
3.1.1
数量关系 电流连续
降压斩波电路
ton ton Uo = E= E = αE ton + toff T
负载电流平均值:
Uo − EM Io = R
负载电压平均值:
(3-1)
ton——V通的时间 toff——V断的时间 a--导通占空比 导通占空比 通的时间 断的时间
(3-2)
电流断续,Uo被抬高,一般不希望出现。 ,
第3章 直流斩波电路 章
3.1 基本斩波电路 本章小结
3-1
第3章 直流斩波电路 引言 章 直流斩波电路·引言
直流斩波电路(DC Chopper)
将直流电变为另一固定电压或可调电压的直流电。 也称为直流--直流变换器(DC/DC Converter)。 一般指直接将直流电变为另一直流电,不包括直 流—交流—直流。
直流斩波电路实验报告

直流斩波电路实验报告直流斩波电路实验报告引言:直流斩波电路是电力电子学中的重要实验之一。
通过该实验,我们可以深入了解斩波电路的原理和工作方式,以及其在电力转换中的应用。
本实验旨在通过搭建和测试直流斩波电路,验证其性能和有效性。
一、实验目的本实验的主要目的是搭建直流斩波电路,并通过实验测试来验证其性能和有效性。
具体而言,我们将实现以下目标:1. 理解直流斩波电路的原理和工作方式;2. 掌握搭建直流斩波电路的方法和步骤;3. 测试直流斩波电路的输出波形,分析其性能和有效性。
二、实验原理直流斩波电路是一种将直流电压转换为交流电压的电路。
其基本原理是利用开关器件(如晶闸管、IGBT等)控制直流电源的导通和截断,从而改变电路中的电流路径,实现对直流电压的切割和转换。
直流斩波电路通常由三个主要部分组成:1. 输入滤波电路:用于滤除直流电源中的纹波和杂散信号,保证直流电压的稳定性;2. 斩波开关电路:由开关器件和控制电路组成,用于控制直流电源的导通和截断;3. 输出滤波电路:用于滤除斩波开关引起的高频脉冲信号,使输出电压变为平滑的交流电压。
三、实验步骤1. 搭建直流斩波电路:按照实验指导书提供的电路图和元器件清单,依次连接电路中的各个元器件和开关器件。
确保连接正确无误。
2. 调整控制电路参数:根据实验要求,调整控制电路中的参数,如频率、占空比等。
确保电路能够正常工作。
3. 测试输出波形:将示波器连接到输出端口,调整示波器的设置,观察并记录输出波形。
分析波形的频率、幅值和形状,评估直流斩波电路的性能和有效性。
4. 分析实验结果:根据实验数据和观察结果,对直流斩波电路的性能和有效性进行分析和总结。
比较实验结果与理论预期的差异,并提出可能的原因和改进方法。
四、实验结果与分析经过实验测试,我们得到了直流斩波电路的输出波形。
通过观察和分析波形,我们可以得出以下结论:1. 输出波形呈现出周期性的正弦波形,表明直流斩波电路能够将直流电压有效地转换为交流电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-17
3.1.3升降压斩波电路和Cuk斩波 基本工作原理 电路
V通时,电源E经V向L供电使
其贮能,此时电流为i1。同时, C维持输出电压恒定并向负载
R供电。
a)
i1 ton
toff
V断时,L的能量向负载释放, IL
电流为i2。负载电压极性为上 负下正,与电源电压极性相
o
i2 IL
t
反,该电路也称作反极性斩 波电路。
3-3
3.1.1 降压斩波电路
降压斩波电路 (Buck Chopper)
电路结构
全控型器件 若为晶闸管,须 有辅助关断电路。
续流二极管
负载 出现 的反 电动 势
典型用途之一是拖动直流电动机,也可带蓄电池负载。
3-4
工作原3理.1.1
降压斩波电路 V
L io R
E
iG
VD uo
+
M EM
-
t=0时刻驱动V导通,电源E向
d
t
ton T
tx
m E R
Uo Em R
(3-19)
3-9
升压3斩.波1电.2路 升压斩波电路
(Boost Chopper)
1) 升压斩波电路的基本原理
电路结构
储存电能
保持输 出电压
3-10
3.1.2 升压斩波电路
工作原理
假设L和C值很大。
V处于通态时,电源E向电感 L充电,电流恒定I1,电容C 向负载R供电,输出电压Uo 恒定。
电路种类
6种基本斩波电路:降压斩波电路、升压斩波电路、 升降压斩波电路、Cuk斩波电路、Sepic斩波电路和 Zeta斩波电路。 复合斩波电路——不同结构基本斩波电路组合。 多相多重斩波电路——相同结构基本斩波电路组合。
3-2
3.1 基本斩波电路
3.1.1 降压斩波电路 3.1.2 升压斩波电路 3.1.3 升降压斩波电路和Cuk斩波电路 3.1.4 Sepic斩波电路和Zeta斩波电路
I1 ton
(3-42) i1 ton
toff
I2
t o ff
IL
由上式得:I 2
toff ton
I1
1
o
I1 (3-43) i2
IL
t
o
EI1 Uo I2
(3-44)
b)
t
其输出功率和输入功率相等,可看作直流变压器。
3-20
3.1.3升降压斩波电路和Cuk斩波 2) Cuk斩波电路 电路
(3-22)
因此,式(3-21)可表示为 U o
1
b
E 1
1
E
(3-23)
3-12
3.1.2 升压斩波电路
电压升高得原因:电感L储能使电压泵升的作用
电容C可将输出电压保持住
如果忽略电路中的损耗,则由电源提供的能量仅由负载R
消耗,即 : EI1 Uo Io 。
(3-24)
与降压斩波电路一样,升压斩波电路可看作直流变压器。
基于“分段线性”的思想,对降压斩波电路进 行解析。
分V处于通态和处于断态 初始条件分电流连续和断续
3-7
3.1.1 降压斩波电路
同样可以从能量传递关系出发进行的推导
由于L为无穷大,故负载电流维持为Io不变
电源只在V处于通态时提供能量,为 EIoton
在整个周期T中,负载消耗的能量为 RI o2T EM IoT
数量关系
电路
同理:
T
0 iC d t 0
(3-45)
V处于通态的时间ton,则电容电流和时间的乘积为I2ton。
V处于断态的时间toff,则电容电流和时间的乘积为I1 toff。
由此可得: I 2ton I1toff
(3-46)
I 2 toff T ton 1
I1 ton
ton
(3-46)
负载电流平均值:
Io
Uo
EM R
(3-2)
电流断续,Uo被抬高,一般不希望出现。
3-6
3.1.1 降压斩波电路
斩波电路三种控制方式
此种方式应用 最多
T不变,变ton —脉冲宽度调制(PWM)。
ton不变,变T —频率调制。
ton和T都可调,改变占空比—混合型。
第2章2.1节介绍过:电力电子电路的实质上是分时 段线性电路的思想。
3-25
3.2.1 电流可逆斩波电路
复合斩波电路——降压斩波电路和升压斩波电路组合构成 多相多重斩波电路——相同结构的基本斩波电路组合构成
电流可逆斩波电路
斩波电路用于拖动直流电动机时,常要使电动机既可 电动运行,又可再生制动。 降压斩波电路能使电动机工作于第1象限。 升压斩波电路能使电动机工作于第2象限。 电流可逆斩波电路:降压斩波电路与升压斩波电路组 合。此电路电动机的电枢电流可正可负,但电压只能 是一种极性,故其可工作于第1象限和第2象限。
3-26
3.2.1 电流可逆斩波电路
电路结构
V1和VD1构成降压斩波电路,电动机 为电动运行,工作于第1象限。
V2和VD2构成升压斩波电路,电动机 作再生制动运行,工作于第2象限。 uo
a) 电路图
必须防止V1和V2同时导通而导致的电
t
源短路。
io iV1
iD1
工作过程(三种工作方式)
iD2
iV2
关断,C1经L2向负载供电。
图3-6 Sepic斩波电路 和 Zeta斩波电路
输入输出关系:
Uo
1
E
(3-50)
相同的输入输出关系。Sepic电路的电源电流和负载电流均
连续,Zeta电路的输入、输出电流均是断续的。
两种电路输出电压为正极性的。
3-24
3.2复合斩波电路和多相多重斩波 电路
3.2.1 电流可逆斩波电路 3.2.2 桥式可逆斩波电路 3.2.3 多相多重斩波电路
ton toff
E ton T ton
E 1
E
3-23
(3-49)
3.1.4 Sepic斩波电路和Zeta斩波
Zeta斩波电路原理 电路 V处于通态期间,电源E经开关
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1的能量转移至C1,
能量全部转移至C1上之后,VD
b) Zeta斩波电路
回路同时导电,L1和L2贮能。
a) Sepic斩波电路
V断态,E—L1—C1—VD—负载回路 及L2—VD—负载回路同时导电,此
阶段E和L1既向负载供电,同时也向
C1充电(C1贮存的能量在V处于通态时向
L2转移)。
b) Zeta斩波电路
输入输出关系:
图3-6 Sepic斩波电路和Zeta斩波电路
Uo
输出电流的平均值Io为:
Io
Uo R
1
b
E R
电源电流的平均值Io为:
I1
Uo E
Io
1
b2
E R
3-13
(3-25) (3-26)
3.1.2 升压斩波电路
2) 升压斩波电路典型应用
一是用于直流电动机传动 二是用作单相功率因数校正(PFC)电路 三是用于其他交直流电源中
用于直流电动机传动
再生制动时把电能回馈
t
b)
图3-7 电流可逆斩波电路及波形
第3种工作方式:一个周期内交替地作为降压斩波电路和升压
斩波电路工作。
当一种斩波电路电流断续而为零时,使另一个斩波电路工作, 让电流反方向流过,这样电动机电枢回路总有电流流过。
R
bE
(3-36)
该式表明,以电动机一侧为基准看,可将直流电源电 压看作是被降低到了bE。
3-15
3.1.2 升压斩波电路
如图3-3c,当电枢电流断续时:
当t=0时刻i1=I10=0,令式(3-31)
中I10=0即可求出I20,进而可写出
i2的表达式。
另外,当t=t2时,i2=0,可求得i2持
续的时间tx,即
iG
O io
ton i1
t off
T tx i2
t
动画演示。
O uo
t1 E
I 20
t2
E
t
O
EM
t
c) 电流断续时的波形
图3-1 降压斩波电路得原理图及波形
3-5
3.1.1 降压斩波电路
数量关系
电流连续
负载电压平均值:
Uo
ton ton toff
E
ton T
E
E
(3-1)
ton——V通的时间 toff——V断的时间 a--导通占空比
一周期中,忽略损耗,则电源提供的能量与负载消耗的能量相等。
EIoton RI o2T EM IoT
Io
E EM
R
EI1 EIo U o Io
I1
ton T
Io
Io
输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
3-8
3.1.1 降压斩波电路
负载电流断续的情况:
I10=0,且t=tx时,i2=0
3-14
3.1.2 升压斩波电路
数量关系
当V处于通态时,设电动机电枢电流为i1,得下式:
L
d i1 dt
时,设电动机电枢电流为i2,得下式:
L
d i2 dt
Ri2
EM
E
(3-29)
当电流连续时,考虑到初始条件,近似L无穷大时电
枢电流的平均值Io,即
Io
m
bE
R
EM
(3-40)
所以输出电压为: U o