校园水环境质量监测方案
校园水环境质量监测方案
第一部分校园水环境质量监测方案一、污染源的调查1、校园水污染源主要包括食堂水、实验室废水、生活污水等。
2、食堂水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有N、P等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。
主要排入下水道和校园内小水沟。
3、实验室废水主要排入下水道,排水量不大。
生活污水的排水量占主要部分。
二、校园区域划分校园功能分区按宿舍区、教学楼区、行政区、生活区进行划分,校园空气质量执行GB3838-88三类区标准。
水样采样连续两天,对于校园内小沟直接在沟中心采样,取两个采样点(食堂小水沟,俊秀小水沟),每天每个采样点采集1次样。
三、监测项目及方法(一)氨氮的测定(纳氏试剂比色法)一、原理碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。
本法最低检出浓度为(光度法),测定上限为2mg/L。
二、仪器1、具20mm比色皿。
2.50mL具塞比色管。
(7个)3.分光光度计。
4.氨氮蒸馏装置:由500mL凯式烧瓶、氮球、直形冷凝管和导管组成,冷凝管末端可连接一段适当长度的滴管,使出口尖端浸入吸收液液面下。
三、试剂配制试剂用水均应为无氨水。
1.无氨水:可用一般纯水通过强酸性阳离子交换树脂或加硫酸和高锰酸钾后,重蒸馏得到。
2.25%氢氧化钠溶液和10%硫酸锌溶液。
3.纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。
用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。
4.酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。
5.铵标准贮备溶液:称取经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线。
学校饮水水质监测制度范本
学校饮水水质监测制度范本一、总则为确保学校师生饮水安全,提高水质监测工作水平,根据《中华人民共和国水污染防治法》、《生活饮用水卫生标准》等法律法规,结合我校实际情况,制定本监测制度。
二、监测对象与范围监测对象:学校内所有供水设施,包括直饮水设备、桶装水、自来水等。
监测范围:水源地、供水管道、储水设施、饮水点等。
三、监测内容与指标(一)监测内容1. 水源地水质监测:对水源地的水质进行定期监测,确保水源水质符合国家标准。
2. 供水管道水质监测:对供水管道的水质进行定期监测,及时发现和处理管道污染问题。
3. 储水设施水质监测:对储水设施的水质进行定期监测,确保水质卫生安全。
4. 饮水点水质监测:对各饮水点的水质进行定期监测,保证师生饮水安全。
(二)监测指标1. 微生物指标:菌落总数、总大肠菌群、致病菌等。
2. 毒理指标:重金属、有机污染物等。
3. 感官指标:色度、浑浊度、臭和味等。
4. 一般化学指标:pH值、耗氧量等。
四、监测频率与方法(一)监测频率1. 水源地水质监测:每季度一次。
2. 供水管道水质监测:每月一次。
3. 储水设施水质监测:每学期一次。
4. 饮水点水质监测:每月一次。
(二)监测方法1. 采用国家规定的标准方法进行采样、检验。
2. 监测数据应真实、准确、完整,及时上报学校相关部门。
五、监测责任与分工(一)监测责任1. 学校后勤部门负责学校饮水水质的监测工作。
2. 学校卫生部门负责对监测结果进行卫生评价,并提出整改意见。
3. 学校相关部门应积极配合,确保监测工作顺利进行。
(二)监测分工1. 后勤部门负责组织监测方案的制定、监测工作的实施、监测数据的整理和上报。
2. 卫生部门负责对监测数据进行卫生评价,提出整改意见,并对整改措施的落实进行监督。
3. 相关部门应根据职责分工,做好监测工作的配合和协调。
六、监测结果处理与整改(一)监测结果处理1. 对监测中发现的问题,应及时采取措施,确保饮水安全。
校园水环境监测方案
校园水环境监测方案
一、江西环境工程职业学院水污染概况
江西环境工程职业学院是一所综合性大学,有在校8275人(其中高职生5729 人),专任教师 388 人,兼职教师 35 人。
该校废水来源于学生及教职工的生活污水,
校医院排放的医疗废水、化学实验室、给水排水工程实验室、环境工程实验中心、材料实验室等排放的含有无机、有机化学药品及酸碱、重金属等污染物的实验废
水。
二、水质监测项目与监测安排情况
1、水质监测项目
根据江西环境工程职业学院废水的来源,地表水和饮用水的水源性质,结合
《地表水环境质量标准》( GB3838-2002)、《污水综合排放标准》
(GB8978-1996)、《生活饮用水水质卫生规范》(2001)确定的水质调查
指标如下表:
2、监测安排情况
将监测项目分为四天监测,每一天开展部分水质指标的监测工作,具体安排
如下:
3、分析方法
生活饮用水、湖水和废水的监测与分析方法均按《环境监测技术规范》、《地表水环境质量标准》(GB3838-2002)、《污水综合排放标准》(GB8978-1996)中规定的分析方法进行,各项目的具体分析方法见下表:
4、采样时间和频次
采样于每天进行,分上、下午各取样一次,对取的样进行分析,样品的采样、保存均按国家相关检测技术规范进行。
5、监测结果与评价
下表列出了饮用水、湖水和污水排放口的水质监测结果。
环境监测方案制定校园水环境监测方案
环境监测方案制定校园水环境监测方案为了保障校园水环境的安全和健康,制定校园水环境监测方案具有重要的意义。
本文将介绍一套适用于校园水环境的监测方案,希望能够对学校和有关部门提供参考。
一、监测目标1.水源环境监测:包括天然饮用水源、经处理后的自来水管网的出水、生活污水处理厂等。
2.水体环境监测:包括学校周边的河流、湖泊、池塘、园林水体等。
二、监测项目1.水质监测(1)pH值:水质pH值是评价水的酸碱度的指标之一,PH值过高或过低都会对水体环境造成一定的影响,需要及时监测。
(2)总磷、总氮:它们是反映水体富营养化程度的指标,需要监测,确保水体健康。
(3)重金属:水体中重金属含量超标会对环境和人体健康造成危害,需要进行监测。
(4)溶解氧:溶解氧是反映水体中生物呼吸和氧气增氧能力的指标,需要监测。
2.生物指标监测(1)藻类:藻类的繁殖虽然可以提供养分,但若藻类繁殖过于频繁,就会使水体变得浑浊,影响校园环境和人体健康,需要监测。
(2)浮游动物:浮游动物是反映水体生物活动程度的指标,需要监测。
3.其他因素监测(1)水温:水温反映季节性变化和天气变化等,需要监测。
(2)浊度:浊度反映水体的透明度,需要监测。
三、监测频次和方法1.水源环境监测根据学校水质特点和需求,选择对应的监测频次和方法。
常用监测方法是使用水质监测仪器,如多参数水质分析仪、光谱仪等进行监测。
2.水体环境监测根据校园周边水体的情况,选择相应的监测频次和方法。
常用监测手段是采集水样送实验室进行分析,可以使用现场监测仪器,如水质检测仪、悬浮颗粒物采样器等进行现场监测。
四、监测结果处理当监测结果出现超标情况时,学校和相关部门应及时采取措施处理,防止污染加重,如增加监测频次和采用适当的水体修复措施等。
总之,对于校园水环境的监测工作,应充分重视,完善常规监测制度,提高监测频次和监测项目的覆盖范围。
只有这样,才能够保障学生和教职工们日常生活的安全和健康。
校园环境检测方案
校园环境质量监测方案一、监测目的1.通过水环境检测实习,进一步巩固课本所学知识,深入了解水环境检测中各种环境因子的采样与分析方法、误差分析数据处理方法与技能;2.通过对校园地表水、饮用水和污水的水质量检测评价校园内的水环境质量现状,为研究校园水环境质量变化及制定校园水环境保护规划提供基础数据并判断是否符合国家有关环境标准的要求;3.根据污染物或其他影响水环境质量因素的分布,追踪污染路线,寻找污染源,为校园水环境污染的治理提供依据;4.培养团结、协作的精神及综合分析与处理问题的能力。
二、调研及资料收集1、污染源调查(1)污染源分布及排放状况1、校园水污染源主要包括食堂水、实验室废水、生活污水等。
2、食堂水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有 N、P 等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。
主要排入下水道和校园内小水沟。
3、实验室废水主要排入下水道,排水量不大。
4、生活污水的排水量占主要部分,生活污水包括洗漱用水、洗澡水、洗衣用水等。
(2)污染源具体参数校园水污染调查参数废水排放去向污染源名称用水量/(t/h)排水量/(t/h) 排放的主要污染物学校食堂学生生活澡堂实验室教工住宅教学楼废水总排放2、自然环境(1)地形地势较低,雨天易积水。
(2)气象气象资料调查项目调查内容风向主导风向、次主导风向及频率等风速年平均风速、最大风速、最小风速、年静风频率等气温年平均气温、最高气温、最低气温等降水量平均年降水量、每日最大降水量等相对湿度年平均相对湿度3、社会环境(1)学校概况太原电力高等专科学校始建于1955年,1997年由原国家教委确定为全国示范性高等工程专科重点建设学校。
2000年太原电力高等专科学校的管理体制由原来隶属电力部管理,划归山西省政府管理,实行中央与地方共建,并经山西省人民政府批准与山西大学实施联合办学,成立山西大学工程学院,目前两块牌子同时运行。
环境监测方案制定校园水环境监测方案
环境监测方案制定校园水环境监测方案环境监测方案制定校园水环境监测方案校园水环境监测指的是对校园水环境中各种物质、质量指标、微生物等因素进行监测、检测以及分析评估的过程。
环境监测方案是根据校园水环境的实际情况,科学制定的监测计划和方法方案。
通过环境监测方案的制定,可以更加全面、科学的了解校园水环境的质量状况,及时发现和解决环境问题,保障健康安全。
本文介绍的是校园水环境监测方案的制定。
一、确定监测的目的和范围为了科学制定监测方案,首先需要明确监测的目的和范围。
根据校园特点和环境问题,目的可以包括以下几个方面:全面了解校园水环境的质量状况、掌握水环境的变化趋势、及时发现和解决环境问题,保障师生健康安全。
范围可以分为宏观和微观两个方面:宏观方面包括汇水区、河流、池塘等校园水来源的环境状态,微观方面则包括水体中的物质、质量指标、微生物等因素。
二、确定监测指标根据监测目的和范围,结合国家和地方的环境法规标准,对监测指标进行选定,以便后续的监测工作能够更加具体。
监测指标可以分为物理指标、化学指标和微生物指标三个类别。
物理指标主要包括水体温度、PH值、浊度、色度等,化学指标包括化学需氧量、氨氮、总磷、总氮等,微生物指标包括大肠菌群、肠球菌等指标。
三、确定监测频次和监测时间监测频次和监测时间是环境监测中非常关键的两个因素。
监测频次既要保证监测时间的连续性、稳定性,又要保证监测的有效性。
监测时间需要充分考虑校园水环境受到影响的因素,如气温、降水量、水体水位等。
四、确定监测方法环境监测方法是环境监测的核心部分。
不同的监测指标需要使用不同的监测方法。
环境监测方法需要科学、规范和准确。
因此,在制定监测方案时,需要考虑监测方法的适用性、实用性、标准性等因素,并对质量控制、数据处理进行规定。
五、制定环境监测报告环境监测报告是环境监测的最终成果。
监测报告的制作需要注重报告的结构和信息交流的清晰,以及发现问题和解决问题的能力。
在监测报告中需要体现多种信息:监测结果、环境因素分析、问题评估和对策提出等,总结水环境质量情况和变化趋势,向相关部门和社会公众公开监测信息,达到预期的监测目的。
校园水质监测方案
校园水质监测方案1. 引言随着人口的增加和工业的快速发展,水质污染问题日益突出。
特别是在校园环境中,水质安全对师生的健康至关重要。
为了保障校园水质的安全,本文提出了校园水质监测方案,旨在及时检测和预警水质问题,确保师生饮用水的健康与安全。
2. 监测设备为了监测校园水质,我们需要使用一些专业的监测设备。
以下是我们推荐的一些设备:2.1 pH值监测仪pH值是衡量水的酸碱度的重要指标之一,也是判断水质好坏的关键因素。
通过使用pH值监测仪,我们可以准确地测量水的pH值,并及时发现和解决酸碱度异常的问题。
2.2 溶解氧检测仪溶解氧是水中重要的营养物质之一,也是衡量水体生态环境质量的重要指标。
溶解氧检测仪可以测量水中存在的溶解氧量,帮助我们评估水质是否富含氧气,并指导我们进行相应的调整和处理。
2.3 浑浊度检测仪浑浊度是指水中微粒子的含量,也是衡量水体质量的重要指标之一。
浑浊度检测仪可以帮助我们测量水的浑浊度,并及时发现和解决悬浮物超标的问题,确保水质的清澈度。
2.4 电导率检测仪电导率是指液体中导电性的程度,也是水质监测中的一个重要参数。
通过使用电导率检测仪,我们可以测量水中的电导率,并判断水质是否受到了污染,从而采取相应的措施进行治理和预防。
3. 监测方案为了确保校园水质的安全和可靠,我们建议采取以下监测方案:3.1 定期监测定期监测是确保水质安全的关键步骤。
我们建议每月进行一次全面的校园水质监测,包括pH值、溶解氧、浑浊度和电导率等参数。
定期监测可以及时发现水质问题,并采取相应的纠正措施。
3.2 实时监测除了定期监测之外,我们还建议安装实时监测设备,对校园的重要水源进行实时监测。
这些设备可以将数据实时传输到中央监测系统,将水质数据直接反馈给相关人员,实现对水质的全程监控和预警。
3.3 数据分析与报告监测数据的分析和报告是保障水质安全的重要环节。
我们建议建立一个专门的数据分析与报告系统,对所收集到的监测数据进行实时分析和报告生成。
校园的水环境分析与监测方案
校园的水环境分析与监测方案
生工1112诸敏1120120205
一、实习目的:了解学校附近水的污染程度
二、校园水环境影响因素识别
校园水污染源主要包括餐厅污水、实验室废水、生活污水等。
餐厅污水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有N、P等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。
主要排入下水道。
实验室废水主要排入下水道,排水量不大。
生活污水的排水量占主要部分。
三、水环境分析与监测因子的筛选
根据检测水体是河流和污水,取以下监测项目:水温、pH值、溶解氧、化学需氧量、、总氮、总磷、氨氮、硝酸盐氮、色度、浊度、悬浮物
四、监测方案
1、监测点布设和监测时间
根据测定项目和实际情况,水样需采样连续多天,对于校园内下水道及泳河直接进行采样,取三个采样点(1餐厅下水道出口,2实验楼下水道出口3教学区下水道出口),每天每个采样点采集3次样。
2、采样方法
采集表层水样可用适当的容器如塑料筒等直接采集。
根据监测项目确定是混合采样还是单独采样。
采样器需事先用洗涤剂、自来水、10%硝酸或盐酸和蒸馏水洗涤干净、沥干,采样前用被采集的水样洗涤2~3次。
采样时应避免激烈搅动水体和漂浮物进入采样桶;采样桶桶口要迎着水流方向浸入水中,水充满后迅速提出水面,需加保存剂时应在现场加入。
五、数据处理
六、评价
通过这次实验我们对学校附近的水环境有了一定的了解,虽说有些钓鱼爱好者回来这边钓鱼但是总的来说学校附近的水环境有待提高,我们可以组织打捞废弃物,不要向湖里投放污水,放养改善湖水的生物等方法改善水质。
校园环境质量监测方案
校园环境质量监测方案一、背景随着全球经济的迅速发展和城市化进程的加快,校园环境质量逐渐引起人们的关注。
校园环境质量不仅关系到学生的健康成长,也与教育教学质量密切相关。
因此,建立一套校园环境质量监测方案,成为了现阶段亟待解决的问题。
二、目的本方案旨在对校园环境质量进行全面、科学的监测与评估,为改善校园环境提供依据,确保师生的健康与安全。
三、监测内容1. 空气质量监测:包括监测二氧化碳、甲醛、颗粒物等有害气体和污染物的浓度。
2. 水质监测:监测校园内各类水体的水质情况,包括饮用水、游泳池水等。
3. 噪音监测:对校园内的主要噪音源进行监测和评估,包括交通噪音、机器设备噪声等。
4. 光照强度监测:测量校园内各区域的光照强度,确保学生的视力健康。
5. 温湿度监测:监测校园内各房间的温度和湿度,保障舒适的学习环境。
四、监测方法1. 空气质量监测:使用专业设备进行空气采样和分析,采集数据后进行定期评估。
2. 水质监测:对校园内各类水源进行定期采样分析,确保水质合格。
3. 噪音监测:采用声级计等设备对校园内相关区域进行实时监测,记录噪音水平。
4. 光照强度监测:使用光照计等设备对校园内不同区域进行定期测量,并记录数据。
5. 温湿度监测:利用温度计和湿度计等设备,对校园内不同房间的温湿度进行检测和记录。
五、监测频率1. 空气质量监测:每季度进行一次空气质量监测和评估。
2. 水质监测:每月对校园内水质进行一次采样和分析。
3. 噪音监测:每月对校园内重要噪音源进行一次监测,按需要随时调整。
4. 光照强度监测:每季度对校园内光照强度进行一次测量和记录。
5. 温湿度监测:每天早上和下午各进行一次温湿度测量。
六、数据处理与评估监测数据将通过专业的数据处理软件进行分析和统计,得出结果后进行评估。
评估结果将根据标准值进行对比,判断环境质量是否达标。
七、监测报告与应对措施1. 监测报告:根据监测结果,定期编制监测报告,向相关部门和师生公示监测结果,接受监督和建议。
校园水质监测实验方案
校园水质监测实验方案一、实验目的本实验旨在通过对校园内水源的采样和检测,了解校园水质状况,分析水质是否符合相关标准,提高师生对校园环境的关注度和环境保护意识。
二、实验材料和设备1. 水质采样工具:玻璃瓶、采样勺、采样袋等。
2. 实验室设备:PH计、色谱仪、溶解氧测定仪等。
3. 水质检测试剂:PH试纸、溶解氧试剂、硝酸银溶液等。
三、实验步骤1. 选择样本点:校园内各自然水源(如水龙头、湖泊等)作为采样点。
2. 采样准备:清洗采样工具,避免污染样本。
同时,将相关实验设备进行校准和准备好所需试剂。
3. 采样操作:用玻璃瓶准确采集校园内各水源的水样,确保采样量充分且不受外界污染影响。
并记录采样时间、地点等相关信息。
4. 实验操作:a. PH值检测:将水样倒入PH计,记录测得的PH值。
重复操作3次,取平均值。
b. 溶解氧测定:根据溶解氧测定仪的使用说明进行操作,记录测得的溶解氧含量。
c. 其他指标检测:根据实验需要,可以选择检测水样中的其他指标,如总氮、总磷等。
四、实验数据处理和分析1. 数据处理:整理实验数据,并进行统计和分析。
2. 数据比较和评估:与相关标准进行比较,评估校园水质状况是否符合规定标准。
3. 结果分析:根据实验数据和标准进行分析,得出结论并提出相应的建议,以改善校园水质状况。
五、实验安全与环保注意事项1. 实验时应佩戴实验手套、实验眼镜等个人防护装备,确保实验操作安全。
2. 采样时避免向水源中投放任何污染物,确保采样的水源真实可靠。
3. 实验结束后妥善处理实验废液和废弃物,遵守环境保护法规。
六、实验应用和意义本次校园水质监测实验的数据结果可以为学校提供有关校园水质管理的参考,为改善校园环境提供科学依据。
同时,通过学生参与实验,能够增强学生的环境保护意识,培养学生的科学探究能力和实践动手能力。
七、总结通过这次校园水质监测实验,我们得以全面了解了校园水质状况,并进一步加深了师生对环境保护的认识。
校园湖水水质监测方案
校园湖水水质监测方案
校园湖水水质监测方案应包括以下内容:
1. 监测目标:明确监测的湖水水质参数,例如溶解氧、浊度、pH值、总磷、总氮等。
2. 监测频率:确定监测的时间频率,例如每月、每季度或每年进行一次监测。
3. 监测点位:确定监测的位置,包括湖水入口处、出口处以及水体中心等多个点位。
4. 监测方法:选择适合的水质监测方法,例如采样后实验室测试、在线监测设备等。
5. 数据收集与记录:建立数据收集和记录的系统,确保监测数据的准确性和完整性。
6. 数据分析与评估:对监测数据进行分析和评估,比较不同时间点和点位的水质差异,判断水质是否存在变化和污染问题。
7. 报告和沟通:将监测结果制作成报告,并及时向相关部门或人员进行沟通和交流,以便及时采取必要的管理和保护措施。
8. 应急预案:制定相应的应急预案,针对可能出现的水质问题,制定相应的解决方案和处理措施。
在具体实施方面,可以借助现代科技手段,如传感器网络和远程监测系统来实时监测水质参数,并通过数据分析软件对监测数据进行分析。
此外,还可以组织相关人员接受水质监测的培训,提高监测的专业性和准确性。
最后,确保监测方案的可持续性,不断改进和完善监测方法和流程,以保障校园湖水的水质安全。
校园水环境监测方案
校园水环境监测方案第一篇:校园水环境监测方案校园水环境监测方案一、概况简介资料显示水域面积: 32亩平均水深:1.1m最深:1.5湖水来源:雨水、自来水二、监测目的及意义了解校园内水质状况,并判断水环境质量是否符合国家标准,巩固我们所学知识培养我们团结协作精神和实践操作技能、综合分析问题的能力。
三、具体的取样方案1.布点与采样静态水域无分区网格法设监测垂线,每处设一采样点,共设4个采样点,在水面下0.3m-0.5m处采样,不便现场测定项目也应尽快监测,如需保存否则,应在采样后把样品保持在0~4℃,并在采样后6小时之内进行测定。
四、监测项目及使用的检测方法(每项指标应至少做两次平行样,部分须做空白样)(一)、物理指标的监测.1、水质色度、稀释倍数法,水样稀释倍数表示2、水质水温的测定温度计测定(现场测定,至少三分钟)3、电导率的测定电导仪测定(二):化学指标的监测1、水质PH值的测定Ph试纸测定(现场测定,天然水质PH约6-9)2、水中溶解氧(DO)的测定碘量法(现场加药固定,单独取样)3、水中COD的测定重铬酸钾法4、水中铬的测定比色法五、原始数据与数据处理六、结果分析评价第二篇:水环境监测规范小结《水环境监测规范》(SL219-2013)宣贯培训小结随着最严格的水资源管理制度、“三条红线”的确定:水环境检测技术快速发展,许多老一起设备和部分化学分析方法已不再使用,新的检测技术不断得到应用;水环境监测技术的进步和方式多元化发展,促进了自动监测、移动监测、应急监测等监测形式的出现。
为了和最严格的水资源管理制度及先进方法仪器相适应,对原规范进行了修订和大幅度的内容扩展。
2014年6月下旬,我有幸参加水利部水文局主办、在宁夏银川举办的《水环境监测规范》宣贯培训班。
本次培训班全国各省份、各大流域委水环境监测中心管理人员及监测人员参加培训,参会人员200余人,相关领导亲临会场并做了重要讲话,充分体现了新规范对全国水环境监测工作的重要性。
环境监测方案制定-校园水环境监测方案
监测设备安装与调试
总结词
准确、稳定、长期性
选择合适的监测设备
根据监测项目的需求,选择符合精度、稳 定性、长期使用要求的设备。
设备安装位置
设备调试与校准
在选定的监测点位上,根据设备的要求, 选择合适的位置进行安装,确保设备能够 正常工作并获取准确数据。
监测频率调整与预测
总结词
动态监测、趋势预测
详细描述
根据实际需要,对监测频率进行调整,确保能够及时获取水 质数据。同时,利用环境监测数据和模型,对水质发展趋势 进行预测,为采取有效的环境管理措施提供依据。
环境管理措施建议
总结词
源头控制、综合治理
VS
详细描述
针对校园水环境中存在的问题,提出相应 的环境管理措施建议。包括加强污染源控 制、促进资源回收利用、推行清洁生产、 实施环境教育等,从源头和过程中进行控 制和治理,实现水环境的持续改善。
监测数据审核与处理
01
02
03
04
总结词
规范、严谨、科学性
数据审核
对采集到的数据进行审核,排 除异常数据和不准确数据。
数据处理
对审核后的数据进行处理,如 统计、分析、预测等,得出有
价值的结论和建议。
数据分析报告
根据处理后的数据结果,编写 数据分析报告,为决策提供科
学依据。
04
CATALOGUE
监测数据分析
需要针对不同的水体类型和用途,如饮用水源地、景观水体、雨水 排放口等,选择具有代表性的监测点位。
考虑环境条件和污染源分布
需要结合校园内的环境条件和污染源分布情况,选择具有代表性的 监测点位。
校园景观水质监测方案的制定
校园景观水质监测方案的制定校园里的水景观,你知道吗?那可是我们每天都能看到的风景,不管是清晨的那一池清水,还是午后的小溪涓涓流淌。
水在校园里,不仅是视觉上的一抹亮色,也是生命的一部分。
可是你有没有想过,这些水看起来清澈透亮,但它们的水质到底怎么样呢?嘿,今天咱们就聊聊校园景观水质监测方案的制定。
要是你的学校也有这些美丽的水景观,你一定会觉得这话题不陌生。
水质监测这事儿,可不像我们想象中的那么简单。
它关系到环境的健康,关系到我们的生活质量,甚至关系到我们能不能在清清爽爽的校园里呼吸到一口新鲜空气。
咱们首先得搞清楚,什么是水质监测。
通俗点说,就是通过一定的方法和设备,检测水中各类物质的含量,确保水的质量没有问题。
你要知道,水可不像空气那样看不见摸不着。
它里面可能藏着各种微生物,或者是一些对人体有害的物质。
比如一些有毒的重金属,或者水中的pH值不平衡,都会影响水质的好坏。
所以,校园里这些看起来安静的水体,它们可得定期“体检”,保证没有潜在的健康隐患。
而在制定水质监测方案时,咱们首先要做的就是了解水体的基本情况。
你要知道,不同的水体,它们的特点可完全不同。
你学校池塘里的水跟人工湖里的水,它们的水质问题肯定不一样。
池塘里的水可能因为周围的环境影响,容易积聚杂物,水质容易变差;而人工湖呢,经过人工设计和处理,相对来说水质可能更稳定。
对了,有些学校的景观水甚至可能是循环水,这样一来,水质就得更加注意了。
循环水一旦出现问题,整个系统都会受到影响。
咱们该如何制定水质监测方案呢?得了解监测的指标。
常见的监测指标可不少,最基本的就是水温、pH值、溶解氧、浑浊度、总氮总磷含量等等。
这些数据能帮助我们判断水质是否达标。
像溶解氧低了,就意味着水中的生物可能没法正常生存;pH值一旦偏酸或者偏碱,水中的有害物质就可能增加。
浑浊度则直接影响水的美观度,直接关乎我们眼睛的“幸福感”。
你想啊,谁不喜欢看那种清澈见底的池塘,水中鱼儿游来游去,荷花在水面上静静开放?这些都离不开合适的水质。
校园水质监测系统解决方案
数据采集、处理与传输技术实现
数据采集
通过水质传感器实时采集 水质数据,包括温度、压 力、流量等参数。
数据处理
对采集到的数据进行预处 理、滤波、校准等操作, 确保数据的准确性和可靠 性。
数据传输
采用有线或无线方式将数 据传输至数据中心,保证 数据的实时性和稳定性。
远程监控平台搭建和管理功能实现
远程监控平台
制定完善的数据备份和恢复策略,以 防数据丢失或损坏。
数据存储技术
选择高性能、高可靠性的数据库系统 ,如MySQL、Oracle等,确保数据的 安全性和稳定性。
水质传感器技术原理及应用
原理
水质传感器通过电极或光学原理 测量水中的各种参数,如pH值、 溶解氧、浊度、电导率、化学需 氧量等。
应用
将传感器放置在校园水源地、供 水管道等关键位置,实时监测水 质状况,并将数据传输至数据中 心进行处理和分析。
探索将水质监测技术应用于农业生产领域,提高农业灌溉水质和农产品质 量安全水平。
研究将水质监测数据与气象、环境等多元数据融合,为生态环境保护和治 理提供科学依据。
感谢您的聆听 欢迎指导
汇报人:XXX
根据校园水源分布和监测需求,合理选择设 备安装位置,确保监测数据的准确性和代表 性。
设备安装与调试
验收流程
按照设备厂家提供的安装指南进行设备安装 ,并进行现场调试,确保设备正常运行。
设备安装调试完成后,组织专家进行验收, 对设备的性能、监测数据的准确性等进行全 面评估,确保设备符合使用要求。
软件系统部署环境要求及配置 步骤
感知层负责数据采集,网络层负 责数据传输,平台层负责数据处 理和存储,应用层负责数据展示
和应用。
硬件设备选型及配置方案
校园地表水监测方案
校园地表水监测方案1. 引言校园地表水质量对学校的环境和师生的健康至关重要。
因此,建立一套科学有效的地表水监测方案对于保障校园环境的安全具有重要意义。
本文将介绍一个校园地表水监测方案的设计,以确保教育机构的水质安全。
2. 目标和意义2.1 目标该校园地表水监测方案的目标如下:•及时监测和评估校园地表水的质量;•发现并预警地表水污染事件;•提供科学依据支持校园环境管理和改善决策。
2.2 意义校园地表水监测方案的实施对于保障教育机构的环境质量和师生身体健康具有重要意义:•及时发现地表水质量问题,采取措施预防和处理水污染事件;•提供地表水的科学数据,为校园环境管理提供依据;•促进环境教育,提高学生和教职工的环境意识。
3. 方案设计3.1 监测点的选择选择监测点是校园地表水监测方案的重要组成部分。
根据校园地表水分布情况和使用情况,应选择具有代表性的监测点。
一般建议选择以下几种监测点:•校园内的水体,如湖泊、水塘、溪流等;•距离校园较近的水体,如河流、水库等;•周边地下水位较浅的区域。
3.2 监测指标和频次校园地表水监测的核心是监测指标和监测频次的确定。
选择适当的监测指标可以全面评估地表水质量,常用的指标包括:•pH值:用于表征水体的酸碱程度;•溶解氧:评估水体中的氧气含量;•氨氮和总磷:监测水体中的营养物质含量;•大肠菌群:判断水体是否受到粪便污染。
监测频次应根据使用情况和需求确定,一般建议每季度进行一次全面监测,每月进行一次基础监测。
3.3 监测方法校园地表水监测方法应该科学可行。
以下是常用的监测方法:•pH值的监测可以使用便携式pH仪进行测量;•溶解氧的监测可以使用溶解氧仪进行测量;•氨氮和总磷的监测可以通过水样采集后送实验室进行分析;•大肠菌群的监测可以使用微生物培养基进行培养后计数。
3.4 数据处理和分析监测数据应进行及时处理和分析,生成科学的监测报告。
数据处理的过程应包括以下步骤:1.数据录入和整理;2.数据质控和异常值处理;3.数据分析和图表绘制;4.监测结果的解释和评估。
第一组校园水环境监测方案-123
环境监测综合实验周题目(校园水环境质量监测方案设计)姓名李宏阳学号 B13070328专业环境工程指导教师王小庆苏艳洛阳理工学院目录第一部分概述 (1)一、设计任务 (1)二、实习要求 (1)第二部分校园及周边水环境调查 (2)一、学校概况 (2)二、污染源及受纳水体的调查 (2)三、质量控制 (3)四、校园区域划分 (3)第三部分水环境监测分析实施方案 (4)一、监测项目与范围 (4)二、监测点布设、监测时间和采样方法 (4)三、样品的保存与运输 (5)四、分析方法与数据处理 (10)附录 (12)小结 (13)参考文献 (13)前言水环境是指自然界中水的形成、分布和转化所处空间的环境。
是指围绕人群空间及可直接或间接影响人类生活和发展的水体,其正常功能的各种自然因素和有关的社会因素的总体。
也有的指相对稳定的、以陆地为边界的天然水域所处空问的环境。
在地球表面,水体面积约占地球表面积的71%。
水是由海洋水和陆地水二部分组成,分别与总水量的97.28%和2.72%。
后者所占总量比例很小,且所处空间的环境十分复杂。
水在地球上处于不断循环的动态平衡状态。
天然水的基本化学成分和含量,反映了它在不同自然环境循环过程中的原始物理化学性质,是研究水环境中元素存在、迁移和转化和环境质最(或污染程度)与水质评价的基本依据。
水环境主要由地表水环境和地下水环境两部分组成。
地表水环境包括河流、湖泊、水库、海洋、池塘、沼泽、冰川等,地下水环境包括泉水、浅层地下水、深层地下水等。
水环境是构成环境的基本要素之一,是人类社会赖以生存和发展的重要场所,也是受人类干扰和破坏最严重的领域。
水环境的污染和破坏已成为当今世界主要的环境问题之一。
第一部分概述一、设计任务根据洛阳理工学院的用水和排水情况进行调查研究总通过对校园水环境检测判断水环境质量状况并判断水环境质量是否符合国家标准,巩固我们所学知识,培养我们团结协作精神和实践操作技能、综合分析问题的能力,学会合理地选择和确定某监测任务中所需监测的项目,准确选择样品预处理方法及分析监测方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分校园水环境质量监测方案一、污染源的调查1、校园水污染源主要包括食堂水、实验室废水、生活污水等。
2、食堂水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有N、P等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。
主要排入下水道和校园内小水沟。
3、实验室废水主要排入下水道,排水量不大。
生活污水的排水量占主要部分。
二、校园区域划分校园功能分区按宿舍区、教学楼区、行政区、生活区进行划分,校园空气质量执行GB3838-88三类区标准。
水样采样连续两天,对于校园内小沟直接在沟中心采样,取两个采样点(食堂小水沟,俊秀小水沟),每天每个采样点采集1次样。
三、监测项目及方法(一)氨氮的测定(纳氏试剂比色法)一、原理碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。
本法最低检出浓度为0.025mg/ L(光度法),测定上限为2mg/L。
二、仪器1、具20mm比色皿。
2.50mL具塞比色管。
(7个)3.分光光度计。
4.氨氮蒸馏装置:由500mL凯式烧瓶、氮球、直形冷凝管和导管组成,冷凝管末端可连接一段适当长度的滴管,使出口尖端浸入吸收液液面下。
三、试剂配制试剂用水均应为无氨水。
1.无氨水:可用一般纯水通过强酸性阳离子交换树脂或加硫酸和高锰酸钾后,重蒸馏得到。
2.25%氢氧化钠溶液和10%硫酸锌溶液。
3.纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。
用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。
4.酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。
5.铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000mL 容量瓶中,稀释至标线。
此溶液每毫升含1.00mg氨氮。
6.铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线。
此溶液每毫升含0.010mg氨氮。
四、测定步骤1.水样预处理:无色澄清的水样可直接测定;色度、浑浊度较高和含干扰物质较多的水样,需经过蒸馏或混凝沉淀等预处理步骤。
2.标准曲线的绘制:吸取0 、0.50、1.00、3.00、5.00、7.00和10.0mL铵标准使用液于50m L比色管中,加水至标线,加1.0mL酒石酸钾钠溶液,混匀。
加1.5mL纳氏试剂,混匀。
放置10min后,在波长420nm处,用光程10mm比色皿,以水为参比,测定吸光度。
由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。
3.水样的测定:分取适量的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,加1.0mL酒石酸钾钠溶液(经蒸馏预处理过的水样,水样及标准管中均不加此试剂),混匀,加1.5mL的纳氏试剂,混匀,放置10min。
4.空白试验:以无氨水代替水样,作全程序空白测定。
五、计算由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮含量(mg)。
氨氮(N,mg/L)=m×1000/V式中:m——由校准曲线查得样品管的氨氮含量(mg);V——水样体积(mL)。
注意事项1、纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。
静置后生成的沉淀应除去。
2、滤纸中常含痕量铵盐,使用时注意用无氨水洗涤。
所用玻璃器皿应避免实验室空气中氨的沾污。
(二)化学需氧量的测定重铬酸钾法(CODcr)原理:在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。
仪器(1)250mL全玻璃回流装置。
如取水样在30mL以上,用500mL全玻璃回流装置。
加热装置(电炉)。
25mL或50mL酸式滴定管、锥形瓶、移液管、容量瓶等。
试剂重铬酸钾标准溶液(c 1/6K2Cr2O7=0.2500mol/L):称取预先在120℃烘干2h的基准或优质纯重铬酸钾12.258g溶于水中,移入1000mL容量瓶内,稀释至标线,摇匀。
试亚铁灵指示剂:称取0.472g邻菲罗啉(C12H8N2·H2O)、0.347g硫酸亚铁(FeSO4·7 H2O)溶于水中,稀释至50mL,贮于棕色瓶内。
硫酸亚铁铵标准溶液[c(NH4)2Fe(SO4)2·6H2O≈0.1mol/L]:称取39.5g硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL浓硫酸,摇匀。
临用前,用重铬酸钾标准溶液标定。
①标定方法:准确吸取10.00mL重铬酸钾标准溶液于500mL锥形瓶中,加水稀释至110mL 左右,缓慢加入30mL浓硫酸,混匀。
冷却后,加入3滴试亚铁灵指示液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。
②按下式计算硫酸亚铁铵溶液浓度:c=(0.2500*10.00)/(V)式中:c——硫酸亚铁铵标准溶液的浓度,mol/L;V——硫酸亚铁铵标准溶液的用量,mL。
硫酸-硫酸银溶液:于500mL浓硫酸中加入5g硫酸银。
放置1~2d,不时摇动使其溶解。
硫酸汞:结晶或粉末。
测定步骤取20.00mL混合均匀的水样(或适量水样稀释至20.00mL)置于250mL磨口的回流锥形瓶中,准确加入10.00mL重铬酸钾标准溶液及数粒小玻璃珠或沸石,连接磨口回流冷凝管,接通水后再加热。
从冷凝管上口慢慢加入30mL硫酸-硫酸银溶液,轻轻摇动锥形瓶使溶液混匀,加热回流2h(自开始沸腾时计时)。
对于化学需氧量高的废水样,可先取上述操作所需体积1/10的废水样和试剂于15*15 0mm硬质玻璃试管中,摇匀,加热后观察是否变成绿色。
如溶液显绿色,再适当减少废水取样量,直至溶液不变绿色为止,从而确定废水样分析时应取用的体积。
稀释时,所取废水样量不得少于5mL,如果化学需氧量很高,则废水样应多次稀释。
废水中氯离子含量超过30 mg/L时,应先把0.4g硫酸汞加入回流锥形瓶中,再加20.00mL废水(或适量废水稀释至20. 00mL),摇匀。
冷却后,用90mL水冲洗冷凝管壁,取下锥形瓶。
溶液总体积不得少于140mL,否则因酸度太大,滴定终点不明显。
溶液再度冷却后,加3滴试亚铁灵指示液,用硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。
测定水样的同时,取20.00mL重蒸馏水,按同样操作步骤作空白试验。
记录滴定空白时硫酸亚铁铵标准溶液的用量。
计算:CODcr(O2,mg/L)=((V0-V1)·c*8*1000)/(V)式中:c——硫酸亚铁铵标准溶液的浓度,mol/L;V0——滴定空白时硫酸亚铁铵标准溶液用量,mL;V1——滴定水样时用硫酸亚铁铵标准溶液的用量,mL;V——水样的体积,mL;8——氧(1/2 O)摩尔质量,g/mol。
注意事项使用0.4g硫酸汞络合氯离子的最高量可达40mg,如取用20.00mL水样,即最高络合2000mg /L氯离子浓度的水样。
若氯离子的浓度较低,也可少加硫酸汞,使保持硫酸汞:氯离子=1 0:1(W/W)。
若出现少量氯化汞沉淀,并不影响测定。
水样取用体积可在10.00~50.00mL范围内,但试剂用量及浓度需按下表进行相应调整,也可得到满意的结果。
水样取样量和试剂用量表对于化学需氧量小于50mg/L的水样,应改用0.0250mol/L重铬酸钾标准溶液。
回滴时用0. 01mol/L硫酸亚铁铵标准溶液。
水样加热回流后,溶液中重铬酸钾剩余量应为加入量的1/5~4/5为宜。
用领苯二甲酸氢钾标准溶液检查试剂的质量和操作技术时,由于每克领苯二甲酸氢钾的理论CODcr值为1.176g,所以溶解0.4251g领苯二甲酸氢钾(HOOCC6H4COOK)于重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODcr标准溶液。
用时新配。
CODcr的测定结果应保留三位有效数字。
每次实验时,应对硫酸亚铁铵滴定溶液进行标定,室温较高时尤其应注意其浓度的变化。
(三)碘量法测定溶解氧一、原理水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。
加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。
以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。
二、实验用品1、仪器:溶解氧瓶(250ml)、锥形瓶(250ml)、酸式滴定管(25ml)、移液管(50ml)、吸耳球、1000ml容量瓶、100ml容量瓶、棕色容量瓶、电子天平2、药品:硫酸锰、碘化钾、氢氧化钠、浓硫酸、淀粉、重铬酸钾、硫代硫酸钠三、试剂的配置1、硫酸锰溶液:称取48g分析纯硫酸锰(MnSO4•H2O)溶于蒸馏水,过滤后用水稀释至100mL于透明玻璃瓶中保存。
此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。
2、碱性碘化钾溶液:称取50g分析纯氢氧化钠溶解于30—40mL蒸馏水中;另称取15g 碘化钾溶于20mL蒸馏水中;待氢氧化钠溶液冷却后,将上述两溶液合并,混匀,加蒸馏水稀释至100mL。
如有沉淀(如氢氧化钠溶液表面吸收二氧化碳生成碳酸钠),则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,避光保存。
此溶液酸化后,遇淀粉应不呈蓝色。
3、1+5硫酸溶液。
4、1%(m/V)淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水稀释至100mL。
现用现配,或者冷却后加入0.1g水杨酸或0.4g氯化锌防腐。
5、0.0250mol/L(1/6K2Cr2O7)重铬酸钾标准溶液:称取于105—110℃烘干2h,并冷却的分析纯重铬酸钾1.2258g,溶于水,移入1000mL容量瓶中,用水稀释至标线,摇匀。
6、硫代硫酸钠标准溶液:称取6.2g分析纯硫代硫酸钠(Na2S2O3•5H2O)溶于水中,移入1000mL容量瓶中,用水稀释至标线,摇匀。
贮于棕色瓶中,使用前用0.0250mol/L重铬酸钾标准溶液标定。
7、硫酸,ρ=1.84。
(1+1硫酸)8、标定硫代硫酸钠(1)用0.0250mol/L重铬酸钾标准溶液标定硫代硫酸钠溶液;(2)在250ml锥形瓶中加入1g固体碘化钾及100ml蒸馏水;(3)用滴定管加入10ml0.0250mol/L重铬酸钾标准溶液,再加入5ml的1+5硫酸溶液;(4)在暗处静置5分钟后,由滴定管滴入硫代硫酸钠溶液至溶液呈浅黄色,加入1ml 淀粉溶液,继续滴定至蓝色刚退去为止。