单相桥式整流电路原理图
2.1.4_单相桥式全控整流电路(电阻性负载)解析
4)输出电流有效值I与变压器二次侧电流I2 输出电流有效值I与变压器二次侧电流I2相同为
U U2 I I2 R R
1 π sin 2 2π π
4.3.2单相桥式全控整流电路(阻-感性负载)
1、电路结构
电感的感应电势使输出电压波形出现负波。输出电流是近似 平直的,晶闸管和变压器副边的电流为矩形波。
ud Ud
0
t1
t 2
t
iT1,4
id
Tr
iT2,3
0
Id
t
Id
i2 u2
VT1 a
VT3
L
0 u T1
t
u1
ud
b
VT2 VT4
0
R
u 2 (i2 )
t
u2 i2
Id
(a)
0
t
图4-4
(b)
2、工作原理
1)在u2正半波的(0~α)区间:
晶闸管VT1、VT4承受正压,但无触发脉冲,
3、波形
300
图4-2
600
900
1200
图4-3
1500
单相桥式整流器电阻性负载时的移相范围是 0~180º 。 α=0º 时,输出电压最高;α=180º 时,输出电压最小。
4. 基本数量关系 1)输出电压平均值Ud
1 Ud π
2U 2 sin tdt
4.3.1 单相桥式全控整流电路(电阻性负载)
1、电路结构 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成 共阳极,每一只晶闸管是一个桥臂。
ud (id )
Ud
单相桥式可控整流电路
图3-7 单相全控桥带阻感负载时的电路及波形 (接续流管)
接入VD:扩大移相范围,不让 ud出现负面积。 移相范围:0 ~ 180 ud波形与电阻性负载相同 Id由VT1和VT3,VT2和VT4, 以及VD轮流导通形成。
uT波形与电阻负载时相同。
3.2 单相桥式可控整流电路
4. 带反电动势负载时的工作情况
u2
a)
VT4
VT3
id
L ud
R
•u2过零变负时,由于电感的作用晶 闸管VT1和VT4中仍流过电流id,并
不关断。
•至ωt=π+α 时刻,给VT2和VT3加
触 发 脉 冲 , 因 VT2 和 VT3 本 已 承 受 正电压,故两管导通。
•VT2 和 VT3 导 通 后 , u2 通 过 VT2 和
3.2 单相桥式可控整流电路
一、单相桥式可控整流电路
1.带电阻负载的工作情况
α
➢ 工作原理及波形分析
VT1和VT4组成一对桥臂,在u2正 半周承受电压u2,得到触发脉冲 即导通,当u2过零时关断。
VT2 和 VT3 组 成 另 一 对 桥 臂 , 在 u2 正 半 周 承 受 电 压 - u2, 得 到 触 发脉冲即导通,当u2过零时关断。
➢ 由于电感存在Ud波形出现负面积,使Ud下降。 ➢ α可调范围: 0 ~ 90
3.2 单相桥式可控整流电路
➢接入VD:扩大移相范围,不让ud 出现负面积。 ➢移相范围:0 ~ 180 ➢ud波形与电阻性负载相同 ➢Id由VT1和VT4,V2和VT3,以 及VD轮流导通形成。
图3-10 单相桥式全控整流电路, 有反电动势负载串平波电抗器、接续流二极管
T
i2 a
单相桥式半控整流电路
图3 单相半控桥电感性负载不接续流二极管的情况分析
四、单相桥式半控接续流二极管整流电路
➢有 续 流 二极 管 VDR 时 , 续 流过 程 由 VDR完成,晶闸管关断,避免了某一 个晶闸管持续导通从而导致失控的现 象。同时,续流期间导电回路中只有 一个管压降,有利于降低损耗。
图4单相桥式半控整流电路接续流二极管的电路及波形
单相桥式半控整流电路
一、单相桥式半控整流电路(不接续流二极管)
单相全控桥中,每个导电回路中有2个 晶闸管,为了对每个导电回路进 行控制, 只需1个晶闸管就可以了,另1个晶闸管可 以用二极管代替,从而简化整个电路。如 此即成为单相桥式半控整流电路。(该电 路未接续流二极管)
图1 单相桥式半控带感性负载电路
图2 单相桥式半控整流电路,阻感负载时 的电路及波形
二、单相桥式半控整流电路工作原理
在u2负半周触发角α时刻触发VT3,VT3 导通,则向VT1加反压使之关断,u2经 VT3和VD2向负载供电。u2过零变正时, VD4导通,VD2关断。VT3和VD4续流,ud
又为零。 半控整流电路与全控整流电路在电阻负载 时的工作情况相同。
二、单相桥式半控整流电路工作原理
在u2正半周,触发角α处给晶闸管VT
加触发脉冲,u2经VT1和VD4向负载供电。
当u2过零变负时,因电感作用使电流
连续,VT1继续导通。但因α点电位低于b 点 电 位 , 使 得 电 流 从 VD4 转 移 至 VD2, VD4关断,电流不再流经变压器二次绕组, 而是由VT1和VD2续流。
五、接续流二极管整流电路数量关系
➢晶闸管和二极管电流有效值 ➢续流二极管电流有效值 ➢变压器二次侧电流有效值
I DR I d
1桥式整流电路工作原理PPT课件
1
电路组成
+
+
4
+ V4
V1
+
220V u1
+
u2 3
– V3
2
1
RL u o
V2
-
+
由一个变压器,四只二极管,一个负载组成,其中四只二 极管组成电桥电路。
2
单相桥式整流电路的工作原理
u2正半周时
电流通路
+
T
+
u1
A D4
u2
D1
D3
RL uo
B
D2
-
单相桥式整流电路
-
3
单相桥式整流电路的工作原理
最 高 反 向 工 作 电 压 为 200V。
10
(2)当 采用 桥式 整流 电 路时 ,变 压器 副边 绕 组 电压有效值为:
U2
Uo 0.9
24 0.9
26 .7
V
整流二极管承受的最高反向电压为:
U RM 2U 2 1 .41 26 .7 37 .6 V
流过整流二极管的平均电流为:
演讲人:XXXXXX
时 间:XX年XX月XX日
15
A
u2
B
u2
D4 D1
D3
D2
uU 0 o
u D 4 ,u D 2 uD3,uD1
+
RL
u2>0 时
u2<0 时
uo D1,D3导通 D2,D4导通
D2,D4截止 D1,D3截止
_ 电流通路: 电流通路: A D1 B D2 RLD3B RLD4A
t 输出是脉动的直流电压!
单相桥式全控整流电路
◆基本数量关系 ☞☞和晶整闸 流222UU管电2。2 承压受平的均最 值大为:正向电压和反向电压分别为
Ud
1
2U2 sintd(t) 2
2U 2
1 cos 2
0.9U 2
1 cos 2
(3-9)
α=0时,Ud= Ud0=0.9U2。α=180时,Ud=0。可见,α角的 移相范围为180。 ☞向负载输出的直流电流平均值为:
U2=100 =141.4(V) 流过每个晶2闸管的电流的有效值为: IVT=Id∕ =6.36(A) 故晶闸管的额定电压为: UN=(2~3)×141.4=283~424(V) 晶闸管的额定电流为: IN=(1.5~2)×6.36∕1.57=6~8(A) 晶闸管额定电压和电流的具体数值可按晶闸管产品系列参数选取。
O
id
t
Id
O i2
Id
Id
t
O
t
图3-9 ud、id和i2的波形图
8/131
3.1.2 单相桥式全控整流电路
②整流输出平均电压Ud、电流Id,变压器二次侧电流有效值I2分别为
Ud=0.9 U2 cos=0.9×100×cos30°=77.97(A)
Id =(Ud-E)/R=(77.97-60)/2=9(A) I2=Id=9(A) ③晶2闸管承受的2最大反向电压为:
2/131
3.1.2 单相桥式全控整流电路
■带阻感负载的工作情况
◆电路分析
☞在u2正半周期
u
2
√触发角处给晶闸管VT1和VT4加触
O
t 发脉冲使其开通,ud=u2。
ud
√负载电感很大,id不能突变且波形近
O
电力电子单相桥式全控整流电路
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
2.1.5 单相桥式全控整流电路(阻-感性负载)
ωt 2
ωt
α
Id
id
i2 u1 u2
iT2,3
ωt
Id
VT1
VT3
L
u T1
ωt
ud
R
VT2 VT4
u 2 (i2 )
ωt
u2 i2
Id
ωt
图2-10
2、工作原理 、
1)在u2正半波的(0~α)区间: ) 正半波的( )区间: 晶闸管VT 承受正压,但无触发脉冲,处于关断状态。 晶闸管 1、VT4承受正压,但无触发脉冲,处于关断状态。 假设电路已工作在稳定状态,则在0~ 区间由于电感释放 假设电路已工作在稳定状态,则在 ~α区间由于电感释放 能量,晶闸管VT 维持导通。 能量,晶闸管 2、VT3维持导通。 2)在u2正半波的 ) 正半波的ωt=α时刻及以后: 时刻及以后: 时刻及以后 在 ωt=α 处 触 发 晶 闸 管 VT1 、 VT4 使 其 导 通 , 电 流 沿 a→VT1→L→R→VT4→b→Tr的二次绕组 的二次绕组→a流通 , 此时 流通, 的二次绕组 流通 负载上有输出电压( 和电流。 负载上有输出电压(ud=u2)和电流。电源电压反向加到晶 闸管VT 使其承受反压而处于关断状态。 闸管 2、VT3上,使其承受反压而处于关断状态。
3、 基本数量关系 、 1)输出电压平均值 d )输出电压平均值U
1 Ud = π
∫
π +α
α
2U 2 sin ωtd (ωt )
2 2U 2 = cos α = 0.9U 2 cos α π
2)输出电流平均值Id )输出电流平均值
Ud Id = R
3)晶闸管的电流平均值IdT 由于晶闸管轮流导电, 由于晶闸管轮流导电,所以流过每个晶闸管的平 均电流只有负载上平均电流的一半。 均电流只有负载上平均电流的一半。
单相桥式全控整流电路(阻感性负载)
1.单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1.单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1) 在u2正半波的(0~α )区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工 作在稳定状态,则在O 〜α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
2) 在u2正半波的ω t=α时刻及以后:在ω t=α处触发晶闸管 VT1、VT4使其导通,电流沿 a →VT1 → L → R →VT4 →b →Tr 的二次绕组→ a 流通,此时负载上有输出电压(ud=u2)和电流。
电源电 压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
3) 在u2负半波的(π ~ π + α)区间:当ω t=π时,电源电压自然过零,感应电势使晶闸管 VT1、VT4继续导通。
1.1单相桥式全控整流电路电路结构(阻 -感性负载)单相桥式全控整流电路用四个晶闸管, 接成共阳极,每一只晶闸管是一个桥臂。
两只晶闸管接成共阴极,两只晶闸管 单相桥式全控整流电路(阻-感性负载)I!*-■\U/-1-kγ叫OO:Ow...0f ∣2√*-(b}≡r∣√在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关 断状态。
4)在u2负半波的ω t=π +α时刻及以后:在ω t=π + α处触发晶闸管 VT2、VT3使其导通,电流沿 b →VT3→L →R → VT2→a →Tr 的二次绕组→ b 流通,电源电压沿正半周期的方向施加到负载上, 负载上有输出电压(Ud=-U2)和电流。
此时电源电压反向加到 VT1、VT4上,使其承受反压而变为关断状态。
晶闸管 VT2、VT3 一直要导通到下一周期ω t=2 π +α处再次触发晶闸管VT1、VT4为止。
1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2单相双半波可控整流电路仿真模型(阻-感性负载)興朋rgui—B∣÷ FtJιIU lPUIHTfrIflηi pr1 ⅛B -∣S ,T⅛∏Ftor2电源参数,频率50hz,电压100v ,如图3⅞⅛ BIQCk Parameter5: AC VoItage SOUrCe AC Voltage SOUrCe (mask) CIink)Ideal S l innSOidaI AC VOlt age SIDUrCe-图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V ,周期0.02,占空比10%,时相延迟α /360*0.02, 如图4图4.单相桥式全控整流电路脉冲参数设置ApplyCancelHe :IPVT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5⅝∣ Source BloCk Parameters: PUISe Generator2图5.单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。
桥式整流电路工作原理Ppt完整版PPT
由u输单其2一出相输负个 电 桥 出半变压式波周压平整形时器均流如:,值电下D2四:路图、只的所UDo二工示4=加0极作。.正管原向,理电一压个导负通载,组D成1,、其D中3加四反只向二电极压管截组止成。电桥电路。
K1合,K2合 交AC流50V档 直DC流50V档 单u桥输2相式出负桥 整 电 是半式流脉周整电平动时流路均的:电工值直D2路作流:I、o的原电=DU工理压4加o作!P/Rp正原tL向理=0电. 压导通, D1 、D3加反向电压截止。
直流 DC10V档
单输桥其整相出式输个桥 是 电 整 出 周式脉流波期整动平电形的流的均路如输电直值工下出路流作图波:Io的电原所形= U工压理示如o作!。下P/Rp原图tL 理所=0示. :
输桥单流二出式相过极电 整 桥 二 管压流式极承平电整管受均路流的值工电平最:作路均大原的电反Uo理工流向=0作:电P.p原压Itv=理:IL/2
u2负半周时 电流通路
-
T
u11
A D4
u2
D1
D3
+
RL
u0
B
D2
+
_
单相桥式整流电路
+
4
+
220V u1
- V4
u2 3
V3
V1
1
V2
+
RL u O
+
+
2
-
u2负半周时:D2、D4加正向电压导通, D1 、D3加反向+电压截止。
其输出波形如下u图2 所示。
t
uo´´
t
io ´´
t
单相桥式整流电路输出波形及二极管上电压波形
+
4
单相桥式整流电路
(Single-phase Bridge Rectifier Circuit)
张小华
单相桥式整流电路的工作原理
u2正半周时
电流通路
+
T
+
u1
A D4
u2
D1
D3
RL uo
B
D2
-
-
单相桥式整流电路
单相桥式整流电路的工作原理
u2负半周时 电流通路
-
T
u11
A D4
u2
D1
D3
+
RL
⒈单相桥式整流电路的组成、工作原理; ⒉电路主要参数的计算;
9
思考与练习
1.根据实际情况设计并制做一个单相桥 式整流电路。
2.电路中若有一个二极管反接、或虚焊、 或烧毁,有何现象?分析其原因。
3.查阅整流电路其它方面的应用,并相 互交流。
10
电路需完善的问题
Uo是脉动的直流输出,如何变为平滑 输出,趋近标准直流呢?
∴ U2=Uo/0.9=60/0.9≈66.7(V)
7
应用举例
⑵ 流过二极管的平均电流为:
ID IO 2 4A 2 2( A)
二极管承受的反向峰值电压为: U RM 2U2 1.41 66.7 94(V )
查手册可选型号为2CZ12A(3A/100V) 二极管四只。
8
小结
⑵二极管工作参数
平均电流(average current)
ID
1 2
IO ( A)
反向峰值电压(reverse peak voltage)
U RM 2U 2 (V )
单相桥式全控整流电路实验报告
单相桥式全控整流电路实验报告一、实验目的1、熟悉单相桥式全控整流电路的工作原理。
2、掌握单相桥式全控整流电路在不同负载情况下的输出特性。
3、学会使用示波器等仪器观测电路中的电压、电流波形。
二、实验原理单相桥式全控整流电路由四个晶闸管组成,其电路图如下图所示:插入电路图在电源电压的正半周,晶闸管 VT1 和 VT4 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经 VT1、负载、VT4 流回电源的负端,负载上得到正电压;在电源电压的负半周,晶闸管 VT2 和VT3 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经VT2、负载、VT3 流回电源的负端,负载上得到负电压。
通过控制触发角α的大小,可以改变输出直流电压的平均值。
三、实验设备1、电力电子实验台2、示波器3、万用表4、电阻负载、电感负载四、实验内容及步骤(一)电阻负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。
(二)电感负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。
(三)反电动势负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
单相桥式整流电路
引言整流电路是电力电子电路中的一种,它的作用是将交流电力变为直流电力供给直流用电设备,如直流电动机,电镀、电解电源,同步发电机励磁,通信系统等,在生产生活中应用十分广泛。
整流电路在不同角度有不同的分类方法,按组成电路的器件分:不可空、半空、全控和高功率PWM四种,按电路结构可分为:半波、全波、桥式三种,按交流输入相数分:单相、三相、多相多重三种,按控制方式分:相控式、PWM控制式两种,按变压器二次测电流方向分:单拍、双拍电路两种。
整流电路通常由主电路、滤波器和变压器组成。
单相桥式全控整流电路是单相整流电路中应用较为广泛的整流电路。
1 整流电路单相整流器的电路形式是多种多样的,整流的结构也是比较多,各有优缺点,因此在做设计之前我们主要考虑了以下几种方案:单相半波可控整流电路,单相全波可控整流电路,单相桥式半控整流电路,单相桥式全控整流电路 。
1.1 单相半波可控整流电路2图1-1 单相半波可控整流电路如图1-1所示为单相半波可控整流电路,此电路结构简单,只用了1个晶闸管,在一个通电周期内,输出电压为直流电压,输出电流为直流电流,电压电流均不连续,脉动较大,且含有谐波分量。
1.2 单相全波可控整流电路2212如图1-2 单相全波可控整流电路如图1-2所示为单相全波可控整流电路,变压器T 带中心抽头,结构比较复杂,只用两个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。
不存在直流磁化的问题,适用于输出低压的场合作电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。
单相桥式全波整电路原理图解
单相桥式全波整流电路原理图解
上面是单相桥式全波整流电路的电路图
前半个周期,D1和D3导通,而D2和D4截止,加在RL上的是上正下负电压,后半个周期,D2和D4导通,而D1和D3截止,加在RL 上的还是上正下负的电压。
如此反复此电路和全波整流电路一样,都完全利用了电流的整个过程。
从而使得U0= 0.9U2。
继而也可以求出I0的平均值;
流过每个二极管的电流等于I0的一半;
在不考虑压降的情况下,当一组二极管导通时,另一组二极管截止,承受全部交流峰值电压,即为最高发向工作电压为根号二倍的U2;。
单相桥式全控整流电路(纯电阻_阻感_续流二极管_反电动势)
电力电子技术实验报告实验名称:单相桥式全控整流电路的仿真与分析班级:自动化091组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相桥式全控整流电路(电阻性负载) .............................................. 错误!未定义书签。
1. 电路的结构与工作原理 (1)2. 单相桥式全波整流电路建模 (2)3. 仿真结果与分析 (4)4. 小结 (6)二. 单相桥式全控整流电路(阻-感性负载) ............................................. 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
2. 建模................................................................................................. 错误!未定义书签。
3. 仿真结果与分析............................................................................. 错误!未定义书签。
4. 小结................................................................................................. 错误!未定义书签。
三. 单相桥式全控整流电路(反电势负载)......................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
单相桥式全控整流电路
1. 单相桥式全控整流电路(阻-感性负载)1.1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1. 单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
2)在u2正半波的ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。
电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
3)在u2负半波的(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。
在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
4)在u2负半波的ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。
此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。
晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。
1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4. 单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5图5. 单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。