热力学发展史

合集下载

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递规律的科学,它的发展历史可以追溯到18世纪末。

以下是热力学发展的简史。

1. 开始阶段热力学的起源可以追溯到热力学第一定律的提出。

1798年,法国物理学家拉瓦锡提出了能量守恒定律,即热力学第一定律。

这一定律表明,能量可以转化为不同形式,但总能量保持不变。

2. 第二定律的建立热力学第二定律是热力学的核心理论之一,它描述了能量转化的方向性。

19世纪初,卡诺和卡尔诺提出了热力学第二定律的原始版本,即卡诺循环。

他们认识到热量无法彻底转化为实用的功,总是会有一部份热量被浪费掉。

这一发现奠定了热力学第二定律的基础。

3. 熵的概念引入熵是热力学中非常重要的概念,它描述了系统的无序程度。

熵的概念最早由德国物理学家克劳修斯在1850年代引入。

他将熵定义为系统的无序度,熵增原理表明在孤立系统中,熵总是增加的。

4. 统计热力学的发展19世纪末,统计热力学的发展为热力学提供了新的解释。

玻尔兹曼和吉布斯等科学家通过统计方法研究了大量微观粒子的行为,从而揭示了热力学规律的微观基础。

他们提出了统计热力学的理论,成功解释了熵的概念,并将热力学与统计物理学相结合。

5. 热力学的应用热力学的发展不仅仅停留在理论层面,还有广泛的应用。

热力学在工程领域中被广泛应用于能源转换、热力系统设计等方面。

例如,蒸汽机的发明和蒸汽轮机的应用都是基于热力学原理。

热力学也在化学、生物学等学科中发挥着重要作用。

6. 热力学的发展与进步随着科学技术的不断进步,热力学的研究也在不断深化。

现代热力学已经发展出了许多分支学科,如非平衡热力学、统计热力学等。

热力学的应用也越来越广泛,例如在能源转换、环境保护和材料科学等领域。

总结:热力学是一门研究能量转化和传递规律的科学,它的发展经历了多个阶段。

从热力学第一定律的提出到热力学第二定律的建立,再到熵的概念的引入和统计热力学的发展,热力学逐渐成为一个完整的理论体系。

热力学不仅在理论上有所突破,还在工程、化学、生物学等领域有广泛的应用。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递的物理学科,它的发展历史可以追溯到18世纪末。

本文将从热力学的起源开始,详细介绍热力学的发展过程,包括关键概念、理论和实验的重要里程碑。

1. 热力学的起源热力学的基础可以追溯到热量的研究。

18世纪末,人们开始对热量的本质和性质进行深入研究。

最早的热力学观念可以追溯到约瑟夫·布莱克的“热量流体”理论,他认为热量是一种流体,可以在物体之间传递。

而安托万·拉瓦锡则提出了“热力学”一词,并将热量视为能量的一种形式。

2. 热力学第一定律热力学第一定律是热力学的基本原理之一,它表明能量守恒。

这一定律最早由赫尔曼·冯·亥姆霍兹和朱尔斯·蒂雷尼斯提出。

根据第一定律,能量可以从一个系统转移到另一个系统,但总能量保持不变。

这一定律为热力学的发展奠定了基础。

3. 热力学第二定律热力学第二定律是热力学的另一个重要原理,它描述了热量传递的方向性。

卡诺和克劳修斯等科学家对热力学第二定律进行了深入研究。

根据第二定律,热量自然地从高温物体流向低温物体,而不会反向流动。

这一定律为热力学的发展提供了重要的理论基础。

4. 熵的引入熵是热力学中的一个重要概念,用于描述系统的无序程度。

鲁道夫·克劳修斯和威廉·汤姆逊等科学家对熵进行了深入研究。

熵的引入使得热力学能够更好地解释能量转化和传递的过程。

熵的概念对于理解热力学的第二定律以及热力学平衡的概念至关重要。

5. 热力学的应用热力学的发展不仅仅是理论上的突破,还有着广泛的实际应用。

热力学在工程学、化学、生物学等领域都有着重要的应用价值。

例如,热力学可以用于优化能源系统的设计,提高能源利用效率;在化学反应中,热力学可以用于预测反应的热效应和平衡条件。

6. 热力学的发展趋势随着科学技术的不断进步,热力学也在不断发展和演变。

现代热力学已经发展出了统计热力学、非平衡热力学等分支学科。

统计热力学通过统计物理学的方法,研究微观粒子的行为对宏观热力学性质的影响。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递的一门科学,它涉及到热、功和能量等概念。

本文将为您详细介绍热力学的发展历程,从早期的观察和实验开始,向来到现代热力学的应用和研究。

1. 早期观察和实验热力学的起源可以追溯到古代,当时人们对热和能量的转化已经有了一些基本的认识。

例如,古希腊的哲学家们认为热是一种物质,称之为“火元素”。

然而,直到17世纪末,热力学的真正研究才开始。

2. 卡诺循环和热力学第一定律在1824年,法国工程师卡诺提出了卡诺循环,这是热力学的一个重要里程碑。

卡诺循环是一种理想的热机循环,它揭示了热能转化为功的原理。

卡诺还提出了热力学第一定律,即能量守恒定律,能量可以从一种形式转化为另一种形式,但总能量保持不变。

3. 热力学第二定律和熵19世纪中叶,热力学第二定律的提出进一步推动了热力学的发展。

热力学第二定律指出,热量不可能自发地从低温物体传递到高温物体,而是自发地从高温物体传递到低温物体。

这个定律为热力学提供了一个方向性,即热量总是从高温区域流向低温区域。

熵是热力学中一个重要的概念,它用来描述系统的无序程度。

熵的增加与系统的无序程度增加是相对应的。

熵的概念使得热力学可以应用于更广泛的领域,如化学反应、生物学和信息论等。

4. 热力学的应用热力学在工程、物理学和化学等领域都有广泛的应用。

在工程领域,热力学被用于设计和优化热机、制冷系统和发电厂等。

在物理学中,热力学被用于研究物质的相变和热力学性质。

在化学领域,热力学被用于研究化学反应的热效应和平衡条件。

5. 热力学的发展和未来随着科学技术的不断进步,热力学的研究也在不断发展。

现代热力学已经发展出了许多新的理论和方法,如非平衡热力学和统计热力学等。

非平衡热力学研究的是非平衡态下的热力学性质,而统计热力学则通过统计方法研究大量微观粒子的行为来推导宏观热力学性质。

未来,热力学的研究将继续深入,并与其他学科相结合,如量子力学和信息科学等。

这将为我们理解能量转化和传递的规律提供更深入的认识,也将为我们解决能源和环境等重大问题提供更多的解决方案。

热力学的历史演变与基本概念

热力学的历史演变与基本概念

热力学的历史演变与基本概念热力学是研究能量转换和传递的科学领域,其历史演变与基本概念的发展可以追溯到古代文明时期的蒸汽机和热量实验。

本文将以历史的时间顺序为基础,探讨热力学的演变和形成的基本概念。

1. 古代文明时期的热力学初探古希腊的哲学家和科学家发表了一些关于热的思考和实验。

例如,亚里士多德提出了关于热量和热传导的理论。

古罗马时期的工程师黑奥奇斯发明了一个早期的蒸汽机,用于泵水和控制温度。

2. 热力学的现代基础:卡诺循环和第一定律19世纪初,法国工程师尼古拉·卡诺提出了能量守恒定律的基本概念。

他研究了蒸汽机的工作原理,开创了热力学的研究方向。

卡诺将热量转化为机械能的过程定义为卡诺循环,奠定了热力学第一定律的基础。

3. 熵和热力学第二定律的建立随着热力学的发展,科学家们意识到热量无法完全转化为机械能。

德国物理学家鲁道夫·克劳修斯和克劳修斯·杜埃姆林合作提出了热力学第二定律,也被称为热力学不可逆性定律。

他们引入了熵的概念,熵被认为是系统混乱程度的度量。

热力学第二定律指出自然过程的熵增加,从而限制了能量的转化效率。

4. 统计热力学的建立19世纪末,物理学家们开始运用统计学方法研究热力学系统。

克劳修斯和玻耳兹曼独立地提出了统计热力学的基本原理,将热力学规律与分子运动的统计规律联系起来。

玻尔兹曼提出了熵与微观状态数目的关系,即著名的玻尔兹曼公式,为热力学提供了微观解释。

5. 热力学的应用和拓展随着时间的推移,热力学的基本概念被应用于各个领域,包括化学、物理、能源和环境科学等。

例如,化学反应热力学研究了反应的热效应和平衡条件。

能源工程领域则利用热力学原理来研究能源转换和利用效率。

此外,热力学也在环境科学中发挥着重要作用,帮助我们理解和改善能源利用对环境的影响。

综上所述,热力学的历史演变是一个由古代文明时期的初探,到现代热力学的建立和应用的过程。

从卡诺循环和第一定律的奠定基础,到熵和热力学第二定律的引入,再到统计热力学的发展,热力学的基本概念得到了不断完善和拓展。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究热能转化和传递的物理学分支,它的发展历程可以追溯到18世纪末。

以下将详细介绍热力学的发展历史。

1. 开始阶段(18世纪末-19世纪初)热力学的起源可以追溯到18世纪末,当时研究者开始探索热量和机械能之间的关系。

最早的研究者之一是法国物理学家尼古拉·卡诺,他在1824年提出了卡诺热机理论,奠定了热力学的基础。

同时,英国物理学家约翰·道尔顿也提出了“热量是物质微粒的运动形式”的观点,这对热力学的发展有着重要的影响。

2. 热力学第一定律的建立(19世纪中期)19世纪中期,热力学第一定律的建立标志着热力学理论的重要进展。

德国物理学家朱尔斯·冯·迈耶在1842年提出了能量守恒定律,即热力学第一定律。

他认为,能量可以从一种形式转化为另一种形式,但总能量守恒。

此后,热力学第一定律成为研究能量转化和传递的基本原理。

3. 热力学第二定律的提出(19世纪中后期)19世纪中后期,热力学第二定律的提出进一步推动了热力学理论的发展。

热力学第二定律描述了热量的自发流动方向,即热量只能从高温物体流向低温物体。

热力学第二定律的提出由多位科学家共同完成,其中包括克劳修斯、开尔文和卡诺等人。

他们的研究成果为热力学第二定律的确立奠定了基础。

4. 统计热力学的发展(19世纪末-20世纪初)19世纪末至20世纪初,统计热力学的发展成为热力学领域的重要研究方向。

统计热力学是热力学和统计力学的结合,通过统计方法研究微观粒子的运动和性质。

奥地利物理学家路德维希·玻尔兹曼是统计热力学的先驱者之一,他提出了著名的玻尔兹曼方程,解释了气体分子的运动规律,并对热力学第二定律进行了微观解释。

5. 热力学的应用与发展(20世纪)20世纪,热力学的应用范围不断扩大,成为众多领域的基础理论。

热力学在化学、工程、材料科学等领域的应用日益广泛。

例如,热力学在化学反应动力学研究中起到重要作用,可以预测反应速率和平衡常数。

热力学发展简史

热力学发展简史

热力学发展简史热力学是一门研究能量转化和传递的学科,它在科学和工程领域中具有广泛的应用。

本文将为您介绍热力学的发展历程,从早期的热学研究到现代热力学的各个分支。

1. 早期热学研究早在古希腊时期,人们就对热有所认识。

亚里士多德提出了“热是物质的属性”的观点,而希波克拉底则将热与物质的状态变化联系在一起。

然而,直到17世纪,热学研究仍然停留在定性描述的阶段。

2. 热力学定律的建立18世纪,热学研究进入了一个新的阶段。

约瑟夫·布莱兹·帕西卡利(Joseph Black)对热的定量测量做出了重要贡献,他提出了“热量守恒定律”,即热量在物质之间的传递不会平空消失。

此后,拉瓦锡(Joseph Louis Gay-Lussac)、查理·戴尔顿(John Dalton)等科学家陆续提出了一系列热力学定律,如等压定律、等温定律等。

3. 热力学第一定律19世纪初,热力学第一定律的建立标志着热力学理论的进一步发展。

赫尔曼·冯·亥姆霍兹(Hermann von Helmholtz)提出了能量守恒定律,即能量在系统中的总量是恒定的。

这一定律为热力学的数学表达提供了基础,奠定了热力学的理论基础。

4. 热力学第二定律热力学第二定律是热力学的核心内容之一,它描述了能量转化的方向性。

卡诺(Nicolas Léonard Sadi Carnot)和开尔文(William Thomson)等科学家在19世纪中叶提出了热力学第二定律的各种表述形式,如卡诺定理、开尔文-普朗克表述等。

这些定律为热力学系统的工程应用提供了指导。

5. 统计热力学的发展19世纪末,统计热力学的发展为热力学理论提供了新的视角。

麦克斯韦(James Clerk Maxwell)和玻尔兹曼(Ludwig Boltzmann)等科学家通过统计方法研究了份子运动和热力学性质之间的关系,建立了统计热力学的基本原理。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究热、功和能量转化的科学,其发展历程可以追溯到18世纪。

本文将从热力学的起源开始,概述其发展历程,并分析其在科学研究和工程应用中的重要性。

一、热力学的起源1.1 18世纪热力学的萌芽在18世纪,热力学的概念逐渐形成,科学家开始研究热量和功的关系。

1.2 卡诺定理的提出法国工程师卡诺在1824年提出卡诺定理,奠定了热力学的基础。

1.3 克劳修斯的热力学第一定律德国物理学家克劳修斯在1850年提出热力学第一定律,揭示了能量守恒的基本原理。

二、热力学的发展2.1 热力学第二定律的提出克劳修斯和开尔文在19世纪提出热力学第二定律,揭示了热量自然流动的方向。

2.2 熵的概念麦克斯韦和普朗克在19世纪末提出了熵的概念,为热力学提供了新的理论基础。

2.3 热力学的应用热力学的发展推动了工业革命和科学技术的进步,广泛应用于发电、制冷、化工等领域。

三、热力学在科学研究中的重要性3.1 热力学与化学反应热力学为化学反应的研究提供了理论基础,揭示了反应热和平衡常数之间的关系。

3.2 热力学与生物学热力学在生物学研究中的应用日益重要,揭示了生物体内能量转化的规律。

3.3 热力学与地球科学热力学在地球科学中的应用涉及地球内部热量、地震等重要现象的研究。

四、热力学在工程应用中的重要性4.1 热力学在能源领域的应用热力学在能源开发和利用中起着关键作用,推动了可再生能源和清洁能源的发展。

4.2 热力学在制冷技术中的应用热力学为制冷技术的发展提供了理论基础,推动了冷链物流和医疗保鲜技术的进步。

4.3 热力学在材料科学中的应用热力学在材料研究中的应用促进了新材料的开发和应用,推动了材料科学的发展。

五、热力学的未来发展5.1 热力学在新能源领域的应用随着新能源技术的发展,热力学将在太阳能、风能等领域发挥更重要的作用。

5.2 热力学在环境保护中的应用热力学在环境保护和减排方面的应用将成为未来的重点研究领域。

5.3 热力学在人类生活中的应用热力学将继续在人类生活中发挥重要作用,推动科技创新和社会进步。

热力学发展简史

热力学发展简史

热力学发展简史热力学是一门研究能量转化与传递的科学,旨在理解物质的宏观性质和微观行为。

本文将为您介绍热力学的发展历程,从早期的热力学原理到现代热力学的应用。

1. 早期热力学原理热力学的起源可以追溯到18世纪末,当时科学家开始研究热量传递和能量转化的规律。

其中,卡诺提出了热力学第一定律,即能量守恒定律,认为能量既不能被创造也不能被毁灭,只能转化形式。

同时,卡诺还提出了热力学第二定律,即热量不会自发地从低温物体传递到高温物体,而是从高温物体传递到低温物体。

这两个定律为后来的热力学研究奠定了基础。

2. 热力学定律的发展随着科学技术的进步,热力学的研究逐渐深入。

19世纪,克劳修斯和开尔文等科学家进一步发展了热力学定律。

克劳修斯提出了热力学第三定律,即绝对零度不可达到,熵在绝对零度时为零。

开尔文则提出了热力学第四定律,即热力学过程不可逆的原理。

这些定律的提出丰富了热力学的理论体系。

3. 热力学的应用热力学的研究不仅仅是理论上的探索,还有许多实际应用。

热力学在能源领域的应用尤为广泛。

例如,蒸汽发电厂利用热力学原理将燃料的化学能转化为电能;空调系统利用热力学原理实现室内温度的调节;热力学还在化学工程、材料科学等领域发挥着重要作用。

4. 现代热力学的发展随着科学技术的不断进步,热力学的研究也得到了长足的发展。

现代热力学已经与其他学科相结合,形成了许多交叉学科,如统计力学、非平衡热力学等。

这些新的研究领域使得热力学的应用更加广泛和深入。

5. 热力学的未来展望随着人类对能源需求的不断增长和环境问题的日益严重,热力学的研究也面临新的挑战和机遇。

未来,热力学将继续发展,为解决能源和环境问题提供更多的科学依据和技术支持。

同时,热力学的研究还有待进一步深入,特别是在微观和纳米尺度上的研究。

总结:热力学作为一门研究能量转化与传递的科学,经历了从早期热力学原理到现代热力学的发展过程。

早期的热力学原理由卡诺提出,随后克劳修斯和开尔文等科学家进一步发展了热力学定律。

热力学发展简史

热力学发展简史

热力学发展简史热力学是一门研究热现象和能量转换的学科,它的发展历史可以追溯到18世纪。

本文将从热力学的起源开始,介绍热力学的发展历程,以及在科学和工程领域中的重要应用。

一、热力学的起源1.1 18世纪初,热力学的基础概念开始形成。

约翰·道尔顿提出了“热量是物质中的一种运动”的观点,奠定了热力学的基础。

1.2 19世纪初,卡诺提出了热力学第二定律,即热机效率的最大值。

这一理论为热力学的发展奠定了基础。

1.3 19世纪中叶,克劳修斯提出了热力学的熵概念,开创了热力学第二定律的统计解释。

二、热力学的发展历程2.1 19世纪末,玻尔兹曼提出了玻尔兹曼方程,揭示了气体份子的统计规律,为热力学的统计解释提供了理论基础。

2.2 20世纪初,爱因斯坦提出了玻尔兹曼方程的统计物理解释,揭示了热力学与统计物理的内在联系。

2.3 20世纪中叶,热力学与信息论的关系得到了深入研究,熵的概念在信息论中得到了广泛应用。

三、热力学在科学领域的应用3.1 热力学在化学领域中的应用,如化学反应热力学、热力学平衡等,为化学工程和材料科学的发展提供了理论基础。

3.2 热力学在生物学领域中的应用,如生物热力学、生物能量转换等,为生物医学和生物工程的发展提供了理论支持。

3.3 热力学在地球科学领域中的应用,如地球内部热力学、气候变化等,为地球科学研究提供了理论指导。

四、热力学在工程领域的应用4.1 热力学在能源工程中的应用,如热力发电、太阳能利用等,为能源产业的发展提供了技术支持。

4.2 热力学在材料工程中的应用,如材料热处理、热传导等,为材料科学和工程技术的发展提供了理论指导。

4.3 热力学在环境工程中的应用,如环境热力学、能源环境保护等,为环境保护和可持续发展提供了技术支持。

五、结语热力学作为一门基础科学,对于现代科学和工程领域的发展起着重要作用。

通过对热力学的发展简史和应用领域的介绍,我们可以更好地理解热力学在科学和工程中的重要性,以及其对人类社会发展的贡献。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和能量传递的物理学科,它起源于18世纪末的工业革命时期。

热力学的发展历程可以追溯到当时对于蒸汽机的研究和应用。

本文将为您详细介绍热力学的发展历史,从早期的热力学原理到现代热力学的应用。

1. 早期热力学原理的奠基者热力学的奠基者可以追溯到18世纪末的工业革命时期。

其中,卡诺是热力学的重要奠基者之一。

他提出了卡诺循环的概念,这是一种理论上最高效的热机循环。

卡诺的研究为热力学的发展奠定了基础。

2. 热力学第一定律的提出19世纪初,热力学的第一定律被提出。

这一定律表明能量是守恒的,即能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

这一定律的提出对于热力学的进一步发展起到了重要的推动作用。

3. 热力学第二定律的建立19世纪中叶,热力学的第二定律被建立。

这一定律表明热量不能自发地从低温物体传递到高温物体,即热量只能自高温物体传递到低温物体。

这一定律的建立对于热力学的发展产生了重要的影响。

4. 熵的概念的引入19世纪末,熵的概念被引入热力学。

熵是描述系统无序程度的物理量,它与能量的转化和传递密切相关。

熵的引入使得热力学的理论更加完善,为热力学的应用提供了更多的工具和方法。

5. 热力学在工程和科学领域的应用20世纪初,热力学开始在工程和科学领域得到广泛的应用。

在工程领域,热力学被应用于蒸汽机、内燃机等能量转换装置的设计和优化。

在科学领域,热力学被应用于化学反应、相变等过程的研究。

热力学的应用为工程和科学的发展做出了重要贡献。

6. 热力学的现代发展随着科学技术的发展,热力学在现代得到了进一步的发展。

热力学的理论被拓展到非平衡态系统、微观尺度的系统等领域。

同时,热力学的应用也涉及到了更广泛的领域,如环境保护、能源转换等。

热力学的现代发展为解决现实问题提供了重要的理论基础。

总结:热力学的发展可以追溯到18世纪末的工业革命时期,其中卡诺是热力学的重要奠基者之一。

随着热力学第一定律和第二定律的提出,热力学的理论逐渐完善。

热力学发展简史

热力学发展简史

热力学发展简史热力学作为自然科学的重要分支,探讨了热量和能量之间的转化关系,以及物质的性质和行为。

本文将从热力学的起源开始,概述其发展历程,介绍热力学的基本概念和定律,以及热力学在工程、化学等领域的应用。

一、热力学的起源1.1 古代热力学概念古希腊哲学家亚里士多德提出了热力学的基本概念,认为热是物质的一种属性,同时也是一种运动形式。

1.2 热力学的奠基人17世纪末,英国物理学家卡诺提出了热力学第一定律,开创了现代热力学的发展。

1.3 热力学的发展历程19世纪初,克劳修斯提出了热力学第二定律,奠定了热力学的理论基础,之后热力学逐渐成为独立的科学学科。

二、热力学的基本概念和定律2.1 热力学基本概念热力学研究的对象是热和能量的转化过程,包括热力学系统、热力学平衡等基本概念。

2.2 热力学第一定律热力学第一定律表明能量守恒,能量可以从一种形式转化为另一种形式,但总能量量不变。

2.3 热力学第二定律热力学第二定律规定了热量只能从高温物体传递到低温物体,不可能自发地从低温物体传递到高温物体。

三、热力学在工程领域的应用3.1 热力学在热机工程中的应用热力学定律为热机的设计和优化提供了理论基础,帮助提高能源利用效率。

3.2 热力学在制冷技术中的应用热力学原理被应用于制冷技术,提高了制冷设备的性能和效率。

3.3 热力学在材料加工中的应用热力学原理被应用于材料加工过程中,提高了生产效率和质量。

四、热力学在化学领域的应用4.1 热力学在化学反应中的应用热力学原理用于研究化学反应的热力学特性,包括反应热、反应平衡等。

4.2 热力学在化学工程中的应用热力学原理被应用于化学工程设计和优化,提高了化工生产的效率和经济性。

4.3 热力学在生物化学中的应用热力学原理被应用于生物化学领域,研究生物分子的热力学性质和相互作用。

五、热力学的未来发展5.1 热力学的拓展领域随着科学技术的不断发展,热力学将在新材料、新能源等领域发挥更大作用。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递的物理学分支,它探讨了热、功和能量的关系,以及物质在不同条件下的行为。

本文将为您详细介绍热力学的发展历程,从其起源开始,一直到现代热力学的重要理论和应用。

一、热力学的起源热力学的起源可以追溯到18世纪,当时人们对于热的本质和热量传递的机制产生了兴趣。

最早的热力学理论由苏格兰物理学家詹姆斯·瓦特(James Watt)提出,他研究了蒸汽机的工作原理,并提出了蒸汽的压力和体积之间的关系。

这一研究为后来的热力学奠定了基础。

二、卡诺循环和热力学第一定律19世纪初,法国工程师尼古拉·卡诺(Nicolas Carnot)提出了卡诺循环理论,这是热力学的重要里程碑。

卡诺循环是一种理想化的热机循环,它描述了热量和功的转化过程。

卡诺循环的研究使得人们对于能量守恒定律有了更深入的理解,这被称为热力学第一定律。

三、热力学第二定律和熵热力学第二定律是热力学的核心概念之一,它描述了热量在不同温度下的传递方向。

在19世纪中叶,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius)和英国物理学家威廉·汤姆逊(William Thomson)独立提出了热力学第二定律的形式化表述。

克劳修斯引入了熵(entropy)的概念,将其定义为系统的无序程度。

熵增定律指出,孤立系统的熵总是增加的,这对于能量转化和宇宙演化有着重要的意义。

四、统计热力学和玻尔兹曼熵19世纪末,奥地利物理学家路德维希·玻尔兹曼(Ludwig Boltzmann)通过统计方法解释了熵的微观本质,提出了玻尔兹曼熵(Boltzmann entropy)的概念。

玻尔兹曼熵将熵与分子的微观状态数相关联,揭示了热力学定律与统计力学的联系。

这一理论的发展极大地推动了热力学的进展,并为后来的量子力学提供了重要的启示。

五、热力学的应用热力学的理论和方法在科学和工程领域有着广泛的应用。

热力学发展简史

热力学发展简史

热力学发展简史热力学是一门研究能量转化和传递规律的科学,它的发展经历了漫长的历史进程。

本文将为您详细介绍热力学的发展历程,从早期的热学到现代热力学的发展,为您呈现一个热力学发展的简史。

一、热学的起源热学的起源可以追溯到古希腊时期,当时人们对于热现象有着一些基本的认识。

例如,希腊哲学家柏拉图和亚里士多德认为热是一种物质,称之为“火”的元素。

然而,直到17世纪,热学才真正开始发展为一门科学。

二、卡尔文和热学定律17世纪初,德国物理学家卡尔文提出了热学定律,奠定了热学的基础。

他发现了热传递的三种方式:传导、对流和辐射,并提出了热量守恒定律和热力学第一定律,即能量守恒定律。

三、卡诺和热力学第二定律19世纪初,法国工程师卡诺提出了热力学第二定律,揭示了热能转化的不可逆性。

他发现了热机的效率上限,即卡诺循环效率。

这一发现对于后来热力学的发展有着重要的影响。

四、克劳修斯和热力学第三定律19世纪末,德国物理学家克劳修斯提出了热力学第三定律,解决了低温下热力学性质的难题。

他发现在绝对零度下,物质的熵将趋于零,这一定律为后来的低温物理学和凝聚态物理学的发展提供了理论基础。

五、玻尔兹曼和统计热力学19世纪末,奥地利物理学家玻尔兹曼提出了统计热力学,将热力学现象与微观粒子的运动联系起来。

他提出了熵的统计定义,并发展了玻尔兹曼方程,解释了气体的热力学性质。

六、现代热力学的发展20世纪初,热力学得到了广泛的应用和发展。

热力学的基本概念和定律被应用于工程、化学、生物等领域。

随着科学技术的进步,热力学的研究范围不断扩大,涉及到更加复杂的系统和现象。

七、热力学的应用热力学的应用广泛存在于我们的日常生活和各个领域。

例如,汽车发动机、空调、冰箱等都是基于热力学原理工作的。

在工业生产中,热力学的应用也非常重要,例如化工过程、能源转换等。

八、热力学的未来发展随着科学技术的不断进步,热力学在未来的发展中将面临新的挑战和机遇。

热力学的研究将更加注重对复杂系统和非平衡态的理解,以及对能量转化和传递过程的优化和控制。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递的学科,它涉及到热、功和能量等概念。

下面将为您详细介绍热力学的发展历程,从早期的观察和实验开始,到现代热力学的基本原理和应用。

1. 早期观察和实验热力学的起源可以追溯到古代文明。

早在公元前5世纪,古希腊人就开始研究热和火的现象。

克利斯提亚斯提出了火是一种物质的观点,而赫拉克利特则认为火是一种过程。

这些早期的观察和实验为后来热力学的发展奠定了基础。

2. 热力学第一定律的建立18世纪末,热力学的发展进入了一个新的阶段。

卡诺提出了热机的理论,他认为热机的效率取决于热量的转化和传递。

这为热力学第一定律的建立奠定了基础。

热力学第一定律表明能量守恒,即能量不能被创造或消失,只能从一种形式转化为另一种形式。

3. 熵的概念和热力学第二定律19世纪中期,热力学的发展取得了重要的突破。

克劳修斯和开尔文等科学家提出了熵的概念,熵是描述系统无序程度的物理量。

熵增定律是热力学第二定律的基本原理,它表明在孤立系统中,熵总是增加的。

这一定律揭示了自然界中存在的不可逆过程,如热量从高温物体流向低温物体的现象。

4. 统计热力学的发展19世纪末,统计热力学的发展引起了科学界的广泛关注。

玻尔兹曼提出了分子运动论,他认为热力学现象可以通过分子的随机运动来解释。

玻尔兹曼的理论为热力学提供了微观基础,解释了热力学规律背后的原子和分子运动。

这一理论的发展对于理解物质的性质和热力学过程具有重要意义。

5. 现代热力学的应用20世纪以来,热力学的应用范围不断扩大。

热力学在能源转化、化学反应、材料科学等领域发挥着重要作用。

例如,热力学可以用来优化能源系统的效率,设计高效的热机和制冷设备。

在化学反应中,热力学可以帮助我们理解反应的热效应和平衡条件。

此外,热力学还在材料科学中应用广泛,用于研究材料的相变、热膨胀等性质。

总结:热力学的发展经历了从早期观察和实验到现代热力学的演变过程。

早期的观察和实验为热力学的发展奠定了基础,而热力学第一定律和第二定律的建立则为热力学提供了基本原理。

热力学发展简史

热力学发展简史

热力学发展简史引言概述:热力学是研究能量转化和传递的科学,它涉及到热量、温度和能量的关系。

本文将带您回顾热力学的发展历程,从早期的观察和实验开始,到逐渐建立起基本原理和定律,直至现代热力学的发展。

一、早期观察和实验1.1 热的观察与实验早在古代,人们就开始观察和实验热现象。

例如,古希腊的哲学家们注意到火的热量可以使水变热,同时他们也观察到热量可以通过传导、辐射和对流等方式传递。

这些早期的观察和实验为后来热力学的发展奠定了基础。

1.2 热力学的前身在17世纪,热力学的前身热学开始逐渐发展。

热学研究了热的性质和热量的传递,其中包括热膨胀、热传导和热辐射等现象。

这些研究为后来热力学的建立提供了重要的实验和观察依据。

1.3 热力学的奠基人热力学的奠基人是19世纪的物理学家卡诺、开尔文和克劳修斯等人。

他们通过实验和理论研究,提出了热力学的基本原理和定律,为热力学的发展奠定了坚实的基础。

二、热力学基本原理和定律的建立2.1 第一定律:能量守恒定律热力学的第一定律是能量守恒定律,它表明能量在系统中的转化和传递是守恒的。

根据这个定律,能量可以从一个系统转移到另一个系统,但总能量的数量不变。

这个定律为热力学的进一步研究提供了基础。

2.2 第二定律:热力学箭头热力学的第二定律是关于热量传递的方向性的定律。

它指出热量只能从高温物体流向低温物体,不会自发地从低温物体流向高温物体。

这个定律揭示了热力学过程的不可逆性,为热力学的熵概念和热力学循环的研究提供了理论基础。

2.3 第三定律:绝对零度热力学的第三定律是关于温度的定律。

它指出当温度趋近于绝对零度时,系统的熵趋近于零。

这个定律为研究低温物理学和凝结态物理学提供了理论基础,同时也为热力学的熵概念提供了进一步的解释。

三、热力学的应用与发展3.1 热力学在工程中的应用热力学在工程领域有着广泛的应用。

例如,热力学原理被应用于热机、制冷和发电等系统的设计和优化。

热力学的研究成果也为能源利用和环境保护提供了理论支持。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递的科学领域,它的发展历史可以追溯到18世纪末。

本文将以时间顺序概述热力学的重要里程碑,从早期的热学研究到现代热力学的发展。

1. 早期热学研究热力学的起源可以追溯到古希腊时期,当时的学者开始研究热的性质和热量的传递。

然而,直到17世纪末,热学才开始成为一个独立的科学领域。

著名的研究者包括罗伯特·博义和约瑟夫·布莱克。

2. 卡诺循环和热机理论19世纪初,热力学的发展进入了一个新的阶段。

法国工程师尼古拉·卡诺提出了卡诺循环,这是一种理论热机模型,被认为是热力学的里程碑之一。

卡诺循环的基本原理是将热量转化为机械功,并且在理论上证明了热机的效率是有限的。

3. 热力学第一定律热力学第一定律是热力学的基本原理之一。

它表明能量是守恒的,即能量可以从一种形式转化为另一种形式,但总能量保持不变。

这一定律由赫尔曼·冯·亥姆霍兹和朱尔斯·安达烈提出,并在19世纪中叶得到了广泛接受。

4. 熵的概念熵是热力学中一个重要的概念,它描述了系统的混乱程度或无序程度。

熵的概念由鲁道夫·克劳修斯和威廉·汤姆生在19世纪中叶提出。

熵增原理指出,孤立系统的熵总是增加的,这被认为是热力学第二定律的一个表述。

5. 热力学第二定律热力学第二定律是热力学中最重要的定律之一,它描述了能量转化的方向性。

热力学第二定律有多种表述形式,其中最著名的是卡诺表述和克劳修斯表述。

这些表述形式都指出,自然界中存在一个不可逆的趋势,即热量只能从高温物体传递到低温物体,而不能反过来。

6. 统计热力学19世纪末,统计热力学的发展推动了热力学的进一步发展。

统计热力学将热力学现象与微观粒子的行为联系起来,通过统计方法来解释宏观现象。

麦克斯韦-玻尔兹曼分布定律和玻尔兹曼熵公式是统计热力学的两个重要成果。

7. 热力学第三定律热力学第三定律是热力学中的最后一条定律,它于20世纪初被提出。

热力学的发展史

热力学的发展史

热力学的发展史热力学是一门研究热现象的学科,它的发展历程可以追溯到古代。

随着人类对自然界认识的深入,热力学逐渐形成并发展成为一门独立的学科。

以下是热力学的发展史,主要包含早期探索、热力学的形成、热力学的经典理论、热力学的应用和发展、现代热力学以及热力学与社会等方面。

一、早期探索在古代,人类就开始探索热现象,如火的使用、温泉的热效应等。

早期的哲学家和科学家对热现象进行了一些探讨,如亚里士多德认为热是一种物质,而牛顿则认为热是一种运动状态。

但是,这些早期的探索缺乏科学的理论支持,对热现象的认识还不够深入。

二、热力学的形成18世纪中叶,随着工业革命的兴起,人们开始对热现象进行系统的研究。

法国科学家萨迪·卡诺和英国科学家迈尔·焦耳分别研究了热机和热力学的基本原理,为热力学的形成奠定了基础。

同时,克劳修斯和玻尔兹曼等人也致力于研究热力学的基本理论,推动了热力学的进一步发展。

三、热力学的经典理论19世纪末,热力学的经典理论逐渐形成和完善。

克劳修斯提出了热力学第二定律,该定律阐明了热量传递的方向性和熵增原理,成为热力学的基本定理之一。

随后,能斯特、普朗特和波尔兹曼等人进一步发展了热力学的统计理论,将热力学的基本原理推广到气体分子运动论等领域。

四、热力学的应用和发展随着科学技术的不断发展,热力学得到了广泛的应用和发展。

在工业领域,热力学被广泛应用于能源利用、燃烧、制冷和空调等领域;在生物学和医学领域,热力学为生物体的能量代谢和生理功能提供了理论基础;在地球科学领域,热力学为气候变化和环境问题提供了重要的理论支持。

同时,新的实验手段和技术方法也不断涌现,如磁共振成像技术、激光光谱学和纳米技术等,这些技术为热力学的应用和发展提供了强有力的支持。

五、现代热力学随着科学技术的发展和研究的深入,现代热力学不断涌现出新的理论和应用领域。

例如:非平衡态热力学、耗散结构理论和熵产生最小化理论等。

这些理论进一步拓展了热力学的应用范围,为解决复杂系统和过程的控制和优化提供了重要的理论支持。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递的物理学科,它的发展与人类对能量的认识和利用密切相关。

本文将为您介绍热力学的发展历程,从古代到现代,从基本概念到应用领域,带您了解热力学的发展脉络。

1. 古代热学思想的萌芽在古代,人们对热的认识主要集中在火焰、燃烧和温度上。

古希腊的哲学家们提出了一些关于热的思想,如希波克拉底的“火是物质的一种形式”和亚里士多德的“火是四大元素之一”。

然而,古代的热学思想还没有形成系统的理论体系。

2. 卡尔文热学说的奠基17世纪,荷兰物理学家卡尔文提出了热学的第一个系统理论,即“热是一种物质流动”。

他认为热是一种不可分割的物质,它可以在物体之间传递。

这一理论为后来的热力学奠定了基础。

3. 卡诺循环与热力学第一定律19世纪初,法国工程师卡诺提出了卡诺循环理论,将热力学与工程实践相结合。

他发现了热能转化的最大效率,即卡诺效率。

同时,卡诺还提出了热力学第一定律,即能量守恒定律,能量可以从一种形式转化为另一种形式,但总能量不变。

4. 熵的引入与热力学第二定律19世纪中叶,德国物理学家克劳修斯和英国物理学家开尔文分别独立提出了熵的概念。

熵是衡量系统无序程度的物理量,也是热力学第二定律的核心概念。

热力学第二定律指出,自然界中的过程总是朝着熵增加的方向进行,即系统的无序程度不断增加。

5. 统计热力学的发展19世纪末,奥地利物理学家玻尔兹曼通过统计方法解释了热力学第二定律和熵的概念。

他提出了著名的玻尔兹曼方程,将熵与微观粒子的运动状态联系起来。

这一理论为热力学的发展开辟了新的道路。

6. 热力学的应用领域热力学的应用领域非常广泛,涉及能源、环境、化学、材料等多个领域。

在能源领域,热力学被广泛应用于热能转化和能源利用的优化。

在环境领域,热力学可以帮助我们理解大气、海洋和地球系统的能量平衡。

在化学和材料领域,热力学可以用于反应动力学和相变行为的研究。

总结:热力学作为一门研究能量转化和传递的学科,经历了从古代的雏形到现代的完善过程。

热力学发展简史

热力学发展简史

热力学发展简史热力学是研究能量转化和传递的科学领域,它在工程、物理、化学等多个学科中起着重要的作用。

本文将带您回顾热力学的发展历程,从早期的热学到现代热力学的基本原理和应用。

1. 早期热学的发展早在古希腊时期,人们就开始对热进行探索。

亚里士多德提出了热的四元素理论,认为火、水、土、气是构成物质的基本元素,热是物质的本质。

然而,这种观点并没有提供关于热的定量描述。

17世纪,伽利略和托里切利利用斜面实验研究了物体的滑动磨擦产生的热现象。

这是热学实验的重要里程碑,为后来的研究奠定了基础。

2. 卡诺热机和热力学第一定律1824年,法国工程师卡诺提出了热机理论,他发现热机的效率与工作物质的温度差有关。

卡诺热机成为热力学研究的重要起点。

1843年,热力学第一定律被提出,它表明能量守恒,能量可以从一种形式转化为另一种形式,但总能量不变。

这一定律奠定了热力学的基本原理。

3. 熵的概念和热力学第二定律19世纪末,熵的概念被引入热力学中。

熵是描述系统无序程度的物理量,也是热力学第二定律的核心概念。

熵增原理表明,孤立系统的熵总是增加,自然趋向于无序状态。

热力学第二定律还提出了热力学过程的不可逆性,即热量不会自发地从低温物体传递到高温物体。

这一定律对于热力学系统的研究和工程应用具有重要意义。

4. 统计热力学的兴起19世纪末,统计热力学的理论开始兴起。

玻尔兹曼和麦克斯韦等科学家通过统计分析,将热力学的宏观规律与微观粒子的行为联系起来。

他们提出了玻尔兹曼方程和麦克斯韦-玻尔兹曼分布律,为热力学的理论建立了坚实的基础。

5. 现代热力学的发展与应用20世纪,热力学的研究逐渐深入,涉及到了更多的领域。

热力学在化学反应动力学、相变研究、材料科学等方面都有广泛的应用。

现代热力学还涌现出了许多重要的理论和定律,如热力学第三定律、吉布斯自由能、熵的统计解释等。

这些理论和定律为热力学的研究提供了更深入的理解和解释。

总结:热力学的发展经历了几个关键阶段,从早期的热学到现代热力学的基本原理和应用。

热力学发展简史

热力学发展简史

热力学发展简史引言概述:热力学是研究能量转化和能量传递的科学,它涵盖了广泛的领域,从宏观到微观,从化学到物理。

本文将为您介绍热力学的发展历程,从早期的观察和实验到理论的建立和应用。

一、早期观察和实验1.1 宏观热学的观察:早在古希腊时期,人们就开始观察到热的现象。

例如,他们发现物体在被加热后会膨胀,而在被冷却后会收缩。

这些观察奠定了宏观热学的基础。

1.2 热力学定律的发现:18世纪末,人们开始进行更加系统和精确的实验,以研究热的性质。

这些实验结果导致了热力学定律的发现,如热传导定律和热膨胀定律。

这些定律为后来的热力学理论奠定了基础。

1.3 热力学系统的分类:随着实验的进行,人们开始将热力学系统进行分类。

他们发现,系统可以是开放的、封闭的或者孤立的。

这个分类为后来的热力学研究提供了更多的可能性。

二、理论的建立2.1 卡诺循环的提出:19世纪初,卡诺提出了卡诺循环,这是热力学理论的重要里程碑。

卡诺循环是一个理想的热机模型,它为热力学第二定律的发展奠定了基础。

2.2 熵的概念引入:热力学第二定律的发展需要引入熵这个概念。

熵是一个描述系统无序程度的物理量,它在热力学中起到了至关重要的作用。

熵的引入使得热力学理论更加完善。

2.3 统计热力学的兴起:19世纪末,统计热力学的概念被引入热力学理论中。

统计热力学将热力学现象与微观粒子的运动联系起来,提供了更深入的理解和解释。

三、热力学的应用3.1 工程热力学:热力学的应用领域之一是工程热力学。

工程热力学研究如何利用能量转化和传递来实现工程目标,如发电和制冷。

3.2 化学热力学:热力学在化学领域也有广泛的应用。

化学热力学研究化学反应的能量变化和热力学性质,为化学反应的设计和优化提供了理论基础。

3.3 生物热力学:生物热力学研究生物体内的能量转化和传递。

它对于理解生物体的热力学性质和代谢过程非常重要,对于生物医学领域具有重要的应用价值。

四、热力学的发展挑战4.1 非平衡态热力学:传统的热力学理论是基于平衡态系统的,但许多实际系统都处于非平衡态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要求:1、30个PPT左右2、画面清晰明了3、相关图片不少于是10张4、每个画面文字总数不超过80个,配备解说稿5、3人组成一小组资料如下:热力学第一定律(能量守恒定律):英国杰出的物理学家焦耳、德国物理学家亥姆霍兹等1、我们既不能创造,也不能消灭能量。

宇宙中的能量总和一开始便是固定的,而且永远不会改变,但它可以从一种形式转化为另一种形式。

一个人、一幢摩天大楼、一辆汽车或一棵青草,都体现了从一种形式转化成为另一种形式的能量。

高楼拔地而起,青草的生成,都耗费了在其他地方聚集起来的能量。

高楼夷为平地,青草也不复生长,但它们原来所包含的能量并没有消失,而只是被转移到同一环境的其他所在去了。

我们都听说过这么一句话:太阳底下没有新鲜东西。

要证实这一点你只需呼吸一下,你刚才吸进了曾经让柏拉图吸进过的5000万个分子。

2、宇宙的能量总和是个常数,总的熵是不断增加的。

熵是不能再被转化做功的能量的总和的测定单位。

这个名称是由德国物理学家鲁道尔夫·克劳修斯于1868年第一次造出来的。

蒸汽机之所以能做功,是因为蒸汽机系统里的一部分很冷,而另一部分却很热。

换一句话说,要把能量转化为功,一个系统的不同部分之间就必须有能量集中程度的差异(即温差)。

当能量从一个较高的集中程度转化到一个较低的集中程度(或由较高温度变为较低温度) 时,它就做了功。

更重要的是每一次能量从一个水平转化到另一个水平,都意味着下一次能再做功的能量就减少了。

比如河水越过水坝流入湖泊。

当河水下落时,它可被用来发电,驱动水轮,或做其他形式的功。

然而水一旦落到坝底,就处于不能再做功的状态了。

在水平面上没有任何势能的水是连最小的轮子也带不动的。

这两种不同的能量状态分别被称为“有效的”或“自由的”能量,和“无效的”或“封闭的”能量。

熵的增加就意味着有效能量的减少。

每当自然界发生任何事情,一定的能量就被转化成了不能再做功的无效能量。

被转化成了无效状态的能量构成了我们所说的污染。

许多人以为污染是生产的副产品,但实际上它只是世界上转化成无效能量的全部有效能量的总和。

耗散了的能量就是污染。

既然根据热力学第一定律,能量既不能被产生又不能被消灭,而根据热力学第二定律,能量只能沿着一个方向——即耗散的方向——转化,那么污染就是熵的同义词。

它是某一系统中存在的一定单位的无效能量。

◆在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。

在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。

直至热力学第一定律发现后,第一类永动机的神话才不攻自破。

热力学第一定律是能量守恒和转化定律在热力学上的具体表现,它指明:热是物质运动的一种形式。

这说明外界传给物质系统的能量(热量),等于系统内能的增加和系统对外所作功的总和。

它否认了能量的无中生有,所以不需要动力和燃料就能做功的第一类永动机就成了天方夜谭式的设想。

热力学第二定律:1、没有某种动力的消耗或其他变化,不可能使热从低温转移到高温(不可能把热量从低温物体传到高温物体而不引起其他变化或热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化)。

(德国物理学家鲁道尔夫·克劳修斯1850)2、不可能从单一热源吸取热量,使之完全变成有用功而不产生其他影响(从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的)。

(英国物理学家开尔文(原名汤姆逊)1851年)3、我国有一句成语“覆水难收”,其实是“覆水不收”。

脸盆里的水泼到地上,是不可能再收回来的,这也可以看作是热力学第二定律的一种表述形式。

◆第二类永动机:一种从海水吸取热量,利用这些热量做功的机器。

第二类永动机是不可能实现的,不可能造成的。

这是因为从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响。

利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。

热力学第三定律:1、各种物质的完美晶体在绝对零度时熵为零。

2、与任何等温可逆过程相联系的熵变,随着温度的趋近于零而趋近于零。

3、绝对零度不可达到但可以无限趋近。

人类最伟大的十个科学发现之九:热力学四大定律18世纪,卡诺等科学家发现在诸如机车、人体、太阳系和宇宙等系统中,从能量转变成“功”的四大定律。

没有这四大定律的知识,很多工程技术和发明就不会诞生。

热力学的四大定律简述如下:热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律——能量守恒定律在热学形式的表现。

热力学第二定律——力学能可全部转换成热能,但是热能却不能以有限次的实验操作全部转换成功 (热机不可得)。

热力学第三定律——绝对零度不可达到但可以无限趋近。

法国物理学家卡诺(Nicolas Leonard Sadi Carnot,1796~1823)(左图)生于巴黎。

其父L.卡诺是法国有名的数学家、将军和政治活动家,学术上很有造诣,对卡诺的影响很大。

卡诺身处蒸汽机迅速发展、广泛应用的时代,他看到从国外进口的尤其是英国制造的蒸汽机,性能远远超过自己国家生产的,便决心从事热机效率问题的研究。

他独辟蹊径,从理论的高度上对热机的工作原理进行研究,以期得到普遍性的规律;1824年他发表了名著《谈谈火的动力和能发动这种动力的机器》(右图),书中写道:“为了以最普遍的形式来考虑热产生运动的原理,就必须撇开任何的机构或任何特殊的工作介质来进行考虑,就必须不仅建立蒸汽机原理,而且建立所有假想的热机的原理,不论在这种热机里用的是什么工作介质,也不论以什么方法来运转它们。

”卡诺出色地运用了理想模型的研究方法,以他富于创造性的想象力,精心构思了理想化的热机——后称卡诺可逆热机(卡诺热机),提出了作为热力学重要理论基础的卡诺循环和卡诺定理,从理论上解决了提高热机效率的根本途径。

卡诺在这篇论文中指出了热机工作过程中最本质的东西:热机必须工作于两个热源之间,才能将高温热源的热量不断地转化为有用的机械功;明确了“热的动力与用来实现动力的介质无关,动力的量仅由最终影响热素传递的物体之间的温度来确定”,指明了循环工作热机的效率有一极限值,而按可逆卡诺循环工作的热机所产生的效率最高。

实际上卡诺的理论已经深含了热力学第二定律的基本思想,但由于受到热质说的束缚,使他当时未能完全探究到问题的底蕴。

1832年8月24日卡诺因染霍乱症在巴黎逝世,年仅36岁。

按照当明的防疫条例,霍乱病者的遗物一律付之一炬。

卡诺生前所写的大量手稿被烧毁,幸得他的弟弟将他的小部分手稿保留了下来,其中有一篇是仅有21页纸的论文----《关于适合于表示水蒸汽的动力的公式的研究》,其余内容是卡诺在1824-1826年间写下的23篇论文。

后来,卡诺的学术地位随着热功当量的发现,热力学第一定律、能量守恒与转化定律及热力学第二定律相继被揭示的过程慢慢形成了。

热力学第一定律与能量守恒定律有着极其密切的关系。

德国物理学家、医生迈尔(Julius Robert Mayer,1814~1878)(左图)1840年2月到1841年2月作为船医远航到印度尼西亚。

他从船员静脉血的颜色的不同,发现体力和体热来源于食物中所含的化学能,提出如果动物体能的输入同支出是平衡的,所有这些形式的能在量上就必定守恒。

他由此受到启发,去探索热和机械功的关系。

他将自己的发现写成《论力的量和质的测定》一文,但他的观点缺少精确的实验论证,论文没能发表(直到1881年他逝世后才发表)。

迈尔很快觉察到了这篇论文的缺陷,并且发奋进一步学习数学和物理学。

1842年他发表了《论无机性质的力》的论文,表述了物理、化学过程中各种力(能)的转化和守恒的思想。

迈尔是历史上第一个提出能量守恒定律并计算出热功当量的人。

但1842年发表的这篇科学杰作当时未受到重视。

以后英国杰出的物理学家焦耳(James Prescort Joule,1818~1889)(右图)、德国物理学家亥姆霍兹(Hermannvon Helmholtz,1821~1894)等人又各自独立地发现了能量守恒定律。

1843年8月21日焦耳在英国科学协会数理组会议上宣读了《论磁电的热效应及热的机械值》论文,强调了自然界的能是等量转换、不会消灭的,哪里消耗了机械能或电磁能,总在某些地方能得到相当的热。

焦耳用了近40年的时间,不懈地钻研和测定了热功当量。

他先后用不同的方法做了400多次实验,得出结论:热功当量是一个普适常量,与做功方式无关。

他自己1878年与1849年的测验结果相同。

后来公认值是427千克重·米每千卡。

这说明了焦耳不愧为真正的实验大师。

他的这一实验常数,为能量守恒与转换定律提供了无可置疑的证据。

1847年,亥姆霍兹(左图)发表《论力的守恒》,第一次系统地阐述了能量守恒原理,从理论上把力学中的能量守恒原理推广到热、光、电、磁、化学反应等过程,揭示其运动形式之间的统一性,它们不仅可以相互转化,而且在量上还有一种确定的关系。

能量守恒与转化使物理学达到空前的综合与统一。

将能量守恒定律应用到热力学上,就是热力学第一定律。

热力学第二定律是在能量守恒定律建立之后,在探讨热力学的宏观过程中而得出的一个重要的结论。

1834年,卡诺去世两年后,卡诺的《谈谈火的动力和能发动这种动力的机器》才有了第一个认真的读者----克拉派隆(Benoit Paul Emile Clapeyron,1799-1864)(右图)。

他比卡诺低几个年级。

他在学院出版的杂志上发表了题为《论热的动力》的论文,用P-V曲线翻译了卡诺循环,但未引起学术界的注意。

英国物理学家开尔文(Lord Kelvin,1824-1907)(左图)在法国学习时,偶尔读到克拉派隆的文章,才知道有卡诺的热机理论。

然而,他找遍了各图书馆和书店,都无法找到卡诺的1824年论着。

实际上,他根据克拉派隆介绍卡诺理论写的《建立在卡诺热动力理论基础上的绝对温标》一文在1848年发表。

1849年,开尔文终于弄到一本他盼望已久的卡诺著作。

1851年开尔文从热功转换的角度提出了热力学第二定律的另一种说法,不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。

德国物理学家克劳修斯(Rudolph Julius Emmanuel Clausius,1822-1888)(右图)一直没弄到卡诺原著,只是通过克拉派隆和开尔文的论文熟悉了卡诺理论。

1850年克劳修斯从热量传递的方向性角度提出了热力学第二定律的表述:热量不可能自发地、不花任何代价地从低温物体传向高温物体,他还首先提出了熵的概念。

相关文档
最新文档